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FREE 2-RANK OF SYMMETRY OF PRODUCTS
OF MILNOR MANIFOLDS

MAHENDER SINGH

(communicated by Donald M. Davis)

Abstract
A real Milnor manifold is the non-singular hypersurface of

degree (1, 1) in the product of two real projective spaces. These
manifolds were introduced by Milnor to give generators for the
unoriented cobordism algebra, and they admit free actions by
elementary abelian 2-groups. In this paper, we obtain some
results on the free 2-rank of symmetry of products of finitely
many real Milnor manifolds under the assumption that the
induced action on mod 2 cohomology is trivial. Similar results
are obtained for complex Milnor manifolds that are defined anal-
ogously. Here the free 2-rank of symmetry of a topological space
is the maximal rank of an elementary abelian 2-group that acts
freely on that space.

1. Introduction

One of the basic problems in the theory of transformation groups is to determine
the structure of a group that acts in a specific way on a given topological space.
The problem of determining finite groups that can act freely on spheres has been of
special interest. A classical result of Smith [29] says that if a group acts freely on a
sphere, then all its abelian subgroups are cyclic. Conversely, Swan [30] proved that
any group satisfying this condition acts freely on a finite complex with the homotopy
type of a sphere. Notice that a finite abelian group is cyclic if and only if it does not
contain a subgroup of the form Z/p⊕ Z/p for any prime p. Thus, Z/p⊕ Z/p cannot
act freely on a sphere. However, Z/p does act freely on a sphere, where the sphere
must be odd dimensional for odd p. These results motivated the concept of free p-rank
of symmetry of a topological space X for a prime p, introduced in [1], and defined as

frkp(X) = max{r | (Z/p)r acts freely on X}.

Determining the free p-rank of symmetry of a topological space is an interesting
problem and has been considered for many spaces. In view of the Smith theory, we
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have

frkp(Sn) =

 1 if n is odd and p is arbitrary
1 if n is even and p = 2
0 if n is even and p > 2.

The problem of extending this result to products of finitely many spheres has been
of great interest to many topologists. Oliver [28] proved that every finite group acts
freely on a product of spheres. For a finite group G, define

h(G) = min{s | G acts freely on Sn1 × · · · × Sns} and

r(G) = max{t | (Z/p)t 6 G for some prime p}.

Attempts to extend Smith’s result to products of finitely many spheres led to the
following conjecture by Benson and Carlson [6].

Conjecture I. h(G) = r(G) for each finite group G.

Conjecture I implies the following well-known conjecture [1, 2, 9] regarding free
actions of elementary abelian p-groups on products of spheres.

Conjecture II. frkp(S2n1+1 × · · · × S2nk+1) = k for each prime p and integer k > 0.

For a single sphere it is simply the result of Smith [29]. For products of two
spheres it was already proved by Conner [11], and for products of three spheres it
was proved to be true by Heller [20]. Carlsson [9, 10] proved the conjecture for
products of equidimensional spheres under the assumption of trivial induced action
on cohomology. Adem and Browder [1] proved that frkp((Sn)k) = k with the only
remaining cases as p = 2 and n = 1, 3, 7. Some time later, Yalçın [32] proved that
frk2((S1)k) = k. For an integer n, let

η(n) =

{
0 if n is even
1 if n is odd.

Then the most comprehensive result is due to Hanke [19], who proved that if p >
3(n1 + · · ·+ nk), then

frkp(Sn1 × · · · × Snk) = η(n1) + · · ·+ η(nk).

In a very recent work [27], Okutan and Yalçın proved Conjecture II in the case where
the dimensions {ni} are high compared to all the differences |ni − nj | between the
dimensions.

Recall that Z/2 is the only finite group that can act freely on an even-dimensional
sphere. This result was extended to products of finitely many even-dimensional spheres
by Cusick [14, 15]. He proved that if G is a finite group acting freely on S2n1 × · · · ×
S2nk with trivial induced action on mod 2 cohomology, then G ∼= (Z/2)r for some
r 6 k. In particular, when the induced action on mod 2 cohomology is trivial, then
frk2(S2n1 × · · · × S2nk) = k.

Although a lot of work has been done for products of spheres, free p-rank of
symmetry of many other interesting spaces is still not known. An immediate extension
of the problem from spheres and their products is to consider spherical space forms
and their products. Let p be an odd prime. A lens space L2n−1

p is an odd-dimensional
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spherical space form obtained as the quotient of the standard Z/p action on S2n−1.
Allday [5] conjectured that

frkp(L
2n1−1
p × · · · × L2nk−1

p ) = k.

The equidimensional case of the conjecture was proved by Yalçın [31]. The general
case of the conjecture seems still open.

The problem of computing the free 2-rank of symmetry of products of projective
spaces was considered by Cusick. It is known that CPn admits a free action by a
finite group if and only if n is odd, in which case the only possible group is Z/2.
Cusick [16] proved that

frk2(CPn1 × · · · × CPnk) = η(n1) + · · ·+ η(nk).

