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ON TRIVIALITIES OF STIEFEL-WHITNEY CLASSES OF
VECTOR BUNDLES OVER ITERATED SUSPENSIONS OF

DOLD MANIFOLDS

AJAY SINGH THAKUR

(communicated by Graham Ellis)

Abstract
A space X is called W -trivial if for every vector bundle ξ over

X, the total Stiefel-Whitney class W (ξ) = 1. In this article we
shall investigate whether the suspensions ΣkD(m,n) of Dold
manifolds are W -trivial or not.

1. Introduction

Recall [11] that a CW-complex X is said to be W -trivial if for any vector bundle
ξ over X, the total Stiefel-Whitney class W (ξ) = 1.

It is a theorem of Atiyah-Hirzebruch [1, Theorem 2] that the 9-fold suspension
Σ9X of any CW-complex X is W -trivial (see also [11, Corollary 1.2]). In the same
paper, Atiyah-Hirzebruch [1, Theorem 1] have shown that the sphere Sd = ΣdS0 is
W -trivial if and only if d 6= 1, 2, 4 and 8 (see also [7, Theorem 1]). Here S0 is the
union to two distinct points.

It is therefore an interesting question to understand for what value of k, 0 6 k 6 8,
is the iterated suspension ΣkX, of a CW-complex X, W -trivial. Another motivation
to study the W -triviality of a CW-complex is its connection with I-triviality [9]. If
a CW-complex B is W -trivial, then it is I-trivial, and hence it satisfies a Borsuk-
Ulam type theorem. We refer to [9] and [12] for more details on I-triviality of a
CW-complex.

In [10], R. Tanaka obtained results concerning the W -triviality and “W -triviality
except at one dimension” for highly connected CW-complexes. In [11], R. Tanaka
determined all pairs (k, n) of positive integers for which ΣkFPn is W -trivial, where
F = R,C or H.

In this article we shall investigate when the iterated suspension ΣkD(m,n), of the
Dold manifold D(m,n) is W -trivial. Recall [2] that the Dold manifold D(m,n) is
an (m+ 2n)-dimensional manifold defined as the quotient of Sm × CPn by the fixed
point free involution (x, z) 7→ (−x, z̄). The projection Sm × CPn −→ Sm gives rise to
a fiber bundle
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CPn ↪→ D(m,n) −→ RPm

with fiber Cn and structure group Z2. In particular, we have D(m, 0) = RPm and
D(0, n) = CPn.

By the theorem of Atiyah-Hirzebruch [1, Theorem 2], ΣkD(m,n) is W -trivial for
k > 9. So we shall be interested only in the case 0 6 k 6 8 and m > 0. We have the
following main results:

Theorem 1.1. Let ΣkD(m,n) be the k-fold suspension of the Dold manifold D(m,n)
with m > 0. Then ΣkD(m,n) is not W -trivial if

1. k = 0.

2. k = 1, 2, 4 or 8 and m > k.

3. k = 3, 5 or 7 and m+ k = 4 or 8.

4. k = 6 and m = 2 or 3.

Theorem 1.2. Let ΣkD(m,n) be the k-fold suspension of the Dold manifold D(m,n)
with m > 0 and n even. Then ΣkD(m,n) is W -trivial if

1. k = 2 and m = 1.

2. k = 3 and m 6= 5, 8t+ 1.

3. k = 4 and m = 3.

4. k = 5 and m 6= 8t+ 3.

5. k = 6 and m 6= 2, 3, 8t+ 4.

6. k = 7 and m 6= 1, 8t+ 5.

7. k = 8 and m = 1, 2, 3 or 7.

We have the following result in the case when n is odd:

Theorem 1.3. Let ΣkD(m,n) be the k-fold suspension of the Dold manifold D(m,n)
with m > 0 and n odd. Then ΣkD(m,n) is W -trivial if k and m are as listed above
in (1)–(7) of Theorem 1.2 and any one of the following conditions is satisfied:

1. n+ k = 2, 4 or 8 and m < k.

2. n+ k = 3, 5 or 7 and 2n+m+ k 6= 4, 8.

3. n+ k = 6 and m+ n 6= 2, 3.

