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Abstract
We construct a pair of adjoint functors between the cate-

gories of crossed modules of Lie and associative algebras, which
extends the classical one between the categories of Lie and asso-
ciative algebras. This result is used to establish an equivalence
of categories of modules over a Lie crossed module and its uni-
versal enveloping crossed module.

1. Introduction

The general concept of a crossed module originates in the work of Whitehead in
the late 1940s [25]. Namely, it was introduced as an algebraic model for a path-
connected CW-space whose homotopy groups are trivial in dimensions > 2. There,
the crossed modules were crossed modules of groups and since their introduction
they have played an important role in homotopy theory. For illustration, we mention
various classification problems for low-dimensional homotopy types and derivation of
van Kampen theorem generalizations (see the survey of Brown [5]).

Crossed modules of Lie algebras, hereafter called Lie crossed modules, and crossed
modules of associative algebras are well known, at least as analogues of crossed mod-
ules of groups in other categories.

Lie crossed modules have been investigated by various authors. Namely, in [19]
Kassel and Loday use Lie crossed modules as computational tools in order to give an
interpretation of the third relative Chevalley-Eilenberg cohomology of Lie algebras.
Guin [17] has developed low-dimensional non-abelian cohomology of Lie algebras
with coefficients in Lie crossed modules, which later has been extended to higher
dimensions in [18]. Internal (cotriple) homology and Chevalley-Eilenberg homology
theories of Lie crossed modules are investigated in [8, 13]. Lie crossed modules also
occurred in the “categorification” problem of the theory of Lie algebras [1] as an
equivalent formulation of strict Lie 2-algebras (a two-dimensional generalization of
the concept of Lie algebra).
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The theory of crossed modules of associative algebras is not so well developed. How-
ever, in the works of Dedecker and Lue [11, 21], crossed modules of associative alge-
bras have played a central role in what must be coefficients for low-dimensional non-
abelian cohomology. Baues and Minian [2] have used them to represent the Hochschild
cohomology of associative algebras. In the recent article [12], the Hochschild and
(cotriple) cyclic homologies of crossed modules of associative algebras have been con-
structed and investigated.

The aim of the present paper is to give an interplay between crossed modules
of Lie and associative algebras. Motivated by the well-known classical fact that the
universal enveloping algebra functor is left adjoint to the Liezation functor, we extend
this adjunction to the categories of crossed modules of Lie and associative algebras in
such a way that the well-known equivalence of module structures over a Lie algebra
and its universal enveloping algebra is preserved.

Our constructions can be applied to develop (co)homology theories with coefficients
for crossed modules of associative and Lie algebras, and to extend for crossed mod-
ules the well-known isomorphism between homology of a Lie algebra and Hochschild
homology of its universal enveloping algebra (see for example [6, Chapter XIII, The-
orem 5.1]).

Notations and conventions. Throughout the paper we fix a commutative ring
K with unit. Lie algebras are considered over K and their category is denoted by Lie.
Algebras are (not necessarily unital) associative algebras over K and their category
is denoted by Alg.

2. Crossed modules in Lie and associative algebras

In this section we recall some necessary notions about crossed modules of Lie and
associative algebras and describe actions for Lie crossed modules.

2.1. Lie crossed modules and cat1-Lie algebras
Let M and P be two Lie algebras. By an action of P on M we mean a K-bilinear

map P ×M →M , (p,m) 7→ pm satisfying

[p,p′]m = p(p
′
m)− p′(pm), p[m,m′] = [pm,m′] + [m, pm′],

for all m,m′ ∈M and p, p′ ∈ P . In other words, the action of P on M is a Lie
homomorphism P → Der(M) to the Lie algebra of derivations of M . For example, if
P is a Lie subalgebra of some Lie algebra Q, and if M is an ideal in Q, then the Lie
bracket in Q yields an action of P on M .

Given a Lie action of P on M we can form the semi-direct product Lie algebra,
M ⋊ P , with the underlying module M ⊕ P and the Lie bracket given by

[(m, p), (m′, p′)] = ([m,m′] + pm′ − p′m, [p, p′]), (m, p), (m′, p′) ∈M ⊕ P.

We recall from [19] that a Lie crossed module (M,P, µ) is a Lie homomorphism
µ : M → P together with an action of P on M such that, for all m,m′ ∈M and
p ∈ P ,

µ(pm) = [p, µ(m)], µ(m)m′ = [m,m′].

A morphism of Lie crossed modules (α, β) : (M,P, µ) → (M ′, P ′, µ′) is a pair of Lie
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homomorphisms α : M →M ′, β : P → P ′ such that µ′α = βµ and α(pm) = β(p)α(m)
for all m ∈M , p ∈ P . We denote by XLie the category of crossed modules of Lie
algebras.

There are several equivalent descriptions of the category XLie. We mention here
the equivalences with simplicial Lie algebras whose Moore complexes are of length 1,
with internal categories in the category of Lie algebras and with cat1-Lie algebras. The
nature of these equivalences is reminiscent of the interplays between similar objects
in groups [20]. The equivalence between Lie crossed modules and cat1-Lie algebras
will be used in what follows and we shall give some of its details immediately below.