For an integer n, let

θ(n) =

 0 if n is even
1 if n ≡ 1 mod 4
2 if n ≡ 3 mod 4.

Cusick [13] investigated the real case and conjectured that if the induced action on
mod 2 cohomology is trivial, then

frk2(RPn1 × · · · × RPnk) = θ(n1) + · · ·+ θ(nk).

He proved the conjecture when ni 6≡ 3 mod 4 for each 1 6 i 6 k. Adem and Yalçın [3]
proved the conjecture for products of equidimensional real projective spaces without
the assumption of trivial induced action on mod 2 cohomology. Later, Yalçın [32]
proved the conjecture when ni is odd for each 1 6 i 6 k. The general case of the
conjecture is still open.

A product of two projective spaces can be considered as the total space of a triv-
ial projective space bundle over a projective space. It is an interesting question to
determine the free rank of symmetry of the total space of a twisted projective space
bundle over a projective space. Milnor manifolds are fundamental examples of such
spaces. These manifolds were introduced by Milnor [25] in search for generators for
the unoriented cobordism algebra, and are non-singular hypersurfaces of degree (1, 1)
in the product of two projective spaces (see Section 2 for detailed definitions). The
purpose of this paper is to obtain some results regarding the free 2-rank of symmetry
of products of finitely many Milnor manifolds. We will consider both real and com-
plex Milnor manifolds. We will prove our results by adopting Cusick’s method, which
depends on some results of Carlsson.

Let RHr,s and CHr,s denote the real and the complex Milnor manifold, respectively
(see Section 2 for notation). Let X '2 Y mean that X and Y are topological spaces
having isomorphic mod 2 cohomology algebra. Then the main results are as follows.

Theorem 1.1. Let (Z/2)r act freely on a finite-dimensional CW-complex
X '2

∏n
i=1 RHri,si with 1 6 si 6 ri for each 1 6 i 6 n. Suppose that the induced

action on mod 2 cohomology of X is trivial. Then

1. r 6 2
(
η(s1) + η(r1) + · · ·+ η(sn) + η(rn)

)
,

2. r 6
(
η(s1) + η(r1) + · · ·+ η(sn) + η(rn)

)
if si, ri 6≡ 3 mod 4 for each 1 6 i 6 n.
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Theorem 1.2. Let (Z/2)r act freely on a finite-dimensional CW-complex
X '2

∏n
i=1 CHri,si with 1 6 si 6 ri for each 1 6 i 6 n. Suppose that the induced

action on mod 2 cohomology of X is trivial. Then

1. r 6 3
(
η(s1) + η(r1) + · · ·+ η(sn) + η(rn)

)
,

2. r 6 (η(s1) + η(r1) + · · ·+ η(sn) + η(rn)
)
if si, ri 6≡ 3 mod 4 for each 1 6 i 6 n.

2. Definition and cohomology of Milnor manifolds

Milnor manifolds were introduced by Milnor [25] in search for generators for the
unoriented cobordism algebra. Let r and s be integers such that 0 6 s 6 r. A real
Milnor manifold, denoted by RHr,s, is the non-singular hypersurface of degree (1, 1)
in the product RP r × RP s. It is a (s+ r − 1)-dimensional closed smooth manifold
and can also be described in terms of homogeneous coordinates of real projective
spaces as

RHr,s =
{(

[x0, . . . , xr], [y0, . . . , ys]
)
∈ RP r × RP s | x0y0 + · · ·+ xsys = 0

}
.

Equivalently, a real Milnor manifold can be defined as the total space of the fiber
bundle

RP r−1 i
↪→ RHr,s

π−→ RP s.

This is actually the projectivization of the vector bundle

Rr ↪→ E⊥ −→ RP s,

which is the orthogonal complement in RP s × Rr+1 of the canonical line bundle

R ↪→ E −→ RP s,

where E =
{(

[x], y
)
∈ RP s × Rr+1 | y ∈ [x]

}
.

These manifolds are important as the unoriented cobordism algebra of smooth
manifolds is generated by the cobordism classes of RP k and RHr,s [25, Lemma 1].
Therefore, determining their various invariants is an important problem.

In a similar way, a complex Milnor manifold, denoted by CHr,s, is the non-
singular hypersurface of degree (1, 1) in the product CP r × CP s. It is a 2(s+ r − 1)-
dimensional closed smooth manifold and can also be described in terms of homoge-
neous coordinates as

CHr,s =
{(

[z0, . . . , zr], [w0, . . . , ws]
)
∈ CP r × CP s | z0w0 + · · ·+ zsws = 0

}
.

Equivalently, as in the real case, a complex Milnor manifold can be defined as the
total space of the fiber bundle

CP r−1 i
↪→ CHr,s

π−→ CP s.

It is known due to Conner and Floyd [12, p. 63] that CHr,s is unoriented cobordant
to RHr,s × RHr,s.

