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K-MOTIVES OF ALGEBRAIC VARIETIES
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Abstract
A kind of motivic algebra of spectral categories and modules

over them is developed to introduceK-motives of algebraic vari-
eties. As an application, bivariant algebraic K-theory K(X,Y )
as well as bivariant motivic cohomology groups Hp,q(X,Y,Z)
are defined and studied. We use Grayson’s machinery [12]
to produce the Grayson motivic spectral sequence connecting
bivariantK-theory to bivariant motivic cohomology. It is shown
that the spectral sequence is naturally realized in the triangu-
lated category of K-motives constructed in the paper. It is also
shown that ordinary algebraic K-theory is represented by the
K-motive of the point.
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1. Introduction

The triangulated category of motives DMeff in the sense of Voevodsky [33] does
not provide a sufficient framework to study such a fundamental object as the motivic
spectral sequence. In this paper we construct the triangulated category of K-motives
over any field F . This construction provides a natural framework to study (bivariant)
K-theory in the same fashion as the triangulated category of motives provides a
framework for motivic cohomology.

The main idea is to use formalism of spectral categories over smooth schemes
Sm/F and modules over them. In this language a transfer from one scheme X to
another scheme Y is a symmetric spectrum O(X,Y ) such that there is an associative
composition law

O(Y,Z) ∧ O(X,Y )→ O(X,Z).

The category of O-modules ModO consists of presheaves of symmetric spectra having
“O-transfers”. The main spectral categories we work with are OKGr , OK⊕ , OK .
They come from various symmetric K-theory spectra associated with the category
of bimodules P(X,Y ), X,Y ∈ Sm/F . By a bimodule we mean a coherent OX×Y -
module P such that SuppP is finite over X and the coherent OX -module (pX)∗(P )
is locally free.

In order to develop a satisfactory homotopy theory of presheaves of symmetric
spectra with O-transfers we specify the condition of being a “motivically excisive
spectral category”. In this case one produces a compactly generated triangulated cat-
egory SHmotO which plays the role of the triangulated category of motives associated
with the spectral category of transfers O. Voevodsky’s category DMeff can be recov-
ered in this way from the Eilenberg–Mac Lane spectral category Ocor associated with
the category of correspondences. The spectral categories OKGr , OK⊕ , OK produce
equivalences of triangulated categories

SHmotOKGr ' SHmotOK⊕ ' SHmotOK .

The K-motive MK(X) of a smooth scheme X over F is the image of the free OK-
module OK(−, X) in SHmotOK (see Definition 8.3). Then there is an isomorphism
(see Corollary 8.5)

Ki(X) ∼= SHmotOK(MK(X)[i],MK(pt)), i ∈ Z.

Thus ordinary K-theory is represented by the K-motive of the point.
One of the main computational tools of the paper is the “Grayson motivic spectral

sequence”. It is a strongly convergent spectral sequence of the form

Epq2 = Hp−q,−q
M (X,Z) =⇒ K−p−q(X)

where the groups on the left hand side are motivic cohomology groups of X. We show
in Theorem 8.7 that it is recovered from the “Grayson tower” in SHmotOKGr

· · · fq+1−−−→MKGr (q)(pt)
fq−→MKGr (q − 1)(pt)

fq−1−−−→ · · · f1−→MKGr (pt),

where MKGr (q)(pt)-s are certain OKGr -modules. Thus the triangulated category of
K-motives provides a sufficient framework to study the motivic spectral sequence. In
fact, we construct its bivariant counterpart. It is used to show that OKGr , OK⊕ , OK
are motivically excisive spectral categories.
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One should stress that we do not construct a tensor product on SHmotOK .
Throughout the paper we denote by Sm/F the category of smooth separated

schemes of finite type over the base field F .

2. Model structures for symmetric spectra

In this section we collect basic facts about symmetric spectra of simplicial sets SpΣ

we shall need later. We refer the reader to [16, 25] for details.

Definition 2.1. (1) An object A of a model categoryM is finitely presentable if the
set-valued Hom-functor HomM(A,−) commutes with all filtered colimits.

(2) Following [6] a cofibrantly generated model categoryM is weakly finitely gen-
erated if I and J can be chosen such that the following conditions hold.

� The domains and the codomains of the maps in I are finitely presentable.

� The domains of the maps in J are small.

� There exists a subset J ′ of J of maps with finitely presentable domains and
codomains, such that a map f : A→ B in M with fibrant codomain B is a
fibration if and only if it is contained in J ′ − inj.

Recall from [14, Chapter V] that it is possible to define X ⊗K for an object X in
a model category and a simplicial set K, even if the model category is not simplicial.

Lemma 2.2. LetM be a left proper, cellular, weakly finitely generated model category
in which all objects are small and let S be a set of cofibrations in M. Suppose that,
for every domain or codomain X of S and every finite simplicial set K, X ⊗K is
finitely presentable. Then the Bousfield localizationM/S is weakly finitely generated.

Proof. The proof is like that of [15, 4.2].

We first define level projective and flat model structures for symmetric spectra. A
morphism f : A→ B of symmetric spectra is called a flat cofibration if and only if
for every level cofibration g : X → Y the pushout product map

f ∧ g : B ∧X ∪A∧X A ∧ Y → B ∧ Y

is a level cofibration. In particular, every flat cofibration is a level cofibration.

Theorem 2.3 ([16, 25]). The category of symmetric spectra SpΣ admits the follow-
ing two level model structures in which the weak equivalences are those morphisms
f : X → Y such that for all n > 0 the map fn : Xn → Yn is a weak equivalence of
simplicial sets.

(1) In the projective level model structure a morphism f : X → Y is a projective
level fibration if and only if for every n > 0 the map fn : Yn → Xn is a Kan fibration
of simplicial sets. A morphism f : X → Y is a projective cofibration if it has the left
lifting property with respect to all acyclic projective level fibrations.

(2) In the flat level model structure the cofibrations are the flat cofibrations. A
morphism f : X → Y is a flat level fibration if it has the right lifting property with
respect to all acyclic flat cofibrations.

The two stable model structures are cellular, proper, simplicial, weakly finitely gen-
erated, symmetric monoidal with respect to the smash product of symmetric spectra
and satisfy the monoid axiom in the sense of Schwede–Shipley [26].
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Proof. By [16, 25] (1) and (2) determine proper, simplicial, cofibrantly generated
and symmetric monoidal model structures. By [16, 3.2.13] every symmetric spectrum
is small. By [16, 25] the domains and codomains of generating (trivial) cofibrations
are finitely presentable and projective (flat) cofibrations are levelwise injections of
simplicial sets. It follows that both model structures are cellular and weakly finitely
generated. The monoid axiom follows from [25, III.1.11] and the fact that in a weakly
finitely generated model category the class of weak equivalences is closed under filtered
colimits by [6, 3.5].

Recall that a symmetric spectrum X is injective if for every monomorphism which
is also a level equivalence i : A→ B and every morphism f : A→ X there exists
an extension g : B → X with f = gi. A morphism f : A→ B of symmetric spec-
tra is a stable equivalence if for every injective Ω-spectrum X the induced map
[f,X] : [B,X]→ [A,X] on homotopy classes of spectrum morphisms is a bijection.

Theorem 2.4 ([15, 16, 25]). The category of symmetric spectra SpΣ admits the
following two stable model structures in which the weak equivalences are the stable
equivalences.

(1) In the projective stable model structure the cofibrations are the projective cofi-
brations. A morphism f : X → Y is a stable projective fibration if it has the right
lifting property with respect to all acyclic projective cofibrations.

(2) In the flat stable model structure the cofibrations are the flat cofibrations. A
morphism f : X → Y is a stable flat fibration if it has the right lifting property with
respect to all acyclic flat cofibrations.

The two stable model structures are cellular, proper, simplicial, weakly finitely gen-
erated, symmetric monoidal with respect to the smash product of symmetric spectra
and satisfy the monoid axiom in the sense of Schwede–Shipley [26].

Proof. By [16, 25] (1) and (2) determine proper, simplicial, cofibrantly generated
and symmetric monoidal model structures. The domains and codomains of generating
cofibrations are finitely presentable and by [16, 3.2.13] every symmetric spectrum is
small. By [16, 25] projective (flat) cofibrations are levelwise injections of simplicial
sets. It follows that both model structures are cellular. By [25, III.2.2] and [14,
1.1.11] stable equivalences which are monomorphisms of symmetric spectra are closed
under pushouts. By [16, 5.4.1] the monoid axiom is true for the stable projective
model structure. The monoid axiom for the stable flat model structure is proved like
that of [16, 5.4.1] (for this use as well [25, III.1.11] and the fact that in a weakly
finitely generated model category the class of weak equivalences is closed under filtered
colimits by [6, 3.5]).

It remains to verify that both model structures are weakly finitely generated.
By [15, p. 109] the stable projective model structure on SpΣ is the Bousfield local-
ization of the level projective model structure with respect to the set S

Fn+1(C ∧ S1)→ Fn(C)

as C runs through the domains and codomains of the generating cofibrations of
pointed simplicial sets SSets∗ and each Fn is the left adjoint to the nth evaluation
functor Evn : Sp

Σ → SSets∗. It follows from Lemma 2.2 and Theorem 2.3 that the
stable projective model structure on SpΣ is weakly finitely generated.
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If we show that the stable flat model structure is the Bousfield localization of the
level flat model structure with respect to the set S, it will follow from Lemma 2.2
and Theorem 2.3 that it is weakly finitely generated. The cofibrations in both model
structures are the same. Since level projective model structure is Quillen equivalent
to level flat model structure, then the corresponding Bousfield localizations with
respect to S are Quillen equivalent as well. Therefore weak equivalences in the stable
flat model structure and in the Bousfield localization of the level flat model structure
with respect to the set S coincide as was to be shown.

We want to make several remarks about symmetric spectra. One of tricky points
when working with symmetric spectra is that the stable equivalences of symmetric
spectra can not be defined by means of stable homotopy groups. It is not enough
to invert π∗-isomorphisms (=stable weak equivalence of ordinary spectra) to get a
satisfactory homotopy category of symmetric spectra. Instead one inverts a bigger
class – that of stable weak equivalences between symmetric spectra in the sense
of [16].

Given a symmetric spectrum X and its stably fibrant model γX in SpΣ, sta-
ble homotopy groups of X can considerably be different from those of γX in gen-
eral (see, e.g. [16, 25]). In particular, Hom-sets Ho(Sp)(Si, X) are different from
Ho(SpΣ)(Si, X). Nevertheless there is an important class of semistable symmetric
spectra within which stable equivalences coincide with π∗-isomorphisms. Recall that
a symmetric spectrum is semistable if some (hence any) stably fibrant replacement is
a π∗-isomorphism. Here a stably fibrant replacement is a stable equivalence X → γX
with target an Ω-spectrum.

Suspension spectra, Eilenberg–Mac Lane spectra, Ω-spectra or Ω-spectra from
some point Xn on are examples of semistable symmetric spectra (see [25, Exam-
ple I.4.48]). So Waldhausen’s algebraic K-theory symmetric spectrum we shall dis-
cuss later is semistable. Semistability is preserved under suspension, loop, wedges and
shift [25, Example I.4.51].

In what follows we shall use these facts without further comments.

3. Spectral categories and modules over them

To define K-motives, we work in the framework of spectral categories and modules
over them in the sense of Schwede–Shipley [27]. We start with preparations.

A biexact functor of Walddhausen categories is a functor A× B → C, (A,B) 7→
A⊗B, having the property that for every A ∈ A and B ∈ B the partial functors
A⊗− and −⊗B are exact, and for every pair of cofibrations A� A′ and B � B′

in A and B respectively, the map A′ ⊗B
∐
A⊗B A⊗B′ → B ⊗B′ is a cofibration

in C.
For example let P(X,Y ), X,Y ∈ Sm/F , be the category of coherent OX×Y -

modules P such that SuppP is finite over X and the coherent OX -module (pX)∗(P )
is locally free. For example, let f : X → Y be a morphism of smooth schemes, and let
Γf be its graph; then Γf ∈ P(X,Y ). Let X,Y, U ∈ Sm/F be three smooth schemes.
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In this case we have a natural functor

P(X,Y )× P(Y,U)→ P(X,U)

P ×Q 7→ P ⊗Q := (pX,U )∗(p
∗
X,Y (P )⊗OX×Y ×U

p∗Y,U (Q)) (1)

By [28, section 1] the sheaf on the right really belongs to P(X,U) and the above
functor is biexact.

Let Corvirt be a category whose objects are those of Sm/F and satisfying the
following conditions:

(a) For any pair of smooth schemes X,Y ∈ Sm/F there is a Waldhausen category
(Cvirt(X,Y ), w) with w a family of weak equivalences in Cvirt(X,Y ) such that
Ob Cvirt(X,Y ) = MorCorvirt(X,Y ).

(b) For any triple X,Y, Z ∈ Sm/F there is an associative biexact functor of Wald-
hausen categories

Cvirt(X,Y )× Cvirt(Y, Z)
ϕ−→ Cvirt(X,Z). (2)

By associativity we mean that the diagram

Cvirt(X,Y )× (Cvirt(Y, Z)× Cvirt(Z,W ))
1×ϕ //

∼=
��

Cvirt(X,Y )× Cvirt(Y,W )

ϕ

��

(Cvirt(X,Y )× Cvirt(Y, Z))× Cvirt(Z,W )

ϕ×1

��
Cvirt(X,Z)× Cvirt(Z,W )

ϕ // Cvirt(X,W )

is commutative.

(c) For anyX ∈ Sm/F there is a distinguished object 1X ∈ Cvirt(X,X) (the “tensor
product unit object”) such that

ϕ(1X , P ) = ϕ(P, 1Y )

for all P ∈ Cvirt(X,Y ).

In other words, the category Corvirt is “enriched” over Waldhausen categories. Some-
times we refer to Corvirt as the category of “virtual” correspondences.

Example 3.1. Given X,Y ∈ Sm/F , consider the category P(X,Y ). It is an exact
category, and therefore it can be regarded as a Waldhausen category with the family
of weak equivalences being isomorphisms. Clearly, biproduct (1) is associative up to
isomorphism but not strictly associative. We replace the exact categories P(X,Y )-s
by equivalent exact categories P ′(X,Y )-s and define a strictly associative biproduct

ϕ = ϕXY U : P ′(X,Y )×P ′(Y,U)→ P ′(X,U).

One approach is to define P ′(X,Y ) as follows. Consider sequences (P1, . . . , Pk),
k > 1, of objects in other categories P(Ui, Vi), so that U1 = X, Vk = Y and Vi = Ui+1

for any i < k. If X = Y the object 1X = Γ1 of P(X,X) is a monoidal unit. There is
a relation for sequences (P ) = (1X , P ) = (P, 1Y ) with P ∈ P(X,Y ). We also require
(Γf ,Γg) = (Γgf ) to hold for any morphisms of smooth schemes f : X → U, g : U → Y .
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We say that a sequence (P1, . . . , Pk) is of minimal length if it can not be reduced
to a sequence of smaller length by means of the relations above. We set

P1 ⊗ · · · ⊗ Pk := ((· · · (P1 ⊗ P2)⊗ · · · )⊗ Pk−1)⊗ Pk.

By definition, objects of P ′(X,Y ) are the sequences (P1, . . . , Pk) of minimal length.
Define the arrows between two sequences of minimal length (P1, . . . , Pk) and
(Q1, . . . , Ql) by

HomP′(X,Y )((P1, . . . , Pk), (Q1, . . . , Ql)) := HomP(X,Y )(P1 ⊗ · · · ⊗ Pk, Q1 ⊗ · · · ⊗Ql).

One easily sees that P ′(X,Y ) is an exact category and the natural exact func-
tor P(X,Y )→ P ′(X,Y ) sending an object P to the sequence of length one is an
equivalence.

The tensor product

ϕ = ϕXY U : P ′(X,Y )× P ′(Y, U)→ P ′(X,U)

on the new objects is simply concatenation of sequences, which is strictly associative.
By construction,

ϕ(1X , (P1, . . . , Pk)) = ϕ((P1, . . . , Pk), 1Y ) = (P1, . . . , Pk)

for any (P1, . . . , Pk) ∈ P ′(X,Y ).
Let CorK (respectively, CorK⊕) be the category whose objects are those of Sm/F ,

MorCorK(X,Y ) = ObP ′(X,Y ) (respectively, MorCorK⊕(X,Y ) = ObP ′(X,Y ))
and for any X,Y ∈ Sm/F let CK(X,Y ) (respectively, CK⊕(X,Y )) be the exact cate-
gory P ′(X,Y ) (respectively, the same category P ′(X,Y ) but considered as an additive
category). Note that the map taking a morphism of smooth schemes f : X → Y to
Γf determines a functor Sm/F → CorK (respectively, a functor Sm/F → CorK⊕).

Using coherence properties for tensor product (see [21, Ch. VII]), we have that for
any triple X,Y, Z ∈ Sm/F there are biexact functors of Waldhausen categories

CK(X,Y )× CK(Y, Z)
ϕ−→ CK(X,Z)

and

CK⊕(X,Y )× CK⊕(Y, Z)
ϕ−→ CK⊕(X,Z)

satisfying conditions (b)-(c) above.
Thus P ′ yields two examples for Cvirt: CK and CK⊕ , respectively. We also get two

categories of correspondences CorK and CorK⊕ which are the same as categories on
smooth schemes but with different Waldhausen categories on objects.

Given a (multisimplicial) additive categoryM, we shall sometimes write K⊕M to
denote the K-theory symmetric spectrum spectrum ofM.