Recall that a cat1-Lie algebra (L1, L0, s, t) consists of a Lie algebra L1 together
with a Lie subalgebra L0 and structural homomorphisms s, t : L1 → L0 satisfying

s |L0= t |L0= idL0 and [Ker s,Ker t] = 0. (1)

Given a Lie crossed module (M,P, µ), the corresponding cat1-Lie algebra is (M ⋊
P, P, s, t), where s(m, p) = p, t(m, p) = µ(m) + p for all (m, p) ∈M ⋊ P . On the other
hand, for a cat1-Lie algebra (L1, L0, s, t) the corresponding Lie crossed module is
t |Ker s : Ker s→ L0 with the action of L0 on Ker s defined by the Lie bracket in L1.

2.2. Actions and semi-direct product of Lie crossed modules
In article [22], actor crossed modules of groups are constructed, which provide

an analogue of the automorphism group of groups and are used to define actions of
crossed modules of groups.

The similar construction for Lie crossed modules is given in [10], and an action of
a Lie crossed module (H,G, ∂) on another Lie crossed module (M,P, µ) is defined to
be a morphism (α, β) : (H,G, ∂) → Act(M,P, µ) of Lie crossed modules, where

Act(M,P, µ) = (Der(P,M),Der(M,P, µ),∆)

is the actor crossed module of (M,P, µ).
Let us recall briefly from [10] the construction of Act(M,P, µ). First note that

all results in [10] are achieved when the ground ring K is a field, although all con-
structions work for K a commutative unital ring. Thus, for the Lie crossed module
(M,P, µ), Der(P,M) denotes the K-module of all derivations from P to M , i.e.,
K-linear maps d : P →M such that d[p, p′] = pd(p′)− p′d(p), p, p′ ∈ P . There is a
multiplication in Der(P,M) given by

[d1, d2] = d1µd2 − d2µd1

turning Der(P,M) into a Lie algebra. Further, Der(M,P, µ) denotes the Lie algebra
of derivations of the crossed module (M,P, µ), i.e., the elements are all pairs (ϕ, ψ)
with ϕ ∈ Der(M), ψ ∈ Der(P ) such that

ψµ = µϕ and ϕ(pm) = pϕ(m) + ψ(p)m (2)

for all m ∈M , p ∈ P . The Lie structure of Der(M,P, µ) is given simply by

(ϕ1, ψ1) + (ϕ2, ψ2) = (ϕ1 + ϕ2, ψ1 + ψ2),

λ(ϕ, ψ) = (λϕ, λψ),

[(ϕ1, ψ1), (ϕ2, ψ2)] = ([ϕ1, ϕ2], [ψ1, ψ2]),

for all (ϕ1, ψ1), (ϕ2, ψ2), (ϕ, ψ) ∈ Der(M,P, µ), λ ∈ K. Then direct calculations show
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that the Lie homomorphism

∆: Der(P,M) → Der(M,P, µ), d 7→ (dµ, µd),

together with the Lie action of Der(M,P, µ) on Der(P,M) given by

(ϕ,ψ)d = ϕd− dψ,

is a Lie crossed module called the actor of (M,P, µ), denoted by Act(M,P, µ).

Example 2.1. There is an action of a Lie crossed module (M,P, µ) on itself given
by the morphism (αµ, βµ) : (M,P, µ) → Act(M,P, µ), where αµ : M → Der(P,M)
is defined by αµ(m)(p) = −pm, and βµ : P → Der(M,P, µ) is defined by βµ(p) =
(ϕp, ψp) with ϕp(m) = pm and ψp(p

′) = [p, p′] for all m ∈M , p, p′ ∈ P . Moreover,
the kernel of (αµ, βµ) is the center of the Lie crossed module (M,P, µ) (see more
details in [10]).

There is an equivalent description of actions of Lie crossed modules.

Proposition 2.2. Let (H,G, ∂) and (M,P, µ) be Lie crossed modules. An action of
(H,G, ∂) on (M,P, µ) is determined by the following conditions:

(i) There are actions of the Lie algebra G (and so H) on the Lie algebras M
and P ; µ is a G-equivariant homomorphism, that is, µ(gm) = gµ(m); and G,
P act compatibly on M , that is,

(gp)m = g(pm)− p(gm) (3)

for all g ∈ G, p ∈ P , and m ∈M .

(ii) There is a K-bilinear map f : H × P →M such that, for h, h′ ∈ H, p, p′ ∈ P ,
m ∈M , g ∈ G,

f
(
h, µ(m)

)
= hm, (4)

µf(h, p) = hp, (5)
gf(h, p) = f(gh, p) + f(h, gp), (6)

f([h, h′], p) = hf(h′, p)− h′
f(h, p), (7)

f(h, [p, p′]) = pf(h, p′)− p′f(h, p). (8)

Proof. Let (H,G, ∂) act on (M,P, µ) by the following morphism of Lie crossed mod-
ules:

H
∂ //

α

��

G

β

��
Der(P,M)

∆ // Der(M,P, µ).