These manifolds have been well studied in the past. See, for example, [17, 21, 26]
for recent results. Their cohomology algebra is also well known, and we will use it in
the proofs of our main theorems.
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Lemma 2.1 ([8, 26]). Let 0 6 s 6 r. Then the mod 2 cohomology algebra of a Milnor
manifold is given as follows:

1. H∗(RHr,s;Z/2) ∼= Z/2[a, b]/〈as+1, br + abr−1 + · · ·+ asbr−s〉,
where a and b are homogeneous elements of degree 1 each.

2. H∗(CHr,s;Z/2) ∼= Z/2[g, h]/〈gs+1, hr + ghr−1 + · · ·+ gshr−s〉,
where g and h are homogeneous elements of degree 2 each.

Note that RHr,0 = RP r−1 and CHr,0 = CP r−1. Since the free 2-rank of symme-
try of products of projective spaces has already been considered by Cusick [13], we
henceforth assume that 1 6 s 6 r.

3. Examples of free actions of elementary abelian 2-groups

Just like projective spaces, Milnor manifolds also admit free actions by elementary
abelian 2-groups.

3.1. The real case
First, we construct free actions on RHr,s for various values of s and r.

3.1.1. When s = r
The involution on RP s × RP s given by(

[x0, . . . , xs], [y0, . . . , ys]
)
7−→

(
[y0, . . . , ys], [x0, . . . , xs]

)
restricts to a free involution A : RHs,s −→ RHs,s.

3.1.2. When s, r ≡ 1 mod 4
Let n = s, r and S1 : RPn −→ RPn be the free involution given by

[x0, x1, . . . , xn−1, xn] 7−→ [−x1, x0, . . . ,−xn, xn−1].

Then the restriction of S1 × S1 : RP r × RP s −→ RP r × RP s on RHr,s gives a free
involution

A1 : RHr,s −→ RHr,s.

3.1.3. When s, r ≡ 3 mod 4
First, notice that the free involution A1 is also defined in this case. Let n = s, r and
S2 : RPn −→ RPn be the free involution given by

[x0, x1, x2, x3, . . . , xr−3, xr−2, xr−1, xr]
7−→[−x2, x3, x0,−x1, . . . ,−xr−1, xr, xr−3,−xr−2].

Then the restriction of S2 × S2 : RP r × RP s −→ RP r × RP s on RHr,s gives a free
involution

A2 : RHr,s −→ RHr,s.

Notice that A1 6= A2, A1A2 = A2A1, and A1A2 acts freely on RHr,s. Therefore,
(Z/2)2 acts freely on RHr,s when s, r ≡ 3 mod 4.
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3.2. The complex case
Now we construct free actions on CHr,s for various values of s and r.

3.2.1. When s = r
The involution on CP s × CP s given by(

[z0, . . . , zs], [w0, . . . , ws]
)
7−→

(
[w0, . . . , ws], [z0, . . . , zs]

)
restricts to a free involution B : CHs,s −→ CHs,s.

3.2.2. When both s and r are odd
It is known that CPn admits a free action by a finite group if and only if n is odd
and in that case the only possible group is Z/2. Let n = s, r and T1 : CPn −→ CPn

be the free involution given by

[z0, z1, . . . , zn−1, zn] 7−→ [−z1, z0, . . . ,−zn, zn−1].

Then the restriction of T1 × T1 : CP r × CP s −→ CP r × CP s on CHr,s gives a free
involution

B1 : CHr,s −→ CHr,s.

3.2.3. When s is odd and r is even
Let T2 : CP r −→ CP r be the involution given by

[z0, z1, . . . , zr−2, zr−1, zr] 7−→ [−z1, z0, . . . ,−zr−1, zr−2, ιzr],

where ι2 = −1. Notice that T2 is not a free involution. But the restriction of T2 × T1 :
CP r × CP s −→ CP r × CP s on CHr,s gives a free involution

B2 : CHr,s −→ CHr,s.

4. Preliminary results

Here we recall some facts that we will use in this paper. We refer the reader to
[4, 7, 24] for details on the cohomology theory of transformation groups and spectral
sequences. We refer to [23] for basic properties of Steenrod algebra. Throughout, we
will use cohomology with Z/2 coefficients and will suppress it from cohomology nota-
tion. All spaces under consideration will be finite-dimensional CW-complexes. More
generally, we can also consider paracompact spaces of finite cohomological dimension
or finitistic spaces (which include paracompact spaces of finite covering dimension
and compact Hausdorff spaces).

All group actions under consideration are assumed to be continuous. Let G be a
finite group acting on a space X, and let

G ↪→ EG −→ BG

be the universal principal G-bundle. Let

XG = (X × EG)/G

be the orbit space of the diagonal action on X × EG. Then the projection

X × EG −→ EG
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is G-equivariant and gives a fibration

X ↪→ XG −→ BG

called the Borel fibration [7, Chapter IV]. Recall that for G = (Z/2)r, we have

BG = RP∞ × · · · × RP∞︸ ︷︷ ︸
r times

,

and hence

H∗(BG;Z/2) = Z/2[α1, . . . , αr],

where αi is a homogeneous element of degree 1 for each 1 6 i 6 r.
We will exploit the Leray–Serre spectral sequence associated to a fibration as given

by the following theorem.

