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Abstract
Goodwillie’s proof of the Blakers-Massey Theorem for n-

cubes relies on a lemma whose proof invokes transversality. The
rest of his proof follows from general facts about cubes of spaces
and connectivities of maps. We present a purely homotopy-
theoretic proof of this lemma. The methods are elementary,
using a generalization and modification of an argument orig-
inally due to Puppe used to prove the Blakers-Massey Theorem
for squares.

1. Introduction

Homology has proven a useful tool because it is often computable and produces
interesting invariants. In contrast, homotopy groups are usually very difficult to com-
pute. From the standpoint of the Eilenberg-Steenrod axioms for a homology theory,
the difference in the computational difficulty can be explained by the fact that homol-
ogy satisfies excision while homotopy does not. However, homotopy groups satisfy
excision through a range of dimensions. The most fundamental result in this direc-
tion is the Freudenthal Suspension Theorem, which gives a range of dimensions in
which the homotopy groups of a highly connected space X are the same as the stable
homotopy groups of X, the latter of which satisfy excision.

Recall that a space X is called j-connected if every map ∂Di+1 = Si → X extends
to a map Di+1 → X for −1 6 i 6 j. A map f : Y → X is j-connected if for all
x ∈ X, the homotopy fiber hofiberx(f) = {(y, γ) : γ : I → X, γ(1) = f(y), γ(0) = x} is
(j − 1)-connected. In terms of pairs, f : Y → X is j-connected if πi(X,Y ) = 0 for
1 6 i 6 j and the induced map π0Y → π0X is surjective (here X should be replaced
with the mapping cylinder of f so that Y is a subspace).

Suppose X is a j-connected based space. The suspension of the identity map of
X is adjoint to a map X → ΩΣX, and the Freudenthal Suspension Theorem says
that this map is (2j + 1)-connected. In terms of homotopy groups, the induced map
πi(X)→ πi+1ΣX is an isomorphism for i 6 2j and onto for i = 2j + 1. The stable
homotopy groups πS

i X are defined as colimn πi+nΣ
nX, so that πiX → πS

i X is an
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isomorphism in the range indicated. Hence the low-dimensional homotopy groups of
X can be replaced by groups satisfying the excision axiom.

The Freudenthal Suspension Theorem is itself a special case of the Triad Con-
nectivity Theorem, also known as the Blakers-Massey Theorem for squares, which
says that if a space Y is the union of connected subspaces Y1 and Y2 along their con-
nected intersection Y∅ = Y1 ∩ Y2, and if πi(Y1, Y∅) = 0 for 1 6 i 6 j and πi(Y2, Y∅) = 0
for 1 6 i 6 l, then the excision map πi(Y1, Y∅)→ πi(Y, Y2) is an isomorphism for
1 6 i 6 j + l − 1 and onto for i = j + l (to obtain the Freudenthal Suspension Theo-
rem let Y∅ = X be j-connected and Y1, Y2 be copies of the cone on Y∅). We say “for
squares” because the theorem can be neatly and more symmetrically described by
organizing the spaces into the square diagram

Y∅ //

��

Y1

��
Y2

// Y,

and the result can be interpreted as a range of dimensions in which either of the maps
of pairs (Y1, Y∅)→ (Y, Y2) or (Y2, Y∅)→ (Y, Y1) induces isomorphisms in homotopy
(i.e., a range in which these groups satisfy excision). Another more symmetric way to
say this is that the map Y∅ → holim(Y1 → Y ← Y2) is (j + l − 1)-conneced. This has
generalizations to higher-order excision; for example, where Y is the union of many
spaces Yi along a common subspace Y∅.

The Blakers-Massey Theorem for k-cubes, also known as the (k + 1)-ad Connec-
tivity Theorem, is a result giving a range of dimensions in which higher-order excision
holds for homotopy groups. A k-cube of topological spaces is a functor X = T 7→ XT

from the poset of subsets of {1, . . . , k} to the category of topological spaces. Thus a
2-cube X is a square

X = X∅ //

��

X1

��
X2

// X12.