(9)

Clearly the homomorphism β defines Lie actions of G onM and P , µ is G-equivariant
because of the first equality in (2), and (3) is a consequence of the second equality
in (2). Define f : H × P →M by f(h, p) = α(h)(p). Then the commutativity of the
diagram (9) amounts precisely to the equalities (4) and (5); the equality (6) is equiv-
alent to α(gh) = β(g)α(h); whilst (7) and (8) are equivalent to the facts that α is a
Lie homomorphism and α(g), for any g ∈ G, is a derivation, respectively. The inverse
statement is obvious.
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Let (H,G, ∂) be a Lie crossed module acting on a Lie crossed module (M,P, µ). By
Proposition 2.2 there are Lie algebra actions of H on M and of G on P . With these
actions we can form the semi-direct products of Lie algebras M ⋊H and P ⋊G.

Lemma 2.3. There is an action of the Lie algebra P ⋊G on the Lie algebra M ⋊H
such that, with this action, the Lie homomorphism

(µ, ∂) : M ⋊H → P ⋊G, (µ, ∂)(m,h) =
(
µ(m), ∂(h)

)
, (m,h) ∈M ⋊H,

is a Lie crossed module.

Proof. Using the same notations as in Proposition 2.2, the action of P ⋊G onM ⋊H
is defined by

(p,g)(m,h) = (pm+ gm− f(h, p), gh)

for all p ∈ P , g ∈ G, m ∈M , and h ∈ H. The remaining details are routine calcula-
tions.

The Lie crossed module
(
M ⋊H,P ⋊G, (µ, ∂)

)
is called the semi-direct product

of Lie crossed modules (M,P, µ) and (H,G, ∂). Note that the semi-direct product
determines a split extension of (H,G, ∂) by (M,P, µ)

(0, 0, 0) // (M,P, µ) //
(
M ⋊H,P ⋊G, (µ, ∂)

) // (H,G, ∂)oo // (0, 0, 0)

with the splitting morphism being the pair of inclusions (H↪→M ⋊H,G↪→P ⋊G).
And conversely, any split extension of (H,G, ∂) by (M,P, µ) is isomorphic to their
semi-direct product, where the action of (H,G, ∂) on (M,P, µ) is induced by the
splitting morphism (see [9]).

Remark 2.4. A general theory of split short exact sequences, semi-direct products,
and actions exists in the context of semi-abelian categories (see [4]) and of course
those notions agree with the ad-hoc definitions given here.

2.3. Crossed modules of algebras and cat1-algebras

We recall the basic notions about crossed modules of algebras from [12] (also cf.
[14]).

We say that an algebra A acts on another algebra R if, as a K-module, R has an
A-bimodule structure A×R→ R, (a, r) 7→ a · r, R×A→ R, (r, a) 7→ r · a, and the
following conditions are verified:

a · (rr′) = (a · r)r′, (r · a)r′ = r(a · r′), (rr′) · a = r(r′ · a),

for all a ∈ A, r, r′ ∈ R. For example, if A is a subalgebra of some algebra B and R is
an ideal in B, then multiplication in B yields an action of A on R.

Given an action of A on R, one can form the semi-direct product algebra, R⋊A,
with the underlying K-module R⊕A endowed with the multiplication given by

(r, a)(r′, a′) = (rr′ + a · r′ + r · a′, aa′)

for all (r, a), (r′, a′) ∈ R⋊A.
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A crossed module of algebras (R,A, ρ) is an algebra homomorphism ρ : R→ A,
together with an action of A on R, such that the following conditions hold:

ρ(a · r) = aρ(r), ρ(r · a) = ρ(r)a,

ρ(r) · r′ = rr′ = r · ρ(r′),

for all a ∈ A, r, r′ ∈ R.
The concept of a crossed module of algebras generalizes simultaneously the con-

cepts of an ideal as well as a bimodule. In fact, a common instance of a crossed module
of algebras is that of an algebra A possessing an ideal I; the inclusion homomorphism
I ↪→ A is a crossed module with A acting on I by the multiplication in A.

Another common example is that of an A-bimodule M with trivial multiplication;
then the zero homomorphism 0: M → A, m 7→ 0, is a crossed module.

Any epimorphism of algebras R↠ A with the kernel in the two-sided annihilator
of R is a crossed module, with a ∈ A acting on r ∈ R by a · r = r̃r and r · a = rr̃,
where r̃ is any element in the preimage of a.

One more example is that of a DG-algebra concentrated in degrees 0 and 1, A =

{A1
d−→ A0}, with A0 acting on A1 by multiplication in A.

A morphism (α, β) : (R,A, ρ) → (R′, A′, ρ′) of crossed modules is a pair of homo-
morphisms (α : R→ R′, β : A→ A′) such that ρ′α = βρ, α(a · r) = β(a) · α(r), and
α(r · a) = α(r) · β(a) for a ∈ A, r ∈ R. Let us denote the category of crossed mod-
ules of algebras by XAlg. Moreover, denote by XAlg1 the subcategory of XAlg of
crossed modules of unital algebras, whose objects are crossed modules (R,A, ρ) with
A a unital algebra and whose morphisms are crossed module morphisms (α, β) with
β a homomorphism of unital algebras.