Theorem 4.1 ([24], Theorem 5.2). Let X ↪→ E −→ B be a fibration. Then there is
a first quadrant spectral sequence of algebras {E∗,∗

r , dr}, converging to H∗(E) as an
algebra, with

Ek,l
2 = Hk

(
B;Hl(X)

)
,

the cohomology of the base B with local coefficients in the cohomology of the fiber X.

The product in E∗,∗
r+1 is induced by the product in E∗,∗

r and the differentials are
derivations. Further, there is an isomorphism of graded commutative algebra

H∗(E) ∼= TotE∗,∗
∞ ,

where TotE∗,∗
∞ is the total complex of E∗,∗

∞ .

Theorem 4.2 ([24], Theorem 5.9). Let X
i
↪→ E

π−→ B be a fibration. Suppose that
the system of local coefficients on B is simple; then the edge homomorphisms

Hk(B) = Ek,0
2 −→ Ek,0

3 −→ · · · −→ Ek,0
k −→ Ek,0

k+1 = Ek,0
∞ ⊂ Hk(E) and

H l(E) −→ E0,l
∞ = E0,l

l+1 ⊂ E0,l
l ⊂ · · · ⊂ E0,l

2 = H l(X)

are the homomorphisms

π∗ : Hk(B) −→ Hk(E) and i∗ : H l(E) −→ H l(X).

Next we recall some results regarding elementary abelian 2-group actions on finite-
dimensional CW-complexes.

Theorem 4.3 ([4], Theorem 3.10.4). Let G = (Z/2)r act freely on a finite-dimen-
sional CW-complex X. Suppose that

∑
i>0 rk

(
Hi(X)

)
< ∞ and the induced action on

H∗(X) is trivial; then the Leray–Serre spectral sequence associated to X ↪→ XG −→
BG does not degenerate at the E2 term.

Proposition 4.4 ([4], Proposition 3.10.9 and Lemma 3.10.16). Let G = (Z/2)r act
freely on a finite-dimensional CW-complex X. Then H∗(X/G) ∼= H∗(XG). Further,
if Hi(X) = 0 for all i > n, then Hi(XG) = 0 for all i > n.

We will also use the following results regarding non-trivial common zeros of a
system of homogeneous polynomials.



72 MAHENDER SINGH

Proposition 4.5 ([9], Proposition 1). Let G = (Z/2)r and f1, . . . , fn be elements of
Hm(BG) regarded as homogeneous polynomials of degree m in r variables. Then they
have a non-trivial common zero in (Z/2)r if and only if there is a subgroup inclu-
sion j : Z/2 ↪→ (Z/2)r such that j∗(fi) = 0 for each 1 6 i 6 n, where j∗ : H∗(BG) →
H∗(BZ/2) is the induced map on cohomology.

Proposition 4.6 ([9], Proposition 4). Let G = (Z/2)r and f1, . . . , fn be elements of
H∗(BG) regarded as homogeneous polynomials in r variables. Suppose that the ideal
〈f1, . . . , fn〉 is invariant under the action of the Steenrod algebra. Then they have a
non-trivial common zero in (Z/2)r if r > n.

Proposition 4.7 ([18]). Let f1, . . . , fn be homogeneous polynomials of degree m in
r variables with coefficients in Z/2. Then they have a non-trivial common zero in
(Z/2)r if r > mn.

5. Induced action on cohomology

Given a continuous map of topological spaces, determining the induced map on
cohomology is a difficult problem in general, even for nice spaces such as spheres. In
this section, we show that there are involutions on Milnor manifolds for which the
induced action on mod 2 cohomology is non-trivial. First we consider the real case.

Proposition 5.1. Let A : RHs,s −→ RHs,s be the free involution given by

A
(
[x0, . . . , xs], [y0, . . . , ys]

)
7−→

(
[y0, . . . , ys], [x0, . . . , xs]

)
.

Then A∗ : H∗(RHs,s) −→ H∗(RHs,s) is non-trivial.

Proof. By Lemma 2.1,

H∗(RHs,s;Z/2) ∼= Z/2[a, b]/〈as+1, bs + abs−1 + · · ·+ as〉,

where a and b are homogeneous elements of degree 1 each. By the Künneth formula,

H1(RP s × RP s) ∼= H1(RP s)⊕H1(RP s).

Let σ = (σ1, σ2) : ∆
1 → RP s × RP s be a singular 1-simplex, and let

A : RP s × RP s → RP s × RP s

denote the same involution. Then A∗
(
[σ]

)
= [A ◦ σ] = [(σ2, σ1)]. This shows that if

a1 and b1 are generators of H1(RP s)⊕H1(RP s), then A∗(a1) = b1 and hence the
induced action on H1(RP s × RP s) is non-trivial.