We say such a square is j-cocartesian if the canonical map hocolim(X2 ← X∅ →
X1)→ X12 is j-connected. When j =∞, we say the square is homotopy cocartesian. A
k-cube X = T 7→ XT is called strongly cocartesian if all its square faces are homotopy
cocartesian. We say X is j-cartesian if the canonical map X∅ → holim∅6=T⊂{1,...,k} XT

is j-connected. See Section 1 and Definitions 1.3, 1.4, and 2.1 of [6] for terminology,
and Section 2 for more on higher-order excision, including the results discussed in the
current work.

Theorem 1.1 (Ellis-Steiner [5]). If X = T 7→ XT is a strongly cocartesian k-cube
and the maps X∅ → X{i} are ji-connected for all i ∈ {1, . . . , k}, then X is

(1− k +
∑k

i=1 ji)-cartesian.

The proof of the Blakers-Massey Theorem for k-cubes is originally due to Barratt
and Whitehead [1], with the additional hypothesis that ji > 2 for all i, and was
later improved as above by Ellis and Steiner [5]. In addition, Ellis and Steiner were
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able to compute the first non-trivial group of such cubes. Their techniques use catk-
groups, following Brown and Loday [2, 3, 4], and as a result the proofs require extra
machinery and are algebraic in nature. At the expense of losing information about
the first non-trivial group, one can use the simpler and more direct space-level proof
due to Goodwillie [6], who was also able to prove a generalization of Theorem 1.1
to a wider class of cubes (Theorem 2.5 of [6]). As Goodwillie notes, a good deal of
his proof of Theorem 1.1 is quite formal, relying on general results about cubical
diagrams and connectivities of maps. However, it relies on a lemma, stated below,
which uses a transversality (dimension counting) argument, and as such depends on
arguments from the smooth category. Our work aims to prove the lemma using only
elementary homotopy theory, and alongside Goodwillie’s formal arguments stands as
a purely homotopy-theoretic and space-level proof of Theorem 1.1. As with proofs of
excision for homology, our techniques utilize subdivision (see for instance Lemma 2.3
below).

For a positive integer k, let k = {1, . . . , k}. Let X = T 7→ XT be a pushout cube
of spaces, formed by attaching cells ej of dimension dj + 1 for 1 6 j 6 k to a space
X∅. That is, XT = X∅ ∪ {ej : j ∈ T} for T ⊂ k for some choice of attaching maps
∂ej → X∅, 1 6 j 6 k.

Lemma 1.2. [Lemma 2.7 of [6]] With X as above, choose a basepoint x ∈ X{k},
and for T ⊂ k − 1 let F(T ) = hofiberx(XT → XT∪{k}). Then the (k − 1)-cube F is

(−1 +
∑k

j=1 dj)-cocartesian. That is, the pair
(
F(k − 1),∪j∈k−1F(k − 1− j)

)
is

(−1 +
∑k

j=1 dj)-connected.

We learned an elementary proof of the Triad Connectivity Theorem (Theorem 1.1
in the case of squares) from tom Dieck’s book [8], who credits Puppe [7]. The main
theme of this proof is subdivision, much like proofs of excision for homology. We
adapt these ideas to prove Lemma 1.2 without use of transversality arguments. Our
proof mirrors Goodwillie’s, and we replace his “dimension counting” argument with
a “coordinate counting” one.

2. Preliminaries

We first make a simplification in the hypotheses of Lemma 1.2. If dj = −1 for all
j, then the conclusion of Lemma 1.2 is vacuously true. Without loss of generality
dk > 0. The basepoint x ∈ X{k} can be joined by a path to some point in X∅, so we
may as well assume the basepoint lies in X∅ by the homotopy invariance of homotopy
fibers over path components. If di = −1 for any other value of i, then X∅ → X{i} is
the inclusion of X∅ to itself with a disjoint point added. This point plays no role in
any of the homotopy fibers appearing in the cube F , and we may ignore it altogether.
More precisely, for this value of i and a basepoint x ∈ X∅, we have hofiberx(XT →
XT∪{k}) = hofiberx(XT\{i} → XT\{i}∪{k}) for all T ⊂ k − 1. Thus we may assume
dj > 0 for all 1 6 j 6 k. The remainder of this section is an adaptation of material
from Section 6.9 of [8].

