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COHOMOLOGY OF LOOP SPACES
OF THE SYMMETRIC SPACE EI

YOUNGGI CHOI

(communicated by J.P.C. Greenlees)

Abstract
We determine the mod p cohomology of the loop space and

the double loop space of the symmetric space of exceptional type
EI exploiting the Serre spectral sequence and the Eilenberg–
Moore spectral sequence.

1. Introduction

The 1-connected irreducible symmetric spaces have been classified by E. Cartan.
Among them, there are twelve 1-connected compact irreducible symmetric spaces of
exceptional type besides of the compact simple Lie group cases. Unlike the classical
cases, the cohomology of loop spaces of exceptional types is almost unknown, except
for easy cases such as EIV = E6/F4 and FII = F4/Spin(9) [4, 5].

In this paper we study the mod p cohomology of the loop space and the double
loop space of the symmetric space of exceptional type EI. As a homogeneous space,
EI is expressed by E6/PSp(4) where PSp(n) is the projective symplectic group. The
cohomology of EI is determined in [7, 8]. In fact, the cohomology of EI has two
torsion, but it is odd torsion free [8].

This paper is organized as follows: In Section 2, we collect some known facts which
will be used in the next section. In Section 3, we calculate the mod 2 cohomology of
the loop space of EI exploiting the Serre spectral sequence and the Eilenberg–Moore
spectral sequence going to the same destination space. In [2], Bott and Samelson
asked whether the cohomology of loop spaces of symmetric spaces has only two tor-
sion. So, in Section 4, we calculate the mod p cohomology of the loop space of EI
for odd primes p and prove that the cohomology of the loop space of EI has only
two torsion. In Section 5, we apply the results in Sections 4 and 5 to determine the
mod p (co)homology of the double loop space of EI.
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2. Preliminaries

Let E(x) be the exterior algebra on x and Γ(x) the divided power algebra on x,
which is free over γi(x) as a Fp-module with product

γi(x)γj(x) =

(
i+ j
j

)
γi+j(x).

We have homology operations, Dyer–Lashof operations, Qi(p−1) on the (n+ 1)-loop
space Ωn+1X

Qi(p−1) : Hq(Ω
n+1X;Fp) → Hpq+i(p−1)(Ω

n+1X;Fp)

for 0 6 i 6 n when p = 2, and for 0 6 i 6 n and i+ q even when p > 2. They are
natural with respect to (n+ 1)-loop maps. In particular, we have Q0x = xp. The
iterated power Qa

i denotes the composition of Qi a times. These operations satisfy
the following properties:

Theorem 2.1 ([6]). In the path-loop fibration

Ωn+2X → PΩn+1X → Ωn+1X,

we have the following:

1. If x ∈ H∗(Ω
n+1X;Fp) is transgressive in the Serre spectral sequence, then so is

Qix and τ ◦Qi(p−1)x = Q(i+1)(p−1) ◦ τx for each i, 0 6 i 6 n where τ is the trans-
gression.

2. For p > 2 and n > 1,

d2q(p−1)(xp−1 ⊗ τ(x)) = −βQ(p−1)τ(x) if x ∈ H2q(Ω
n+1X;F2).

3. For p = 2, Sq1∗Qix = Qi−1x if x ∈ Hq(Ω
n+1X;F2) and q + i is even.

We denote the primitives and the indecomposables of H∗(X;Fp) by PH
∗(X;Fp)

and QH∗(X;Fp), respectively. In the Eilenberg–Moore spectral sequence associated
with the path-loop fibration converging to H∗(ΩX;Fp), we have a map

σ : QH∗(X;Fp) ∼= Tor−1,∗
H∗(X;Fp)

(Fp,Fp) = E−1,∗
2 → E−1,∗

∞ ⊂ H∗−1(ΩX;Fp).

Since the elements of Tor−1,∗
H∗(X;Fp)

(Fp,Fp) are primitive and permanent cycles in the

Eilenberg–Moore spectral sequence, the above map induces the suspension homomor-
phism σ : QH∗(X;Fp) → PH∗−1(ΩX;Fp).

