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ON SEMISIMPLICIAL SETS SATISFYING THE KAN CONDITION

JAMES E. MCCLURE

(communicated by Daniel Dugger)

Abstract
A semisimplicial set has face maps but not degeneracies. A

basic fact, due to Rourke and Sanderson, is that a semisimpli-
cial set satisfying the Kan condition can be given a simplicial
structure. The present paper gives a combinatorial proof of this
fact and a generalization to multisemisimplicial sets.

1. Introduction

A semisimplicial setX is a sequence of setsXn for n > 0 with maps di : Xn → Xn−1

for 0 6 i 6 n satisfying

didj = dj−1di if i < j. (1)

Elements of Xn are called n-simplices, and the maps di are called face maps.
Semisimplicial sets occur in various areas of mathematics, especially geometric

topology, surgery theory (e.g., [3]), and homological algebra (e.g., [6, 5]).

Definition 1.1. A semisimplicial set X satisfies the Kan condition if, for every col-
lection of n+ 1 n-simplices x0, . . . , xk−1, xk+1, . . . , xn+1 satisfying

dixj = dj−1xi whenever i < j with i 6= k 6= j,

there is an n+ 1 simplex x with dix = xi for all i 6= k.

In [4], Rourke and Sanderson used PL topology to prove that a semisimplicial set
which satisfies the Kan condition has a simplicial structure:

Theorem 1.2. [4, Theorem 5.7] Let X be a semisimplicial set satisfying the Kan
condition. Then there are functions

sj : Xn → Xn+1,

for n > 0 and 0 6 j 6 n, with the following properties.

disj = sj−1di if i < j. (2)

disjx = x if i = j, j + 1. (3)

disj = sjdi−1 if i > j + 1. (4)

sjsi = sisj−1 if i < j. (5)
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Note that (5) is written in a slightly nonstandard form which is equivalent to the
usual one. Also note that the theorem does not say that the simplicial structure on
X is unique, nor does it give a functor from Kan semisimplicial sets to simplicial sets.

The purpose of this note is to generalize Theorem 1.2 to multisemisimplicial sets,
for use in [2]. It is not at all clear how to generalize the geometric argument given by
Rourke and Sanderson, so instead I will give a combinatorial proof of Theorem 1.2
which generalizes easily to the multisemisimplicial setting.

The organization of the paper is as follows. The proof of Theorem 1.2 is a double
induction which is carried out in Sections 2 and 3. An auxiliary lemma is proved in
Section 4. The generalization of Theorem 1.2 to multisemisimplicial sets is stated in
Section 5 and proved in Sections 6–8. Section 9 gives an application of Theorem 1.2,
using it to give a new proof of [4, Corollary 5.4].

I would like to thank Stefan Schwede for a helpful conversation.

A note on terminology. The first appearance of semisimplicial sets in the lit-
erature was in [1], where they were called semisimplicial complexes. The motivation
for the name is that an ordered simplicial complex has two properties: (i) there are
face maps satisfying (1) and (ii) a simplex is determined by its faces; a “semisimpli-
cial complex” has only the first property. The same paper introduced the concept of
“complete semisimplicial complexes,” in which the word “complete” referred to the
presence of degeneracy maps. During the 1950’s and 1960’s it became common to
drop the word “complete” from the terminology (probably because all of the known
applications required degeneracies) and to use the term semisimplicial complex to
mean what is now called a simplicial set.

Semisimplicial complexes in the original sense were resurrected and renamed (as
∆-sets) in [4]. The name ∆-set seems infelicitous because the category that governs
simplicial sets is called ∆. In using the term semisimplicial set I am following the
terminology of [6, Definition 8.1.9].

2. Beginning of the proof of Theorem 1.2

We will construct the degeneracies sjx by a double induction on deg(x) and j.
Specifically, given n > 0 and 0 6 k 6 n, we assume that sjx has been constructed
when deg(x) < n and also when deg(x) = n and j < k, and that properties (2)–(5)
hold in all relevant cases (that is, in all cases involving only degeneracies that have
already been constructed). Let x ∈ Xn; we need to construct skx.

There are two cases. The easier case (which does not use the Kan condition) is
when x is in the image of sj for some j < k. We give the proof for this case in this
section.

Choose the smallest j for which x is in the image of sj ; then

x = sjw

for some w. In fact this w is unique, by the following lemma.