Definition 3.2. (1) Following [27] a spectral category is a category O which is
enriched over the category SpΣ of symmetric spectra (with respect to smash prod-
uct, i.e., the monoidal closed structure of [16, 2.2.10]). In other words, for every
pair of objects o, o′ ∈ O there is a morphism symmetric spectrum O(o, o′), for every
object o of O there is a map from the sphere spectrum S to O(o, o) (the “identity
element” of o), and for each triple of objects there is an associative and unital com-
position map of symmetric spectra O(o′, o′′) ∧ O(o, o′)→ O(o, o′′). An O-module M
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is a contravariant spectral functor to the category SpΣ of symmetric spectra, i.e., a
symmetric spectrum M(o) for each object of O together with coherently associative
and unital maps of symmetric spectra M(o) ∧ O(o′, o)→M(o′) for pairs of objects
o, o′ ∈ O. A morphism of O-modules M → N consists of maps of symmetric spectra
M(o)→ N(o) strictly compatible with the action of O. The category of O-modules
will be denoted by ModO.

(2) A spectral functor or a spectral homomorphism F from a spectral category O to
a spectral category O′ is an assignment from ObO to ObO′ together with morphisms
O(a, b)→ O′(F (a), F (b)) in SpΣ which preserve composition and identities.

(3) Themonoidal product O ∧O′ of two spectral categoriesO andO′ is the spectral
category where Ob(O ∧O′) := ObO ×ObO′ and O ∧O′((a, x), (b, y)) := O(a, b) ∧
O′(x, y).

(4) A monoidal spectral category consists of a spectral category O equipped with
a spectral functor � : O ∧O → O, a unit u ∈ ObO, a SpΣ-natural associativity iso-
morphism and two SpΣ-natural unit isomorphisms. Symmetric monoidal spectral
categories are defined similarly.

Example 3.3. (1) A naive spectral category Onaive on Sm/F is defined as follows.
Onaive has the same set of objects as Sm/F and the morphism spectra are defined
by

Onaive(X,Y )p = HomSm/F (X,Y )+ ∧ Sp.

Here Sp denotes the pointed simplicial set Sp = S1 ∧ · · · ∧ S1 (p factors) and the
symmetric group permutes the factors. Composition is given by the composite

Onaive(Y, Z)p ∧ Onaive(X,Y )q

= (HomSm/F (Y,Z)+ ∧ Sp) ∧ (HomSm/F (X,Y )+ ∧ Sq)
shuffle−−−−−→ HomSm/F (Y, Z)+ ∧HomSm/F (X,Y )+ ∧ Sp ∧ Sq

→ HomSm/F (X,Z)+ ∧ Sp+q = Onaive(X,Z)p+q.

Onaive is a symmetric monoidal spectral category equipped with a spectral functor
Onaive ∧ Onaive → Onaive, Onaive(X,Y ) ∧ Onaive(U, V )→ Onaive(X × U, Y × V ),
and a unit SpecF ∈ ObOnaive. It is straightforward to verify that the category of
Onaive-modules can be regarded as the category of presheaves PreΣ(Sm/F ) of sym-
metric spectra on Sm/F . This is used in the sequel without further comment.

(2) Any ringoid A, that is a category whose Hom-sets are abelian groups with
bilinear composition, gives rise to a spectral category HA also called the Eilenberg–
Mac Lane spectral category of A. In more detail, HA has the same set of objects as
A and the morphism spectra are defined by HA(a, b)p = A(a, b)⊗ Z̃[Sp]. Here Z̃[Sp]
denotes the reduced simplicial free abelian group generated by the pointed simplicial
set Sp and the symmetric group permutes the factors. Composition is defined as
above.

In Appendix we shall present another sort of Eilenberg–Mac Lane spectral cate-
gories associated with ringoids. It will always be clear from the context which of these
sorts is used.

An important example of a ringoid is the category correspondences. For any
X,Y ∈ Sm/F define Cor(X,Y ) to be the free abelian group generated by closed
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integral subschemes Z ⊂ X ×F Y which are finite and surjective over a component of
X. Let X,Y,W ∈ Sm/F be smooth schemes and let Z ∈ Cor(X,Y ), T ∈ Cor(Y,W )
be cycles on X × Y and Y ×W each component of which is finite and surjective over
a component of X (respectively, over a component of Y ). One checks easily that the
cycles Z ×W and X × T intersect properly on X × Y ×W and each component of
the intersection cycle (Z ×W )•(X × T ) is finite and surjective over a component of
X. Thus setting T ◦ Z = (pr1,3)∗((Z × Y )•(X × T )) we get a bilinear composition
map

Cor(Y,W )× Cor(X,Y )→ Cor(X,W ).

In this way we get a ringoid (denoted SmCor/F ) whose objects are those of Sm/F
and HomSmCor/F (X,Y ) = Cor(X,Y ) – see [32] for details. The Eilenberg–Mac Lane
spectral category corresponding to the ringoid will be denoted by Ocor.

For any smooth schemes X,Y, U, V the external product of cycles defines a homo-
morphism

Cor(X,Y )⊗ Cor(U, V )→ Cor(X × U, Y × V )

which gives the structure of symmetric monoidal spectral category for Ocor.
(3) There are two other important ringoids K⊕

0 and K0 on Sm/F . Namely, for any
X,Y ∈ Sm/F define K⊕

0 (X,Y ) (respectively, K0(X,Y )) to be the abelian group for
the split exact (respectively, exact) category P ′(X,Y ). Composition is given by tensor
product. Denote by OK⊕

0
and OK0 their Eilenberg–Mac Lane spectral categories.

There are canonical homomorphisms

K⊕
0 (X,Y )→ K0(X,Y )→ Cor(X,Y ), X, Y ∈ Sm/F.

Here, the first map is the obvious surjective homomorphism. The second one takes
the class [P ] of the coherent sheaf P ∈ P(X,Y ) to

∑
Z `OX×Y,z

Pz · [Z], where the sum
is taken over all closed integral subschemes Z ⊂ X × Y that are finite and surjective
over a component of X and z denotes the generic point of the corresponding scheme
Z.

By [28, section 1] and [36, section 6] the canonical homomorphisms yield maps
between ringoids

K⊕
0 → K0 → Cor.

These induce spectral functors between spectral categories

OK⊕
0
→ OK0 → Ocor.

We shall prove below that the spectral categories OK⊕
0

and OK0 are symmetric

monoidal (see Corollary 5.10).

We want to construct a spectral category out of the category of virtual corre-
spondences Corvirt. Let X,Y ∈ Sm/F and let Ovirt(X,Y ) := K(Cvirt(X,Y )) be the
K-theory spectrum of the Waldhausen category Cvirt(X,Y ). By [8, 6.1.1] and [25,
Example I.2.11] Ovirt(X,Y ) naturally has the structure of a symmetric spectrum.
Note that Ovirt(X,Y )0 = |N.wCvirt(X,Y )|.
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It follows from [8, section 6.1] and [25, Example 2.11] that associative biexact
functors (2) induce an associative law

Ovirt(Y,Z) ∧ Ovirt(X,Y )→ Ovirt(X,Z).

Moreover, for any X ∈ Sm/F there is a map 1 : S → Ovirt(X,X) which is subject to
the unit coherence law (see [8, section 6.1]). Note that 10 : S

0 → Ovirt(X,X)0 is the
map which sends the basepoint to the null object and the non-basepoint to the unit
object 1X for the tensor product. Thus the triple (Ovirt,∧,1) determines a spectral
category on Sm/F .

Observe that Ovirt is a symmetric monoidal spectral category provided that there
is a biexact functor

Cvirt(X,Y )× Cvirt(U, V )→ Cvirt(X × U, Y × V )

for all X,Y, U, V ∈ Sm/F satisfying natural associativity, symmetry, unit isomor-
phisms (where SpecF is a unit).

In what follows the category of Ovirt-modules will be denoted byMvirt.

Proposition 3.4. The map

Corvirt →Mvirt, X 7→ Ovirt(−, X),

determines a fully faithful functor.

Proof. It follows from [6, sections 2.1-2.2] that

HomMvirt(M,N) = HomSpΣ(S, Sp
Σ(M,N)).

Using “Enriched Yoneda Lemma” one has,

HomSpΣ(S, Sp
Σ(Ovirt(−, X),Ovirt(−, Y ))) ∼= HomSpΣ(S,Ovirt(X,Y )) =

HomSSets(∆
0, |N.wCvirt(X,Y )|) = |N.wCvirt(X,Y )|0 = Corvirt(X,Y ).

Our statement now follows.

If Corvirt is either CorK or CorK⊕ then we shall denote the corresponding spec-
tral categories by OK and OK⊕ , respectively. There is another spectral category
OKGr we shall use later associated with CorK⊕ . It is equivalent to OK⊕ and is
based on S⊕-construction of Grayson [12]. We let Ord denote the category of finite
nonempty ordered sets. For A ∈ Ord we define a category Sub(A) whose objects are
the pairs (i, j) with i 6 j ∈ A, and where there is an (unique) arrow (i′, j′)→ (i, j)
exactly when i′ 6 i 6 j 6 j′. Given an additive category M, we say that a functor
M : Sub(A)→M is additive ifM(i, i) = 0 for all i ∈ A, and for all i 6 j 6 k ∈ A the
mapM(i, k)→M(i, j)⊕M(j, k) is an isomorphism. Here 0 denotes a previously cho-
sen zero object ofM. The set of such additive functors is denoted byAdd(Sub(A),M).

We define the simplicial set S⊕M by setting

(S⊕M)(A) = Add(Sub(A),M).

An n-simplex M ∈ S⊕
nM may be thought of as a compatible collection of direct sum

diagrams M(i, j) ∼=M(i, i+ 1)⊕ · · · ⊕M(j − 1, j). There is a natural map S⊕M→
SM which converts each direct sum diagram M(i, k) ∼=M(i, j)⊕M(j, k) into the
short exact sequence 0→M(i, j)→M(i, k)→M(j, k)→ 0.
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Given a finite set Q, one can define the |Q|-fold iterated S⊕-construction S⊕,QM
similar to [8, section 6]. Then the nth space of Grayson’s K-theory spectrum is given
by

KGr(M)n = |ObS⊕,QM|,

where Q = {1, . . . , n}. It is verified similar to [8, section 6] that KGr(M) is a sym-
metric spectrum.

If we consider additive categories P ′(X,Y ), X,Y ∈ Sm/F , together with associa-
tive biexact functors

P ′(X,Y )× P ′(Y, Z)→ P ′(X,Z),

then we shall obtain a spectral category OKGr on Sm/F such that OKGr (X,Y ) =
KGr(P ′(X,Y )). The natural map described above S⊕P ′(X,Y )→ SP ′(X,Y ),
X,Y ∈ Sm/F , determines a stable equivalence of symmetric spectra

OKGr (X,Y )→ OK⊕(X,Y ).

Altogether these maps give an equivalence of spectral categories

OKGr → OK⊕ .

Let O be a spectral category. The category ModO of O-modules is enriched over
symmetric spectra. Namely, to any M,N ∈ ModO we associate the symmetric spec-
trum

SpΣ(M,N) :=

∫
o∈ObO

SpΣ(M(o), N(o)),

where the integral stands for the coend and SpΣ(−,−) stands for the internal sym-
metric spectrum (see [6, section 2.2]). By the “Enriched Yoneda Lemma” there is a
natural isomorphism of symmetric spectra

M(o) ∼= SpΣ(O(−, o),M)

for all o ∈ Ob C and M ∈ ModO.
Let O be symmetric monoidal and let � : O ∧O → O be the structure spectral

functor (see Definition 3.2(4)). By a theorem of Day [4] ModO is a closed symmetric
monoidal category with smash product ∧ and O(−, u) being the monoidal unit. The
smash product is defined as

M ∧O N =

∫ ObO⊗O
M(o) ∧N(p) ∧ O(−, o � p). (3)

The internal Hom functor, right adjoint to − ∧O M , is given by

ModO(M,N)(o) := SpΣ(M,N(o � −)) =
∫
p∈ObO

SpΣ(M(p), N(o � p)).

It follows from [6, 2.7] that there is a natural isomorphism

O(−, o) ∧O O(−, p) ∼= O(−, o � p).

A morphism Ψ: O → R of spectral categories is simply a spectral functor. The
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restriction of scalars

Ψ∗ : ModR → ModO, M 7→M ◦Ψ

has a left adjoint functor Ψ∗, also denoted − ∧O R, which we refer to as extension
of scalars. It is given by an enriched coend, i.e., for an O-module N the R-module
Ψ∗N = N ∧O R is ∫ o∈ObO

N(o) ∧R(−,Ψ(o)).

Recall that the underlying category UO of a spectral category O has the same
objects as O and the Hom-sets are defined as HomUO(o, o

′) = HomSpΣ(S,O(o, o′)).
Suppose C is a small category and

f : C → UO

a functor. Denote by PreΣ(C) the category of presheaves of symmetric spectra on C.
Let U : ModO → PreΣ(C) be the forgetful functor. It can be proved similar to [21,
X.4.1] that U has a left adjoint F : PreΣ(C)→ ModO defined as

F (M) =

∫ c∈Ob C
M(c) ∧ O(−, f(c)), M ∈ PreΣ(C).

4. Model category structures for ModO
Let O be a spectral category and let ModO be the category of O-modules. We

refer the reader to [5] for basic facts about model categories enriched over symmetric
spectra.

Definition 4.1. (1) A morphism f in ModO is a

� level weak equivalence if f(c) is a level weak equivalence in SpΣ for all c ∈ ObO.
� projective (flat) level fibration if f(c) is a projective (flat) level fibration in SpΣ

for all c ∈ ObO.
� projective (flat) cofibration if f has the left lifting property with respect to all

projective (flat) level acyclic fibrations.

(2) A morphism f in ModO is a

� stable weak equivalence if f(c) is a stable weak equivalence in SpΣ for all
c ∈ ObO.

� stable projective (flat) level fibration if f(c) is a stable projective (flat) fibration
in SpΣ for all c ∈ ObO.

� stable projective (flat) cofibration if f has the left lifting property with respect
to all stable projective (flat) acyclic fibrations.

Theorem 4.2 ([6, 27]). The category ModO admits the following four model struc-
tures:

� In the projective (respectively, flat) level model structure the weak equivalences
are the level weak equivalences and fibrations are the projective (respectively,
flat) level fibrations.
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� In the projective (respectively, flat) stable model structure the weak equivalences
are the stable weak equivalences and fibrations are the stable projective (respec-
tively, flat) fibrations.

The four model structures are cellular, proper, spectral and weakly finitely generated.
Moreover, if O is a symmetric monoidal spectral category then each of the four model
structures on ModO is symmetric monoidal with respect to the smash product (3) of
O-modules and satisfies the monoid axiom.

Proof. Let us consider one of the four model structures of symmetric spectra stated
in Theorems 2.3-2.4. By those theorems SpΣ is a weakly finitely generated monoidal
model category and the monoid axiom holds in SpΣ. It follows from [6, 4.2] that
ModO is a cofibrantly generated, weakly finitely generated model category. Let I
and J be the family of generating cofibrations and trivial cofibrations, respectively.
Then the sets of maps in ModO

PI = {O(−, o) ∧ si
O(−,o)∧i−−−−−−→ O(−, o) ∧ ti | i ∈ I, o ∈ ObO}

and

PJ = {O(−, o) ∧ sj O(−,o)∧j−−−−−−→ O(−, o) ∧ tj | j ∈ J, o ∈ ObO}

are families of generating cofibrations and trivial cofibrations, respectively. Since lim-
its of O-modules are formed objectwise [6, 2.2] and SpΣ is cellular by Theorems 2.3-
2.4, then ModO is cellular. It is a spectral model category by [27, A.1.1] and [6, 4.4]. It
is right proper by [6, 4.8]. The model structure is also left proper because cofibrations
are in particular objectwise monomorphisms, and pushouts along monomorphisms
preserve level/stable weak equivalences of symmetric spectra.

Finally, if O is a symmetric monoidal spectral category then by [6, 4.4] ModO is
symmetric monoidal with respect to the smash product (3) of O-modules and satisfies
the monoid axiom.

5. Motivic model category structures

In what follows, if otherwise is specified, we work with spectral categories O over
Sm/F such that there is a functor of categories

u : Sm/F → UO, (4)

which is identical on objects. One has a bifunctor

O(−,−) : Sm/F op × Sm/F → SpΣ.

OK⊕ ,OK ,OKGr ,OK⊕
0
,OK0 ,Ocor are examples of such spectral categories. Note that

O is a Onaive-algebra in the sense that there is a spectral functor Onaive → O induced
by the functor u. The spectral category Onaive plays the same role as the ring of
integers for abelian groups or the sphere spectrum for symmetric spectra.

Regarding Onaive-modules as presheaves (see Example 3.3) of symmetric spectra
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PreΣ(Sm/F ), we get a pair of adjoint functors

Ψ∗ : Pre
Σ(Sm/F )

//
ModO : Ψ∗.oo (5)

One has for all X ∈ Sm/F ,

Ψ∗(Onaive(−, X)) = Onaive(−, X) ∧Onaive O ∼= O(−, X). (6)

For simplicity we work with the stable projective model structure on ModO from
now on. The interested reader can also consider the stable flat model structure as
well.

Recall that the Nisnevich topology is generated by the elementary distinguished
squares, i.e., pullback squares

U ′

Q

//

��

X ′

ϕ

��
U

ψ
// X

(7)

where ϕ is etale, ψ is an open embedding and ϕ−1(X \ U)→ (X \ U) is an isomor-
phism of schemes (with the reduced structure). Let Q denote the set of elementary
distinguished squares in Sm/F . By QO denote the set of squares

O(−, U ′)

OQ

//

��

O(−, X ′)

ϕ

��
O(−, U)

ψ
// O(−, X)

(8)

which are obtained from the squares in Q by taking X ∈ Sm/F to O(−, X). The
arrowO(−, U ′)→ O(−, X ′) can be factored as a cofibrationO(−, U ′) � Cyl followed
by a simplicial homotopy equivalence Cyl→ O(−, X ′). There is a canonical morphism
AOQ := O(−, U)

∐
O(−,U ′) Cyl→ O(−, X).