Theorem 2.2 ([3]). Let X be a path connected H-space. Then the following is true:

1. The Eilenberg–Moore spectral sequence collapses at E2 if and only if kerσ = 0.

2. The suspension σ : QHodd(X;Fp) → PHeven(ΩX;Fp) is injective.

3. The quotient PHeven(ΩX;Fp)/σ(QH
odd(X;Fp)) is obtained by transpotence.

4. The elements in kerσ are dual to elements in the image of the homology transpo-
tence.

Throughout this paper, the subscript of an element means the degree of that
element.
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3. The mod 2 cohomology of the loop space of EI

The space EI is simply connected and π2(EI) = Z2, so we have the following
fibration:

ẼI → EI → K(Z2, 2),

where ẼI is the 2-connected cover of EI. Then we have the following morphisms of
fibrations:

Sp(4) −→ PSp(4) −→ K(Z2, 1)

↓ ↓ ↓
E6 −→ E6 −→ ∗
↓ ↓ ↓
ẼI −→ EI −→ K(Z2, 2).

Consider the following fibrations:

ΩẼI −→ ∗ −→ ẼI, (1)

ΩE6 −→ ΩẼI −→ Sp(4). (2)

Recall the following fact from [7]:

Theorem 3.1. H∗(ẼI;F2) = E(x5, Sq
1x5, x8, Sq

4x5, Sq
4x8, Sq

8Sq4x5)⊗ F2[x16].

First of all, we study the mod 2 cohomology of the loop space of ẼI.

Proposition 3.2. The mod 2 cohomology of the loop space of ẼI is as follows:

H∗(ΩẼI;F2) = F2[y2i+2 ; i > 0]/(y82i+2)⊗ Γ(Sq1y4, y7, Sq
4y7)⊗ E(z15).

Proof. Consider the Eilenberg–Moore spectral sequence of the path-loop fibration (1)

converging to H∗(ΩẼI;F2) with

E2 = Tor
H∗(ẼI;F2)

(F2,F2)

= TorE(x5,Sq1x5,x8,Sq4x5,Sq4x8,Sq8Sq4x5)⊗F2[x16](F2,F2)

= Γ(y4, Sq
1y4, y7, Sq

4y4, Sq
4y7, Sq

8Sq4y4)⊗ E(z15)

= F2[y2i+2 ; i > 0]/(y82i+2)⊗ Γ(Sq1y4, y7, Sq
4y7)⊗ E(z15).

(3)

We also consider the Serre spectral sequence converging to H∗(ΩẼI;F2) for the
fibration (2) with

E2 = F2[u2]/(u
16
2 )⊗ (⊗i>0F2[γ2i(u8)]/(γ2i(u8)

8))

⊗ Γ(u10, u14, u22)⊗ E(c3, c7, c11, c15),

where

H∗(ΩE6;F2) = F2[u2]/(u
16
2 )⊗ (⊗i>0F2[γ2i(u8)]/(γ2i(u8)

8))⊗ Γ(u10, u14, u22)

in [5] and H∗(Sp(4);F2) = E(c3, c7, c11, c15).
Now we determine all differentials in the above Serre spectral sequence. Since

this Serre spectral sequence is a spectral sequence of Hopf algebras, it is enough to
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determine the following transgressions:

τ(u2), τ(u10), τ(u14).

We have two spectral sequences going to the same destination space H∗(ΩẼI;F2).
Comparing these two spectral sequences as a graded vector space, the E2-term of the
Eilenberg–Moore spectral sequence implies the following transgressions of the Serre
spectral sequence:

τ(u2) = c3

τ(u10) = 0

τ(u14) = 0.

If τ(u2) were trivial, then u2 would survive permanently. But there is no 2-dimensional
element in the E2-term (3) of the Eilenberg–Moore spectral sequence. So τ(u2) should
be non-trivial. If τ(u10) 6= 0, or τ(u14) 6= 0, then these would imply the following
differentials in the Eilenberg–Moore spectral sequence:

d(γ2(Sq
1y4)) = Sq4y7,

d(γ2(y7)) = z15,

but these are impossible because of the following bidegree reason:

|γ2(Sq1y4)| = (−2, 12), |Sq4y7| = (−1, 12), |γ2(y7)| = (−2, 16), |z15| = (−1, 16).

Letting u22 = u4 and c3u2 = c5, we obtain that

E∞ = F2[u4]/(u
8
4)⊗ (⊗i>0F2[γ2i(u8)]/(γ2i(u8)

8))

⊗ Γ(u10, u14, u22)⊗ E(c5, c7, c11, c15).