Further, we haveH1(RP s × RP s)∼=H1(RP s)⊕H1(RP s). If f ∈ H1(RP s × RP s),
then A∗(f) = f ◦A∗. In particular, A∗(f)(a1) = f ◦A∗(a1) = f(b1). Choosing f such
that f(a1) 6= f(b1), we see that A∗ acts non-trivially on cohomology. Thus, if a2 and
b2 are generators of H1(RP s)⊕H1(RP s), then A∗(a2) = b2.
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Recall that the real Milnor manifold is also given by the fiber bundle

RP s−1 i
↪→ RHs,s

π−→ RP s.

Let RHs,s
j1
↪→ RP s × RP s be the canonical inclusion, and let

RP s j2
↪→ RP s × RP s pr1−→ RP s

be the trivial fiber bundle, where j2 is inclusion on to the second factor and pr1 is
projection on to the first factor. Then we have the following commutative diagram:

H1(RP s × RP s)

j∗1
��

H1(RP s)
pr∗1

oo

π∗
wwnnnnnnnnnnnn

H1(RHs,s).

Applying Theorem 4.1 to the fiber bundles given by π and pr1 and using Theorem 4.2,
we get π∗(a2) = a and pr∗1(a2) = a2. Further, by commutativity of the diagram, we
get j∗1 (a2) = j∗1

(
pr∗1(a2)

)
= π∗(a2) = a.

Let RP s−1 j
↪→ RP s be the canonical inclusion. Then we have the following com-

mutative diagram:

H1(RP s × RP s)
A∗

//

j∗1
��

H1(RP s × RP s)

j∗1
��

j∗2 // H1(RP s)

j∗

��

H1(RHs,s)
A∗

// H1(RHs,s)
i∗ // H1(RP s−1).

If b3 ∈ H1(RP s−1) is the generator, then j∗(b2) = b3. Again by Theorems 4.1 and 4.2,
we get i∗(b) = b3 and j∗2 (b2) = b2. The commutativity of the right square shows that
j∗1 (b2) = b. The commutativity of the left square gives A∗(j∗1 (a2)) = j∗1

(
A∗(a2)

)
. This

implies A∗(a) = j∗1 (b2) = b. Thus the induced map A∗ is non-trivial.

We have a similar result for the complex case.

Proposition 5.2. Let B : CHs,s −→ CHs,s be the free involution given by

B
(
[z0, . . . , zs], [w0, . . . , ws]

)
7−→

(
[w0, . . . , ws], [z0, . . . , zs]

)
.

Then B∗ : H∗(CHs,s) −→ H∗(CHs,s) is non-trivial.

Proof. The proof is similar to that of the real case and left to the reader.

Note that using propositions 5.1 and 5.2, we can construct free actions of (Z/2)n
on

∏n
i=1 RHri,si and

∏n
i=1 CHri,si for 1 6 si = ri and n > 2, such that the induced

action on mod 2 cohomology is non-trivial.

6. Proofs of theorems

6.1. The real case
Let G = (Z/2)r act freely on a finite-dimensional CW-complex X '2

∏n
i=1 RHri,si

with 1 6 si 6 ri for each 1 6 i 6 n. Further, assume that the induced action on mod
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2 cohomology of X is trivial. Using the Künneth formula and Lemma 2.1, we get

H∗(X) ∼= Z/2[a1, b1, . . . , an, bn]/I,

where

I = 〈as1+1
1 , br11 + a1b

r1−1
1 + · · ·+ as11 br1−s1

1 , . . .
. . . , asn+1

n , brnn + anb
rn−1
n + · · ·+ asnn brn−sn

n 〉

and a1, b1, . . . , an, bn are homogeneous elements of degree 1 each. Consider the Leray–
Serre spectral sequence associated to the Borel fibration

X ↪→ XG −→ BG.

Then we have

Ek,l
2

∼= Ek,0
2 ⊗ E0,l

2 ,

where Ek,0
2 = Hk(BG) and E0,l

2 = H0(BG;Hl(X)) = H l(X)G = H l(X) because the
induced action on cohomology is trivial. Thus we have

E∗,∗
2

∼= H∗(BG)⊗H∗(X)
∼= Z/2[α1, . . . , αr]⊗ Z/2[a1, b1, . . . , an, bn]/I.

By Theorem 4.3, the spectral sequence does not degenerate at the E2 term, and
hence d2 : E0,1

2 → E2,0
2 is non-zero. Let d2(1⊗ ai) = ui ⊗ 1 and d2(1⊗ bi) = vi ⊗ 1

for 1 6 i 6 n with at least one of them being non-zero. Notice that d2 is completely
determined by d2(1⊗ ai) and d2(1⊗ bi) as it is a derivation. Consider the ideal

J = 〈u1, v1, . . . , un, vn〉

in H∗(BG). Then, using arguments as in [13], we have the following lemma.