Definition 5.1. (1) The Nisnevich local model structure on ModO is the Bousfield
localization of the stable projective model structure (see Theorem 4.2) with respect
to the set of projective cofibrations

NO = {cyl(AOQ → O(−, X))}QO .

The homotopy category for the Nisnevich local model structure will be denoted by
SHnisO. If O = Onaive then we shall write SHnis(F ) to denote SHnisOnaive.

(2) The motivic model structure on ModO is the Bousfield localization of the
Nisnevich local model structure with respect to the set of projective cofibrations

AO = {cyl(O(−, X × A1)→ O(−, X))}X∈Sm/F .

The homotopy category for the motivic model structure will be denoted by SHmotO.
If O = Onaive then we shall write SHmot(F ) to denote SHmotOnaive.

Remark 5.2. A stably fibrant O-module M is Nisnevich local if and only if it is
flasque in the sense that for each elementary distinguished square Q ∈ Q the square
of symmetric spectra M(Q) is homotopy pullback.
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Before collecting properties for the Nisnevich local and motivic model structures
we need to recall some facts from unstable A1-topology.

Let PreN(Sm/F ) be the category of presheaves of ordinary simplicial spectra SpN.
Then SpN and PreN(Sm/F ) enjoy the stable projective model structure defined simi-
lar to SpΣ and PreΣ(Sm/F ) (see [15]). By [15, 3.5] the stable projective model struc-
ture on SpN coincides with the stable model structure of Bousfield–Friedlander [3].
By [16, 4.2.5] the forgetful functor U : SpΣ → SpN has a left adjoint V and the pair
(U, V ) forms a Quillen equivalence of the stable model categories. The Nisnevich
local and motivic model structures on PreN(Sm/F ) are defined similar to those on
PreΣ(Sm/F ) by means of the Bousfield localization.

Lemma 5.3. The adjoint pair (V,U) : SpN � SpΣ can be extended to an adjoint pair
(V,U) : PreN(Sm/F ) � PreΣ(Sm/F ). It forms a Quillen equivalence for the stable
projective, Nisnevich local and motivic model structures, respectively.

Proof. See [15, section 10] and [18, section 4.5].

Let Pre(Sm/F ) denote the category of pointed simplicial presheaves on Sm/F .
Then Pre(Sm/F ) enjoys the projective model structure in which fibrations and weak
equivalences are defined schemewise. Projective cofibrations are those maps which
have the corresponding lifting property. As above, one defines the Nisnevich local
projective and motivic model structures by means of the Bousfield localization. By [1]
both model structures are proper simplicial cellular and the Nisnevich local projective
model structure coincides with the model structure in which weak equivalences are
the local weak equivalences with respect to Nisnevich topology and cofibrations are
the projective cofibrations.

In [15] Hovey constructed stable (symmetric) model structures out of certain
model categories with certain Quillen endofunctors. For example, one can apply
Hovey’s constructions to Nisnevich local and motivic projective model structures on
Pre(Sm/F ) with− ∧ S1 a Quillen endofunctor. Denote the resulting model categories
by SpNnis(Pre(Sm/F )) and SpNmot(Pre(Sm/F )) (respectively, SpΣnis(Pre(Sm/F ))
and SpΣmot(Pre(Sm/F ))). As categories Sp

N
nis(Pre(Sm/F )) and Sp

N
mot(Pre(Sm/F ))

(respectively SpΣnis(Pre(Sm/F )) and SpΣmot(Pre(Sm/F ))) coincide with
PreN(Sm/F ) (respectively, PreΣ(Sm/F )). The following proposition states that the
corresponding model category structures on these coincide as well.

Proposition 5.4. The model categories SpNnis(Pre(Sm/F ))and Sp
N
mot(Pre(Sm/F ))

(respectively, SpΣnis(Pre(Sm/F )) and SpΣmot(Pre(Sm/F ))) coincide with the
Nisnevich local projective and motivic model category structures on PreN(Sm/F )
(PreΣ(Sm/F )), respectively.

Proof. We prove the statement for the Nisnevich local projective model structure.
The statement for the motivic model structure is proved in a similar way.

By Hovey’s construction of the model category SpNnis(Pre(Sm/F )) a map of spec-
tra i : A→ B is a cofibration if and only if the induced maps i0 : A0 → B0 and
jn : An

∐
An−1∧S1 Bn−1 ∧ S1 → Bn, n > 1, are projective cofibrations in Pre(Sm/F ).

It follows that cofibrations in SpNnis(Pre(Sm/F )) coincide with cofibrations in the sta-
ble projective model structure on PreN(Sm/F ), and hence with cofibrations in the



226 GRIGORY GARKUSHA and IVAN PANIN

Nisnevich local model structure on PreN(Sm/F ) because the Bousfield localization
preserves cofibrations.

An object X in SpNnis(Pre(Sm/F )) is fibrant if and only if it is levelwise fibrant,
i.e., levelwise projective fibrant and flasque, and each mapXn → ΩXn+1, n > 0, which
is adjoint to the structure map Xn ∧ S1 → Xn+1, is a weak equivalence. It follows
that each map Xn → ΩXn+1, n > 0, is a schemewise weak equivalence, and hence
X is stable fibrant in the stable projective model structure on PreN(Sm/F ). Since
X is levelwise flasque, we see that X(Q) is homotopy cartesian for every elementary
distinguished square Q ∈ Q. Therefore X is fibrant in the Nisnevich local model
structure on PreN(Sm/F ). One easily sees that every fibrant object in the Nisnevich
local model structure on PreN(Sm/F ) is fibrant in SpNnis(Pre(Sm/F )). We have
shown that cofibrations and fibrant objects in both model categories coincide.

By [13, 9.7.4(4)] a map g in a simplicial model category is a weak equivalence if

and only if for some cofibrant approximation g̃ : X̃ → Ỹ to g and every fibrant object
Z the map of simplicial sets g̃∗ : Map(Y,Z)→ Map(X,Z) is a weak equivalence. We
infer that weak equivalences in SpNnis(Pre(Sm/F )) and in the Nisnevich local model
structure on PreN(Sm/F ) coincide. Thus the model structure on SpNnis(Pre(Sm/F ))
coincides with the Nisnevich local model structure on PreN(Sm/F ). The fact that
SpΣnis(Pre(Sm/F )) and the Nisnevich local model structure on PreΣ(Sm/F ) coincide
is checked similar to presheaves of ordinary spectra.

In order to show some homotopically important properties for PreΣ(Sm/F ), we
need to discuss Jardine’s model structures. Pre(Sm/F ) enjoys the injective model
structure in which cofibrations are monomorphisms and weak equivalences are the
local weak equivalences. Global fibrations are those maps which have the right lifting
property with respect to all maps which are cofibrations and local weak equiva-
lences. As above, one defines the motivic injective model structure by means of the
Bousfield localization. Then both the Nisnevich local injective and motivic injective
model structures satisfy the axioms for a proper simplicial model category [17, 18].
One easily sees that the Nisnevich local projective (respectively, motivic projective)
model structure on Pre(Sm/F ) is Quillen equivalent to the Nisnevich local injective
(respectively, motivic injective) model structure.

Denote by SpΣnis,J(Pre(Sm/F )) and Sp
Σ
mot,J(Pre(Sm/F )) (“J” for Jardine) sta-

ble symmetric model structures corresponding to the Nisnevich local injective (respec-
tively, motivic injective) model structure on Pre(Sm/F ). By [18, 4.32] and [19,
Thm. 12] these are proper simplicial model categories. It follows from [15, 9.3] that
the natural functors

SpΣnis(Pre(Sm/F ))→ SpΣnis,J(Pre(Sm/F ))

and

SpΣmot(Pre(Sm/F ))→ SpΣmot,J(Pre(Sm/F ))

are Quillen equivalences.
The category PreΣ(Sm/F ) of presheaves of symmetric spectra also enjoys the

following model structures (see [18, 19] for details). A map f : X → Y is a level
equivalence if each of the component maps f : Xn → Yn is a local weak equivalence
(respectively, motivic equivalence). The map f is a level cofibration if each of the
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maps Xn → Yn is a monomorphism of simplicial presheaves. Denote these model cat-
egories by PreΣnis(Sm/F ) and Pre

Σ
mot(Sm/F ), respectively. These are proper simpli-

cial model categories.
For every X ∈ PreΣ(Sm/F ) we obtain a natural construction

X
i1−→ Xs

i2−→ Xsi

of an injective stably fibrant model Xsi, where i1 is a trivial stable cofibration in
the model category SpΣnis,J(Pre(Sm/F )) (respectively, in Sp

Σ
mot,J(Pre(Sm/F ))) and

i2 is a level cofibration and a level equivalence in PreΣnis(Sm/F ) (respectively, in
PreΣmot(Sm/F )).

By [18, 19] a map f : X → Y of PreΣ(Sm/F ) is a stable weak equivalence if and
only if it induces a weak equivalence of simplicial mapping Kan complexes

f : Map(Y,W )→ Map(X,W )

for each injective stably fibrant object W . Observe that the maps i1 and i2 are both
stable weak equivalences.

Proposition 5.5. ([18, 4.41]) Suppose that i : A→ B is a stable cofibration in
SpΣnis,J(Pre(Sm/F )) or in SpΣmot,J(Pre(Sm/F )) and that j : C → D is a level cofi-
bration. Then the map

(i, j)∗ : (B ∧Onaive C) ∪(A∧Onaive
C) (A ∧Onaive D)→ B ∧Onaive D

is a level cofibration. If either i or j is a stable equivalence in SpΣnis,J(Pre(Sm/F ))

(respectively, in SpΣmot,J(Pre(Sm/F ))), then so is (i, j)∗.

The proposition was actually shown for SpΣmot,J(Pre(Sm/F )). However the proof
of this result is really quite generic, and holds essentially anywhere that one succeeds
in generating the usual machinery of symmetric spectrum. This includes the present
discussion of symmetric S1-spectra in the Nisnevich local case SpΣnis,J(Pre(Sm/F )).

Theorem 5.6 (Jardine). The Nisnevich local projective and motivic projective model
structures on the category PreΣ(Sm/F ) of presheaves of symmetric spectra are cel-
lular, proper, spectral, weakly finitely generated, symmetric monoidal and satisfy the
monoid axiom.

Proof. Since Bousfield localization respects cellularity and left properness, then both
model structures are cellular and left proper. Right properness is proved similar to [18,
4.15] and [19, Thm. 12].

It follows from [16, 3.2.13] that every object of PreΣ(Sm/F ) is small. By Lem-
ma 2.2 both model structures are weakly finitely generated, because domains and
codomains of morphisms from N ∪A are finitely presentable. These are plainly spec-
tral as well. Proposition 5.5 and Theorem 4.2 imply that both model structures are
symmetric monoidal.

It remains to verify the monoid axiom. Let i : A→ B be a trivial stable cofibration
and let C ∈ PreΣ(Sm/F ). By Proposition 5.5 the map

i ∧ 1: A ∧Onaive C → B ∧Onaive C

is a level cofibration and a stable equivalence. Therefore for any injective stably fibrant
object W the map Map(i ∧ 1,W ) is a trivial fibration of simplicial sets. Let j be a
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pushout of i ∧ 1 along some map. It follows that Map(j,W ) is a trivial fibration of
simplicial sets, and hence j is a stable equivalence. Now the monoid axiom follows from
the fact that any transfinite composition of weak equivalences is a weak equivalence
in a weakly finitely generated model category.

Given a spectral category O over Sm/F , we want to establish the same properties
for the Nisnevich local and motivic model structures on ModO as for PreΣ(Sm/F )
from the preceding theorem. For this we have to give the following

Definition 5.7. (1) We say that O is Nisnevich excisive if for every elementary
distinguished square Q

U ′

Q

//

��

X ′

ϕ

��
U

ψ
// X

the square OQ (8) is homotopy pushout in the Nisnevich local model structure on
PreΣ(Sm/F ).

(2) O is motivically excisive if:

(A) for every elementary distinguished square Q the square OQ (8) is homotopy
pushout in the motivic model structure on PreΣ(Sm/F ) and

(B) for every X ∈ Sm/F the natural map

O(−, X × A1)→ O(−, X)

is a weak equivalence in the motivic model structure on PreΣ(Sm/F ).

The following lemma says that property (B) is redundant for symmetric monoidal
spectral categories.

Lemma 5.8. Let O be a symmetric monoidal spectral category on Sm/F such that
the monoidal product is given by cartesian product of schemes. Then the map

f : O(−, X × A1)→ O(−, X)

is a weak equivalence in the motivic model structure on PreΣ(Sm/F ).

Proof. We follow an argument of [24, p. 694]. As in classical algebraic topology, an
inclusion of motivic spaces g : A→ B is an A1-deformation retract if there exist a
map r : B → A such that rg = idA and an A1-homotopy H : B × A1 → B between
gr and idB which is constant on A. Then A1-deformation retracts are motivic weak
equivalences.

There is an obvious map r : O(−, X)→ O(−, X × A1) such that fr = 1. Since O
is a symmetric monoidal spectral category, it follows that

O(−× A1, X × A1) ∼= ModO(O(−,A1),O(−, X × A1))

is an O-module.
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There is a natural isomorphism of symmetric spectra

SpΣ(O(−, X × A1),O(−× A1, X × A1)) ∼= O(X × A1 × A1, X × A1).

Consider the functor (4) of categories u : Sm/F → UO. Denote by α the obvious
map A1 × A1 → A1. We set h = u(1X × α); then h uniquely determines a morphism
of O-modules

h′ : O(−, X × A1)→ O(−× A1, X × A1).

This morphism can be regarded as a morphism of Onaive-modules, denoted by the
same letter. By adjointness h′ uniquely determines a map of Onaive-modules

H : O(−, X × A1) ∧Onaive Onaive(−,A1)→ O(−, X × A1).

Then H yields a level A1-homotopy between the identity map and rf . We see that f is
a level motivic equivalence, and hence it is a weak equivalence in SpΣmot(Pre(Sm/F )).

Theorem 5.9. OK⊕ ,OK ,OKGr ,OK⊕
0
,OK0 ,Ocor are Nisnevich excisive spectral cat-

egories.

Proof. We want to prove the statement first for OK . The cases OK⊕ ,OKGr are
checked in a similar way. Given q ∈ Z and a smooth scheme X, let Kq(−, X) denote
the sheaf associated to the presheaf W 7→ Kq(W,X) = πq(OK(W,X)). If we show
that OK(Q) is homotopy pushout in SpNnis(Pre(Sm/F )) for every elementary distin-
guished square Q then it will follow from [19, Lemma 10] that OK is a Nisnevich
excisive spectral category.

We have to verify that for any elementary distinguished square Q the sequence of
sheaves

· · · → Kq+1(−, X)→ Kq(−, U ′)→ Kq(−, U)⊕Kq(−, X ′)→ Kq(−, X)→ · · ·

is exact. Because the Nisnevich topology has enough points, the sequence

· · · → Kq+1(−, X)→ Kq(−, U ′)→ Kq(−, U)⊕Kq(−, X ′)→ Kq(−, X)→ · · ·

will become exact after sheafifying precisely if it becomes exact whenever one applies
the presheaves to the Henselization W of a smooth scheme T at a point t. Thus it is
enough to show that for any such W the square

OK(W,U ′)

��

// OK(W,X ′)

��
OK(W,U) // OK(W,X)

(9)

is homotopy pushout (=homotopy pullback) of spectra. We shall actually show
that (9) gives a split exact sequence

OK(W,U ′) ↪→ OK(W,U)⊕OK(W,X ′) � OK(W,U ′) (10)

in the (triangulated) homotopy category of spectra HoSp.



230 GRIGORY GARKUSHA and IVAN PANIN

Given a triangulated category T , consider a commutative diagram

A′
1

π1

��

α′

##
α′×0

++

i′
// C ′

δ

��

Φ′×Ψ′
// A′ ×B′

π×ρ
��

p′
// A′

π

��
A1

α

;;
α×0

33
i // C

Φ×Ψ // A×B
p // A,

(11)

where ρ : B′ → B, Φ×Ψ, Φ′ ×Ψ′ are isomorphisms, α = Φi and α′ = Φ′i′ are iso-
morphisms. Clearly, the right and the middle squares are cartesian, as well as so is
the outer square with vertices (A′

1, A
′, A1, A). Therefore the left square is cartesian

and, moreover, the induced sequence

A′
1 → A1 ⊕ C ′ → C

is split exact in T . Below we shall be constructing such a diagram in the triangulated
category HoSp.

Consider an elementary distinguished square Q

U ′

Q

i′ //

π1

��

X ′

π

��
U

i
// X.