4. n+ k > 9.

Observe that if we assume n > 3 in Theorem 1.3, then ΣkD(m,n) is W -trivial
except for Σ3D(m, 5) with m > 3 and Σ5D(m, 3) with m > 5. In the case when n = 1,
we have the following theorem:

Theorem 1.4. Let ΣkD(m, 1) be k-fold suspension of the Dold manifold D(m, 1)
with m > 0. Then ΣkD(m, 1) is not W -trivial if

1. k = 1, 3 or 7 and m > k.

2. k = 2 or 4 and m+ k = 2 or 6.

3. k = 5 and m = 1 or 2.
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We shall also prove that, for n > 1 and n 6≡ 3 (mod 4), the 4-fold suspension
Σ4D(1, n) is not W -trivial.

Following are the cases which we have not been able to settle: (i) k = 3 and m =
8t+ 1, (ii) k = 4 and m = 2, (iii) k = 5 and m = 8t+ 3, (iv) k = 6 and m = 8t+ 4,
(v) k = 7 and m = 8t+ 5 and (vi) k = 8 and m = 4, 5 or 6. In addition to these cases,
we also do not know whether ΣkD(m,n) is W -trivial or not when k, m and n satisfy
any one of the following conditions: (i) k = 3, n = 5 and m > 5, (ii) k = 5, n = 3 and
m > 7 and (iii) k = 4, m = 1 and n ≡ 3 (mod 4).

To prove our results we shall require the description, by Fujii-Yasui [6], of KO-
groups of Dold manifolds. We shall recall this in Section 2 and prove our results in
Section 3.
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2. Preliminaries

In this section we shall recall the notations and results from [6], where M. Fujii
and T. Yasui have computed the KO-groups of Dold manifolds. These will be used
to prove our results.

Let π : D(m,n) → D(m,n)/D(m, 0) be the projection. Let q : D(m,n) → RPm be
the projection map of the fiber bundle, which is described in the introduction, and
let i : D(m, 0) ↪→ D(m,n) be the inclusion defined by

i([x0, x1, . . . , xm]) = [x0, x1, . . . , xm, 1, 0, . . . , 0].

Consider the following exact sequence of K̃O-groups:

· · · → K̃O
−k

(D(m,n)/D(m, 0))
π!

−→ K̃O
−k

(D(m,n))
i!−→ K̃O

−k
(D(m, 0)) → · · · .

(1)
Under the identification D(m, 0) = RPm, we have the composition i! ◦ q! = identity.
Hence the homomorphism

q! : K̃O
−k

(RPm) = K̃O
−k

(D(m, 0)) → K̃O
−k

(D(m,n))

is an injective map, and it gives the splitting of the exact sequence (1). Let

K̃O
−k

(m,n) := π!K̃O
−k

(D(m,n)/D(m, 0)).

Then we have the following theorem:

Theorem 2.1 ([6, Theorem 1]).

K̃O
−k

(D(m,n)) = K̃O
−k

(m,n)⊕ q!K̃O
−k

(RPm),

where q : D(m,n) → RPm is the natural projection.

The KO-groups of the projective space RPm have been studied by M. Fujii in [3].

The group K̃O
−k

(m,n) has been computed by M. Fujii and T. Yasui in [6] by making
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use of the following two homeomorphisms [4, Proposition 2]:

1. h1 : D(m,n)/D(m− 1, n) ≈ Sm ∧ (CPn)+.

2. h2 : D(m,n)/D(m,n− 1) ≈ Sn ∧ (RPm+n/RPn−1).

Here, for a space X, X+ denotes the disjoint union of X and a point. The identi-
fication of the spaces via homeomorphisms h1 gives rise to the following long exact
sequence [6, p. 58]:

· · · −→ K̃O
−k

(Sm ∧ CPn)
f !

−→ K̃O
−k

(m,n)
i!−→ K̃O

−k
(m− 1, n)

δ−→ K̃O
−i+1

(Sm ∧ CPn) −→ · · · , (2)

where f = h1 ◦ π and i : D(m− 1, n) ↪→ D(m,n) is the inclusion. The long exact

sequence (2) is a direct summand of the following long exact sequence of K̃O-groups
for the pair (D(m,n), D(m− 1, n)):

→ K̃O
−k

(D(m,n)/D(m− 1, n))
π!