Lemma 6.1. Let G = (Z/2)r act freely on a finite-dimensional CW-complex X '2∏n
i=1 RHri,si with 1 6 si 6 ri for each 1 6 i 6 n. Further, assume that the induced

action on the mod 2 cohomology of X is trivial and that si, ri 6≡ 3 mod 4 for each
1 6 i 6 n. Then the ideal J in H∗(BG) is invariant under the action of the Steenrod
algebra.

Proof. Fix some 1 6 i 6 n. Since si > 1, we have ai 6= 0, and hence brii 6= 0. Notice
that

bri+1
i = (aib

ri−1
i + · · ·+ asii bri−si

i )bi

= aib
ri
i + · · ·+ asii bri−si+1

i

= ai(aib
ri−1
i + · · ·+ asii bri−si

i ) + a2i b
ri−1
i + · · ·+ asii bri−si+1

i

= a2i b
ri−1
i + · · ·+ asii bri−si+1

i + asi+1
i bri−si

i + a2i b
ri−1
i + · · ·+ asii bri−si+1

i

= 0.

If ri is even, then

0 = d2(1⊗ bri+1
i ) = (1⊗ brii )d2(1⊗ bi) = vi ⊗ brii .

Since the map −⊗ brii : E∗,0
2 → E∗,ri

2 is injective, we get vi ⊗ 1 = 0. Recall that
asi+1
i = 0. Just as above, if si is even, then ui ⊗ 1 = 0. Such ui and vi are obviously

invariant under the action of the Steenrod algebra.
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Next let ri = 4m+ 1 and vi ⊗ 1 6= 0. Notice that Sq1(1⊗ bi) = 1⊗ b2i and d2(1⊗
b2mi ) = 0 by the derivation property of d2. Thus 1⊗ b2mi represents an element in
E0,2m

3 and we have

0 = d3(1⊗ b4m+2
i ) = (1⊗ b4mi )d3(1⊗ b2i ) in E3,4m

3 . (1)

Recall that the transgression operator dr : E0,r−1
r → Er,0

r commutes with the Steen-
rod operations. In other words, the following diagram commutes:

E0,1
2

d2 //

Sq1

��

E2,0
2

Sq1

��

E0,2
3

d3 // E3,0
3 .

This shows that d3(1⊗ b2i ) is represented by Sq1(vi ⊗ 1). By equation (1) we have
that (1⊗ b4mi )Sq1(vi ⊗ 1) lies in the image of d2 : E1,4m+1

2 → E3,4m
2 , and hence

(1⊗ b4mi )Sq1(vi ⊗ 1) = (1⊗ b4mi )d2(w)

for some w ∈ E1,1
2 . Since 1⊗ b4mi 6= 0, the map −⊗ b4mi : E∗,0

2 → E∗,4m
2 is injective,

we get Sq1(vi ⊗ 1) = d2(w). Let

w =
∑
j,k

λj,k(αj ⊗ ak) +
∑
j,k

µj,k(αj ⊗ bk),

where λj,k, µj,k ∈ Z/2. Then

d2(w) =
∑
j,k

λj,k(αjuk ⊗ 1) +
∑
j,k

µj,k(αjvk ⊗ 1) ∈ J.

This shows that Sq1(vi ⊗ 1) ∈ J . Similarly, if si = 4m+ 1 and ui ⊗ 1 6= 0,
then Sq1(ui ⊗ 1) ∈ J . Hence J is invariant under the action of the Steenrod alge-
bra.

For an integer n, define

η(n) =

{
0 if n is even
1 if n is odd.

Proof of Theorem 1.1

We first prove (1). As noticed in the proof of Lemma 6.1, if some si, ri is even, then
the corresponding ui, vi is zero. Regard u1, v1, . . . , un, vn ∈ H2(BG) as homogeneous
polynomials of degree two in r variables. Suppose that they have a non-trivial common
zero in (Z/2)r. Then by Proposition 4.5, there is a subgroup inclusion

j : Z/2 ↪→ (Z/2)r

such that j∗(ui) = 0 = j∗(vi) for each 1 6 i 6 n. Restrict the G action on X to Z/2
action on X, and consider the Leray–Serre spectral sequence {E∗,∗

r , dr} associated to
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the Borel fibration

X ↪→ XZ/2 −→ BZ/2.

The naturality of the Leray–Serre spectral sequence gives the following commutative
diagram:

Ek,l
r

dr

��

j∗
// E

k,l

r

dr

��

Ek+r,l−r+1
r

j∗
// E

k+r,l−r+1

r .

(2)

Observe that j∗ : E0,l
2 → E

0,l

2 is the identity map. This, together with the commuta-
tive diagram, gives d2(1⊗ ai) = 0 = d2(1⊗ bi) for each 1 6 i 6 n. Hence dr = 0 for
each r > 2 and

E
∗,∗
2 = E

∗,∗
∞ .