A cat1-algebra (A1, A0, σ, τ) consists of an algebra A1 together with a subalgebra
A0 and structural homomorphisms σ, τ : A1 → A0 satisfying

σ |A0= τ |A0= idA0 and KerσKer τ = 0 = Ker τ Kerσ. (10)

A morphism of cat1-algebras γ : (A1, A0, σ, τ) → (A′
1, A

′
0, σ

′, τ ′) is an algebra homo-
morphism γ : A1 → A′

1 such that γ(A0) ⊆ A′
0 and σ′γ = γ |A0 σ, τ

′γ = γ |A0 τ .
Just as in the case of Lie algebras, a crossed module of algebras is equivalent to a

cat1-algebra. More precisely, given a crossed module of algebras (R,A, ρ), the corre-
sponding cat1-algebra is (R⋊A,A, σ, τ), where σ(r, a) = a, τ(r, a) = ρ(r) + a for all
(r, a) ∈ R⋊A. On the other hand, for a cat1-algebra (A1, A0, σ, τ) the corresponding
crossed module is τ |Kerσ : Kerσ → A0 with the action of A0 on Kerσ defined by the
multiplication in A1.

3. Enveloping crossed module and adjunction between XLie
and XAlg

Any algebra A becomes a Lie algebra with the Lie bracket [a, b] = ab− ba, a, b ∈ A.
Let Lie : Alg → Lie denote the functor sending an algebra A to its Lie algebra
Lie(A). Let U : Lie → Alg denote its left adjoint functor, sending a Lie algebra L
to its universal enveloping algebra U(L). In this section we extend the functors Lie
and U to the categories XAlg and XLie in such a way that those extensions are still
adjoint to one another.
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3.1. Liezation of crossed modules of algebras
As noted in [12], we can associate to a crossed module of algebras (R,A, ρ) the

Lie crossed module
(
Lie(R), Lie(A), Lie(ρ)

)
with the action of Lie(A) on Lie(R)

given by ar = a · r − r · a for all a ∈ A, r ∈ R. It is easy to see that this is indeed
a Lie action, and

(
Lie(R), Lie(A), Lie(ρ)

)
is a Lie crossed module. Moreover, this

assignment defines a functor XLie : XAlg → XLie which is a natural generalization
of the functor Lie : Alg → Lie in the following sense. There are full embeddings

I0, I1 : Alg −→ XAlg (resp. I′0, I′1 : Lie −→ XLie)

defined, for an algebraA (resp. Lie algebra P ), by I0(A) = (0,A,0), I1(A) = (A,A, idA)(
resp. I′0(P ) = (0, P, 0), I′1(P ) = (P, P, idP )

)
, and it is immediate to see that we have

the following commutative diagram

Alg

Lie

��

Ii // XAlg

XLie

��
Lie

I′i // XLie

for i = 0, 1.

3.2. Universal enveloping crossed module
Now we construct a left adjoint functor to the functor XLie, which generalizes the

universal enveloping algebra functor U : Lie → Alg to crossed modules.
Given a Lie crossed module µ : M → P , consider its corresponding cat1-Lie alge-

bra M ⋊ P
s //
t

// P . Then, applying the universal enveloping algebra functor U, we

obtain a diagram of algebras

U(M ⋊ P )
U(s) //
U(t)

// U(P ).

It is clear that U(s) |U(P )= U(t) |U(P )= idU(P ), but the kernel condition in the defini-
tion of a cat1-algebra is not fulfilled in general. Therefore, we consider a new diagram

U(M ⋊ P )/X
U(s) //
U(t)

// U(P ), (11)

where X = Ker U(s)Ker U(t) + Ker U(t)Ker U(s), U(s), and U(t) are induced by U(s)
and U(t), respectively. This obviously is a cat1-algebra.

Define XU(M,P, µ) as the crossed module of algebras corresponding to the cat1-
algebra (11), that is,

XU(M,P, µ) =
(
Ker U(s), U(P ), U(t) |Ker U(s)

)
.

Note that, in fact, XU(M,P, µ) is an object of XAlg1.

Definition 3.1. Given a Lie crossed module (M,P, µ), the crossed module of algebras
XU(M,P, µ) is called the universal enveloping crossed module of (M,P, µ).

It is easy to see that the universal enveloping crossed module construction provides
a functor XU : XLie → XAlg, which is a natural generalization of the functor U in
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the sense that the diagram

Lie

U

��

I′0 // XLie

XU

��
Alg

I0 // XAlg

is commutative. Moreover, one has the following

Proposition 3.2. There is a natural isomorphism of functors

I1 ◦ U ≈ XU ◦ I′1.

Proof. Given a Lie algebra P , we have that I1 ◦ U(P ) =
(
U(P ), U(P ), idU(P )

)
. Thus,

we need to show that the crossed module of algebras XU(P, P, idP )
(
= XU ◦I′1(P )

)
is isomorphic to (U(P ), U(P ), idU(P )). We follow the definition of XU and consider
the cat1-Lie algebra (P ⋊ P, P, s, t) with s(p, p′) = p′, t(p, p′) = p+ p′, p, p′ ∈ P , cor-
responding to the Lie crossed module (P, P, idP ). There is a Lie homomorphism
ϵ : P → P ⋊ P , p 7→ (p, 0), satisfying sϵ = 0 and tϵ = idP . Next, we need to con-
sider the cat1-algebra

(
U(P ⋊ P )/X, U(P ), U(s), U(t)

)
, where X = Ker U(s)Ker U(t) +

Ker U(t)Ker U(s).
Let π : U(P ⋊ P ) → U(P ⋊ P )/X denote the canonical epimorphism. Then we have

the equalities U(s)π U(ϵ) = U(s) U(ϵ) = 0 and U(t)π U(ϵ) = U(t) U(ϵ) = idP .
It follows that the homomorphism π U(ϵ) takes values in Ker U(s) and it is a right

inverse for the homomorphism U(t) |Ker U(s) : Ker U(s) → U(P ).