−→ K̃O
−k

(D(m,n))
i!−→ K̃O

−k
(D(m− 1, n)) → · · ·

In the case when n = 2r, the groups K̃O
−k

(m, 2r) have been described in [6,
Theorem 3]. The proof of the following lemma follows directly from [6, Theorem 3]

by counting the generators of K̃O
−k

(m, 2r).

Lemma 2.2. Let K̃O
−k

(m, 2r) := π!K̃O
−k

(D(m, 2r)/D(m, 0)), where π is the pro-

jection. Let m > 0. Then K̃O
−k

(m, 2r) = 0 if

1. k = 2 and m = 1.

2. k = 3 and m = 8t+ 2, 8t+ 3, 8t+ 4 or 8t+ 6.

3. k = 5 and m = 8t, 8t+ 4, 8t+ 5 or 8t+ 6.

4. k = 6 and m = 8t+ 1, 8t+ 5, 8t+ 6 or 8t+ 7.

5. k = 7 and m = 8t, 8t+ 2, 8t+ 6 or 8t+ 7.

In the case when n = 2r + 1, the long exact sequence of K̃O-groups for the pair
(D(m, 2r + 1), D(m, 2r)) takes the following form [6, p. 55]:

→ K̃O
−k

(D(m, 2r + 1)/D(m, 2r)) → K̃O
−k

(m, 2r + 1)
i!1−→ K̃O

−k
(m, 2r) →, (3)

where i1 : D(m, 2r) ↪→ D(m, 2r + 1) is the inclusion. For the long exact sequence (3),
there exists an algebraic splitting homomorphism

κ : K̃O
−k

(m, 2r) → K̃O
−k

(m, 2r + 1)

such that i!1 ◦ κ = identity (refer to [6, Section 10]). In fact, the homomorphism κ
is defined as the composition i!2 ◦ p, where i2 : D(m, 2r + 1) ↪→ D(m, 2r + 2) is the

inclusion and p : K̃O
−k

(m, 2r) → K̃O
−k

(m, 2r + 2) is an algebraic homomorphism
defined in [6, Section 10]. Therefore we have the following theorem:

Theorem 2.3 ([6, Theorem 2]).

K̃O
−k

(m, 2r + 1) = K̃O
−k

(m, 2r)⊕ K̃O
−k

(D(m, 2r + 1)/D(m, 2r)).
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In the above direct sum decomposition, the group K̃O
−k

(m, 2r) is a direct sum-

mand of K̃O
−k

(m, 2r + 1) via the monomorphism κ, and the group K̃O
−k

(D(m, 2r +

1)/D(m, 2r)) is isomorphic to K̃O
−k

(S2r+1 ∧ (RP2r+1+m/RP2r)) by the homeomor-

phism h2. The latter group, K̃O
−k

(S2r+1 ∧ (RP2r+1+m/RP2r)), has been computed
by M. Fujii and T. Yasui in [5].

3. Proof of the main results

We first state the following well-known facts which we shall use implicitly in our
proofs:

1. For a vector bundle ξ over a CW-complex X, the smallest integer k > 0 with
wk(ξ) 6= 0 is a power of 2 (see, for example, [8, p. 94]).

2. If K̃O(X) = 0 then every vector bundle over X is stably trivial, and hence
W (ξ) = 1 for any vector bundle ξ over X. Thus X is W -trivial.

3. Recall [2] that the Z2-cohomology ring of the Dold manifold D(m,n) is given
as

Hk(D(m,n);Z2) = Z2[c, d]/(c
m+1 = 0, dn+1 = 0),

where c ∈ H1(D(m,n);Z2) and d ∈ H2(D(m,n);Z2). If c′ is the generator
of H1(RPm;Z2) and d′ is the generator of H2(CPn;Z2), then q∗(c′) = c and
i∗(d) = d′, where q : D(m,n) → RPm is the projection and i : CPn ↪→ D(m,n)
is the fibre inclusion of the fibre bundle

CPn i
↪→ D(m,n)

q−→ RPm.