Denote by P(W,X)U (respectively, P(W,X)¬U ) the full subcategory of P(W,X) con-
sisting of those bimodules P ∈ P(W,X) for which Supp(P ) ⊆W × U (respectively,
Supp(P )  W × U). There exists a functor

Φ: P(W,X)→ P(W,X)U ,

constructed as follows. Given P ∈ P(W,X) set S := Supp(P ). Then S = S′ t S′′

with S′ ⊆W × U and S′′ such that its each connected component is not contained
in W × U . The sheaf P is canonically equal to P ′ ⊕ P ′′ with Supp(P ′) = S′ and
Supp(P ′′) = S′′. Moreover, if P1 ∈ P(W,X) and P1 = P ′

1 ⊕ P ′′
1 is a similar decom-

position, then every morphism f : P → P1 is of the form f =

(
f ′ 0
0 f ′′

)
. This is

because Hom(P ′, P ′′
1 ) = Hom(P ′′, P ′

1) = 0 and the corresponding supports are dis-
joint. So we set Φ(P ) = P ′,Φ(f) = f ′. There is also a functor

Ψ: P(W,X)→ P(W,X)¬U ,

defined as Ψ(P ) = P ′′,Ψ(f) = f ′′. The full subcategories P(W,X ′)U
′
,P(W,X ′)¬U

′ ⊂
P(W,X ′) and functors Φ′ : P(W,X ′)→ P(W,X ′)U

′
,Ψ′ : P(W,X ′)→ P(W,X ′)¬U

′

are defined in a similar way.
The map π : X ′ → X induces two functors

πU∗ : P(W,X ′)U
′
→ P(W,X)U , π¬U

∗ : P(W,X ′)¬U
′
→ P(W,X)¬U .
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Indeed, if Q ∈ P(W,X ′)U
′
then Supp(Q) ⊂W × U ′. It follows that Supp(π∗(Q)) =

π(Supp(Q)) ⊂W × U , and hence π∗(Q) ∈ P(W,X)U . One sets πU∗ := π∗|P(W,X′)U′ . If

Q ∈ P(W,X ′)¬U
′

then no connected component of Supp(Q) is contained in
W × U ′. Since π−1(U) = U ′, it follows that no connected component of
Supp(π∗(Q)) = π(Supp(Q)) is contained in W × U . We see that π∗(Q) ∈ P(W,X)¬U

and one puts π¬U
∗ := π∗|P(W,X′)¬U′ .

Consider a diagram of categories

P(W,U ′)

π1,∗
��

i′∗ // P(W,X ′)

π∗

��

Φ′×Ψ′
// P(W,X ′)U

′ × P(W,X ′)¬U
′

πU
∗ ×π¬U

∗
��

p′ // P(W,X ′)U
′

πU
∗

��
P(W,U)

i∗
// P(W,X)

Φ×Ψ
// P(W,X)U × P(W,X)¬U p

// P(W,X)U ,

(12)

We claim that:

1. Φ×Ψ and Φ′ ×Ψ′ are equivalences of categories;

2. Ψ ◦ i∗ is the zero functor;

3. Ψ′ ◦ i′∗ is the zero functor;

4. Φ′ ◦ i′∗ is an equivalence of categories;

5. Φ ◦ i∗ is an equivalence of categories;

6. π¬U
∗ is an equivalence of categories;

7. the diagram is commutative up to natural isomorphisms of functors.

Statements (1)-(7) together with [35, 1.3.1] will imply that the diagram of spectra

OK(W,U ′)

π1,∗
��

i′∗ // OK(W,X ′)

π∗

��

Φ′×Ψ′
// OK(W,X ′)U

′ ×OK(W,X ′)¬U
′

πU
∗ ×π¬U

∗
��

p′ // OK(W,X ′)U
′

πU
∗

��
OK(W,U)

i∗
// OK(W,X)

Φ×Ψ
// OK(W,X)U ×OK(W,X)¬U p

// OK(W,X)U ,

obtained from (12) by taking realizations, is commutative in HoSp. So we shall obtain
a diagram of the form (11), which will yield a split exact sequence (10), and hence
square (9) is homotopy pushout, as required.

So it remains to show (1)-(7). Let us show that Φ×Ψ is an equivalence of categories
(the same fact for Φ′ ×Ψ′ is checked in a similar way). Consider a functor

Θ: P(W,X)U × P(W,X)¬U → P(W,X),

defined as Θ(P ′, P ′′) = P ′ ⊕ P ′′, Θ(f ′, f ′′) = f ′ ⊕ f ′′. Clearly, the canonical mor-
phism canP : P → Θ ◦ (Φ×Ψ)(P ) is an isomorphism for every P ∈ P(W,X)

P

∼=
canP ''

Φ×Ψ // (P ′, P ′′)

Θ

��
P ′ ⊕ P ′′.
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Given a morphism f : P → P1 in P(W,X), we have that

Hom(P ′′, P ′
1) = Hom(P ′, P ′′

1 )= 0

and the diagram

P

f

��

canP // P ′ ⊕ P ′′

f ′⊕f ′′

��
P1 canP1

// P ′
1 ⊕ P ′′

1

is commutative. The latter shows that there is a natural transformation of functors
can : id→ Θ ◦ (Φ×Ψ). Since canP is an isomorphism for all P , then can is an iso-
morphism of functors.

The composition (Φ×Ψ) ◦Θ is just the identity functor. Indeed,

[(Φ,Ψ) ◦Θ](P ′, P ′′) = (Φ×Ψ)(P ′ ⊕ P ′′) = (P ′, P ′′).

So (1) is verified.

For any P ∈ P(W,U) one has Supp(i∗(P )) = i(Supp(P )) ⊂W × U . We see that
Ψ(i∗(P )) = 0. So (2) is verified. Property (3) is checked in a similar way.

Let us prove (5). Consider the functor

i∗|P(W,X)U : P(W,X)U → P(W,U).

First, it is well defined. Indeed, Supp(i∗(P )) = i−1(Supp(P )) = Supp(P ), because
Supp(P ) ⊂W × U for all P ∈ P(W,X)U . For brevity we shall write i∗ instead of
i∗|P(W,X)U . Second, one has adjunction morphisms

adjP : i∗i∗(P )→ P, P ∈ P(W,U),

and

adjP ′ : P ′ → i∗i
∗(P ′), P ′ ∈ P(W,X)U .

Clearly, these determine natural transformations of functors i∗i∗ → id and id→ i∗i
∗.

We want to show that these are isomorphisms. If P ∈ P(W,U) then

Supp(i∗i∗(P )) = i−1i(Supp(P )) = Supp(P ).

Moreover, for every x ∈ Supp(P ) the induced morphism of stalks

(i∗i∗(P ))x → Px

is an isomorphism. Therefore adjP is an isomorphism. If P ′ ∈ P(W,X)U it follows
that Supp(i∗i

∗(P ′)) = i(i−1(Supp(P ′))) = i(Supp(P ′)) = Supp(P ′). Moreover, adjP ′

induces an isomorphism of stalks

P ′
x → (i∗i

∗(P ′))x.

Therefore adjP ′ is an isomorphism. So (5) is verified. Property (4) is verified in a
similar way.

Next, let us check (7). If Q ∈ P(W,X ′) and Q = Q′ ⊕Q′′ is its canonical decompo-
sition with Q′ = Φ′(Q), Q′′ = Ψ′(Q). Then π∗(Q) = π∗(Q

′)⊕ π∗(Q′′). On the other
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hand, π∗(Q) = π∗(Q)′ ⊕ π∗(Q)′′. Comparing supports, one gets that

πU∗ (Q
′) := π∗(Q

′) = π∗(Q)′ and andπ¬U
∗ (Q′′) := π∗(Q

′′) = π∗(Q)′′.

So,

(π∗(Q)′, π∗(Q)′′) = (πU∗ (Q
′), π¬U

∗ (Q′′)).

We see that πU∗ ◦ Φ′ = Φ ◦ π∗ and π¬U
∗ ◦Ψ′ = Ψ ◦ π∗. So (7) is verified.

To prove (6), we shall need some notation. Let Q be a coherent OW×X′-module
such that S(Q) := Supp(Q) is quasi-finite over W . Let S(Q)′′ ⊂ S(Q) denote the
union of those connected components in S(Q), each of which is not contained in
W × U ′. Let S(Q)′ ⊂ S(Q) denote the union of the other connected components in
S(Q). Clearly, S(Q)′ ⊂W × U ′ and S(Q) = S(Q)′ t S(Q)′′. Then one has a decom-
position

Q = Q′ ⊕Q′′

such that Supp(Q′) = S(Q)′ and Supp(Q′′) = S(Q)′′.
Given a coherent OW×X -module M which is coherent as an OW -module, we set

π∗
¬U (M) := π∗(M)′′.

Sublemma. The following statements are true:
(a) If P ∈ P(W,X)¬U then π∗

¬U (P ) ∈ P(W,X ′)¬U
′
. In particular, Supp(π¬U

∗ (P ))
is finite and surjective over W .

(b) The composition P
adj−−→ π∗π∗(P )→ π∗(π

∗
¬U (P )) is an isomorphism for all

P ∈ P(W,X)¬U .

(c) The composition π∗
¬U (π∗(Q))→ π∗π∗(Q)

adj−−→ Q is an isomorphism for all

Q ∈ P(W,X ′)¬U
′
.

Proof. Firstly prove (a). It is easy to check that π¬U
∗ (P ) is coherent as anOW -module.

Since π is étale, it is flat as well. Thus π¬U
∗ (P ) is a flat OW -module. A coherent flat

OW -module is necessarily a locally free OW -module. Whence π¬U
∗ (P ) ∈ P(W,X)¬U .

Assertion (a) is proven.
Prove now assertion (b). Let Z = X \ U be the complement of U and let

Z ′ = X ′ \ U ′ and both regarded as reduced schemes. The square Q is an elemen-
tary Nisnevich square, so π induces a scheme isomorphism Z ′ → Z. Let y ∈W ×X.
In this case π−1(y) = {y′} as sets for a unique point y′ and y′ ∈W × Z ′. Moreover,
π−1(y) = Spec(k(y′)) as schemes and the map π∗ : k(y)→ k(y′) is an isomorphism.

By (a) one has π¬U
∗ (P ) ∈ P(W,X)¬U . So the composite morphism

P
adj−−→ π∗π∗(P )→ π∗(π

∗
¬U (P ))

is a morphism of coherent locally free OW -modules. Thus to check that it is an
isomorphism it suffices to check that for each closed point y ∈ Supp(P ) the induced
morphism P (y)→ π∗(π

∗
¬U (P ))(y) is an isomorphism. Since P ∈ P(W,X)¬U one has

y ∈W × Z. In that case the composite map

k(y)
adj−−→ π∗π∗(k(y))→ π∗(π

∗
¬U (k(y))) = π∗(k(y

′)) = k(y′)

is an isomorphism. It follows that the induced morphism P (y)→ π∗(π
∗
¬U (P ))(y) is

an isomorphism as well. So the morphism P → π∗(π
∗
¬U (P )) from (b) is indeed an

isomorphism.
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Finally prove (c). Since Q ∈ P (W,X ′)¬U
′
then each closed point y′ ∈ Supp(Q)

belongs to W × Z ′, where Z ′ ⊂ X ′ is from the proof of (b). We already know that
π∗(Q) ∈ P (W,X)¬U . Thus (a) implies π∗

¬U (π∗(Q)) ∈ P (W,X ′)¬U
′
. So the map

π∗
¬U (π∗(Q))→ π∗π∗(Q)

adj−−→ Q is a morphism of coherent locally free OW -modules.
Therefore it suffices to check that for each closed point y′ ∈ Supp(Q) the map

π∗
¬U (π∗(Q))(y′)→ π∗π∗(Q)(y′)

adj−−→ Q(y′) (13)

is an isomorphism. The latter follows from the fact that y′ ∈W × Z ′ and the map

k(y′) = π∗
¬U (π∗(k(y

′)))→ π∗(π∗(k(y
′)))

adj−−→ k(y′)

is identity. Assertion (c) is proven.

The sublemma shows that

π∗
¬U : P(W,X)¬U � P(W,X ′)¬U

′
:π¬U

∗

are mutually inverse equivalences of categories. So we have shown that OK is Nis-
nevich excisive. The fact that OK⊕ ,OKGr are Nisnevich excisive is proved in a similar
way.

By above arguments it follows that for any elementary distinguished square Q the
sequence of Nisnevich sheaves

0→ K0(−, U ′)→ K0(−, U)⊕K0(−, X ′)→ K0(−, X)→ 0

is exact showing that OK0
is Nisnevich excisive. The fact that OK⊕

0
is Nisnevich

excisive is proved in a similar way.
Now the sequence of Nisnevich sheaves

0→ Cor(−, U ′)→ Cor(−, U)⊕ Cor(−, X ′)→ Cor(−, X)→ 0

is exact by [29, 4.3.9]. We conclude that Ocor is Nisnevich excisive as well. The
theorem is proved.

Corollary 5.10. OK⊕
0
,OK0 ,Ocor are symmetric monoidal spectral categories, and

hence motivically excisive.

Proof. We have shown above that Ocor is symmetric monoidal (see p. 219). Let X,
Y , X ′, Y ′ be four smooth schemes and let P ∈ P(X,Y ), P ′ ∈ P(X ′, Y ′). In this case,
the external tensor product P � P ′ is obviously finite and flat over X ×X ′. Thus, we
get a bifunctor

� : P(X,Y )×P(X ′, Y ′)→ P(X ×X ′, Y × Y ′),

which is obviously additive and biexact. This gives a canonical operation – an external
tensor product

� : K⊕
0 (X,Y )⊗K⊕

0 (X ′, Y ′)→ K⊕
0 (X ×X ′, Y × Y ′)

and

� : K0(X,Y )⊗K0(X
′, Y ′)→ K0(X ×X ′, Y × Y ′).

This external tensor product determines symmetric monoidal spectral category struc-
tures forOK⊕

0
andOK0 . SinceOK⊕

0
,OK0 ,Ocor are Nisnevich excisive by the preceding

theorem, it follows from Lemma 5.8 that these are motivically excisive as well.
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Remark 5.11. We shall show below that OKGr , OK⊕ , OK are motivically excisive
spectral categories. For this we first need to construct the bivariant motivic spectral
sequence relating bivariant K-theory to motivic cohomology.

The next theorem is the main result of the section.

Theorem 5.12. Suppose O is a Nisnevich (respectively, motivic) excisive spectral
category. Then the Nisnevich local (motivic) model structure on ModO is cellular,
proper, spectral and weakly finitely generated. Moreover, a map of O-modules is a
weak equivalence in the Nisnevich local (respectively, motivic) model structure if and
only if it is a weak equivalence in the Nisnevich local (respectively, motivic) model
structure on PreΣ(Sm/F ). If O is a symmetric monoidal spectral category then each
of the model structures on ModO is symmetric monoidal with respect to the smash
product (3) of O-modules.

Proof. Since Bousfield localization respects cellularity and left properness, then both
model structures are cellular and left proper. It follows from [16, 3.2.13] that every
object of ModO is small. By Lemma 2.2 both model structures are weakly finitely
generated, because domains and codomains of morphisms from N ∪A are finitely
presentable. These are plainly spectral as well.

We are going to show the statement first for the Nisnevich local model structure.
Let J be a family of generating trivial stable projective cofibrations for SpΣ. Notice

that J can be chosen in such a way that domains and codomains of the maps in J
are finitely presentable. Recall that the set of maps in ModO

PJ = {O(−, X) ∧ sj O(−,X)∧j−−−−−−−→ O(−, X) ∧ tj | j ∈ J,X ∈ Sm/F}

is a family of generating trivial cofibrations for the stable projective model structure
on ModO.

We set

N̂O := {A ∧∆[n]+
∐

A∧∂∆[n]+

B ∧ ∂∆[n]+ → B ∧∆[n]+ | (A→ B) ∈ NO, n > 0}.

Following terminology of [13, section 4.2] an augmented family of NO-horns is the
following family of trivial cofibrations:

Λ(NO) = PJ ∪ N̂O.

Observe that domains and codomains of the maps in Λ(NO) are finitely presentable.
It can be proven similar to [15, 4.2] that a map f : A→ B is a fibration in the
Nisnevich local model structure with fibrant codomain if and only if it has the right
lifting property with respect to Λ(NO).

Consider the adjoint functors (5)

Ψ∗ : Pre
Σ(Sm/F )

//
ModO : Ψ∗.oo

We first observe that Ψ∗ takes every map in Λ(NO) to a weak equivalence in
SpΣnis(Pre(Sm/F )). Indeed, if f ∈ PJ then Ψ∗(f) is a stable projective weak equiv-

alence, because Ψ∗ preserves stable projective weak equivalences. Suppose f ∈ N̂O;
then Ψ∗(f) is a weak equivalence in SpΣnis(Pre(Sm/F )), because O is Nisnevich
excisive by assumption.
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We want next to check that Ψ∗ maps elements of Λ(NO)-cell to weak equivalences
in SpΣnis(Pre(Sm/F )). Here Λ(NO)-cell denotes the class of maps of sequential com-
positions of cobase changes of coproducts of maps in Λ(NO). Since Ψ∗ preserves
filtered colimits and weak equivalences are closed under filtered colimits, it suffices to
prove that Ψ∗ sends the cobase change of a map in Λ(NO) to a weak equivalence.

Clearly, Ψ∗ maps the cobase change of a map in PJ to a stable weak equiva-
lence in PreΣ(Sm/F ). Note that every element in NO is a trivial cofibration in

SpΣnis(Pre(Sm/F )). Therefore every map in N̂O is a trivial cofibration in

SpΣnis(Pre(Sm/F )), and hence so is the cobase change of every map in N̂O.
In order to show that Ψ∗(f) is a weak equivalence in SpΣnis(Pre(Sm/F )) for any

weak equivalence f in ModO, we use the small object argument (see [13, 10.5.16]
or [14, 2.1.14]). We construct a fibrant replacement α : X → LNX for X ∈ ModO,
where α is the transfinite composition of a ℵ0-sequence

X = E0 α0−→ E1 α1−→ E2 α2−→ · · ·

in which each En → En+1 is constructed as follows. Let S be the set of all commu-
tative squares

A //

g

��

En

��
B // ∗

where g ∈ Λ(NO). Then αn a pushout∐
s∈S As //

∐
gs

��

En

αn

��∐
s∈S Bs // En+1

This construction is functorial in X. We have verified that α is a weak equivalence
in SpΣnis(Pre(Sm/F )).