As a graded vector space, the size of this E∞-term is the same as the E2-term (3) of
the Eilenberg–Moore spectral sequence. This means that the above Eilenberg–Moore
spectral sequence collapses at the E2-term, and, on the other side, the E∞-term of
the Serre spectral sequence has the following extensions:

c25 = u10, c27 = u14, c211 = u22.

So we obtain that

H∗(ΩẼI;F2) = F2[y2i+2 ; i > 0]/(y82i+2)⊗ Γ(Sq1y4, y7, Sq
4y7)⊗ E(z15).

Since the Eilenberg–Moore spectral sequence converging to H∗(ΩẼI;F2) collapses
at E2, where E2 = Tor

H∗(ẼI;F2)
(F2,F2), the Eilenberg–Moore spectral sequence con-

verging to H∗(ΩẼI;F2) also collapses at E2, where

E2 = CotorH∗(ẼI;F2)(F2,F2)
∼= Ext

H∗(ẼI;F2)
(F2,F2)

= F2[ν4, ν5, ν7, ν9, ν11, ν16]⊗ E(ω15).

Hence we get the following:

Corollary 3.3. H∗(ΩẼI;F2) = F2[ν4, ν5, ν7, ν9, ν11, ν16]⊗ E(ω15).
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For the next step we consider the following fibrations:

ΩẼI −→ ΩEI −→ K(Z2, 1) (4)

ΩE6 −→ ΩEI −→ PSp(4). (5)

Theorem 3.4. The mod 2 cohomology of the loop space of EI is as follows:

H∗(ΩEI;F2) = F2[x1]/(x
16
1 )⊗ F2[y2i+2 ; i > 0]/(y82i+2)⊗ Γ(Sq1y4, y7, Sq

4y7).

Proof. Consider two Serre spectral sequences converging toH∗(ΩEI;F2) for the fibra-
tion (4) with

E2 = F2[y2i+2 ; i > 0]/(y82i+2)⊗ Γ(Sq1y4, y7, Sq
4y7)⊗ E(z15)⊗ F2[x1],

where H∗(K(Z2, 1);F2) = F2[x1], and for the fibration (5) with

E2 = F2[u2]/(u
16
2 )⊗ (⊗i>0F2[γ2i(u8)]/(γ2i(u8)

8))⊗ Γ(u10, u14, u22)

⊗ F2[v1]/(v
16
1 )⊗ E(b3, b7, b11),

where H∗(PSp(4);F2) = F2[v1]/(v
16
1 )⊗ E(b3, b7, b11) [1].

Since the Serre spectral sequences for the fibration (4) are spectral sequences of
Hopf algebras, the source of the first non-trivial differential is an indecomposable
element, and its target is a primitive element. Then by dimensional reason, there are
only two possible non-trivial differentials as follows: τ(y7) = x81, τ(z15) = x161 . Now
the 7-dimensional generator b7 is a permanent cycle because 6-dimensional elements
are all decomposables in the Serre spectral sequence for (5). Comparing two Serre
spectral sequences for (4) and (5) as graded vector spaces, we can deduce that τ(y7)
is trivial. However, τ(z15) = x161 since there is a truncation of 1-dimensional generator
v1 in the E2-term of the Serre spectral sequences for (5).

So we conclude that the mod 2 cohomology of the loop space of EI is

F2[x1]/(x
16
1 )⊗ F2[y2i+2 ; i > 0]/(y82i+2)⊗ Γ(Sq1y4, y7, Sq

4y7).

Corollary 3.5. The cohomology of the loop space of EI has two torsion.

4. The mod p cohomology of the loop space of EI

Recall the following fact from [7]:

Theorem 4.1. For odd primes p we have

H∗(EI;Fp) = Fp[e8]/(e
3
8)⊗ E(e9, e17).

Note that βe8 = 0, where β is the Bockstein homomorphism because the cohomol-
ogy of EI is odd torsion free [8].

We also recall the following facts from [5]:

H∗(ΩE6;F3) = F3[y2]/(y
9
2)⊗ Γ(y8, y10,P1y10, y16, y18, y22),

H∗(ΩE6;Fp) = Γ(y2, y8, y10, y14, y16, y22), p > 5.

We will determine the mod p cohomology of the loop space of EI exploiting the
following fibrations:

ΩEI −→ ∗ −→ EI, (6)

ΩE6 −→ ΩEI −→ PSp(4). (7)
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Theorem 4.2. For odd primes p, the mod p cohomology of the loop space of EI is
as follows:

H∗(ΩEI;Fp) = E(x7)⊗ Γ(y8, y16, y22).