But we have H∗(XG) ∼= TotE∗,∗
∞ . This implies that H∗(XG) is infinite dimensional,

a contradiction by Proposition 4.4. Hence the system of homogeneous polynomials
does not have any non-trivial common zero in (Z/2)r. Thus, by Proposition 4.7,
r 6 2

(
η(s1) + η(r1) + · · ·+ η(sn) + η(rn)

)
.

Next, we prove (2). By Lemma 6.1, the ideal J is invariant under the action of
the Steenrod algebra. By the discussion above, the system of homogeneous polyno-
mials u1, v1, . . . , un, vn do not have any non-trivial common zero in (Z/2)r. Thus, by
Proposition 4.6, we have r 6 (η(s1) + η(r1) + · · ·+ η(sn) + η(rn)

)
. This completes

the proof of Theorem 1.1. 2

6.2. The complex case

Let G = (Z/2)r act freely on a finite-dimensional CW-complex X '2

∏n
i=1 CHri,si

with 1 6 si 6 ri for each 1 6 i 6 n. And suppose that the induced action on mod 2
cohomology of X is trivial. Using Lemma 2.1, we get

H∗(X) ∼= Z/2[g1, h1, . . . , gn, hn]/K,

where K is the ideal

〈gs1+1
1 , hr1

1 + g1h
r1−1
1 + · · ·+ gs11 hr1−s1

1 , . . . , gsn+1
n , hrn

n + gnh
rn−1
n + · · ·+ gsnn hrn−sn

n 〉

and g1, h1, . . . , gn, hn are all homogeneous elements of degree 2 each. As in the real
case, we have

E∗,∗
2

∼= Z/2[α1, . . . , αr]⊗ Z/2[g1, h1, . . . , gn, hn]/K.

Again by Theorem 4.3, the spectral sequence does not degenerate at the E2 term.
Notice that dr = 0 for all even r. In particular, d2 = 0, and hence d3 : E0,2

3 → E3,0
3

must be non-zero. Let d3(1⊗ gi) = xi ⊗ 1 and d3(1⊗ hi) = yi ⊗ 1 for 1 6 i 6 n with
at least one of them being non-zero. Consider the ideal

L = 〈x1, y1, . . . , xn, yn〉

in H∗(BG). Then we have the following lemma.
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Lemma 6.2. Let G = (Z/2)r act freely on a finite-dimensional CW-complex X '2∏n
i=1 CHri,si with 1 6 si 6 ri for each 1 6 i 6 n. Suppose that the induced action on

mod 2 cohomology of X is trivial and si, ri 6≡ 3 mod 4 for each 1 6 i 6 n. Then the
ideal L in H∗(BG) is invariant under the action of the Steenrod algebra.

Proof. We describe the proof briefly as it is similar to the proof of Lemma 6.1. Fix
some 1 6 i 6 n. Since si > 1, we have hri

i 6= 0. Notice that hri+1
i = 0. If ri is even,

then

0 = d3(1⊗ hri+1
i ) = yi ⊗ hri

i .

Since the map −⊗ hri
i : E∗,0

3 → E∗,ri
3 is injective, we get yi ⊗ 1 = 0. Since gsi+1

i = 0,
it follows that if si is even, then xi ⊗ 1 = 0. Such xi and yi are obviously invariant
under the action of the Steenrod algebra.

Let ri = 4m+ 1 and yi ⊗ 1 6= 0. Notice that Sq1(1⊗ hi) = 0 and the following
diagram commutes:

E0,2
3

d3 //

Sq1

��

E3,0
3

Sq1

��

E0,3
4

d4 // E4,0
4 .

Since d4 = 0, the commutativity of the diagram shows that 0 = Sq1(yi ⊗ 1) ∈ L.
Next we have Sq2(1⊗ hi) = 1⊗ h2

i . Further, d3(1⊗ h2m
i ) = 0, and hence 1⊗ h2m

i

represents an element in E0,4m
5 . Since h4m+2

i = 0, we have

0 = d5(1⊗ h4m+2
i ) = (1⊗ h4m

i )d5(1⊗ h2
i ) in E5,4m

5 . (3)

Consider the following commutative diagram:

E0,2
3

d3 //

Sq2

��

E3,0
3

Sq2

��

E0,4
5

d5 // E5,0
5 .

This shows that d5(1⊗ h2
i ) is represented by Sq2(yi ⊗ 1). By equation (3) we have

that (1⊗ h4m
i )Sq2(yi ⊗ 1) lies in the image of d3 : E2,4m+2

3 → E5,4m
3 and hence

(1⊗ h4m
i )Sq2(yi ⊗ 1) = (1⊗ h4m

i )d3(z)

for some z ∈ E2,2
3 . Since 1⊗ h4m

i 6= 0, the map −⊗ h4m
i : E∗,0

3 → E∗,4m
3 is injective,

and we get Sq2(yi ⊗ 1) = d3(z). Let

z =
∑
j,k,l

λj,k,l(αjαk ⊗ gl) +
∑
j,k,l

µj,k,l(αjαk ⊗ hl),

where λj,k,l, µj,k,l ∈ Z/2. Then

d3(z) =
∑
j,k,l

λj,k,l(αjαkxl ⊗ 1) +
∑
j,k,l

µj,k,l(αjαkyl ⊗ 1) ∈ L.