Lemma 2.1. Degeneracy maps are monomorphisms.

Proof. This is immediate from (3).
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We now define skx to be sjsk−1w (as required by (5)).

It remains to verify (2)–(5). The verifications of (2)–(4) are routine applications of
the simplicial identities and are left to the reader.

For (5) we need a well-known fact:

Lemma 2.2. If sjw = siy for some i with j < i < k then there is a v with y = sjv
and w = si−1v.

Proof. Let v = djy. Then

siy = sjw = sjdjsjw = sjdjsiy = sjsi−1djy = sjsi−1v = sisjv,

so y = sjv by Lemma 2.1. Now

sjw = siy = sisjv = sjsi−1v

so w = si−1v by Lemma 2.1.

Now we verify (5). Let y ∈ Xn−1 and let i < k. Choose the smallest j for which
siy is in the image of sj . If j = i we are done, otherwise let siy = sjw. Let v be the
element given by Lemma 2.2. Then

sksiy = sjsk−1w by definition of sk

= sjsk−1si−1v = sjsi−1sk−2v = sisjsk−2v

= sisk−1sjv because j < i < k so j < k − 1

= sisk−1y,

as required.

3. Conclusion of the proof of Theorem 1.2

Next we must construct skx in the remaining case, when x is not in the image of
any sj with j < k.

First note that the simplicial identities determine all faces of skx, so it is not
possible to build skx directly from the Kan condition. Instead, we apply the Kan
condition twice to construct a suitable element Tkx in degree deg(x) + 2 and then
define

skx = d0Tkx. (6)

We will construct the elements Tjx by a double induction on deg(x) and j. In
order to see what properties we want Tj to have in the inductive hypothesis, we
use a heuristic argument. For i < j, we want the simplicial identity (2) to hold. The
left-hand side of (2) will be equal to d0di+1Tj (using (6) and did0 = d0di+1) and the
right-hand side will be d0Tj−1di. The simplest way for the two sides to be equal is to
have di+1Tj = Tj−1di, which we rewrite as

diTj = Tj−1di−1 if 0 < i < j + 1; (7)

this is the first of the properties we want. Similarly, the simplicial identity (4) leads



76 JAMES E. MCCLURE

to the equation

diTj = Tjdi−2 if i > j + 2. (8)

Finally, the simplicial identity (3) leads to two equations:

dj+1Tj = dj+2Tj for all j, (9)

and

d0dj+1Tjx = x for all j and x. (10)

Lemma 3.1. Let X be a semisimplicial set satisfying the Kan condition. Then there
are functions

Tj : Xn → Xn+2,

for n > 0 and 0 6 j 6 n, satisfying (7)–(10).

The proof will be given in the next section. We can now finish the proof of Theo-
rem 1.2. Given that x is not in the image of sj for any j < k, define skx by (6). The
simplicial identity (2) follows at once from (7), and (4) follows from (8). To see that
dkskx = x we use (10), and then dk+1skx = x follows from (9). The identity (5) is
vacuous because of the assumption on x.

4. Proof of Lemma 3.1

To see how the construction of Tj works it’s helpful to begin with the case deg(x) =
0 and j = 0. Since we want (9) and (10) to hold we must have d1T0x = d2T0x and
d0d1T0x = x. The Kan condition gives an element y of degree 1 with d0y = x. A
second application of the Kan condition gives T0x with d1T0x = d2T0x = y. Then (9)
and (10) are immediate from the construction, and (7) and (8) are vacuous in this
case.

Now assume that Tjx has been constructed with properties (7)–(10) for deg(x) < n
and also for deg(x) = n and j < k. Let x ∈ Xn; we need to construct Tkx ∈ Xn+2.

We begin by constructing an element y of degree n+ 1 which will play the role
of dk+1Tkx. We want d0y to be x because of (10). For 0 < j < k + 1 we want djy to
be dkTk−1dj−1x because of (7), and for j > k + 1 we want djy to be dk+1Tkdj−1x
because of (8). In order to apply the Kan condition we need to show that these choices
are consistent:

Lemma 4.1. Given x ∈ Xn, let

yj =


x if j = 0,

dkTk−1dj−1x if 0 < j < k + 1,

dk+1Tkdj−1x if j > k + 1.

(11)

Then

diyj = dj−1yi whenever i < j with i 6= k + 1 6= j. (12)

Proof of Lemma 4.1. First suppose i = 0. Then the right-hand side of (12) is equal
to dj−1x, and the left-hand side simplifies to dj−1x by (10).