Proof. Consider the Eilenberg–Moore spectral sequence for the fibration (6) converg-
ing to H∗(ΩEI;F3) with

E2 = TorH∗(EI;F3)(F3,F3)

= TorF3[e8]/(e38)⊗E(e9,e17)(F3,F3)

= E(a7)⊗ Γ(a8, a16, a22),

and also consider the Serre spectral sequence converging to H∗(ΩEI;F3) for the
fibration (7) with

E2 = E(x3,P1x3, x11,P1x11)⊗ F3[y2]/(y
9
2)⊗ Γ(y8, y10,P1y10, y16, y18, y22),

where H∗(PSp(4);F3) = E(x3,P1x3, x11,P1x11).
Comparing these E2-terms of two spectral sequences as a graded vector space, we

can obtain the following differentials in the Serre spectral sequence:

τ(y2) = x3,

d3(y
2
2) = x3 ⊗ y2,

τ(y32) = P1x3,

d7(y
6
2) = P1x3 ⊗ y32 ,

d7(y18) = P1x3 ⊗ y62 ,

τ(y10) = x11,

d11(γi+1(y10)) = x11 ⊗ γi(y10), i > 1,

τ(P1y10) = P1x11,

d15(γi+1(P1y10)) = P1x11 ⊗ γi(P1y10), i > 1.

Note that d3(y
3
2) cannot be x3 ⊗ y22 because d3(y

3
2) = 3x3 ⊗ y22 = 0. Hence x3 ⊗ y22

is a permanent cycle because there is no element of dimension 8 in the base space
H∗(PSp(4);F3). Then we obtain

E16 = E(x3 ⊗ y22)⊗ Γ(y8, y16, y22).

Now by bidegree reason, there are no more non-trivial differentials. Note that
|x3 ⊗ y22 | = (3, 4), |y8| = (0, 8). So E16 = E∞. Then letting x3 ⊗ y22 = x7, we get the
conclusion for the odd prime 3.

Next we consider cases of odd primes p > 5. Similarly, we consider the Eilenberg–
Moore spectral sequence of the fibration (6) converging to H∗(ΩEI;Fp) with

E2 = TorH∗(EI;Fp)(Fp,Fp)

= E(a7)⊗ Γ(a8, a16, a22),

and the Serre spectral sequence converging to H∗(ΩEI;Fp) for the fibration (7) with

E2 = E(x3, x7, x11, x15)⊗ Γ(y2, y8, y10, y14, y16, y22).

Then comparing these E2-terms of two spectral sequences as a graded vector space,
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we can obtain the following transgressions in the Serre spectral sequence for (7):

τ(y2) = x3,

d3(γi+1(y2)) = x3 ⊗ γi(y2), i > 1,

τ(y10) = x11,

d11(γi+1(y10)) = x11 ⊗ γi(y10), i > 1,

τ(y14) = x15,

d15(γi+1(y14)) = x15 ⊗ γi(y14), i > 1.

Hence we get

E16 = E(x7)⊗ Γ(y8, y16, y22).

Then by bidegree reason, there are no more non-trivial differentials. So E16 = E∞,
and we get the conclusion for odd primes p > 5.

Corollary 4.3. H∗(ΩEI;Fp) = E(ω7)⊗ Fp[ν8, ν16, ν22].

In [2], Bott and Samelson mentioned that they do not know whether the cohomol-
ogy of the loop space of a symmetric space has only two torsion. Now we determine
whether the cohomology of the loop space of EI has only two torsion. Rationally we
have

H∗(ΩE6;Q) = Q[y2, y8, y10, y14, y16, y22],

H∗(PSp(4);Q) = E(x3, x7, x11, x15) .

Then, similar to the mod p case, comparing the Eilenberg–Moore spectral sequence
for the fibration (6) converging to H∗(ΩEI;Q) and the Serre spectral sequence con-
verging to H∗(ΩEI;Q) for the fibration (7), we can determine the rational cohomol-
ogy of the loop space of EI as follows:

H∗(ΩEI;Q) = E(x7)⊗Q[y8, y16, y22].

Note that for a space X

dimFp(H
∗(X;Fp)) > dimFp(H

∗(X;Z)/torsion⊗ Fp)

= dimQ(H
∗(X;Q)).