The action of Steenrod squares on the cohomology ring H∗(D(m,n);Z2) are
completely determined by the fact that Sq1d = cd.

Proof of Theorem 1.1. Consider the projection map q : D(m,n) → RPm. Since the
composition map,

RPm = D(m, 0) ↪→ D(m,n)
q−→ RPm,

is the identity map, the induced map

q∗ : Hi(RPm;Z2) → Hi(D(m,n);Z2)

is injective. Hence the suspension map induces an injective map

Σkq∗ : Hi(ΣkRPm;Z2) → Hi(ΣkD(m,n);Z2).

Now if there is a vector bundle ξ over ΣkRPm with wi(ξ) 6= 0, then wi(q
∗(ξ)) 6= 0.

Thus we have showed that if ΣkRPm is not W -trivial, then the k-fold suspension
ΣkD(m,n) of Dold manifold D(m,n) is also not W -trivial. Thus the proof of Theo-
rem 1.1 now follows from Theorem 1.4 [11].

We now come to the proof of Theorem 1.2, which will be proved in sequence of the
propositions below.
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Proposition 3.1. Let m > 0. Then ΣkD(m, 2r) is W -trivial if

1. k = 2 and m = 1.

2. k = 3 and m = 8t+ 2, 8t+ 3, 8t+ 4 or 8t+ 6.

3. k = 5 and m = 8t, 8t+ 4, 8t+ 5 or 8t+ 6.

4. k = 6 and m = 8t+ 1, 8t+ 5, 8t+ 6 or 8t+ 7.

5. k = 7 and m = 8t, 8t+ 2, 8t+ 6 or 8t+ 7.

Proof. Let k and m be as in the statement of the proposition. Note that the group

K̃O
−k

(m, 2r) = 0 (Lemma 2.2) and the k-fold suspension ΣkRPm of RPm isW -trivial
([11, Theorem 1.4]). Now by the decomposition,

K̃O
−k

(D(m, 2r)) = K̃O
−k

(m, 2r)⊕ q!K̃O
−k

(RPm),

of Theorem 2.1, any vector bundle ξ ∈ K̃O
−k

(D(m, 2r)) is stably equivalent to η ⊕ ν,

where η ∈ K̃O
−k

(m, 2r) and ν ∈ q!K̃O
−k

(RPm). Since W (η) = 1 and W (ν) = 1, we
have W (ξ) = 1. This completes the proof of the proposition.

Proposition 3.2. Let m > 0. Then ΣkD(m, 2r) is W -trivial if

1. k = 3 and m = 8t+ 5(t > 0) or 8t+ 7.

2. k = 5 and m = 8t+ 1 or 8t+ 7.

3. k = 6 and m = 8t or 8t+ 2(t > 0).

4. k = 7 and m = 8t+ 1(t > 0) or 8t+ 3.

Proof. Let k and m be as in the statement of the proposition. Then consider the
following exact sequence (2):

· · · → K̃O
−k

(Sm ∧ CP2r)
f !

−→ K̃O
−k

(m, 2r)
i!−→ K̃O

−k
(m− 1, 2r) → · · · .

Since K̃O
−k

(m− 1, 2r) = 0 (Lemma 2.2), the map f ! is surjective. By [11, Theo-
rem 1.5], Σk+mCP2r is W -trivial, and this implies that for any vector bundle ξ ∈
K̃O

−k
(m, 2r) the total Stiefel-Whitney class W (ξ) = 1. Furthermore, we know that

ΣkRPm is W -trivial ([11, Theorem 1.4]). Hence by the decomposition,

K̃O
−k

(D(m, 2r)) = K̃O
−k

(m, 2r)⊕ q!K̃O
−k

(RPm),

of Theorem 2.1, we conclude that ΣkD(m, 2r) is W -trivial.

Proposition 3.3. Let m > 0. Then ΣkD(m, 2r) is W -trivial if

1. k = 3 and m = 8t.

2. k = 5 and m = 8t+ 2.

3. k = 6 and m = 8t+ 3.

4. k = 7 and m = 8t+ 4.

5. k = 8 and m = 1.