Now we show that π U(ϵ)U(t)|Ker U(s)= idKer U(s). Indeed, we have that Ker U(s) =
Ker U(s)/X and, as a K-module, Ker U(s) is generated by all elements of the form

(p1, p
′
1)⊗ · · · ⊗ (pi−1, p

′
i−1)⊗ (pi, 0)⊗ (pi+1, p

′
i+1)⊗ · · · ⊗ (pn, p

′
n) (12)

with (pi, p
′
i) ∈ P ⋊ P , 1 ⩽ i ⩽ n. By definitions of U(t) and U(ϵ), the value of U(ϵ) U(t)

on (12) is

(p1 + p′1, 0)⊗ · · · ⊗ (pi−1 + p′i−1, 0)⊗ (pi, 0)⊗ (pi+1 + p′i+1, 0)⊗ · · · ⊗ (pn + p′n, 0).
(13)

Then we easily derive the following equalities in Ker U(s)/X:

(p1 + p′1, 0)⊗ · · · ⊗ (pi−1 + p′i−1, 0)⊗ (pi, 0)⊗ (pi+1 + p′i+1, 0)⊗ · · · ⊗ (pn + p′n, 0)

= (p1, p
′
1)⊗ · · · ⊗ (pi−1 + p′i−1, 0)⊗ (pi, 0)⊗ (pi+1 + p′i+1, 0)⊗ · · · ⊗ (pn + p′n, 0)

= · · ·
= (p1, p

′
1)⊗ · · · ⊗ (pi−1, p

′
i−1)⊗ (pi, 0)⊗ (pi+1, p

′
i+1)⊗ · · · ⊗ (pn, p

′
n).

Thus, the elements (12) and (13) are equal in Ker U(s)/X and it follows that

π U(ϵ)U(t)|Ker U(s)= idKer U(s) .

Now it is easy to see that the pair
(
U(t)|Ker U(s), idU(P )

)
is an isomorphism between

the crossed modules of algebras
(
Ker U(s), U(P ), U(t)|Ker U(s)

)
and

(
U(P ), U(P ), idU(P )

)
,

which provides the required isomorphism between the functors I1 ◦ U and XU ◦I′1.

Remark 3.3. In the article [15], because of the integration problem of Lie 2-algebras
into 2-groups, an enveloping functor U is defined by applying the standard functor U
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term by term on a Lie crossed module (M,P, µ), i.e., U(M,P, µ) =
(
U(M), U(P ), U(µ)

)
.

Also, it is noted that this does not give a crossed module of associative algebras, but
a crossed module of Hopf algebras, presented in [15, Definition 1]. Of course, our
definition of the universal enveloping functor XU differs from the definition of the
enveloping functor U in [15].

3.3. Adjunction between XLie and XAlg

The following result is a natural generalization of the well-known classical adjunc-
tion between the categories Lie and Alg.

Theorem 3.4. The functor XU is left adjoint to the Liezation functor XLie.

Proof. We have to construct a natural bijection

HomXLie

(
(M,P, µ), XLie(R,A, ρ)

)
≈ HomXAlg

(
XU(M,P, µ), (R,A, ρ)

)
,

for any (M,P, µ) ∈ XLie and (R,A, ρ) ∈ XAlg.

Given a morphism (α, β) ∈ HomXLie

(
(M,P, µ), XLie(R,A, ρ)

)
, consider the cor-

responding morphism of cat1-Lie algebras

M ⋊ P

α′

��

s //
t

// P

β

��
Lie(R⋊A)

σ //
τ

// Lie(A) ,

where α′(m, p) =
(
α(m), β(p)

)
for all (m, p) ∈M ⋊ P . Since the functor U is left

adjoint to the functor Lie, we easily deduce that there is an induced commutative
diagram of algebras

U(M ⋊ P )

α′∗

��

U(s) // U(P )

β∗

��
R⋊A

σ // A ,

and a similar diagram holds with U(s) replaced by U(t) and σ replaced by τ . Since
KerσKer τ = Ker τ Kerσ = 0, we have a uniquely defined morphism of cat1-algebras

U(M ⋊ P )/X

α′∗

��

U(s) //
U(t)

// U(P )

β∗

��
R⋊A

σ //
τ

// A ,

which corresponds to a uniquely defined morphism from HomXAlg

(
XU(M,P, µ),

(R,A, ρ)
)
. The inverse assignment is obvious.

Let us remark that the adjunction XU ⊣ XLie actually follows from a simple compo-
sition of right adjoint functors which determines the left adjoint functor XU completely.
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More concretely, let us consider the following diagram in which the respective squares
of left and right adjoint functors are commutative.