Definition 2.1. A cube W in Rn is a set of the form

W = W (a, δ, L) = {x ∈ Rn : ai 6 xi 6 ai + δ for i ∈ L, xi = ai for i /∈ L} ,
where a = (a1, . . . , an) ∈ Rn, δ > 0, and L ⊂ {1, . . . , n} (possibly empty). Define
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dim(W ) = |L|. The boundary ∂W of W is the set of all x in W such that xi = ai
or xi = ai + δ for at least one value of i ∈ L. The boundary ∂W is a union of faces.
A face of a cube is also a cube.

Definition 2.2. With W as above, for each j = 1 to k define

Kj,k
p (W ) =

{
x ∈W :

δ(j − 1)

k
+ ai < xi <

δj

k
+ ai for at least p values of i ∈ L

}
.

If p 6 q, then Kj,k
q (W ) ⊂ Kj,k

p (W ). The following lemma gives the basic technical
deformation result, with statement and proof a straightforward generalization of 6.9.1
of [8].

Lemma 2.3. Let Y be a space with a subspace A ⊂ Y , W a cube, j, k positive integers
with j 6 k, and f : W → Y a map. Suppose that for p 6 dim(W ) we have

f−1(A) ∩W ′ ⊂ Kj,k
p (W ′)

for all cubes W ′ ⊂ ∂W . Then there exists a map g : W → Y homotopic to f relative
to ∂W such that

g−1(A) ⊂ Kj,k
p (W ).

Proof. Without loss of generalityW = In, n > 1. We will construct a map h : In → In

homotopic to the identity and define g to be the composition of f with h. Let
x =

(
2j−1
2k , . . . , 2j−1

2k

)
be the center of the cube

[
j−1
k , j

k

]n
. For a ray y emanating

from x, let P (y) be its intersection with ∂
[
j−1
k , j

k

]n
and Q(y) its intersection with

∂In. Let h map the segment from P (y) to Q(y) onto the point Q(y) and the segment
from x to P (y) affinely onto the segment from x to Q(y). Clearly h is homotopic to
the identity of In relative to ∂In, and so g = f ◦ h is homotopic to f relative to ∂In.
It remains to check that g satisfies the property in the conclusion of the lemma.

Suppose z ∈ In and g(z) ∈ A. Write z = (z1, . . . , zn). If z ∈
(
j−1
k , j

k

)n
, then

z ∈ Kj,k
n (W ) ⊂ Kj,k

p (W ) and we are done. Now assume there exists i so that either

zi > j
k or zi 6 j−1

k . Then by definition of h, we have h(z) ∈ ∂In, so h(z) ∈W ′ for
some face W ′ of dimension n− 1. Since g(z) = f(h(z)) ∈ A, h(z) ∈ f−1(A), then by
assumption h(z) ∈ Kj,k

p (W ′). Thus for at least p values of i, we have j−1
k < h(z)i <

j
k ,

where h(z)i denotes the ith coordinate of h(z). By definition of h,

h(z)i =
2j − 1

2k
+ t

(
zi −

2j − 1

2k

)
for t > 1.

Inserting this expression into the previous inequalities and solving for zi yields

− 1

t2k
+

2j − 1

2k
< zi <

1

t2k
+

2j − 1

2k
.

Since the lower bound increases with t and the upper bound decreases with t, substi-
tuting t = 1 into each gives

j − 1

k
< zi <

j

k

so that z ∈ Kj,k
p (W ).
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Suppose Y is a space with open subsets Y∅, Y1, . . . , Yk such that Y is the union of
Y1, . . . , Yk along Y∅. Let f : I

n → Y be a map. By the Lebesgue Covering Lemma, we
can decompose In into cubes W such that f(W ) ⊂ Yj for some j depending on W .
The following is a generalization of Theorem 6.9.2 in [8], as is its proof.

Theorem 2.4. With the Yj and f as above, assume that for each j, (Yj , Y∅) is
dj-connected, with dj > 0 (i.e., Y∅ → Yj is dj-connected). Then there is a homotopy
ft of f such that

1. If f(W ) ⊂ Yj, then ft(W ) ⊂ Yj for all t,

2. If f(W ) ⊂ Y∅, then ft(W ) = f(W ) for all t, and

3. If f(W ) ⊂ Yj, then f−1
1 (Yj \ Y∅) ∩W ⊂ Kj,k

dj+1(W ).