Next suppose 0 < i < j < k + 1. Both sides simplify to dk−1Tk−2dj−2di−1x by (7).
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If 0 < i < k + 1 < j then both sides simplify to dkTk−1dj−2di−1x, using (7) on the
left side and (8) on the right side.

Finally, if k + 1 < i < j then both sides simplify to dk+1Tkdj−2di−1x by (8).

Now we apply the Kan condition to construct y ∈ Xn+1 with djy = yj for j 6=
k + 1.

Next we will use the Kan condition to construct Tkx. We choose dk+1Tkx to be
the element y that was just constructed, and because of (9) we also choose dk+2Tkx
to be y. For 0 < j < k + 1 we want djTkx to be Tk−1dj−1x because of (7), and for
j > k + 2 we want djTkx to be Tkdj−2x because of (8).

We need to check consistency:

Lemma 4.2. Let

zj =


Tk−1dj−1x if 0 < j < k + 1,

y if j is k + 1 or k + 2,

Tkdj−2x if j > k + 2.

Then

dizj = dj−1zi whenever 0 < i < j. (13)

Proof of Lemma 4.2. First suppose j < k + 1. Both sides of (13) simplify to

Tk−2dj−2di−1x

by (7).

If j = k + 1 then the right side is dkTk−1di−1x, and the left side simplifies to this
by (11).

If i < k + 1 and j = k + 2 both sides simplify to dkTk−1di−1x, using (11) on the
left and (9) on the right.

If i < k + 1 and j > k + 2 both sides simplify to Tk−1dj−3di−1x, using (7) on the
left and (8) on the right.

If i = k + 1 and j = k + 2 both sides are equal to dk+1y.

If i = k + 2 both sides simplify to dk+1Tkdj−2x, using (9) on the left and (11) on
the right.

If i > k + 2 both sides simplify to Tkdj−3di−2x using (8).

Now we apply the Kan condition to construct Tkx with djTkx = zj for j 6= 0. All
parts of the inductive hypothesis are true by construction.

5. The multisemisimplicial analogue of Theorem 1.2

Definition 5.1. Let ` > 1.

(i) An `-fold multi-index n is a sequence of nonnegative integers n1, . . . , n`.

(ii) For 1 6 p 6 ` let ep be the `-fold multi-index with 1 in the p-th position and
0 in all other positions.

(iii) Addition of `-fold multi-indices is degreewise addtion and similarly for sub-
traction.
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(iv) An `-fold multisemisimplicial set is a collection of sets Xn indexed by the
`-fold multi-indices, with maps

dpi : Xn → Xn−ep

for 1 6 p 6 ` and 0 6 i 6 np, such that

dpi d
p
j = dpj−1d

p
i when i < j, and

dpi d
q
j = dqjd

p
i when p 6= q.

The Kan condition for multisemisimplicial sets is analogous to that for semisim-
plicial sets: a simplex can be constructed from a consistent choice of all but one of
its faces. Here is the formal definition.

Definition 5.2. Let X be an `-fold multisemisimplicial set. X satisfies the Kan
condition if, for every choice of a multi-index n, a pair (r, k) with 1 6 r 6 ` and
0 6 m 6 nr, and elements xp

i ∈ Xn−ep for (p, i) 6= (r, k) satisfying

dpi x
p
j = dpj−1x

p
i for i < j

and

dpi x
q
j = dqjx

p
i for p 6= q,

there exists an element x ∈ Xn with dpi x = xp
i for (p, i) 6= (r, k).

The analogue of Theorem 1.2 says that a multisemisimplicial set satisfying the
Kan condition has a multisimplicial structure. Here is the formal statement.

Theorem 5.3. Let X be an `-fold multisemisimplicial set satisfying the Kan condi-
tion. Then there are functions

sqj : Xn → Xn+eq

for 0 6 j 6 nq, with the following properties.

dqi s
q
j = sqj−1d

q
i if i < j. (14)

dqi s
q
jx = x if i = j, j + 1. (15)

dqi s
q
j = sqjd

q
i−1 if i > j + 1. (16)

sqjs
q
i = sqi s

q
j−1 if i < j. (17)

dpi s
q
j = sqjd

p
i whenever p 6= q. (18)

spi s
q
j = sqjs

p
i whenever p 6= q. (19)

Remark 5.4. Notice that to prove (19) it suffices (by symmetry) to prove that the
equation holds for p > q.