RGLie

CLie

��

⊥
RGU //

RGAlg
RGLie

oo

⊢ CAlg

��
CatLie

≈
��

⊢⊆

OO

⊥
CU //

CatAlg
CLie

oo

≈
��

⊆

OO

XLie ⊥
XU //

XAlg
XLie

oo

Here RGLie (resp. RGAlg) is the category of reflexive graphs in Lie (resp. Alg).
The functor RGU (resp. RGLie) is the pointwise extension of U (resp. Lie). CatLie
(resp. CatAlg) is the category of internal categories in Lie (resp. Alg), which is
equivalent to the category of cat1-Lie algebras (resp. cat1-algebras) and so to the
category XLie (resp. XAlg), and which is reflective in RGLie (resp. RGAlg) with
the reflector CLie (resp. CAlg ).

The functor CLie is the restriction of RGLie to internal categories. It is right adjoint
as a composite of right adjoint functors. This agrees with the description of XLie
in Subsection 3.1, because right adjoints commute with taking kernels and hence
with the equivalence between internal categories and crossed modules. By comparing
the commutator condition in (1) with the corresponding equation in (10), it follows
immediately that RGLie of an internal category in Alg is indeed an internal category
in Lie.

Since the reflector CLie is a split epimorphism, the (unique) left adjoint CU of CLie
must be equal to composition CAlg ◦ RGU ◦ ⊆, which is precisely the description of XU
given in Subsection 3.2.

4. Modules over crossed modules

In this section we describe left modules over crossed modules of Lie and associative
algebras and prove an equivalence of categories of modules over a Lie crossed module
and its universal enveloping crossed module of associative algebras.

4.1. Modules over Lie crossed modules
Recall that Beck [3] introduced a convenient notion of coefficient module to be used

in (co)homology theories. The notion makes sense in a broad context, and recovers
the usual notions of modules in familiar settings: for groups, commutative algebras,
and Lie algebras, these are left modules; for associative algebras, the appropriate
notion is that of bimodule.

By definition, given an object C of a category C, a Beck module over C is an
abelian group object in the slice category C/C. If C is a category of interest in the
sense of Orzech [23], then Beck modules are equivalent to split extensions with abelian
kernel [23, Theorem 2.7]. This is the case for all aforementioned familiar categories.
Moreover, the description of crossed modules in groups as cat1-groups makes their
category into a category of interest (see e.g. [24]). But the same assertion fails for Lie



UNIVERSAL ENVELOPING CROSSED MODULE OF A LIE CROSSED MODULE 153

crossed modules. Concretely, the category XLie satisfies all the axioms of a category
of interest except one [23, Axiom (6)], which is replaced by a new axiom (see details in
[7] for precrossed modules of Lie algebras). However, since the proof of [23, Theorem
2.7] does not use the condition in [23, Axiom (6)], we can apply this general result to
the category XLie and identify a module over a Lie crossed module (H,G, µ) with a
split extension in XLie

(0, 0, 0) // (M,P, µ) // (H ′, G′, ∂′) // (H,G, ∂)oo // (0, 0, 0)

where the kernel (M,P, µ) is an abelian crossed module of Lie algebras, that is, M , P
abelian Lie algebras, and trivial action of P on M (pm = 0, for all p ∈ P , m ∈M).
It follows from the discussion at the end of Subsection 2.2 that a left (H,G, ∂)-
module is equivalent to an abelian Lie crossed module (M,P, µ) endowed with an
(H,G, ∂)-action by means of a morphism of Lie crossed modules (α, β) : (H,G, ∂) →
Act(M,P, µ).

Suppose µ : M → P and µ′ : M ′ → P ′ are (H,G, ∂)-modules with crossed module
morphisms (φ,ψ) : (H,G, ∂)→Act(M,P, µ) and (φ′, ψ′) : (H,G, ∂)→Act(M ′, P ′, µ′),
respectively. Then a morphism from µ : M → P to µ′ : M ′ → P ′ is a pair of homo-
morphisms of K-modules (fM : M →M ′, fP : P → P ′) such that

f
P
µ = µ′f

M
, (f

M
, f

P
)ψ(g) = ψ′(g)(f

M
, f

P
), f

M
φ(h) = φ′(h)f

P
, (14)

for all g ∈ G and h ∈ H. There is an obvious composition of such morphisms and this
leads to a definition of the category of (H,G, ∂)-modules.

4.2. Modules over crossed modules of algebras
It is a classical fact that the categories of (left or right) modules over a Lie algebra

and over its universal enveloping algebra are equivalent. As we intend to establish
the similar equivalence for categories of modules over a Lie crossed module and over
its universal enveloping crossed module, in this subsection we are interested in giving
a definition of a left module over a crossed module of algebras. Beck’s approach is
not useful in this situation. The reason is that a Beck module over an algebra is a
bimodule but not a left module over it.

As we know that a left module over an algebra A is a K-module V together with an
algebra homomorphism from A to the endomorphism algebra EndK(V ) of V , we were
naturally led to search for an adequate construction of an “endomorphism crossed
module” such that a left module over a crossed module of algebras would be defined
by a crossed module morphism to the endomorphism crossed module. A good reason
why our construction is relevant is that the Liezation of the endomorphism crossed
module is nothing else but the actor crossed module of Lie algebras (see Lemma 4.6
below). At the same time, it is reasonable to expect a module over a Lie crossed
module and its universal enveloping crossed module to be the same.