This shows that Sq2(yi ⊗ 1) ∈ L. Similarly, if si = 4m+ 1 and xi ⊗ 1 6= 0, then
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Sq1(xi ⊗ 1), Sq2(xi ⊗ 1) ∈ L. Hence L is invariant under the action of the Steenrod
algebra.

Proof of Theorem 1.2

If some si, ri is even, then the corresponding xi, yi is zero. Suppose x1, y1, . . . , xn, yn
have a non-trivial common zero in (Z/2)r. Then by Proposition 4.5 there is a subgroup
inclusion

j : Z/2 ↪→ (Z/2)r

such that j∗(xi) = 0 = j∗(yi) for each 1 6 i 6 n. Restrict the G action on X to Z/2
action on X, and consider the Leray–Serre spectral sequence {E∗,∗

r , dr} associated to
the Borel fibration

X ↪→ XZ/2 → BZ/2.

Observe that j∗ : E0,l
3 → E

0,l

3 is the identity map. This, together with the commuta-
tive diagram (2), gives d3(1⊗ gi) = 0 = d3(1⊗ hi) for each 1 6 i 6 n. Hence dr = 0

for each r > 2 and E
∗,∗
2 = E

∗,∗
∞ . This gives a contradiction by Proposition 4.4. Hence

the system of homogeneous polynomials does not have any non-trivial common zero
in (Z/2)r. Thus, by Proposition 4.7, r 6 3

(
η(s1) + η(r1) + · · ·+ η(sn) + η(rn)

)
. This

proves (1).

By Lemma 6.2, the ideal L is invariant under the action of the Steenrod algebra.
By the above discussion, the system of homogeneous polynomials x1, y1, . . . , xn, yn
does not have any non-trivial common zero in (Z/2)r. Thus, by Proposition 4.6, we
have r 6 (η(s1) + η(r1) + · · ·+ η(sn) + η(rn)

)
. This proves Theorem 1.2(2). 2

Restricting to actions of elementary abelian 2-groups on
∏n

i=1 CHri,si for which
the induced action on mod 2 cohomology is trivial, we obtain the following corollary.

Corollary 6.3. Let 1 6 si < ri for each 1 6 i 6 n. Then

frk2

( n∏
i=1

CHri,si

)
= η(s1) + η(r1) + · · ·+ η(sn) + η(rn)

whenever si ≡ 1 mod 4 and ri ≡ 0, 2 mod 4.

Proof. Theorem 1.2(2) gives the upper bound. In Section 3, we constructed a Z/2
action on CHri,si when si is odd and ri is even, for which the induced action on
H∗(CHri,si

)
is trivial. The products of these actions on

∏n
i=1 CHri,si achieve the

desired bound when si ≡ 1 mod 4 and ri ≡ 0, 2 mod 4.

7. Some concluding remarks

We conclude with the following remarks on our results. Adem and Yalçın asked
the following question [3, p. 70].

Question. If (Z/2)r acts freely on a finite CW-complex X with mod 2 cohomology
generated by one-dimensional classes, does it follows that r 6 2 dimH1

(
X;Z/2

)
?
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Let (Z/2)r act freely on a finite CW-complex X '2

∏n
i=1 RHri,si such that the

induced action on mod 2 cohomology is trivial. If 1 6 si < ri for each 1 6 i 6 n, then

H1

(
RHri,si ;Z/2

)
= Z/2⊕ Z/2,

and hence dimH1

(
X;Z/2

)
= 2n. Therefore, by Theorem 1.1(1),

r 6 2
(
η(s1) + η(r1) + · · ·+ η(sn) + η(rn)

)
6 2(2n) = 2 dimH1

(
X;Z/2

)
.

Thus the above question has a positive answer for X '2

∏n
i=1 RHri,si .

Let X be as in Theorem 1.1 and Theorem 1.2. Let si be even and ri be odd for each
1 6 i 6 n. If X '2

∏n
i=1 RHri,si , then the Euler characteristic χ(X) = 1. Similarly,

if X '2

∏n
i=1 CHri,si , then χ(X) is odd. Hence no elementary abelian 2-group can

act freely on X and our theorems are weak in this case.
It is well known that if a closed smooth manifold does not bound mod 2, then it

does not admit any free involution. It was shown in [22] that, RHr,s does not bound
for s = 2k + 1 and r = 2β(2l + 1) if and only if one of the following holds:

• β > 2 and k > 1,

• β = 1, l + 1 = 2δ(2t+ 1) and k > 2δ+1 − 1.

Thus RHr,s does not admit any free involution in these cases.
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