The proof of Theorem 5.3, which is quite similar to that of Theorem 1.2, will occupy
the rest of this section and the next three sections. For an element x ∈ Xn, let us
define the total degree |x| to be n1 + · · ·+ n`. We will construct the degeneracies sqj
by a double induction on |x| and the pair (q, j); we order the pairs (q, j) using the
lexicographic order.

Let m > 0, 1 6 r 6 ` and k > 0. Assume that sqjx has been constructed when
|x| < m, and also also when |x| is equal to m and the pair (q, j) is less than (r, k) in
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the lexicographic order, and that properties (14)–(19) hold in all relevant cases (that
is, in all cases involving only degeneracies that have already been constructed). Let
x ∈ Xn with n1 + · · ·+ n` = m and suppose 0 6 k 6 nr; we need to construct srkx.

There are three cases, which are dealt with in Sections 6–8:

Case 1 x is in the image of sqj for some q < r.

Case 2 x is not in the image of sqj for q < r, but it is in the image of srj for some
j < k.

Case 3 x is not in the image of sqj when (q, j) < (r, k).

6. Proof of Theorem 5.3: Case 1

Let (q, j) be the smallest pair with x in the image of sqj ; then

x = sqjw

for a unique w. Define

srkx = sqjs
r
kw

(as required by (19)). We need to verify (14)–(19).
For property (14), both sides simplify to sqjs

r
k−1d

r
iw, using (18) and (14) on the

left and (18) and (19) on the right. The verifications for (15) and (16) are similar.
For (17) we need:

Lemma 6.1. If sqjw = spi y with p 6= q then there is a v with y = sqjv and w = spi v.

Proof of Lemma 6.1. The proof is similar to that of Lemma 2.2. Let v = dqjy. Then

spi y = sqjw = sqjd
q
js

q
jw = sqjd

q
js

p
i y = sqjs

p
i d

q
jy = sqjs

p
i v = spi s

q
jv,

so y = sqjv. Now

sqjw = spi y = spi s
q
jv = sqjs

p
i v

so w = spi v.

Now we verify (17). Let y ∈ Xn−er and let i < k. Suppose that sri y is in the image
of sqj for some q < r, and choose the smallest such pair (q, j); then sri y = sqjw for some
w. Let v be the element given by Lemma 6.1. Then

srks
r
i y = sqjs

r
kw by definition of srk

= sqjs
r
ks

r
i v = sqjs

r
i s

r
k−1v by (17)

= sri s
r
k−1s

q
jv = sri s

r
k−1y

as required.
For property (18), the left side is dpi s

q
js

r
kw, and the right side simplifies to this,

using (18) and (19) when p 6= q, (16) when p = q and i is j or j + 1, and (18), (19)
and (14) (resp., (15)) when p = q and i < j (resp., i > j + 1).

For property (19), we want to know (using Remark 5.4) that srks
p
i y = spi s

r
ky when

r > p, y ∈ Xn−ep , and spi y is in the image of sqj for some q < r. Choose the smallest
such pair (q, j); then spi y = sqjw for some w. If p 6= q the result follows easily from
Lemma 6.1 and (19); if p = q the proof is similar to that for (5) in Section 2.
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7. Proof of Theorem 5.3: Case 2

Choose the smallest j for which x is in the image of srj ; then

x = srjw

for a unique w. Define

srkx = srjs
r
k−1w

(as required by (17)). We need to verify (14)–(18); (19) is not relevant for this Case.
The proofs of (14)–(17) are essentially the same as the proofs of (2)–(5) in Section 2.
For (18), both sides simplify to srjs

r
k−1d

p
iw, using (18) on the left and (18) and

(17) on the right.

8. Proof of Theorem 5.3: Case 3

The argument for this Case is similar to that given in Sections 3 and 4.

Lemma 8.1. Let X be an `-fold multisemisimplicial set satisfying the Kan condition.
Then there are functions

T q
j : Xn → Xn+2eq

for 0 6 j 6 nq, with the following properties.

dqiT
q
j = T q

j−1d
q
i−1 if 0 < i < j + 1. (20)

dqiT
q
j = T q

j d
q
i−2 if i > j + 2. (21)

dqj+1T
q
j = dqj+2T

q
j for all j. (22)

dq0d
q
j+1T

q
j x = x for all j and x. (23)

dpi T
q
j = T q

j d
p
i whenever p 6= q. (24)

Assuming the lemma, we complete the proof of Theorem 5.3. Given that x is not
in the image of sqj for any pair (q, j) < (r, k), we define

srkx = dr0T
r
j x.