ON TRIVIALITIES OF STIEFEL-WHITNEY CLASSES 229

Proof. Let k and m be as in the statement of the proposition. Consider the inclusion

i : D(m− 1, 2r) ↪→ D(m, 2r).

Note that the quotient

D(m, 2r)/D(m− 1, 2r) ≈ ΣmCP2r ∨ Sm,

and hence the induced map

i∗ : Hp(D(m, 2r);Z2) → Hp(D(m− 1, 2r);Z2)

is a monomorphism when p+m is odd. Thus the induced suspension map

Σki
∗
: Hq(ΣkD(m, 2r);Z2) → Hq(ΣkD(m− 1, 2r);Z2)

is a monomorphism for even q.

Now, if there is a vector bundle ξ over ΣkD(m, 2r) with w2s(ξ) 6= 0 for some
s > 0, then w2s(i

∗(ξ)) 6= 0. But we know that ΣkD(m− 1, 2r) is W -trivial (refer to
Proposition 3.2 for k 6= 8 and [11, Theorem 1.5] for k = 8). This gives a contradiction,
and thus we conclude that ΣkD(m, 2r) is W -trivial.

Proposition 3.4. The iterated suspensions Σ8D(2, 2r) and Σ8D(3, 2r) are W -trivial.

Proof. We shall first prove that Σ8D(2, 2r) is W -trivial. Let ξ be a vector bundle
over Σ8D(2, 2r). Let s > 4 be such that 2s 6 dim(Σ8D(2, 2r)) and wj(ξ) = 0 for 0 <
j < 2s. We shall show that w2s(ξ) = 0, and thus this will imply that Σ8D(2, 2r) is
W -trivial.

Let a ∈ H2s−8(D(2, 2r);Z2) be the cohomology class that maps to

w2s(ξ) ∈ H2s(Σ8D(2, 2r);Z2)

under the suspension isomorphism

H2s−8(D(2, 2r);Z2) → H2s(Σ8D(2, 2r);Z2).

By [11, Lemma 3.3] and the fact that the Steenrod squares commutes with suspension
homomorphism, we have

Sqi(a) = 0 for all 0 < i < 2s−1.

Now observe that the vector space H2s−8(D(2, 2r);Z2) is generated by

d2
s−1−4 and c2d2

s−1−5.

Therefore,

a = x · d2
s−1−4 + y · c2d2

s−1−5

for x, y ∈ Z2. If x 6= 0 then w2s(i
∗ξ) 6= 0, where

i : Σ8CP2r ↪→ Σ8D(2, 2r)

is the inclusion map and i∗ξ is the pullback bundle over Σ8CP2r. But since Σ8CP2r

is W -trivial ([11, Theorem 1.5]), we have a contradiction and hence x = 0. Further,
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since

Sq2(c2d2
s−1−5) = c2d2

s−1−4 6= 0,

we have y = 0. Hence,

w2s(ξ) = 0.

This completes the proof of W -triviality of Σ8D(2, 2r).
The proof of W -triviality of Σ8D(3, 2r) proceeds along the same lines as the proof

of Proposition 3.3 using the fact that Σ8D(2, 2r) is W -trivial.

In the following proposition, n can be both even or odd:

Proposition 3.5. The iterated suspensions Σ4D(3, n) and Σ8D(7, n) are W -trivial.

Proof. Let s > 3 be such that 2s 6 dim(Σ4D(3, n)). Observe that the vector space
H2s−4(D(3, n);Z2) is generated by

d2
s−1−2 and c2d2

s−1−3.

Here note that d2
s−1−2 will be zero if n < 2s−1 − 2. Further observe that

Sq1(c2d2
s−1−3) = c3d2

s−1−3 6= 0.

With these observations the proof of the W -triviality of Σ4D(3, n) proceeds along the
same lines as the proof of W -triviality of Σ8D(2, 2r) in Proposition 3.4.

Similarly we can argue that Σ8D(7, n) is W -trivial. Here we need to observe that,
for s > 4 such that 2s 6 dim(Σ8D(7, n)), the vector space H2s−8(P (7, n);Z2) is gen-
erated by

d2
s−1−4, c2d2

s−1−5, c4d2
s−1−6 and c6d2

s−1−7.