Now let f : X → Y be a weak equivalence in the Nisnevich local model structure
on ModO. Then the diagram

Ψ∗(X) //

Ψ∗(f)

��

Ψ∗(LNX)

Ψ∗(LN f)

��
Ψ∗(Y ) // Ψ∗(LNY )

is commutative. The horizontal arrows are weak equivalences in SpΣnis(Pre(Sm/F )),
the right arrow is a stable projective weak equivalence. We infer that the left arrow
is a weak equivalence in SpΣnis(Pre(Sm/F )).

On the other hand, if Ψ∗(f) is a weak equivalence in SpΣnis(Pre(Sm/F )), then
so is Ψ∗(LN f). It is, moreover, a stable projective weak equivalence by [13, 3.2.13],
because Ψ∗(LNX),Ψ∗(LNY ) are fibrant in SpΣnis(Pre(Sm/F )). It follows that f is a
weak equivalence in the Nisnevich local model structure on ModO. We have proved
that a map of O-modules is a weak equivalence in the Nisnevich local model structure
if and only if it is a weak equivalence in SpΣnis(Pre(Sm/F )).
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We claim that Ψ∗ respects fibrations. For this we shall apply a theorem of Bous-
field [2]. Consider the stable model structure for O-modules and a commutative dia-
gram

LNV
LN k // LNX

V

OO

��

k // X

OO

αX //

f

��

LNX

��
W

��

h // Y
αY //

��

LNY

LNW
LNh // LNY

with the central square pullback, f a fibration between stably fibrant objects and
αX , αY , LNh stable projective weak equivalences. Note that Ψ∗(h) is a weak equiv-
alence in SpΣnis(Pre(Sm/F )). Since Ψ∗ : ModO → PreΣ(Sm/F ) is a right Quillen
functor with respect to the stable model structure, it follows that Ψ∗(f) is a fibration
in PreΣ(Sm/F ). Since αX , αY are stable projective weak equivalences and the stable
model structure on PreΣ(Sm/F ) is right proper, one easily sees that Ψ∗ takes the
right square of the diagram to a homotopy pullback square. Now [13, 3.4.7] implies
Ψ∗(f) is a fibration in SpΣnis(Pre(Sm/F )). Since Sp

Σ
nis(Pre(Sm/F )) is right proper

by Theorem 5.6, we see that Ψ∗(k) is a weak equivalence in SpΣnis(Pre(Sm/F )). Thus
Ψ∗(LNk) is a stable projective weak equivalence, and hence so is LNk.

By [2, 9.3, 9.7] the following notions define a proper simplicial model structure on
ModO: a morphism f : X → Y is a cofibration if and only if it is a stable projective
cofibration, a weak equivalence if and only if LN f : LNX → LNY is a stable projec-
tive weak equivalence, and fibration if and only if f is a stable projective fibration
and the commutative square

X //

f

��

LNX

��
Y // LNY

is homotopy cartesian. This model structure plainly coincides with the Nisnevich local
model structure on ModO, because cofibrations and weak equivalences are the same.
As a consequence, Ψ∗ respects fibrations and is a right Quillen functor from ModO
to SpΣnis(Pre(Sm/F )). By [25, A.1.4] if I (J ) is a generating family of (trivial)
cofibrations in SpΣnis(Pre(Sm/F )), then Ψ∗(I) (Ψ∗(J )) is a generating family of
(trivial) cofibrations.

Suppose O is a symmetric monoidal spectral category. Given two cofibrations
i : A→ B, j : C → D, the map

(i, j)∗ : (B ∧O C) ∪(A∧OC) (A ∧O D)→ B ∧O D

is a cofibration, because cofibrations in the Nisnevich local and stable projective
model structures are the same and the latter model structure is symmetric monoidal
by Theorem 4.2.
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Let i ∈ Ψ∗(I) and j ∈ Ψ∗(J ). Then i = Ψ∗(i
′) and j = Ψ∗(j

′) for some
(i′ : A′ → B′) ∈ I, (j′ : C ′ → D′) ∈ J . The functor Ψ∗ is strong symmetric monoidal.
Therefore the map

(i, j)∗ : (B ∧O C) ∪(A∧OC) (A ∧O D)→ B ∧O D

is isomorphic to

Ψ∗((i
′, j′)∗) : Ψ∗(B

′ ∧Onaive C
′) ∪Ψ∗(A′∧Onaive

C′) Ψ∗(A
′ ∧Onaive D

′)

→ Ψ∗(B
′ ∧Onaive D

′),

which is, in turn, isomorphic to

Ψ∗((B
′ ∧Onaive C

′) ∪(A′∧Onaive
C′) (A

′ ∧Onaive D
′))→ Ψ∗(B

′ ∧Onaive D
′).

The map

(B′ ∧Onaive C
′) ∪(A′∧Onaive

C′) (A
′ ∧Onaive D

′)→ (B′ ∧Onaive D
′)

is a trivial cofibration in SpΣnis(Pre(Sm/F )) by Theorem 5.6. Since Ψ∗ respects trivial
cofibrations, then (i, j)∗ is a trivial cofibration in the Nisnevich local model structure
on ModO. Therefore the Nisnevich local model structure on ModO is symmetric
monoidal by [14, 4.2.5].

To prove the statement for the motivic model structure on ModO, it is enough to
verify that each map

f : O(−, X × A1)→ O(−, X), X ∈ Sm/F,

is a weak equivalence in SpΣmot(Pre(Sm/F )), because the rest of the proof is verified
similar to the Nisnevich local model structure. It is the case because we assume O to
be motivically excisive.

Corollary 5.13. Suppose a spectral category O is Nisnevich excisive (respectively,
motivically excisive). Then the pair of adjoint fuctors

Ψ∗ : Pre
Σ(Sm/F )

//
ModO : Ψ∗oo

induces a Quillen pair for the Nisnevich local projective (respectively, motivic) model
structures on PreΣ(Sm/F ) and ModO. In particular, one has adjoint functors
between triangulated categories Ψ∗ : SHnis(F ) � SHnisO : Ψ∗ (respectively,
Ψ∗ : SH

mot(F ) � SHmotO : Ψ∗).

To show that the map

OK(−, X × A1)→ OK(−, X)

is a motivic weak equivalence in PreΣ(Sm/F ) (and similarly for OK⊕ ,OKGr ), one
has to construct the bivariant motivic spectral sequence. It will follow then from
Theorem 5.9 that OKGr , OK⊕ , OK are motivically excisive spectral categories.

6. Bivariant motivic cohomology groups

Consider a ringoid A and its Eilenberg-Mac Lane spectral categoryHA. We denote
by Ch(A) the category of unbounded chain complexes of A-modules. By an A-module
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we just mean a contravariant additive functor from A to abelian groups. For instance,
if A is Cor (respectively, K⊕

0 or K0) then A-modules are presheaves with transfers
(respectively, with K⊕

0 - or K0-transfers).
By [27, section B.1] there is a chain of Quillen equivalences relating the cate-

gory of HA-modules ModHA with respect to the stable projective model structure
and Ch(A) with respect to the usual model structure (the quasi-isomorphisms and
epimorphisms are weak equivalences and fibrations, respectively):

ModHA
U //

NvmodHA
L

oo
Λ //

Ch(A).
H

oo

Here L,Λ are left adjoint and the intermediate model category of naive HA-modules
is defined as follows.

Definition 6.1. Let O be a spectral category. A naive O-module M consists of a
collection {M(o)}o∈O of Z>0-graded, pointed simplicial sets together with associative
and unital action maps M(o)p ∧O(o′, o)q →M(o′)p+q for pairs of objects o, o′ in O
and for p, q > 0. A morphism of naive O-modules M → N consists of maps of graded
spacesM(o)→ N(o) strictly compatible with the action of O. We denote the category
of naive O-modules by NvmodO.

The free naive O-module Fo at an object o ∈ O is given by the graded spaces
Fo(o

′) = O(o′, o) with action maps

Fo(o
′)p ∧ O(o′′, o′)q = O(o′, o)p ∧ O(o′′, o′)q → O(o′′, o)p+q = Fo(o

′′)p+q

given by composition in O.

One defines a model structure for naive HA-modules as follows [27, B.1.3]. A
morphism of naive HA-modules f : M → N is a weak equivalence if it is an object-
wise π∗-isomorphism, i.e., if for all a ∈ A the map f(a) : M(a)→ N(a) induces an
isomorphism of stable homotopy groups. The map f is an objectwise stable fibration
if each f(a) is a stable fibration of spectra in the sense of [3, 2.3]. A morphism of
naive HA–modules is a cofibration if it has the left lifting properties for maps which
are objectwise π∗-isomorphisms and objectwise stable firations.

The forgetful functor U takes the free, genuine HA-module to the free, naive
HA-module. The left adjoint L sends the naive free modules Fa to the genuine free
modules. If we consider the free A-module A(−, a), as a complex in dimension 0, then
it is naturally isomorphic to Λ(Fa) (see [27, section B.1] for details).

The notions for fibrant naive HA-modules and complexes of A-modules to be
flasque are defined similar to O-modules. We say that a morphism f : M → N of HA-
modules (respectively, complexes of A-modules) is a Nisnevich local weak equivalence
if for every flasque HA-module Q the morphism

f∗ : Ho(NvmodHA)(N [i], Q)→ Ho(NvmodHA)(M [i], Q)

(respectively, f∗ : Ho(ChA)(N [i], Q)→ Ho(ChA)(M [i], Q)) is an isomorphism for
every integer i. Note that f is a Nisnevich local weak equivalence if and only if
sheafification with respect to Nisnevich topology of the graded morphism of graded
presheaves π∗(f) : π∗(M)→ π∗(N) (respectively, H∗(f) : H∗(M)→ H∗(N)) is an
isomorphism.
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Definition 6.2. (1) A flasque HA-module (respectively, a complex of A-modules)
Q is said to be A1-homotopy invariant if for every X ∈ Sm/F the map Q(X)→
Q(X × A1) is a π∗-isomorphism (respectively, quasi-isomorphism).

(2) We say that a morphism f : M → N ofHA-modules (respectively, complexes of
A-modules) is a motivic equivalence if for every A1-homotopy invariant HA-module
Q the morphism f∗ : Ho(NvmodHA)(N [i], Q)→ Ho(NvmodHA)(M [i], Q) (respec-
tively, f∗ : Ho(ChA)(N [i], Q)→ Ho(ChA)(M [i], Q)) is an isomorphism.

We define the Nisnevich local and motivic model structures for HA-modules or
complexes of A-modules as follows. The cofibrations remain the same but the weak
equivalences are the Nisnevich local weak equivalences and motivic equivalences,
respectively. Fibrations are defined by the corresponding lifting property. It follows
that the chain of adjoint functors

ModHA
U //

NvmodHA
L

oo
Λ //

Ch(A)
H

oo

yields Quillen equivalences between model categories with respect to Nisnevich local
and motivic model structures. Denote by Dnis(A) and Dmot(A) the triangulated
homotopy categories of Ch(A) with respect to the Nisnevich local and motivic model
structures.

We get a pair of triangulated equivalences between triangulated categories

SHnisHA
//
Dnis(A).oo

We want to give another description of Dnis(A) for the case when A is either
K⊕

0 or K0 or Cor. One refers to K⊕
0 - and K0-modules as K⊕

0 - and K0-presheaves,
respectively. Cor-modules are called in the literature presheaves with transfers.

Proposition 6.3 ([28, 33, 36]). Let F be a K⊕
0 -presheaf (respectively, K0-presheaf,

presheaf with transfers). Then, the associated Nisnevich sheaf Fnis has a unique struc-
ture of a K⊕

0 -presheaf (respectively, K0-presheaf, presheaf with transfers) for which the
canonical homomorphism F → Fnis is a homomorphism of K⊕

0 -presheaves (respec-
tively, of K0-presheaves, presheaves with transfers).

Denote by Sh(K⊕
0 ), Sh(K0), ShTr the categories of Nisnevich K⊕

0 -sheaves, K0-
sheaves and sheaves with transfers, respectively. Their derived categories are denoted
by D(Sh(K⊕

0 )), D(Sh(K0)), D(ShTr).

Corollary 6.4. Sh(K⊕
0 ), Sh(K0), ShTr are Grothendieck categories, and hence have

enough injectives.

Proof. We prove the claim for Sh(K⊕
0 ), because the other two cases are similarly

checked. Sh(K⊕
0 ) has filtered direct limits which are exact, because this is the case

for K⊕
0 -presheaves and for Nisnevich sheaves. So Sh(K⊕

0 ) satisfies axiom (Ab5). The
category of K⊕

0 -presheaves is a Grothendieck category with {K⊕
0 (−, X)}X∈Sm/F

the family of projective generators. It follows that the family of sheaves
{K⊕

0 (−, X)nis}X∈Sm/F is a family of generators of Sh(K⊕
0 ).

Using the fact that Nisnevich local weak equivalences between complexes of Nis-
nevichK⊕

0 -sheaves (respectively,K0-sheaves and sheaves with transfers) coincide with
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quasi-isomorphisms between such complexes, we infer that the functor of sheafifica-
tion induces triangulated equivalences of triangulated categories

Dnis(K
⊕
0 )

∼→ D(Sh(K⊕
0 )), Dnis(K0)

∼→ D(Sh(K0)), Dnis(Cor)
∼→ D(ShTr).

Note that Dnis(K
⊕
0 ), Dnis(K0) and Dnis(Cor) are compactly generated triangulated

categories with compact generators given by representable presheaves, and hence so
are D(Sh(K⊕

0 )), D(Sh(K0)), D(ShTr).

Given a smooth scheme X, we define ZK⊕
0
(X) (respectively, ZK0(X) and Ztr(X))

as the complex having K⊕
0 (−, X)nis (respectively, K0(−, X)nis and Cor(−, X)) in

degree zero and zero in other degrees. Here K⊕
0 (−, X)nis stands for the Nisnevich

sheaf associated to the presheaf U 7→ K⊕
0 (U,X).

Definition 6.5. (1) We say that a complex of K⊕
0 -sheaves (respectively, K0-sheaves

and sheaves with transfers) Q is A1-local if for every scheme X ∈ Sm/F and every
integer n the natural map

D(Sh(K⊕
0 ))(ZK⊕

0
(X)[n], Q)→ D(Sh(K⊕

0 ))(ZK⊕
0
(X × A1)[n], Q)

(respectively, the maps

D(Sh(K0))(ZK0(X)[n], Q)→ D(Sh(K0))(ZK0(X × A1)[n], Q)

and D(ShTr)(Ztr(X)[n], Q)→ D(ShTr)(Ztr(X × A1)[n], Q)) is an isomorphism.

(2) A morphismM → N of complexes ofK⊕
0 -sheaves (respectively,K0-sheaves and

sheaves with transfers) is called an A1-weak equivalence if for every A1-local complex
Q the map

D(Sh(K⊕
0 ))(N,Q)→ D(Sh(K⊕

0 ))(M,Q)

(respectively, the maps

D(Sh(K0))(N,Q)→ D(Sh(K0))(M,Q)

and D(ShTr)(N,Q)→ D(ShTr)(Ztr(M,Q)) is an isomorphism.

(3) The A1-derived category of K⊕
0 -sheaves (respectively, K0-sheaves and sheaves

with transfers) is the one, obtained from D(Sh(K⊕
0 )) (respectively, D(Sh(K0)) and

D(ShTr)) by inverting the A1-weak equivalences. The corresponding A1-derived cat-
egories will be denoted by DA1(Sh(K⊕

0 )), DA1(Sh(K0)) and DA1(ShTr), respectively.

By the general localization theory of compactly generated triangulated categories
(see, e.g., [23]) DA1(Sh(K⊕

0 )) (respectively, DA1(Sh(K0)) and DA1(ShTr)) is the
localization of D(Sh(K⊕

0 )) (respectively, D(Sh(K0)) and D(ShTr)) with respect to
the localizing subcategory generated by cochain complexes of the form

ZK⊕
0
(X × A1)→ ZK⊕

0
(X)

(respectively, ZK0(X × A1)→ ZK0(X) and Ztr(X × A1)→ Ztr(X)).

DA1(Sh(K⊕
0 )) (respectively, DA1(Sh(K0)) and DA1(ShTr)) can be identified with
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the full subcategory of D(Sh(K⊕
0 )) of A1-local complexes. The inclusion functor

DA1(Sh(K⊕
0 ))→ D(Sh(K⊕

0 ))

admits a left adjoint

LA1 : D(Sh(K⊕
0 ))→ DA1(Sh(K⊕

0 ))

which is also called the A1-localization functor. The same A1-localization functor
exists for DA1(Sh(K0)) and DA1(ShTr).

The above arguments may be summarized as follows.

Proposition 6.6. There are natural equivalences

Dmot(K
⊕
0 )

∼→ DA1(Sh(K⊕
0 )), Dmot(K0)

∼→ DA1(Sh(K0)),

Dmot(Cor)
∼→ DA1(ShTr).

of triangulated categories.

Recall that a sheaf F of abelian groups in the Nisnevich topology on Sm/F is
strictly A1-invariant if for any X ∈ Sm/F , the canonical morphism

H∗
nis(X,F)→ H∗

nis(X × A1,F)

is an isomorphism. It follows from [22, 6.2.7] that a complex of K⊕
0 -sheaves (respec-

tively, K0-sheaves and sheaves with transfers) Q is A1-local if and only if each coho-
mology sheaf Hn(Q) is strictly A1-invariant.