The proofs of (14)–(16) are the same as the proofs of (2)–(4) at the end of Section 3,
and (17) is not relevant for this Case. Property (18) is immediate from (24), and (19)
is not relevant for this Case.

It remains to prove Lemma 8.1. The proof is similar to that of Lemma 3.1 in
Section 4.

First we define yqj for (q, j) 6= (r, k + 1) by

yqj =


x if q = r and j = 0,

drkT
r
k−1d

r
j−1x if q = r and 0 < j < k + 1,

drk+1T
r
k d

r
j−1x if q = r and j > k + 1,

drk+1T
r
k d

q
jx if q 6= r.

The verification that these are consistent is a routine modification of the argument
in Section 4 and is left to the reader.

The Kan condition gives an element y with dqjy = yqj for (q, j) 6= (r, k + 1).
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Now define zqj for (q, j) 6= (r, 0) by

zqj =


T r
k−1d

r
j−1x if q = r and 0 < j < k + 1,

y if q = r and j is k + 1 or k + 2,

T r
k d

r
j−2x if q = r and j > k + 2,

T r
k d

q
jx if q 6= r.

Again, the verification that these are consistent is a routine modification of the cor-
responding argument in Section 4.

Now the Kan condition gives an element T r
kx with dqjT

r
kx = zqj , and properties

(20)–(24) are immediate from the construction.

9. A result of Rourke and Sanderson

As in [4], we will use | | for the geometric realization of a semisimplicial set and
| |M for the geometric realization of a simplicial set (the M stands for Milnor).

The following result is Corollary 5.4 of [4].

Proposition 9.1. Let Z → W be a semisimplicial inclusion with the property that
|Z| is a retract of |W |. Let X be a semisimiplicial set satisfying the Kan condition,
and let f : Z → X be any semisimplicial map. Then f extends to W .

The rest of this section gives a new proof of this result.
First we need some notation. The singular complex functor from topological spaces

to simplicial sets will be denoted by S. As in [4], the free functor from semisimplicial
to simplicial sets will be denoted by G; recall that an element of (GY )n is a pair
(λ, y), where y ∈ Yp for some p 6 n and λ : ∆n → ∆p is a degeneracy or (if p = n)
the identity map.

There is a natural map of semisimplicial sets

α : Y → S|Y |
which takes y ∈ Yn to the function hy : ∆

n → |Y | defined by hy(u) = [u, y] (where
[u, y] denotes the class of (u, y) in |Y |). This extends to a natural map of simplicial
sets

ᾱ : GY → S|Y |.
Lemma 9.2. ᾱ is a trivial cofibration.

Proof of Lemma 9.2. Recall that a cofibration of simplicial sets is a 1-1 map. To see
that ᾱ is a cofibration, suppose that ᾱ(λ, y) = ᾱ(λ′, y′). Then [λ(u), y] = [λ′(u), y′]
for every u in the relevant ∆n. Choosing u to be an interior point, we see that y = y′.
It follows that λ = λ′ on the interior of ∆n, and hence, by continuity, on all of ∆n.

Next we must show that ᾱ induces a weak equivalence of realizations. For this it
suffices to note that the following diagram commutes:

|GY |M
|ᾱ| //

∼=
��

|S|Y ||M

'
yyssssssssss

|Y |
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Now let Z, W , X and f be as in the statement of Proposition 9.1. Use Theorem 1.2
to give X a compatible simplicial structure. Then the map f : Z → X extends to a
map f̄ : GZ → X of simplicial sets. Since ᾱ is a trivial cofibration of simplicial sets
and X is a Kan simplicial set, there is a map φ : S|Z| → X with φ ◦ ᾱ = f̄ .

Next let r : |W | → |Z| be a retraction and let g : W → X be the composite

W → GW
ᾱ−→ S|W | Sr−−→ S|Z| φ−→ X.

The commutativity of the following diagram shows that g restricts to f as required.

W // GW
ᾱ // S|W | Sr // S|Z|

φ // X

Z //

OO

GZ

OO

ᾱ // S|Z|

OO

=

;;xxxxxxxx
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