Proof. Let Cl be the union of cubes W with dim(W ) 6 l. The homotopy ft is con-
structed inductively over Ck × I. If dim(W ) = 0, then if f(W ) ⊂ Y∅, we simply let
ft = f , which achieves the second condition. Note that if f(W ) ⊂ Yj ∩ Yi for i 6= j,
then f(W ) ⊂ Y∅. Hence we only need consider what happens if f(W ) ⊂ Yj and
f(W ) 6⊂ Yi for all i 6= j. In this case, if f(W ) ⊂ Yj and f(W ) 6⊂ Yi for all i 6= j, then
since (Yj , Y∅) is dj-connected and dj > 0, choose a path from f(W ) to some point in
Y∅ and use this as the homotopy, so that f1(W ) ⊂ Y∅. Then clearly the first condition
holds and so does the third (in this case, the third condition says the empty set is

contained in Kj,k
dj+1(W )). This proves the base case.

Since the inclusion ∂W ⊂W is a cofibration for any cube W , we may extend this
homotopy over all cubes W so that the first and second conditions hold. By induction
suppose that f has been changed by a homotopy satisfying all three conditions for
cubes of dimension less than l, and let W be a cube with dim(W ) = l. If f(W ) ⊂ Y∅,
we let ft = f as usual. If f(W ) ⊂ Yj and f(W ) 6⊂ Yi for all i 6= j, then:

• If dim(W ) = l 6 dj , then since (Yj , Y∅) is dj-connected there is a homotopy
ft of f relative to ∂W such that f1(W ) ⊂ Y∅, and clearly the first and third
conditions hold.

• If dim(W ) = l > dj , we employ Lemma 2.3. Let A = Yj \ Y∅ ⊂ Yj . By induction
we have that, for all W ′ ⊂ ∂W ,

f−1(Yj \ Y∅) ∩W ′ ⊂ Kj,k
l (W ′) ⊂ Kj,k

dj+1(W
′),

and by Lemma 2.3, there is a homotopy ft of f relative to ∂W such that
f−1
1 (Yj \ Y∅) ∩W ⊂ Kj,k

dj+1(W ).

3. Proof of Lemma 1.2

We need to convert the strongly cocartesian cube X in the statement of Lemma 1.2
into one where the maps are inclusions of open sets in order to apply the pre-
vious results. For each 1 6 j 6 k and corresponding cell ej with attaching map
fj : ∂ej → X∅, assume ej = Ddj+1, put Nj = Ddj+1 − {0}, and let Vj be the interior
of Ddj+1. Define a k-cube Y = S 7→ YS for S ⊂ k as follows. Let U = X∅ ∪nj=1 Nj .
The inclusion X∅ → U is a homotopy equivalence, and U is open in Xk. For S ⊂ k,
let YS = U ∪j∈S Vj . Then YS is open in Yk = Xk for each S, and the maps YS → YT

for S ⊂ T are the evident inclusions. The inclusion XS → YS gives rise to a map
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of k-cubes X → Y , which is an equivalence for each S. Now we are ready to prove
Lemma 1.2.

Proof of Lemma 1.2. With Y = T 7→ YT as above, choose a basepoint y ∈ Y∅, put
F ′(T ) = hofibery(YT → YT∪{k}) for T ⊂ k − 1, and let C be the contractible space
C = hofibery(Yk−1 → Yk−1). As indicated in the paragraph preceding this proof,
F ′(T ) ' F(T ). Following Goodwillie’s proof of Lemma 1.2 and using 1.16(a) in [6], it
is enough to show that the cube T 7→ F∗(T ) = F ′(T ) ∪ C is (−1+

∑
j dj)-cocartesian;

that is, that the pair

(A,B) =
(
F∗(k − 1),∪j∈k−1F∗(k − 1− j)

)
is (−1 +

∑
j dj)-connected. Note that the conclusion is automatic if dj = 0 for all j,

since any pair (A,B) is (−1)-connected. Let φ : (In, ∂In)→ (A,B) be a map. The
map φ is adjoint to a map Φ: In × I → Yk with boundary conditions

(B0) Φ(z, 0) = y ∈ Y∅ is the basepoint for all z ∈ In,

(B1) Φ(z, 1) ∈ ∪j∈k−1Yj = Yk−1 for all z ∈ In, and

(B2) for each z ∈ ∂In there exists i(z) ∈ k so that Φ(z, t) ∈ ∪j 6=i(z)Yj for all t ∈ I.