For this, we take an abelian crossed module of algebras δ : V →W ; that is, V
and W are just K-modules considered as algebras with the trivial multiplication and
with the trivial action of W on V , and δ is a K-homomorphism. Then the K-module
HomK(W,V ) is an algebra with the multiplication given, for all d1, d2 ∈ HomK(W,V ),
by

d1 ∗ d2 = d1δd2.
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Let End(V,W, δ) denote the algebra of all pairs (ϕ, ψ) with ϕ ∈ EndK(V ) and ψ ∈
EndK(W ) such that ψδ = δϕ. It is clear that the map

θ : HomK(W,V ) → End(V,W, δ), d 7→ (dδ, δd),

is a homomorphism of algebras. Moreover, we have

Lemma 4.1. There is an algebra action of End(V,W, δ) on HomK(W,V ) given by

(ϕ, ψ) · d = ϕd and d · (ϕ, ψ) = dψ

for all d∈HomK(W,V ) and (ϕ, ψ)∈End(V,W, δ).Moreover, together with this action,
(HomK(W,V ),End(V,W, δ), θ) is a crossed module of algebras.

Proof. Clearly this is an action of algebras and (HomK(W,V ),End(V,W, δ), θ) is a
crossed module of algebras because of the following equalities:

θ
(
(ϕ, ψ) · d

)
= θ(ϕd) = (ϕdδ, δϕd) = (ϕdδ, ψδd) = (ϕ, ψ)(dδ, δd) = (ϕ, ψ)θ(d),

θ
(
d · (ϕ, ψ)

)
= θ(dψ) = (dψδ, δdψ) = (dδϕ, δdψ) = (dδ, δd)(ϕ, ψ) = θ(d)(ϕ, ψ),

θ(d) · d′ = (dδ, δd) · d′ = (dδ)d′ = d ∗ d′ = d(δd′) = d · (d′δ, δd′) = d · θ(d′)

for all (ϕ, ψ) ∈ End(V,W, δ) and d, d′ ∈ HomK(W,V ).

Note that End(V,W, δ) is a unital algebra and (HomK(W,V ),End(V,W, δ), θ) is an
object of XAlg1, which is called an endomorphism crossed module.

Definition 4.2. Let (R,A, ρ) be a crossed module of algebras. A left (R,A, ρ)-module
is an abelian crossed module of algebras (V,W,δ) together with a morphism (R,A,ρ)→
(HomK(W,V ),End(V,W, δ), θ) of crossed modules of algebras.

Suppose (V,W, δ) and (V ′,W ′, δ′) are left (R,A, ρ)-modules with morphisms of
crossed modules of algebras (α, β) : (R,A, ρ) → (HomK(W,V ),End(V,W, ∂),Θ) and
(α′, β′) : (R,A, ρ) → (HomK(W ′, V ′),End(V ′,W ′, δ′),Θ′), respectively.

Then a morphism from (V,W, δ) to (V ′,W ′, δ′) is a pair of homomorphisms of
K-modules (fV : V → V ′, fW : W →W ′) such that

f
W
δ = δ′f

V
, (f

V
, f

W
)β(a) = β′(a)(f

V
, f

W
), f

V
α(r) = α′(r)f

W
, (15)

for all a ∈ A and r ∈ R. There is an obvious composition of such morphisms and this
leads to the definition of the category of (R,A, ρ)-modules.

Since crossed modules of algebras and cat1-algebras are equivalent, and we have a
definition of left modules over a crossed module of algebras, this may also be consid-
ered as a left module of the corresponding cat1-algebra. However, a direct definition
of a left module over a cat1-algebra will also be useful and we give it immediately
below. First we recall from [16] that a cat1-module (V1, V0, i, j) consists of a K-
module V1, a K-submodule V0 of V1, and structural morphisms i, j : V1 → V0 satisfy-
ing i |V0= j |V0= idV0 .

Definition 4.3. A left module over a cat1-algebra (A1, A0, σ, τ) is a cat1-module
(V1, V0, i, j) together with a left action of A1 on V1 and a left action of A0 on V0
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such that the structural morphisms commute with the actions, that is, i(a1 · v1) =
σ(a1) · i(v1), j(a1 · v1) = τ(a1) · j(v1) for all a1 ∈ A1, v1 ∈ V1, and the condition

Kerσ ·Ker i = 0 = Ker τ ·Ker j (16)

holds, i.e., a · v = 0 = a′ · v′ for all a ∈ Kerσ, v ∈ Ker i, a′ ∈ Ker τ , v′ ∈ Ker j.

Remark 4.4. Note that Forrester-Barker in [16] gave a definition of a left module
over a cat1-algebra, but omitted the important condition (16), which is essential for
proving that this notion is equivalent to a left module over the corresponding crossed
module of algebras.

By complete analogy with [1, Proposition 8], one can show that cat1-modules
are equivalent to 2-term chain complexes of K-modules. This is very similar to the
above equivalence between cat1-algebras (cat1-Lie algebras) and crossed modules of
algebras (Lie algebras). A 2-term chain complex of K-modules is none other than a
K-homomorphism δ : V →W . This last one can be considered as an abelian crossed
module of algebras, and the corresponding cat1-module is (V ⊕W,W, i, j), where
i(v, w) = w and j(v, w) = δ(v) + w for all v ∈ V , w ∈W .