Recall that for any presheaf of abelian groups F on Sm/F we get a simplicial
presheaf Cn(F), by setting Cn(F)(U) = F(U ×∆n). We shall write C∗(F) to denote
the corresponding cochain complex (of degree +1) of abelian presheaves. Namely,

Ci(F) := C−i(F).

By [28, 33, 36] strictly A1-invariant K⊕
0 -, K0-sheaves and sheaves with transfers

coincide with A1-invariant ones whenever the field F is perfect. Therefore over perfect
fields the categories DA1(Sh(K⊕

0 )), DA1(Sh(K0)) and DA1(ShTr) can be identified
with the full subcategories of complexes having A1-invariant cohomology sheaves.
Moreover, the functor LA1 equals the functor C∗ in all three cases. A detailed proof
for sheaves with transfers is given in [33]. The triangulated category of Voevodsky

DMeff
− [33] is a full subcategory of DA1(ShTr) in this case.

We want to introduce bivariant motivic cohomology for smooth schemes, but first
recall some facts for motivic cohomology. Let X ∈ Sm/F , ? ∈ {K⊕

0 ,K0, tr}, and
n > 0; we define the Nisnevich sheaf Z?(X)(G∧n

m ) as follows. Let Dn be the sum
of images of homomorphisms

Z?(X ×G×n−1
m )→ Z?(X ×G×n

m )

induced by the embeddings of the form

(a1, . . . , an−1) ∈ G×n−1
m 7→ (a1, . . . , 1, . . . , an−1) ∈ G×n

m .

The sheaf Z?(X)(G∧n
m ) is, by definition, Z?(X)(G×n

m )/Dn. In what follows we shall
denote the sheaf Z?(pt)(G∧n

m ) by Z?(G∧n
m ).
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Definition 6.7. The K⊕
0 -motive MK⊕

0
(X) of a smooth scheme X over F (respec-

tively, the K0-motive MK0(X) and the motive Mtr(X)) is the image of ZK⊕
0
(X) in

DA1(Sh(K⊕
0 )) (respectively, the image of ZK0(X) in DA1(Sh(K0)) and the image of

Ztr(X) in DA1(ShTr)). If ? ∈ {K⊕
0 ,K0, tr} then by M?(X)(n), n > 0, we denote the

corresponding image of Z?(X)(G∧n
m )[−n].

Let X ∈ Sm/F ; the complex Z?(X)(n) of weight n on Sm/F is the complex
C∗Z?(X)(G∧n

m )[−n], where the degree shift refers to the cohomological indexing of
complexes. If X = pt we shall just write Z?(n) for the motivic complex dropping X
from notation.

Definition 6.8. For smooth schemes U,X ∈ Sm/F we define their bivariant motivic
cohomology groups Hi,n(U,X,Z) as Hi

nis(U,Z(X)K⊕
0
(n)). We shall write Hi,n

M (U,Z)
to denote Hi

nis(U,ZK⊕
0
(n)).

By a theorem of Suslin [28] for any n > 0 and any field F , the canonical homo-
morphism of complexes of Nisnevich sheaves

fn : ZK⊕
0
(n)→ Ztr(n)

is a quasi-isomorphism. Hence, for any smooth scheme X ∈ Sm/F , cohomology
H∗

nis(X,ZK⊕
0
(n)) coincides with motivic cohomology H∗

nis(X,Ztr(n)) of Suslin–Voe-

vodsky [30]. By [34] for any field F , any smooth scheme X over F and any i, n ∈ Z,
there is a natural isomorphism

Hi
nis(X,Ztr(n)) ∼= CHn(X, 2n− i),

where the right hand side groups are higher Chow groups. Since both groups are
homotopy invariant, then Hi

nis(X,ZK⊕
0
(n)) are homotopy invariant K⊕

0 -presheaves.

Proposition 6.9. For any Nisnevich K⊕
0 -sheaf F we have natural identifications

Exti
Sh(K⊕

0 )
(ZK⊕

0
(X),F) = Hi

nis(X,F).

In particular Exti
Sh(K⊕

0 )
(ZK⊕

0
(X),−) = 0 for i > dimX.

Proof. Since the category Sh(K⊕
0 ) has sufficiently many injective objects by Corol-

lary 6.4 and for any K⊕
0 -sheaf G one has Hom(K⊕

0 (−, X)nis,G) = G(X) we only have
to show that for any injective K⊕

0 -sheaf I one has Hi
nis(X, I) = 0 for i > 0.

It follows from the proof of Theorem 5.9 that for any elementary distinguished
square (7) the sequence of K⊕

0 -sheaves

0→ K⊕
0 (−, U ′)nis → K⊕

0 (−, U)nis ⊕K⊕
0 (−, X ′)nis → K⊕

0 (−, X)nis → 0

is exact. Therefore the sequence of abelian groups

0→ I(X)→ I(U)⊕ I(X ′)→ I(U ′)→ 0

is exact, because I is injective. LetHI be the Eilenberg–Mac Lane sheaf of S1-spectra
associated with I (see [22, p. 23]). It follows that HI is Nisnevich excisive.
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By [22, 3.2.3] there is a natural isomorphism

Hn
nis(X, I)→ [(X+),HI[n]], n ∈ Z,

where the right hand side is the Hom-set in the stable homotopy category of S1-
spectra on Sm/F (see [22]). It follows from [22, 3.1.7] that [(X+),HI[n]] is isomor-
phic to π−n(HI(X)) which is zero for n 6= 0.

Corollary 6.10. Let X be a smooth scheme over a field F and C be a complex
of Nisnevich K⊕

0 -sheaves bounded above. Then for any i ∈ Z there is a canonical
isomorphism

HomD(Sh(K⊕
0 ))(ZK⊕

0
(X), C[i]) ∼= Hi

nis(X,C).

Proof. The proof is like that of [30, 1.8] (one should use the preceding proposition
as well).

Corollary 6.11. For every n > 0 the complex ZK⊕
0
(n) is A1-local in D(Sh(K⊕

0 )).

Proof. This follows from the previous corollary and the fact that Hi
nis(X,ZK⊕

0
(n))

are homotopy invariant K⊕
0 -presheaves.

Theorem 6.12. Let F be any field, then for every X ∈ Sm/F there is a natural
isomorphism

Hi,n
M (X,Z) ∼= DA1(Sh(K⊕

0 ))(MK⊕
0
(X),MK⊕

0
(pt)(n)[i]).

If the field F is perfect then there is also a natural isomorphism

Hi,n(U,X,Z) ∼= DA1(Sh(K⊕
0 ))(MK⊕

0
(U),MK⊕

0
(X)(n)[i])

for any U,X ∈ Sm/F .
Proof. The preceding corollary implies ZK⊕

0
(n) is A1-local inD(Sh(K⊕

0 )). It is proved

similar to [33, section 3.2] that for any Nisnevich K⊕
0 -sheaf F , the natural morphism

of complexes

F → C∗(F)

is an A1-weak equivalence. By Corollary 6.10 there is a canonical isomorphism

HomD(Sh(K⊕
0 ))(ZK⊕

0
(X),ZK⊕

0
(n)[i]) ∼= Hi,n

M (X,Z).

for any i ∈ Z. On the other hand one has,

HomD(Sh(K⊕
0 ))(ZK⊕

0
(X),ZK⊕

0
(n)[i]) ∼= HomD(Sh(K⊕

0 ))(ZK⊕
0
(X)(0),ZK⊕

0
(n)[i]).

Thus,

Hi,n
M (X,Z) ∼= HomD(Sh(K⊕

0 ))(ZK⊕
0
(X)(0),ZK⊕

0
(n)[i])

∼= DA1(Sh(K⊕
0 ))(MK⊕

0
(X),MK⊕

0
(pt)(n)[i]).

is an isomorphism for all i ∈ Z.
Assume now that F is perfect. Then all cohomology sheaves for ZK⊕

0
(X)(n) are

homotopy invariant, hence strictly homotopy invariant because F is perfect (see
above). We see that each complex ZK⊕

0
(X)(n) is A1-local. The second assertion is

now checked similar to the first one.
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7. The Grayson tower

Recall that Ord denotes the category of finite nonempty ordered sets, and for each
d > 0 we introduce the object [d] = {0 < 1 < · · · < d} of Ord. Given A,B ∈ Ord we
let AB ∈ Ord denote the ordered set obtained by concatenating A and B, with the
elements of A smaller than the elements of B. Given a simplicial set Y with base
point y0 ∈ Y0, the natural inclusion maps A→ AB ← B provide natural face maps
Y (A)→ Y (AB)← Y (B). Let PY be the simplicial path space of edges in Y with
initial endpoint at y0; it can be defined for A ∈ Ord by

(PY )(A) = lim({y0} → Y ([0])← Y ([0]A)).

The space |PY | is contractible. The face maps Y ([0]A)→ Y (A) provide a projection
map PY → Y . We define

ωY = lim(PY → Y ← PY ).

The commutative square

ωY //

��

PY

� �
PY // Y

together with the contractibility of the space |PY | provides a natural map |wY | →
Ω|Y |.

For instance, let Y be the nerve of a category B with b0 ∈ ObB the base point. A
vertex of ωY is nothing more than a pair of morphisms in B

b0 → b1 ← b0, b1 ∈ ObB.

An edge of ωY is a pair of commutative triangles

b0
u //

��?
??

??
??

b1

��

b0
voo

����
��

��
�

b2

The map |ωY | → Ω|Y | is uniquely determined by a map |ωY | ∧ S1 → |Y |. The latter
map comes from two maps |ωY | × |∆1| → |Y |, which are uniquely determined by two
functors of categories U, V : B × {0→ 1} → B. These functors can be thought of as
two natural transformations from the constant functor sending all objects of B to b0
to the identity functor on B. The natural transformations are defined by the arrows
u, v on objects and the two triangles define them on morphisms. A vertex of ωY yields
a loop in |Y | which starts at b0, follows the edge u to b1, and returns along the other
edge v to b0, and an edge of ωY yields a homotopy between two such loops.

If M is an exact category, and S is the S-construction of Waldhausen [35] then
ωSM is the simplicial set GM of Gillet–Grayson [9] and |ωSM| → Ω|SM | is a
homotopy equivalence as it was shown in [9]. Also, if M is an additive category,
then |ωS⊕M| → Ω|S⊕M| is a homotopy equivalence [12], where S⊕ is the Grayson
S⊕-construction. Note that the latter equivalence is functorial inM.
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Given an additive category M, Quillen defines a new category S−1SM whose
objects are pairs (A,B) of objects ofM. A morphism (A,B)→ (C,D) in S−1SM is
given by a pair of split monomorphisms

f : A
�� C, g : B

�� D

together with an isomorphism h : Coker f → Coker g. By a split monomorphism we
mean a monomorphism together with a chosen splitting. The nerve of the category
S−1SM which is also denoted by S−1SM is homotopy equivalent to Quillen’s K-
theory space ofM by [10]. There is an obvious map

u : ωS⊕M→ S−1SM.

It is a homotopy equivalence by [12, section 4].
We can regard ωS⊕M and S−1SM as simplicial additive categories. The equiva-

lence u above can be extended to a stable equivalence of symmetric spectra

u : KGr(ωS⊕M)→ KGr(S−1SM).

Though the space |ωS−1SM| is not the loop space of S−1SM [12, section 4], it is
worth to consider |ωS−1SM| by replacingM by a simplicial additive category over
a connected simplicial ring.

Suppose now that X is a pointed simplicial space. We let I∗Xd denote the con-
nected component of Xd containing the base point. Grayson [12] has shown that there
is an essential obstruction to the natural map |d 7→ ΩXd| → Ω|X| being an equiva-
lence. The following theorem says what this obstruction is when X is a simplicial
group-like H-space.

Theorem 7.1 (Grayson [12]). If X is a simplicial group-like H-space then the nat-
ural sequence

|d 7→ ΩXd| → Ω|X| → Ω|d 7→ π0(Xd)| (14)

is a fibration sequence. Moreover, the map

|X| → |d 7→ π0(Xd)|

induces an isomorphism on π0, and its homotopy fiber is connected.

The standard diagonalization technique allows us to generalize (14) to multisim-
plicial spaces. For example, if X is a bisimplicial group-like H-space, then

|(d, e) 7→ ΩXd,e| → Ω|X| → Ω|(d, e) 7→ π0(Xd,e)|

is a fibration sequence.
If R is a simplicial ring, andM is a simplicial additive category, we say thatM is

R-linear if, for each d > 0,Md is an Rd-linear category, and for each map ϕ : [e]→ [d],
each r ∈ Rd, and each arrow f inMd, we have the equation ϕ

∗(rf) = ϕ∗(r)ϕ∗(f). A
typical example of a contractible ring is F [∆] whose n-simplices are defined as

F [∆]n = F [x0, . . . , xn]/(x0 + · · ·+ xn − 1).

By ∆· we denote the cosimplicial affine scheme Spec(F [∆]).
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Theorem 7.2 (Grayson [12]). If R is a contractible simplicial ring and M is a
simplicial R-linear additive category, then the natural map

|d 7→ |ωS−1SMd|| → |d 7→ Ω|S−1SMd||

is a homotopy equivalence of spaces.

Here is some convenient notation for cubes. We let [1] denote the ordered set
{0 < 1} regarded as a category, and we use ε as notation for an object of [1]. By an
n-dimensional cube in a category C we will mean a functor from [1]n to C. An object
C in C gives a 0-dimensional cube denoted by [C], and an arrow C → C ′ in C gives
a 1-dimensional cube denoted by [C → C ′]. If the category C has products, we may
define an external product of cubes as follows. Given an n-dimensional cube X and an
n′-dimensional cube Y in C, we let X � Y denote the n+ n′-dimensional cube defined
by (X � Y )(ε1, . . . , εn+n′) = X(εl, . . . , εn)× Y (εn+1, . . . , εn+n′). Let G∧n

m denote the
external product of n copies of [1→ Gm]. For example, G∧2

m is the square of schemes

SpecF //

��

Gm

��
Gm // Gm ×Gm.

Denote by M〈G×n
m 〉 the exact category where an object is a tuple (P, θ1, . . . , θn)

consisting of an object P ofM and commuting automorphisms θ1, . . . , θn ∈ Aut(P ).
Note that M〈G×n

m 〉 = (M〈G×(n−1)
m 〉)〈Gm〉. For instance, if M = P(U,X), U,X ∈

Sm/F , then we can identify P(U,X)〈G×n
m 〉 with P(U,X ×G×n

m ). The cube of affine
schemes G∧n

m gives rise to a cube of exact categories M〈G∧n
m 〉 with vertices being

M〈G×k
m 〉, 0 6 k 6 n. The edges of the cube are given by the natural exact functors

is :M〈G×(k−1)
m 〉 →M〈G×k

m 〉 defined as

(P, (θ1, . . . , θk−1)) 7−→ (P, (θ1, . . . , 1, . . . , θk−1)),

where 1 is the sth coordinate.

In [11, §4] is presented a construction called C which can be applied to a cube
of exact categories to convert it into a multisimplicial exact category, the K-theory
of which serves as the iterated cofiber space of the corresponding cube of K-theory
spaces/spectra.

Given an exact category M with a chosen zero object 0 and an ordered set A,
we call a functor F : Ar(A)→M exact if F (i, i) = 0 for all i, and 0→ F (i, j)→
F (i, k)→ F (j, k)→ 0 is exact for all i 6 j 6 k. The set of such exact functors is
denoted by Exact(Ar(A),M).

Now let L be a symbol, and consider {L} to be an ordered set. Given an n-
dimensional cube of exact categories M, we define an n-fold multisimplicial exact
category CM as a functor from (Ordn)op to the category of exact categories by
letting CM(A1, . . . , An) be the set

Exact([Ar(A1)→ Ar({L}A1)]� · · ·� [Ar(An)→ Ar({L}An)],M)

of multi-exact natural transformations. When n = 0, we may identify CM withM.
In the case n = 1, CM is the same as a construction of Waldhausen [35] denoted
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S.(M0 →M1). We define S.M to be S.CM, the result of applying the S.-construc-
tion of Waldhausen degreewise. The construction S.M is a n+ 1-fold multisimplicial
set. K-theory of CM serves as the iterated cofiber space/spectrum of the correspond-
ing cube of K-theory spaces/spectra.

Given an n-dimensional cube of additive categories M, we define an n-fold mul-
tisimplicial additive category C⊕M as a functor from (Ordn)op to the category of
exact categories by letting C⊕M(A1, . . . , An) be the set

Add([Sub(A1)→ Sub({L}A1)]� · · ·� [Sub(An)→ Sub({L}An)],M)

of multi-additive natural transformations. When n = 0, we may identify C⊕M with
M. We define S⊕M to be S⊕C⊕M, the result of applying the S⊕-construction
of Grayson degreewise. It is an n+ 1-fold multisimplicial set (see [12] for details).
Grayson’s K-theory KGr(C⊕M) of C⊕M (respectively, Waldhausen’s K-theory
K(CM) of CM) serves as the iterated cofiber space/spectrum of the correspond-
ing cube of Grayson’s (Waldhausen’s) K-theory spaces/spectra. It is easy to see that

KGr
0 (C⊕M〈G∧n

m 〉) = KGr
0 (M〈G×n

m 〉)/
n∑
k=1

(ik)∗(K
Gr
0 (M〈G×(n−1)

m 〉)).

If M is an additive category, Grayson showed [12] that the category ωS−1SM
is equivalent to the category C where an object is any pair (P, β) with P ∈M and

β ∈ Aut(P ), and an arrow (P, β)→ (Q, γ) is any split monomorphism P
�� Q with

respect to which one has the equation γ = β ⊕ 1. The objects of C are themselves the
objects of the exact categoryM〈Gm〉, the arrows of C are also the objects of an exact
category, and indeed, the nerve of C can be interpreted as a simplicial exact category.