So if dimFp(H
∗(X;Fp)) = dimQ(H

∗(X;Q)), then the Bockstein spectral sequence
converging to (H∗(X;Z)/torsion)⊗ Fp collapses at E1 where E1 = H∗(X;Fp). This
implies that H∗(X;Z) is p-torsion free.

Since dimFp(H
∗(ΩEI;Fp)) = dimQ(H

∗(ΩEI;Q)), the cohomology of the loop
space of EI is odd torsion free. Hence with Corollary 3.5, we get the following con-
clusion:

Corollary 4.4. The cohomology of the loop space of EI has only two torsion.

5. The (co)homology of the double loop space of EI

We determine the mod p (co)homology of the double loop space of EI by applying
the results in Sections 4 and 5. Since π2(EI) = Z2, π0(Ω

2EI) = Z2. Let Ω
2
0EI be the
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zero component of Ω2EI. By looping the fibration twice, ẼI → EI → K(Z2, 2), we

get Ω2
0EI w Ω2ẼI. Now we compute H∗(Ω2ẼI;F2) instead of H∗(Ω2

0EI;F2).

Lemma 5.1. The cohomology suspension map

σ : QH∗(ΩẼI;F2) → PH∗−1(Ω2ẼI;F2)

is injective.

Proof. From Theorem 2.2, if x ∈ kerσ for x ∈ QH∗(ΩẼI;F2), the degree of x should
be of the form n× 2k + 2 for n > 1 and k > 2. There are y2i+2 , i > 0, γ2i(Sq

1y4),

i > 1, γ2i(y7), i > 1, γ2i(Sq
1y7), i > 1 in QHeven(ΩẼI;F2), but degrees of these ele-

ments cannot be of the form n× 2k + 2 for k > 2. Hence the suspension

σ : QH∗(ΩẼI;F2)PH
∗−1(Ω2ẼI;F2)

is injective.

By Theorem 2.2 we obtain the following corollary:

Corollary 5.2. The Eilenberg–Moore spectral sequence converging to H∗(Ω2ẼI;F2)
collapses at E2, where

E2 = Tor
H∗(ΩẼI;F2)

(F2,F2).

Corollary 5.3. The Eilenberg–Moore spectral sequence converging to H∗(Ω
2ẼI;F2)

collapses at E2, where

E2 = Ext
H∗(ΩẼI;F2)

(F2,F2) ∼= CotorH∗(ΩẼI;F2)(F2,F2).

Theorem 5.4. The mod 2 homology of the double loop space of EI is as follows:

H∗(Ω
2
0EI;F2) = E(Qa

1z3 : a > 0)⊗ F2[β3Q
a+3
1 z3 : a > 0]⊗ F2[w14]

⊗ F2[Q
a
1z4 : a > 0]⊗ F2[Q

a
1z6 : a > 0]⊗ F2[Q

a
1z10 : a > 0],

where β3 is the tertiary homology Bockstein operator.

Proof. Consider the Eilenberg–Moore spectral sequence converging to H∗(Ω
2ẼI;F2)

with

E2 = Ext
H∗(ΩẼI;F2)

(F2,F2) = CotorH∗(ΩẼI;F2)(F2,F2).

Then by Theorem 2.1, Corollary 3.3, and Corollary 5.3,

E∞ = E2

= E(Qa
1z3 : a > 0)⊗ F2[w2i+5−2 : i > 0]⊗ F2[w14] (8)

⊗ F2[Q
a
1z4 : a > 0]⊗ F2[Q

a
1z6 : a > 0]⊗ F2[Q

a
1z10 : a > 0].

Consider the Serre spectral sequence associated with the fibration

Ω2E6 → Ω2ẼI → ΩSp(4).

It is easy to compute that H∗(ΩSp(4);F2) = F2[a2, a6, a10, a14].



COHOMOLOGY OF LOOP SPACES OF THE SYMMETRIC SPACE EI 135

Recall the following in [5]:

H∗(Ω
2E6;F2) = E(z1)⊗ E(Qa

1z7 : a > 0)⊗ F2[β3Q
a+2
1 z7 : a > 0] (9)

⊗ F2[Q
a
1z9 : a > 0]⊗ F2[Q

a
1z13 : a > 0]⊗ F2[Q

a
1z21 : a > 0].