We will make a homotopy of Φ preserving (B0)–(B2) such that the last condition holds
for each z ∈ In. To do this we apply Theorem 2.4 to Φ: In × I → Yk and obtain a
decomposition of In × I into cubes W such that for each W there is some j so that
Φ(W ) ⊂ Yj , and a homotopy Φr for 0 6 r 6 1 of Φ = Φ0 such that

1. Φ(W ) ⊂ Yj implies Φr(W ) ⊂ Yj for all r,

2. Φ(W ) ⊂ Y∅ implies Φr(W ) = Φ(W ) for all r, and

3. Φ(W ) ⊂ Yj implies Φ−1
1 (Yj \ Y∅) ∩W ⊂ Kj,k

dj+1(W ).

First we prove that Φr satisfies (B0)–(B2) for all r.

(B0) Since Φ(z, 0) = y ∈ Y∅ is the basepoint for all z ∈ In, we have for all cubes
W ⊂ In × {0} that Φ(W ) = y, and (2) above implies Φr(W ) = Φ(W ) for all r,
so that Φr(z, 0) = y for all r.

(B1) Since Φ(z, 1) ∈ ∪j∈k−1Yj = Yk−1 for all z ∈ In, then for all cubesW ⊂ In × {1},
Φ(W ) ⊂ Yj for some 1 6 j 6 k − 1. Hence Φr(W ) ⊂ Yj as well by (1) above, and
thus Φr(z, 1) ⊂ Yk−1 for all r, z.

(B2) We know that for each z ∈ ∂In there exists i(z) ∈ k so that Φ({z} × I) ⊂
∪j 6=i(z)Yj . Let W1, . . . ,Wh be cubes such that {z} × I ⊂W1 ∪ · · · ∪Wh and so
that each Wa contains a point of the form (z, t) for some t. Since Φ({z} × I) ⊂
∪j 6=i(z)Yj , for each a = 1 to h we must have Φ(Wa) ⊂ Yj(a) for some j(a) 6= i(z).
This implies Φr(W1 ∪ · · · ∪Wh) ⊂ Yj(1) ∪ · · · ∪ Yj(h) ⊂ ∪j 6=i(z)Yj for all r, again
by (1) above.

Now we show that Φ1 actually satisfies the stronger condition that for each z ∈ In

there exists i(z) ∈ k so that Φ1(z, t) ∈ ∪j 6=i(z)Yj for all t ∈ I when n <
∑

j dj . Let
π : In × I → In be the projection. We claim that

k∩
j=1

π
(
Φ−1

1 (Yj \ Y∅)
)
= ∅ (1)

if n <
∑

j dj . Let y ∈ π
(
Φ−1

1 (Yj \ Y∅)
)
for all j, so that y is an element of this
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intersection. For each j, we may choose tj so that (y, tj) ∈ Φ1−(Yj \ Y∅), so that
y = π(y, tj) and w(j) = (y, tj) ∈Wj for some cube Wj ⊂ In × I. Thus, for each j,

w(j) ∈Wj ∩ Φ−1
1 (Yj \ Y∅) ⊂ Kj,k

dj+1 by (3) of Theorem 2.4. This means w(j) has at

least dj + 1 coordinates w(j)i such that ai +
δ(j−1)

k < w(j)i < ai +
δj
k , where Wj =

W (a, δ, L) and a = (a1, . . . , an+1). This implies that y has at least dj coordinates
yi satisfying the same bounds (only here the index i ranges between 1 and n).
For each j, the projection π(Wj) is a cube containing y, and subdividing further
if necessary (Theorem 2.4 clearly still applies to any such further subdivision), we
may assume π(Wj) = W for all j. Thus y has at least dj coordinates yi satisfying

ai +
δ(j−1)

k < yi < ai +
δj
k for all j, which is impossible if n <

∑
j dj , so that the

intersection in Equation (1) is indeed empty. Hence there is some i(y) ∈ k so that
y /∈ π

(
Φ−1

1 (Yi(y) \ Y∅)
)
. That is, for all t, (y, t) /∈ Φ−1

1 (Yi(y) \ Y∅), as required.
When n = 0, to show π0(B)→ π0(A) is surjective our argument above requires

dj > 1 for at least one j. We have already noted near the beginning of the proof that
the conclusion of the theorem was trivially true when dj = 0 for all j.
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