There is a map C⊕M〈G∧1
m 〉 → C which amounts to forgetting some choices of cok-

ernels, so the map is a homotopy equivalence. Thus we have a homotopy equivalence
of symmetric K-theory spectra

v : KGr(C⊕M〈G∧1
m 〉)

∼−→ KGr(ωS−1SM).

Consider the category of topological symmetric spectra TopSpΣ (see [25, sec-
tion I.1]). We can apply adjoint functors “geometric realization”, denoted by | − |,
and “singular complex”, denoted by S, levelwise to go back and forth between sim-
plicial and topological symmetric spectra

| − | : SpΣ � TopSpΣ :S. (15)

Remark 7.3. By the standard abuse of notation | − | denotes both the functor from
SpΣ to TopSpΣ and the realization functor from simplicial spectra to spectra. It will
always be clear from the context which of either meanings is used.

We have a zig-zag of maps in TopSpΣ between semistable symmetric spectra

|KGr(C⊕M〈G∧1
m 〉)|

|v|−→ |KGr(ωS−1SM)| w−→ Ω|KGr(S−1SM)| Ω|u|←−−−
Ω|KGr(ωS⊕M)| ∼−→ Ω(Ω|KGr(M)|[1])| ∼←− Ω|KGr(M)|.

All maps except w are weak equivalences of ordinary spectra. The zig-zag yields an
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arrow in Ho(SpΣ)

γ : KGr(C⊕M〈G∧1
m 〉)→ ΩKGr(M). (16)

Observe that the arrow is functorial in M. If M is a simplicial R-linear additive
category over a contractible simplicial ring, then

|d 7→ KGr(C⊕Md〈G∧1
m 〉)|

γ−→ |d 7→ ΩKGr(Md)|

is an isomorphism in Ho(SpΣ) by Theorem 7.2. In fact, γ is an isomorphism in the
homotopy category Ho(Sp) of ordinary spectra Sp, because all arrows in the zig-zag
producing γ are weak equivalences in Sp.

Thus Theorem 7.1 implies that the following sequence is a triangle in Ho(SpΣ)

|d 7→ KGr(C⊕Md〈G∧1
m 〉)| −→ Ω|d 7→ KGr(Md)| −→ Ω|d 7→ EM(K0(Md))|

+−→,

where EM(K0(Md)) is the Eilenberg–Mac Lane spectrum of Md (see Appendix).
This triangle yields a triangle

S1 ∧ |d 7→ KGr(C⊕Md〈G∧1
m 〉)| −→ |d 7→ KGr(Md)| −→ |d 7→ EM(K0(Md))|

+−→ .

We call it the Grayson triangle. It produces more generally triangles

S1 ∧ |d 7→ KGr(C⊕Md〈G∧n+1
m 〉)| → |d 7→ KGr(Md)〈G∧n

m 〉|

→ |d 7→ EM(K0(Md〈G∧n
m 〉))|

+→ .

In what follows we denote by K⊕
0 and K0 the Eilenberg–Mac Lane spectral cate-

gories associated with ringoidsK⊕
0 andK0 on Sm/F . We refer the reader to Appendix

to read about Eilenberg–Mac Lane spectral categories. There are canonical morphisms
of spectral categories

OK⊕ → K⊕
0 ← OK⊕

0

and

OK → K0 ← OK0 ,

where the arrows on the right are equivalences of spectral categories. It follows
from [27, A.1.1] that restriction and extension of scalars functors induce spectral
Quillen equivalences of modules

ModK⊕
0 � ModOK⊕

0
, ModK0 � ModOK0 .

Consider the case when each Md = P ′(U ×∆d, X), U,X ∈ Sm/F . Let
SKGr (X)(n) (respectively, SK⊕

0
(X)(n)) denote the presheaf

Sn ∧ |d, U 7→ KGr(C⊕P ′(U ×∆d, X)〈G∧n
m 〉)|

(respectively, the presheaf Sn ∧ |d, U 7→ EM(K⊕
0 (C⊕P ′(U ×∆d, X))〈G∧n

m 〉)|). Note
that SK⊕

0
(X)(n) is an OKGr -module by means of the natural morphism of spectral
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categories

OKGr → K⊕
0 .

We have a canonical morphism of presheaves

gq : SKGr (X)(q)→ SK⊕
0
(X)(q), q > 0.

The Grayson triangle produces triangles in the homotopy category Ho(ModOnaive)
of Onaive-modules regarded as a model category with respect to the stable projective
model structure

SKGr (X)(q + 1)
fq+1−−−→ SKGr (X)(q)

gq−→ SK⊕
0
(X)(q)

+→ .

Recall that SpNnis(Pre(Sm/F )) stands for the model category of S1-spectra on
pointed simplicial presheaves with respect to the Nisnevich local model structure.
Below we shall need the following couple of lemmas.

Lemma 7.4 ([7]). Consider a sequence of maps of spectra

· · · fq+2−−−→ Xq+1
fq+1−−−→ Xq

fq−→ · · · f1−→ X0 = X

Assume further that for each q we are given a map of spectra pq : Xq → Bq such that
the composition Xq+1 → Xq → Bq is trivial and the associated map from Xq+1 to the
homotopy fiber of Xq → Bq is a weak equivalence. Assume further that for each i > 0
there exists n > 0 such that Xq is i-connected for q > n. In this case there exists a
strongly convergent spectral sequence

E2
pq = πp+q(Bq) =⇒ πp+q(X).

We shall write [E,L] to denote Ho(SpNnis(Pre(Sm/F )))(E,L) for any two pre-
sheaves of spectra E,L.

Lemma 7.5. Let E be a presheaf of spectra and U ∈ Sm/F of Krull dimension d.
Assume further that for each i < q the i-th stable homotopy Nisnevich sheaf πi(E) of
E is zero. Then for all n < q − d one has:

[U+[n], E] = 0.

Proof. This follows from [22, 3.3.3].

Definition 7.6. (1) Given a smooth scheme X over F , the Grayson tower is the
sequence of maps in Ho(ModOnaive):

· · · fq+2−−−→ SKGr (X)(q + 1)
fq+1−−−→ SKGr (X)(q)

fq−→ · · · f1−→ SKGr (X)(0).

By construction, the Grayson tower naturally produces a tower in
Ho(SpNnis(Pre(Sm/F ))).

(2) For any U,X ∈ Sm/F the bivariant K-theory groups are defined as

Ki(U,X) = [U+[i], SKGr (X)(0)], i ∈ Z.

Lemma 7.7. For any U ∈ Sm/F and any integer i there is a natural isomorphism
Ki(U) ∼= Ki(U, pt).
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Proof. This follows from Thomason’s theorem [31] stating that algebraic K-theory
satisfies Nisnevich descent and the fact that K(U) is homotopy invariant.

Denote by SpNnis,J(Pre(Sm/F )) (“J” for Jardine) the stable model category of
presheaves of ordinary spectra corresponding to the Nisnevich local injective model
structure on Pre(Sm/F ) (see [19]). Note that the identity functor

SpNnis(Pre(Sm/F ))→ SpNnis,J(Pre(Sm/F ))

induces a left Quillen equivalence.

Proposition 7.8. For any U,X ∈ Sm/F and any p, q there is a natural isomorphism

Hp,q(U,X,Z) ∼= [U+, SK⊕
0
(X)(q)[p− 2q]].

Proof. Since the map of spectral categories OK⊕
0
→ K⊕

0 is a levelwise weak equiva-

lence, it is enough to show the assertion for the OK⊕
0
-module

S′
K⊕

0
(X)(q) = Sq ∧ |d, U 7→ H(K⊕

0 (C⊕P ′(U ×∆d, X)〈G∧q
m 〉))|.

Denote by SpNnis(sModZ) the model category of simplicial Z-module spectra in
the sense of Jardine [20]. Every such spectrum consists of a sequence of simplicial
presheaves of abelian groups An, n > 0, together with simplicial homomorphisms
An ⊗ S1 → An+1, which are also called bonding maps. The suspension spectrum
Σ∞
S1X in SpNnis(sModZ) of a simplicial presheaf of abelian groups X is defined in

the usual way. We set,

S′′
K⊕

0
(X)(q) := Sq ⊗ |d, U 7→ Σ∞

S1(K⊕
0 (C⊕P ′(U ×∆d, X)〈G∧q

m 〉))|.

There is a natural forgetful functor

U : SpNnis(sModZ)→ SpNnis,J(Pre(Sm/F )).

A map f : A→ B of simplicial Z-module spectra is a weak equivalence if the underly-
ing map of presheaves of spectra Uf : UA→ UB is a weak equivalence in
SpNnis(Pre(Sm/F )). In fact, U is a right Quillen functor whose left adjoint is denoted
by V . The spectra U(S′′

K⊕
0

(X)(q)) and S′
K⊕

0

(X)(q) are stably equivalent by [20, 5.5].

Therefore there is an isomorphism

Ho(SpNnis,J(Pre(Sm/F )))(U+, S
′
K⊕

0
(X)(q)) ∼= Ho(SpNnis(sModZ))(U+, S

′′
K⊕

0
(X)(q)).

It follows from [20] that there are pairs of functors of triangulated categories

Ho(SpNnis,J(Pre(Sm/F )))
V //

Ho(SpNnis(sModZ))
U

oo
N //

D(Sh(Sm/F )).
Γ

oo

Here D(Sh(Sm/F )) is the derived category of Nisnevich sheaves, N,Γ are mutu-
ally inverse equivalences, and V,N are left adjoint. Moreover, N takes the cofibrant
presheaf of spectra S′′

K⊕
0

(X)(q) ∈ SpNnis(sModZ) to ZK⊕
0
(X)(q)[2q]. Our assertion

now follows from the fact that SpNnis(Pre(Sm/F )), Sp
N
nis,J (Pre(Sm/F )) are Quillen

equivalent by means of the identity functor.
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We shall say that a presheaf of spectra E is n-connected if for all k 6 n its k-th
homotopy sheaf πk(E) vanishes. We are now in a position to prove the main result
of this section.

Theorem 7.9. For every q > 0 and every X ∈ Sm/F the sequence of maps

SKGr (X)(q + 1)
fq+1−−−→ SKGr (X)(q)

gq−→ SK⊕
0
(X)(q)

+−→

is a triangle in Ho(SpNnis(Pre(Sm/F ))) and the Grayson tower produces a strongly
convergent spectral sequence which we call the bivariant motivic spectral sequence,

Epq2 = Hp−q,−q(U,X,Z) =⇒ K−p−q(U,X), U ∈ Sm/F.

Moreover, if X = pt and U is the spectrum of a smooth Henselian F -algebra then
Grayson’s spectral sequence [12] takes the form

Epq2 = Hp−q,−q
M (U,Z) =⇒ K−p−q(U).

Proof. The presheaf of spectra S(X)(q), q > 0, is (q − 1)-connected. Lemmas 7.4-7.5
and Proposition 7.8 imply that the Grayson tower produces a strongly convergent
spectral sequence

Epq2 = Hp−q,−q(U,X,Z) =⇒ K−p−q(U,X).

If U is the spectrum of a smooth Henselian F -algebra then for every presheaf of
spectra E one has:

[U+[n], E] ∼= πn(E(U)), n ∈ Z.

For X = pt, evaluation of the Grayson tower at U is isomorphic in Ho(Sp) to the
tower constructed by Walker [36]. The latter tower produces a spectral sequence
which agrees with Grayson’s spectral sequence [12].

We want to construct an A1-local counterpart for the bivariant motivic spectral
sequence. We denote by

LA1 : SpNnis(Pre(Sm/F ))→ SpNnis(Pre(Sm/F ))

the A1-localization functor of Morel [22]. For any presheaf E of spectra and any
integer n, the sheaves

πA1

n (E) := πn(LA1(E))

are strictly A1-invariant [22].

Definition 7.10. (1) Given X ∈ Sm/F and q > 0, the Grayson OKGr -module
G(X)(q) of weight q is the OKGr -module Sq ∧KGr(C⊕P ′(−, X)〈G∧q

m 〉). We shall
also write G0(X)(q) to denote the K⊕

0 -module Sq ∧ EM(K⊕
0 (C⊕P ′(−, X)〈G∧q

m 〉)).
(2) For any U,X ∈ Sm/F the A1-local bivariant K-theory groups are defined as

KA1

i (U,X) := [U+[i], LA1(G(X)(0))], i ∈ Z.

(3) The A1-local bivariant motivic cohomology groups are defined as

Hp,q
A1 (U,X,Z) := [U+, LA1(G0(X)(q))[p− 2q]].
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Lemma 7.11. Let E be a connective presheaf of spectra and U ∈ Sm/F of Krull
dimension d. Then the group

[U+, LA1(E)[n]]

vanishes for n > d.

Proof. This follows from [22, 4.3.1].

The map (16) yields a map in the stable homotopy category Ho(ModOKGr ) of
OKGr -modules

fq : G(X)(q)→ G(X)(q − 1), q > 0.

In turn, one has a natural map of OKGr -modules

gq : G(X)(q)→ G0(X)(q), q > 0.

Definition 7.12. (1) Given a smooth scheme X over F , the Grayson tower of Gray-
son’s modules is the sequence of maps in Ho(ModOKGr ):

· · · fq+2−−−→ G(X)(q + 1)
fq+1−−−→ G(X)(q)

fq−→ · · · f1−→ G(X)(0).

(2) We say that a presheaf of spectra E is A1-local if for every scheme U ∈ Sm/F
and every integer n the natural map

[(U+)[n], E]→ [((U × A1)+)[n], E]

is an isomorphism.

We denote by SpNmot(Pre(Sm/F )) the model category of S1-spectra associated to
the projective motivic model structure on Pre(Sm/F ).

Theorem 7.13. For every q > 0 and every X ∈ Sm/F the sequence of maps

G(X)(q + 1)
fq+1−−−→ G(X)(q)

gq−→ G0(X)(q)
+−→

is a triangle in Ho(SpNmot(Pre(Sm/F ))) and the Grayson tower of Grayson’s mod-
ules produces a strongly convergent spectral sequence which we shall call the A1-local
bivariant motivic spectral sequence,

Epq2 = Hp−q,−q
A1 (U,X,Z) =⇒ KA1

−p−q(U,X), U ∈ Sm/F.

Assume further that one of the following conditions is satisfied:

1. X = pt;

2. the field F is perfect.

Then Hp,q
A1 (U,X,Z) agree with bivariant motivic cohomology groups Hp,q(U,X,Z) and

the A1-local bivariant motivic spectral sequence coincides with the bivariant motivic
spectral sequence of Theorem 7.9.
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Proof. We have a commutative diagram in the stable homotopy category of pre-
sheaves of spectra

G(X)(q + 1)
fq+1 //

��

G(X)(q)
gq //

��

G0(X)(q)

��

+ //

SKGr (X)(q + 1)
fq+1 // SKGr (X)(q)

gq // SK⊕
0
(X)(q) + //

with vertical arrows level A1-equivalences. Since the lower sequence is a triangle in
Ho(SpNmot(Pre(Sm/F ))) then so is the upper one. The presheaf of spectra G(X)(q),
q > 0, is (q − 1)-connected. Lemmas 7.4 and 7.11 imply that the Grayson tower of
Grayson’s modules produces a strongly convergent spectral sequence

Epq2 = Hp−q,−q
A1 (U,X,Z) =⇒ KA1

−p−q(U,X).

Assume now that X = pt. By Corollaries 6.10-6.11 and Proposition 7.8 each
SK⊕

0
(X)(q), q > 0, is A1-local. In turn, if F is perfect but X is any smooth scheme

then Theorem 6.12 and Proposition 7.8 imply each SK⊕
0
(X)(q), q > 0, is A1-local. In

both cases therefore Hp,q
A1 (U,X,Z) agree with bivariant motivic cohomology groups

Hp,q(U,X,Z). The fact that the A1-local bivariant motivic spectral sequence coincides
with the bivariant motivic spectral sequence of Theorem 7.9 is now obvious.

Corollary 7.14. There is a natural isomorphism of abelian groups

KA1

i (U, pt) ∼= Ki(U)

for any i ∈ Z. If F is a perfect field, then there is also a natural isomorphism

KA1

i (U,X) ∼= Ki(U,X)

for any i ∈ Z and U,X ∈ Sm/F .

Proof. This follows from Lemma 7.7 and the preceding theorem.

We conclude the section by noting that the presheaves of K-groups

KGr
i (P ′(−, Y )) = πi(OKGr (−, Y ))

are different from both Ki(−, Y ) and KA1

i (−, Y ) in general. Indeed, suppose F is per-

fect. Then the preceding corollary implies the presheavesKi(−, Y ) andKA1

i (−, Y ) are
isomorphic. Let SHOKGr be the homotopy category of OKGr -modules with respect
to the stable projective model structure (see Theorem 4.2). It is a compactly gen-
erated triangulated category. If the presheaves KGr

i (P ′(−, Y )) were isomorphic to

KA1

i (−, Y ) then we would have that the natural map

SHOKGr (OKGr (−, X),OKGr (−, Y )[n])

→ SHOKGr (OKGr (−, X × A1),OKGr (−, Y )[n])

is an isomorphism for every X,Y ∈ Sm/k and n ∈ Z. Since

{OKGr (−, Y )[n]}n∈Z,Y ∈Sm/k
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is a family of compact generators for SHOKGr , it would follow that the natural map

OKGr (−, X × A1)→ OKGr (−, X)

is an isomorphism in SHOKGr what is not the case.

8. K-motives

We use the A1-local bivariant motivic spectral sequence to prove the following

Theorem 8.1. The spectral categories OKGr ,OK⊕ ,OK are motivically excisive.