Here again some of these cohomology classes, except c6d2
s−1−7, can be zero. Further

observe that

Sq1(c2d2
s−1−5) = c3d2

s−1−5, Sq1(c6d2
s−1−7) = c7d2

s−1−7 and Sq1(c4d2
s−1−6) = 0,

but Sq2(c4d2
s−1−6) = c6d2

s−1−6. Now the proof of W -triviality of Σ8D(7, n) will pro-
ceed along the same lines as in the case Σ4D(3, n). This completes the proof of the
proposition.

Remark 3.6. More generally, one can prove that the m-fold suspension ΣmD(m−
1, n) of the Dold manifold D(m− 1, n) with m > 0 is W -trivial by the method used
in proving Proposition 3.5.

The proof of Theorem 1.2 follows from Propositions 3.1, 3.2, 3.3, 3.4 and 3.5.
We now come to the proof of Theorem 1.3. First we make the following observation

concerning the W -triviality of stunted projective space.

Lemma 3.7. Let RPm/RPn be the stunted projective space with m > n. Then
Σk(RPm/RPn) is W -trivial if

1. k = 1, 2, 4 or 8 and m < k.

2. k = 3, 5 or 7 and m+ k 6= 4, 8.

3. k = 6 and m 6= 2, 3.

4. k > 9.
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Proof. Let X = RPm/RPn, and let α : RPm → X be the projection map. Then the
induced suspension homomorphism

(Σkα)∗ : Hi(ΣkX;Z2) → Hi(ΣkRPm;Z2)

is an isomorphism for i > n+ k. Hence if there is a vector bundle ξ over ΣkX with
wi(ξ) 6= 0, then wi((Σ

kα)∗ξ) 6= 0. Thus the W -triviality of ΣkRPm implies the W -
triviality of ΣkX. Now the proof of the lemma follows from [11, Theorem 1.4].

Proposition 3.8. Let ΣkD(m, 2r + 1) be the k-fold suspension of the Dold manifold
D(m, 2r + 1). Then ΣkD(m, 2r + 1) is W -trivial if

ΣkD(m, 2r + 2) and Σ2r+1+k(RP2r+1+m/RP2r)

are W -trivial.

Proof. Let ξ be a vector bundle over ΣkD(m, 2r + 1). We shall prove the proposition
by showing that the total Stiefel-Whitney class W (ξ) = 1.

Consider the following decomposition by Theorem 2.1:

K̃O
−k

(D(m, 2r + 1)) = K̃O
−k

(m, 2r + 1)⊕ K̃O
−k

(RPm).

Since the W -triviality of ΣkD(m, 2r + 2) implies the W -triviality of ΣkRPm (Theo-

rem 2.1), we can assume that ξ ∈ K̃O
−k

(m, 2r + 1). Now, since the (2r + 1 + k)-fold
suspension Σ2r+1+k(RP2r+1+m/RP2r) is W -trivial and by the decomposition,

K̃O
−k

(m, 2r + 1) = K̃O
−k

(m, 2r)⊕ K̃O
−k

(Σ2r+1(RP2r+1+m/RP2r)),

of Theorem 2.3, we can further assume that ξ = κ(γ) for some γ ∈ K̃O
−k

(m, 2r).

Here κ is the monomorphism with respect to which K̃O
−k

(m, 2r) is a direct sum-

mand of K̃O
−k

(m, 2r + 1) (refer to [6, Section 10] for more details). By the defini-

tion of κ, we have ξ = i!2(η) for some η ∈ K̃O
−k

(m, 2r + 2). Here i2 : D(m, 2r + 1) ↪→
D(m, 2r + 2) is the inclusion. Thus, by the W -triviality of ΣkD(m, 2r + 2), we con-
clude that W (ξ) = 1. This completes the proof of the proposition.

Now, under the given hypothesis on k, n = 2r + 1 and m, as in statement of Theo-
rem 1.3, the k-fold suspension ΣkD(m, 2r + 2) isW -trivial for all r > 0 (Theorem 1.2).
It is also clear by Lemma 3.7 that for these values of k, n = 2r + 1 and m, the space
Σ2r+1+k(RP2r+1+m/RP2r) is W -trivial. Thus the proof of Theorem 1.3 follows from
Proposition 3.8.