As a graded vector space, the E∞-term of the Serre spectral sequence should have
the same size in every total degree as the above E∞-term of the Eilenberg–Moore
spectral sequence. Then we obtain the following transgression: τ(a2) = z1, and a2 ⊗ z1
survives permanently. Let a2 ⊗ z1 = z3. Then by (8) and (9),

H∗(Ω
2ẼI;F2) = E(Qa

1z3 : a > 0)⊗ F2[β3Q
a+3
1 z3 : a > 0]⊗ F2[w14]

⊗ F2[Q
a
1z4 : a > 0]⊗ F2[Q

a
1z6 : a > 0]⊗ F2[Q

a
1z10 : a > 0].

Corollary 5.5. The mod 2 cohomology of the double loop space of EI is as follows:

H∗(Ω2
0EI;F2) = E(e3, e7, e15)⊗ E(β3α2i+5−2 : i > 0)⊗ Γ(α2i+5−2 : i > 0)⊗ Γ(α14)

⊗ Γ(e2i×5−1 : i > 0)⊗ Γ(e2i×7−1 : i > 0)⊗ Γ(e2i×11−1 : i > 0),

where β3 is the tertiary Bockstein operator.

For odd prime cases, we recall the following in [9]:

Theorem 5.6. Let X be a 1-connected H-space of finite type and let x ∈ Kerσ.
Assume p is an odd prime. Then either there is an indecomposable class u ∈ H2m+1(x)
such that βkPI for I = (pk−lm, . . . ,m) is defined and contains x, or else there is
an indecomposable class v ∈ H2s(x) of height pr such that βkPJψr(v) for J =
(pk−l(prs− 1), . . . , p(prs− 1))) is defined and contains x.

Then we get the following corollary:

Corollary 5.7. Let X be a 1-connected H-space of finite type and p be an odd prime.
Then if H∗(X;Z) is odd torsion free, the Eilenberg–Moore spectral sequence converg-
ing to H∗(ΩX;Fp) collapses at E2, where

E2 = TorH∗(X;Fp)(Fp,Fp).

Localized at p for any odd primes, EI is 7-connected. Since the cohomology of the
loop space of EI is odd torsion free by Corollary 4.4, we get the following:

Corollary 5.8. The Eilenberg–Moore spectral sequence converging to H∗(Ω2
0EI;Fp)

collapses at E2, where

E2 = TorH∗(ΩEI;Fp)(Fp,Fp).

Corollary 5.9. The Eilenberg–Moore spectral sequence converging to H∗(Ω
2
0EI;Fp)

collapses at E2, where

E2 = ExtH∗(ΩEI;Fp)(Fp,Fp) ∼= CotorH∗(ΩEI;Fp)(Fp,Fp).

Theorem 5.10. For odd primes p, the mod p homology of the double loop space of
EI is as follows:

H∗(Ω
2
0EI;Fp) = Fp[z6]⊗ E(Qa

(p−1)z7 : a > 0)⊗ Fp[βQ
a+1
(p−1)z7 : a > 0]

⊗ E(Qa
(p−1)z15 : a > 0)⊗ Fp[βQ

a+1
(p−1)z15 : a > 0]

⊗ E(Qa
(p−1)z21 : a > 0)⊗ Fp[βQ

a+1
(p−1)z21 : a > 0].
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Proof. Consider the Eilenberg–Moore spectral sequence converging to H∗(Ω
2
0EI;Fp)

with

E2 = ExtH∗(ΩEI;Fp)(Fp,Fp) = CotorH∗(ΩEI;Fp)(Fp,Fp).

Then by Theorem 2.1, Corollary 4.3, and Corollary 5.9,

E∞ = E2

= Fp[z6]⊗ E(Qa
(p−1)z7 : a > 0)⊗ Fp[βQ

a+1
(p−1)z7 : a > 0]

⊗ E(Qa
(p−1)z15 : a > 0)⊗ Fp[βQ

a+1
(p−1)z15 : a > 0]

⊗ E(Qa
(p−1)z21 : a > 0)⊗ Fp[βQ

a+1
(p−1)z21 : a > 0].

Corollary 5.11. For odd primes p, the mod p cohomology of the double loop space
of EI is as follows:

H∗(Ω2
0EI;Fp) = Γ(α6)⊗ E(e7, e15, e21)⊗ E(βα8pi+1−2 : i > 0)⊗ Γ(α8pi+1−2 : i > 0)

⊗ E(βα16pi+1−2 : i > 0)⊗ Γ(α16pi+1−2 : i > 0)

⊗ E(βα22pi+1−2 : i > 0)⊗ Γ(α22pi+1−2 : i > 0).
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