Proof. The spectral categories OKGr , OK⊕ , OK are Nisnevich excisive by Theo-
rem 5.9. We first check that the natural map

OKGr (−, X × A1)→ OKGr (−, X), X ∈ Sm/F,

is a motivic weak equivalence in PreΣ(Sm/F ). By [18, 4.34] it is enough to show that
the map is a motivic weak equivalence of presheaves of ordinary spectra. Since OK⊕

0

is motivically excisive, then so is K⊕
0 because these are equivalent spectral categories.

In fact, the natural map

K⊕
0 (−, X × A1)→ K⊕

0 (−, X), X ∈ Sm/F,

is a level motivic weak equivalence of presheaves of ordinary spectra.
Observe that the exact category P(U,X)〈G×q

m 〉, U,X ∈ Sm/F , can be identified
with P(U,X ×G×q

m ). It follows that the map

K⊕
0 (−, X × A1 ×G×q

m )→ K⊕
0 (−, X ×G×q

m )

is a motivic weak equivalence of presheaves of ordinary spectra, and hence so is the
map

G0(X × A1)(q)→ G0(X)(q).

It induces an isomorphism of A1-local bivariant motivic cohomology groups

Hp,q
A1 (U,X × A1,Z)

∼=−→ Hp,q
A1 (U,X,Z).

We infer that the natural map of Grayson towers

· · ·
fq+1 // G(X × A1)(q)

fq //

��

G(X × A1)(q − 1)

��

fq−1 // · · ·

· · ·
fq+1 // G(X)(q)

fq // G(X)(q − 1)
fq−1 // · · ·

produces an isomorphism of A1-local bivariant motivic spectral sequences, and hence
each map

KA1

i (U,X × A1)→ KA1

i (U,X)

is an isomorphism. We see that

LA1(G(X × A1)(0))→ LA1(G(X)(0))
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is a motivic weak equivalence, and hence so is

OKGr (−, X × A1) = G(X × A1)(0)→ OKGr (−, X) = G(X)(0).

So OKGr is motivically excisive. Since OKGr and OK⊕ are equivalent spectral cate-
gories, then also OK⊕ is motivically excisive.

It follows from [12, 10.5] that the natural map of spectra

|n 7→ K⊕(P ′(X ×∆n, Y ))| → |n 7→ K(P ′(X ×∆n, Y ))|

is a stable equivalence of spectra. Therefore,

|n 7→ OK⊕(X ×∆n, Y )| → |n 7→ OK(X ×∆n, Y )|

is a stable equivalence of spectra. For any presheaf F : Sm/F → SSets, the natural
map F → Sing(F) is a motivic equivalence. Here Sing : Pre(Sm/F )→ Pre(Sm/F )
is the singular functor (see, e.g., [18, p. 542]). We conclude that for any X ∈ Sm/F
the map of presheaves of spectra

OK⊕(−, X)→ OK(−, X)

is a motivic equivalence, and therefore it is a motivic equivalence of presheaves of
symmetric spectra by [18, 4.34]. Since OK⊕ is motivically excisive, then so is OK .

We say that a presheaf of symmetric spectra E ∈ PreΣ(Sm/F ) is semistable if
E(U) is a semistable symmetric spectrum for every U ∈ Sm/F . We remark that
all presheaves of symmetric spectra we work with in practice such as OKGr (−, X),
OK⊕(−, X), OK(−, X), OK⊕

0
(−, X), OK0(−, X), K⊕

0 (−, X), K0(−, X) are semista-

ble.

Lemma 8.2. Let E be a semistable presheaf of symmetric spectra and U ∈ Sm/F .
Then there are natural isomorphisms

[U+[n], E] ∼= SHnis(F )(U+[n], E), [U+[n], LA1(E)] ∼= SHmot(F )(U+[n], E)

for all integers n.

Proof. Straightforward.

Definition 8.3. (1) The K⊕-motive MK⊕(X) of a smooth scheme X over F (respec-
tively, the K-, KGr-, K⊕

0 -, K0-motives MK(X), MKGr
(X), MK⊕

0
(X), MK0(X)) is

the image of OK⊕(−, X) in SHmotOK⊕ (respectively, the corresponding images of
OK(−, X), OKGr

(−, X), OK⊕
0
(−, X), OK0(−, X) in SHmotOK , SHmotOKGr

,

SHmotOK⊕
0
, SHmotOK0).

(2) The image of each Grayson module G(X)(q) (respectively, G0(X)(q)), q > 0,
in SHmotOKGr (respectively, in SHmotK⊕

0 ) will be denoted by MKGr (X)(q) (respec-
tively, MK⊕

0
(X)(q)).
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Lemma 8.4. For any X,Y ∈ Sm/F there are canonical isomorphisms:

KA1

i (X,Y ) ∼= SHmotOKGr (MKGr (X)[i],MKGr (Y )) ∼=
SHmotOK⊕(MK⊕(X)[i],MK⊕(Y )) ∼= SHmotOK(MK(X)[i],MK(Y ))

and

Hp,q
A1 (X,Y,Z) ∼= SHmotOKGr (MKGr (X),MK⊕

0
(Y )(q)[p− 2q]) ∼=

SHmotOK⊕(MK⊕(X),MK⊕
0
(Y )(q)[p− 2q]).

Proof. All presheaves of the statement are semistable. The proof of Theorem 8.1
shows that the natural maps

MKGr (X)→MK⊕(X)→MK(X)

are isomorphisms in SHmot(F ). Now Corollary 5.13 and Lemma 8.2 imply the claim.

Corollary 8.5. There is a natural isomorphism

Ki(X) ∼= SHmotOKGr (MKGr (X)[i],MKGr (pt)) ∼=
SHmotOK⊕(MK⊕(X)[i],MK⊕(pt)) ∼= SHmotOK(MK(X)[i],MK(pt))

for any i ∈ Z and X ∈ Sm/F .

Proof. This follows from Corollary 7.14 and Lemma 8.4.

Corollary 8.6. The maps of spectral categories

OKGr → OK⊕ → OK

induce triangulated equivalences

SHmotOKGr → SHmotOK⊕ → SHmotOK

of compactly generated triangulated categories.

Proof. The objects {MKGr (X)[i]}i∈Z,X∈Sm/F (respectively,{MK⊕(X)[i]}i∈Z,X∈Sm/F
and {MK(X)[i]}i∈Z,X∈Sm/F ) are compact generators of the compactly generated
triangulated category SHmotOKGr (respectively, SHmotOK⊕ and SHmotOK). Both
functors take the compact generators to compact generators and induce isomorphisms
of Hom-sets between them by Lemma 8.4. Now our assertion follows from standard
facts about compactly generated triangulated categories.

We now have all the necessary information to prove the following result saying
that the Grayson (bivariant) motivic spectral sequence is realized in a natural way
in the triangulated category of KGr-motives.
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Theorem 8.7. For every q > 0 and every X ∈ Sm/F the sequence of maps

MKGr (X)(q + 1)
fq+1−−−→MKGr (X)(q)

gq−→MK⊕
0
(q)

+−→

is a triangle in SHmotOKGr and the Grayson tower in SHmotOKGr

· · · fq+2−−−→MKGr (X)(q + 1)
fq+1−−−→MKGr (X)(q)

fq−→ · · · f1−→MKGr (X)(0)

produces a strongly convergent spectral sequence

E2
pq = SHmotOKGr (MKGr (U)[p+ q],MK⊕

0
(X)(q))

⇒ SHmotOKGr (MKGr (U)[p+ q],MKGr (X)).

It agrees with the A1-local bivariant motivic spectral sequence of Theorem 7.13. Ass-
ume further that one of the following conditions is satisfied:

1. X = pt;

2. the field F is perfect.

Then this spectral sequence agrees with the bivariant motivic spectral sequence of
Theorem 7.9.

Proof. This follows from Theorem 7.13 and Lemma 8.4.

9. Concluding remarks

The interested reader may have observed that the authors have not considered
monoidal structures on the category of OK⊕ -modules. We believe that there should
exist new transfers Corvirt on Sm/F which produce a spectral category OKnew such
that:

� OKnew is symmetric monoidal and motivically excisive;

� for any X ∈ Sm/F , OKnew(−, X) is a sheaf of symmetric spectra;

� the motivic model category of (pre-)sheaves of symmetric spectra which are also
OKnew -modules is zig-zag Quillen equivalent to the motivic model category for
OK⊕ -modules.

The use of motivically excisive spectral categories on Sm/F and their modules is
a reminiscence of the theory of sheaves of OX -modules over a ringed space (X,OX).
The structure sheaf OX is replaced with a motivically excisive spectral category O
on Sm/F and sheaves of OX -modules are replaced with the motivic model category
of (pre-)sheaves of symmetric spectra which are also O-modules.

From this point of view the theory of spectral categories over Sm/F and their
modules is a sort of “motivic brave new algebra”, where the base symmetric monoidal
model category is PreΣ(Sm/F ).

Appendix A. Eilenberg–Mac Lane spectral categories

In this section we construct the Eilenberg–Mac Lane spectral categories EM(A)
associated with ringoidsA which are equivalent toHA. Although the authors have not
found such constructions in the literature, they do not have pretensions to originality.
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Let (A,+) be an abelian monoid with neutral element 0 and let Ar[n] be the
category of arrows for the poset {0 < 1 < · · · < n}. It can be regarded as the partially
ordered set of pairs (i, j), 0 6 i 6 j 6 n, where (i, j) 6 (i′, j′) if and only if i 6 i′ and
j 6 j′.

We consider the set of functions

a : ObAr[n] −→ A

(i, j) 7−→ a(i, j) = ai,j

having the property that for every j, aj,j = 0 and ai,k = ai,j + aj,k whenever i 6 j 6
k. Let us denote it by σnA.

Given a map u : [m] −→ [n] in ∆, the function u∗ : σnA −→ σmA sends the element
(i, j) 7→ a(i, j) to the element (r, s) 7−→ a(u(r), u(s)).

The elements of σnA may also be regarded as diagrams of the form

an−1,n

...
a23 · · · a2n

a12 a13 · · · a1n

a01 a02 a03 · · · a0n

(17)

Then the degeneracy maps are defined as the functions si : σnA→ σn+1A by dupli-
cating a0,i, and reindexing with the normalization ai,i+1 = 0.

Also, the face map d0 : σnA→ σn−1A is the function which is defined by deleting
the bottom row of (17). For 0 < i 6 n we define the face maps as the functions
di : σnA→ σn−1A by omitting the row ai,∗ and the column containing a0i in (17),
and reindexing the aj,k as needed.

Given two functions a, b : ObAr[n]→ A, we define a binary operation on σnA
as (a+ b)i,j := ai,j + bi,j . Then the set σnA is an abelian monoid as well. So we
arrive at a simplicial abelian monoid n 7→ σnA denoted by σ.A. We can iterate the
σ-construction to get a bisimplicial abelian monoid σ2A = σ.σ.A or, more generally,
a multisimplicial abelian monoid σnA.

Similar to Waldhausen’s S-construction [35] there is a natural inclusion A ∧ S1 →
σ.A, and by adjointness therefore an inclusion of |A| into the loop space of |σ.A|.
There results a spectrum

EM(A) := (A, σ.A, σ.σ.A, . . .)

whose structural maps are defined just as the map |A| → Ω|σ.A| above. One can
actually define EM(A) as a symmetric spectrum in a similar way that in [8].

Let B,C be two other abelian monoids. A map f : A×B → C is called a bilinear
pairing if f(a+ a′, b) = f(a, b) + f(a′, b) and f(a, b+ b′) = f(a, b) + f(a, b′) for all
a, a′ ∈ A and b, b′ ∈ B. In particular, f(a, 0) = f(0, b) = 0. Every bilinear map induces
a map of symmetric spectra

f : EM(A) ∧EM(B)→ EM(C).
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These maps are associative for strictly associative bilinear pairings.
The universal example of an abelian monoid which acts on any other such monoid

is the monoid of non-negative integers Z>0. Given an abelian monoid A, there is a
bilinear pairing Z>0 ×A→ A sending (n, a) to na.

Recall that a semiring is a set A equipped with two binary operations + and ∗,
called addition and multiplication, such that (A,+) is an abelian monoid with identity
element 0, (A, ∗) is a monoid with identity element 1, multiplication distributes over
addition, and 0 annihilates A with respect to multiplication. It follows from above that
EM(A) is a symmetric ring spectrum for every semiring A such that the structure
map from the sphere spectrum to EM(A) is given by the map S0 → EM(A)0 = A
sending the basepoint to 0 and the non-basepoint to 1.

The universal example of a semiring which is mapped to any other semiring is Z>0.
One easily sees that for every abelian monoid A the symmetric spectrum EM(A) is
an EM(Z>0)-module. If A is a semiring then there is a natural map of ring spectra

EM(Z>0)→ EM(A).

More generally, any semiringoid A, that is a category whose Hom-sets are abelian
monoids with bilinear composition and whose End-sets are semirings gives rise to a
spectral category EM(A) with EM(A)(x, y) = EM(HomA(x, y)) for all x, y ∈ ObA.

Let iC be the Waldhausen category of isomorphisms for a Waldhausen category C
in which all cofibrations split. For instance, C is an additive category or the category
Γ of finite pointed sets n+ = {0, 1, . . . , n} with 0 as basepoint and pointed set maps.
Denote by π0C the abelian monoid of isomorphism classes for objects in C (e.g.,
π0Γ = Z>0). Given two classes [A], [B] ∈ π0C, the binary operation is defined as usual
[A] + [B] := [A

∐
B]. There is a natural map of spectra

τ : K(C)→ EM(π0C)

sending each diagram (F : Ar[n1]× · · · ×Ar[nd]→ C) ∈ SdC to the composition

(ObAr[n1]× · · · ×ObAr[nd]
F→ Ob C → π0C) ∈ σd(π0C).

Let iA, iB be other two Waldhausen categories of isomorphisms for Waldhausen
categories A,B in which all cofibrations split. Suppose f : A× B → C is a biexact
functor between Waldhausen categories. Then the following diagram of maps of sym-
metric spectra commutes

K(A) ∧K(B)
f //

τ∧τ
��

K(C)

τ

��
EM(π0A) ∧ EM(π0B)

f // EM(π0C).

Let O be a spectral category generated by Waldhausen categories of isomorphisms
iC(x, y), where x, y ∈ ObO, in which all cofibrations split (i.e., O(x, y) = K(C(x, y))),
and such that the composition law

O(y, z) ∧ O(x, y)→ O(x, z)

comes from biexact functors C(y, z)× C(x, y)→ C(x, z). For example, O = OK⊕ .
Then the collections π0(C(x, y)), x, y ∈ ObO, are abelian monoids and form a semi-
ringoid. It gives rise to a spectral category, denoted by EM(π0O). There is a map of
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spectral categories

υ : O → EM(π0O).

The additivity theorem for the σ-construction says that the natural map

σ.(σ2A)→ σ.A× σ.A

sending a : ObAr[2]→ A to the couple (a0,1, a1,2) is an isomorphism of simplicial sets
for every abelian monoid A. Repeating now Waldhausen’s results [35, section 1.5] for
the σ.-construction, we get that the natural map |σ.A| → Ω|σ.σ.A| which is adjoint
to the map |σ.A| ∧ S1 → |σ.σ.A| is a homotopy equivalence and more generally also
the map |σnA| → Ω|σn+1A| for every n > 0. This proves that the spectrum EM(A)
is an Ω-spectrum beyond the first term.

There is an isomorphism of simplicial sets σ.A ∼= BA, where BA stands for the
classifying space of A. It takes every diagram (17) to (a0,1, a1,2, . . . , an−1,n) ∈ BA.
We conclude that if A is an abelian group, then each space |σnA|, n > 0, has the
homotopy type of the Eilenberg–Mac Lane space K(A,n). Moreover, EM(A) is a
genuine Ω-spectrum.

Consider a spectral category O generated by Waldhausen categories (see above).
Then the collections K0(C(x, y)) = π0(O(x, y)), x, y ∈ ObO, are abelian groups and
form a ringoid. It gives rise to a spectral category, denoted by K0O. There are maps
of spectral categories

O υ→ EM(π0O)
κ−→ K0O,

where κ is induced by the universal group completion maps

π0(|iO(x, y)|)→ K0(C(x, y)).

Consider the symmetric spectrum HA associated with an abelian group A. Recall
that HAp = A⊗ Z̃[Sp] for any p > 0. The identity map of A induces a map of sym-
metric spectra

l : Σ∞A = (A,A ∧ S1, A ∧ S2, . . .)→ EM(A).

The maps lp : A ∧ Sp → |σpA| induce in a unique way maps `p : A⊗ Z̃[Sp]→ |σpA|.
These yield a map of symmetric spectra

`A : HA→ EM(A),

functorial in A. Recall that HAp has homotopy type of the Eilenberg–Mac Lane space
K(A, p). We deduce that each `p is a weak equivalence, and hence ` is a levelwise
weak equivalence.

For two abelian groups A and B, there is a natural morphism of symmetric spectra
(see, e.g., [25, Example I.3.11])

HA ∧HB → H(A⊗B).

It is easily verified that the diagram

HA ∧HB //

`A∧`B
��

H(A⊗B)

`A⊗B

��
EM(A) ∧ EM(B) // EM(A⊗B).
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is commutative.
Now let A be a ringoid and let HA be the spectral category associated with it.

Recall that HA(x, y)p = A(x, y)⊗ Z̃[Sp] for any objects x, y ∈ ObA and p > 0. It
follows from above that there is a map of spectral categories

` : HA → EM(A)

such that HA(x, y)→ EM(A)(x, y) is a levelwise equivalence of symmetric spectra
for any x, y ∈ ObA.
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