Theorem 4.5. Let (R,A, ρ) be a crossed module of algebras. An abelian crossed mod-
ule of algebras (V,W, δ) is a left module over (R,A, ρ) if and only if the correspond-
ing cat1-module (V ⊕W,W, i, j) is a left module over the corresponding cat1-algebra
(R⋊A,A, σ, τ).

Proof. Let (V,W, δ) be a (R,A, ρ)-module. Then there is a morphism (α, β) of crossed
modules of algebras

R
ρ //

α

��

A

β

��
HomK(W,V )

θ // End(V,W, δ) .

(17)

Suppose that β has components β1 : A→ EndK(V ) and β2 : A→ EndK(W ); that is,
β(a) =

(
β1(a), β2(a)

)
for all a ∈ A. It is clear that A acts (to the left) on V and

on W : a · v = β1(a)(v) and a · w = β2(a)(w) for all a ∈ A, v ∈ V , w ∈W . Routine
calculations show that the equality

(r, a) · (v, w) =
(
α(r)(w) + (ρ(r) + a) · v, a · w

)
,

where (r, a) ∈ R⋊A, (v, w) ∈ V ⊕W , defines a left action of the algebra R⋊A on
the K-module V ⊕W and the structural morphisms commute with these actions. In
order to check the condition (16), note that Kerσ (resp. Ker τ , Ker i, Ker j) consists

of all elements of the form (r, 0)
(
resp.

(
r,−ρ(r)

)
, (v, 0),

(
v,−δ(v)

))
for r ∈ R, v ∈ V ,

and we have (
r,−ρ(r)

)
· (v, 0) =

(
α(r)(0) +

(
ρ(r)− ρ(r)

)
· v, 0

)
= (0, 0),

(r, 0) ·
(
v,−δ(v)

)
= (−α(r)δ(v) + ρ(r) · v, 0) = (0, 0),

since α(r)δ(v) = ρ(r) · v by commutativity of the diagram (17).
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Conversely, given a left (R⋊A,A, σ, τ)-module structure on the cat1-module
(V ⊕W,W, i, j), we define the maps α and β = (β1, β2) in the diagram (17) by the
following equalities:

(α(r)(w), 0) = (r, 0) · (0, w),
(β1(a)(v), 0) = (0, a) · (v, 0),

β2(a)(w) = a · w,

for all r ∈ R, a ∈ A, v ∈ V , and w ∈W . Now the remaining details are straightforward
calculations and are left to the reader.

4.3. Equivalence of categories of modules
We need the following lemma.

Lemma 4.6. Let δ : V →W be a K-homomorphism, viewed as an abelian crossed
module of algebras (Lie algebras). Then, using the same notations as in Lemma 4.1,
the Lie crossed module XLie

(
HomK(W,V ),End(V,W, δ), θ

)
coincides with the actor

crossed module Act(V,W, δ) =
(
Der(W,V ),Der(V,W, δ),∆

)
.

Proof. Since V andW are considered as abelian Lie algebras together with the trivial
action of W on V , it is clear that Der(W,V ) = Lie

(
HomK(W,V )

)
, Der(V,W, δ) =

Lie
(
End(V,W, δ)

)
, and ∆ = Lie(θ). Moreover, the Lie action of Der(V,W, δ) on

Der(W,V ) is induced by the algebra action of End(V,W, δ) on HomK(W,V ).

Theorem 4.7. Let (M,P, µ) be a Lie crossed module. Then there is an equivalence
of categories of left (M,P, µ)-modules and left XU(M,P, µ)-modules.

Proof. By using Theorem 3.4 and Lemma 4.6, left (M,P, µ)-module structures on a
K-homomorphism δ : V →W are in bijective correspondence with left XU(M,P, µ)-
module structures on it:

HomXLie

(
(M,P, µ),Act(V,W, δ)

)
= HomXLie

(
(M,P, µ), Lie

(
HomK(W,V ),End(V,W, δ), θ

))
≈ HomXAlg

(
XU(M,P, µ),

(
HomK(W,V ),End(V,W, δ), θ

))
.

Due to the equations (14) and (15), it is easy to check that this correspondence is
functorial.

Finally, let us remark that right modules (over crossed modules of Lie and asso-
ciative algebras) could be defined similarly and could equally be used everywhere
instead of left modules.
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José Manuel Casas jmcasas@uvigo.es

Department of Applied Mathematics I, University of Vigo, E. E. Forestal,
36005 Pontevedra, Spain

Rafael F. Casado rapha.fdez@gmail.com

Department of Algebra, University of Santiago de Compostela,
15782 Santiago de Compostela, Spain

Emzar Khmaladze e.khmal@gmail.com

A. Razmadze Mathematical Institute, Tbilisi State University, University St. 1,
0186 Tbilisi, Georgia

&

Department of Applied Mathematics I, University of Vigo, E. E. Forestal,
36005 Pontevedra, Spain

Manuel Ladra manuel.ladra@usc.es

Department of Algebra, University of Santiago de Compostela,
15782 Santiago de Compostela, Spain