We now come to the proof of Theorem 1.4. First note the following lemma:

Lemma 3.9. The k-fold suspension ΣkD(m,n) is not W -trivial if the (n+ k)-fold
suspension Σn+k(RPn+m/RPn−1) is not W -trivial.

Proof. Observe that the inclusion i : D(m,n− 1) ↪→ D(m,n) induces a surjective
map
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i∗ : Hp(D(m,n);Z2) → Hp(D(m,n− 1);Z2), for all p

in cohomology group. Thus

π∗ : Hp(D(m,n)/D(m,n− 1);Z2) → Hp(D(m,n);Z2), for p > 0

is injective. Here

π : D(m,n) → D(m,n)/D(m,n− 1) ≈ Σn(RPn+m/RPn−1)

is the quotient map. Thus the induced suspension morphism

Σkπ∗ : Hp(Σn+k(RPn+m/RPn−1);Z2) → Hp(ΣkD(m,n);Z2)

is injective for p > 0. Hence if there is a vector bundle ξ over Σn+k(RPn+m/RPn−1)
with W (ξ) 6= 1, then W (π∗(ξ)) 6= 1. This completes the proof of the lemma.

Now the proof of Theorem 1.4 follows immediately from Lemma 3.9 and [11,
Theorem 1.4].

This completes the proof of the results stated in the introduction. As noted earlier
we still do not know whether Σ3D(m, 5) and Σ5D(m, 3) are W -trivial or not for all
m. Though this can be answered in few cases, we do not have a complete picture. For
example, if m = 2, 3 or 4 then Σ3D(m, 5) is W -trivial by Proposition 3.8 and [11,
Corollary 1.3]. By a similar argument we can say that if m = 1, 2, 4, 5 or 6, then
Σ5D(m, 3) is W -trivial. We also have the following proposition:

Proposition 3.10. Let n > 1 and n 6≡ 3 (mod 4). Then Σ4D(1, n) is not W -trivial.

Proof. Consider the following long exact sequence (2):

· · · → K̃O
−4

(ΣCPn)
f !

−→ K̃O
−4

(1, n)
i!−→ K̃O

−4
(0, n)

δ−→ K̃O
−3

(ΣCPn) → · · · .

Since K̃O
−4

(ΣCPn) = 0 [3, Theorem 2], the homomorphism

i! : K̃O
−4

(1, n) −→ K̃O
−4

(0, n)

is a monomorphism. We shall first prove that i! is an isomorphism.
Depending upon whether n is odd or even, we write n = 2r or 2r + 1. As n 6≡ 3

(mod 4) we have, by [3, Theorem 2],

K̃O
−4

(CPn) = K̃O
−4

(0, n) = Zr.

Now if n = 2r + 1, then we have the decomposition

K̃O
−4

(1, 2r + 1) = K̃O
−4

(1, 2r)⊕ K̃O
−4

(Σ2r+1(RP2r+2/RP2r))

by Theorem 2.3. We have K̃O
−4

(Σ2r+1(RP2r+2/RP2r)) = 0 (refer to Table (2)

on [5, p. 47]) and K̃O
−4

(1, 2r) = Zr [6, Theorem 3]. Therefore,

K̃O
−4

(1, n) = Zr.

Now putting all these values of K̃O-groups in the above long exact sequence one can
easily conclude that the homomorphism

δ : K̃O
−4

(0, n) −→ K̃O
−3

(ΣCPn) = K̃O
−4

(CPn)

is zero. Thus the homomorphism i! is an isomorphism.
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As Σ4CPn is not W -trivial ([11, Theorem 1.5]), there is a vector bundle ξ ∈
K̃O

−4
(0, n) = K̃O

−4
(CPn) with

W (ξ) 6= 1.

Thus there is a vector bundle over Σ4D(1, n) with non-trivial Stiefel-Whitney class.
This completes the proof of the proposition.

Remark 3.11. Note that there is no integer s such that 5 6 2s 6 dim(Σ4D(1, 1)) = 7.
Hence Σ4D(1, 1) is W -trivial.
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