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WEIGHT STRUCTURE ON KONTSEVICH’S
NONCOMMUTATIVE MIXED MOTIVES

GONÇALO TABUADA

(communicated by Claude Cibils)

Abstract
In this article we endow Kontsevich’s triangulated cate-

gory KMMk of noncommutative mixed motives with a non-
degenerate weight structure in the sense of Bondarko. As an
application we obtain: (1) a convergent weight spectral sequence
for every additive invariant (e.g., algebraic K-theory, cyclic
homology, topological Hochschild homology, etc.); (2) a ring
isomorphism between K0(KMMk) and the Grothendieck ring
of the category of noncommutative Chow motives; (3) a precise
relationship between Voevodsky’s (virtual) mixed motives and
Kontsevich’s noncommutative (virtual) mixed motives.

1. Weight structure

In his seminal talk [11], Kontsevich introduced the triangulated category KMMk

of noncommutative mixed motives (over a base commutative ring k) and conjectured
the existence of a “different” t-structure on this category. In this article we formal-
ize Kontsevich’s beautiful insight and illustrate some of its important consequences.
Recall from [14, 17, 18] the construction of the additive category NChowk of non-
commutative Chow motives. Our formalization of the “different” t-structure is the
following:

Theorem 1.1. There exist two full subcategories KMMw>0
k and KMMw60

k of KMMk

verifying the following seven conditions:

(i) KMMw>0
k and KMMw60

k are additive and idempotent complete.

(ii) KMMw>0
k ⊂ KMMw>0

k [1] and KMMw60
k [1] ⊂ KMMw60

k .

(iii) For every M ∈ KMMw>0
k and N ∈ KMMw60

k [1] we have HomKMMk
(M,N) = 0.

(iv) For every M ∈ KMMk there is a distinguished triangle

N2[−1] −→M −→ N1 −→ N2

with N1 ∈ KMMw60
k and N2 ∈ KMMw>0

k .
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(v) KMMk = ∪l∈Z KMMw>0
k [−l] = ∪l∈Z KMMw60

k [−l].
(vi) There is a natural equivalence of categories NChowk ' KMMw>0

k ∩KMMw60
k .

(vii) ∩l∈Z KMMw>0
k [−l] = ∩l∈Z KMMw60

k [−l] = {0}.

Items (i)–(iv) assert that the triangulated category KMMk is endowed with a
weight structure w (also known in the literature [13] as a co-t-structure) in the sense
of Bondarko [6, Def. 1.1.1]. Item (v) asserts that w is bounded, item (vi) that the
heart of w can be identified with the category of noncommutative Chow motives,
and item (vii) that w is non-degenerate. Theorem 1.1 should then be regarded as the
noncommutative analogue of the Chow weight structure on Voevodsky’s triangulated
category of mixed motives; see [6, §§6.5–6.6].
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2. Weight spectral sequences

Let dgcatk be the category of (small) dg categories over a fixed base commutative
ring k; consult Keller’s ICM address [10].

Definition 2.1. Let L(−) : dgcatk →M be a functor with values in a symmetric
monoidal stable model category; see [9, §4 and §7]. We say that L is an additive
invariant if it verifies the following three conditions:

(i) Filtered colimits are mapped to filtered colimits.

(ii) Derived Morita equivalences (i.e., dg functors which induce an equivalence on
the associated derived categories; see [10, §4.6]) are mapped to weak equiva-
lences.

(iii) Split exact sequences (i.e., sequences of dg categories which become split exact
after passage to the associated derived categories; see [15, §13]) are mapped to
direct sums

0 // A // B //vv
C //vv

0 7→ L(A)⊕ L(C) ' L(B)

in the homotopy category Ho(M).

Proposition 2.2. Every additive invariant L(−) gives rise to a triangulated functor
L(−) : KMMk −→ Ho(M); which we still denote by L(−).

Consider the following compositions:

Ln(−) : KMMk
L(−)−−−→ Ho(M)

Hom(1[n],−)−−−−−−−−→ Ab n ∈ Z , (1)

where 1 stands for the ⊗-unit ofM and Ab for the category of abelian groups.

Example 2.3 (Algebraic K-theory). Recall from [10, §5.2] that the (connective) alge-
braic K-theory functor K(−) : dgcatk → Sp, with values in the category of spectra,
satisfies the above conditions (i)–(iii) and hence is an additive invariant.
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Example 2.4 (Hochschild and cyclic homology). Recall from [10, §5.3] that the Hoch-
schild and cyclic homology functors HH(−),HC(−) : dgcatk → C(k), with values in
the category of complexes of k-modules, are additive invariants. In these examples
the associated functors HHn(−) and HCn(−) take values in the abelian category of
k-modules.

Example 2.5 (Negative cyclic homology). Recall from [7, Example 7.10] that the
mixed complex functor C(−) : dgcatk → C(Λ), with values in the category of mixed
complexes, satisfies the above conditions (i)–(iii) and hence is an additive invariant.
Moreover, as explained in [7, Example 8.10], the associated functors Cn(−) agree
with the negative cyclic homology functors HC−

n (−).

Example 2.6 (Periodic cyclic homology). Periodic cyclic homology is not an additive
invariant since its definition uses infinite products, and these do not commute with
filtered colimits. Nevertheless, it factors through KMMk as follows: recall from [7,
Example 7.11] that we have a 2-perioditization functor P (−) : C(Λ)→ k[u]-Comod,
with values in the category of comodules over the Hopf algebra k[u]. This functor
preserves weak equivalences and hence by applying the above Proposition 2.2 to
C(−) we obtain the following composed triangulated functor:

KMMk
C(−)−−−→ Ho(C(Λ)) P (−)−−−→ Ho(k[u]-Comod) .

As explained in [7, Example 8.11], the associated functors ((P ◦ C)(−))n agree with
the periodic cyclic homology functors HPn(−).

Example 2.7 (Topological Hochschild homology). Recall from [3] that the topolog-
ical Hochschild homology functor THH(−) : dgcatk → Sp is also an example of an
additive invariant.

Recall from [16, Prop. 2.5] and [19, Thm. 2.8] the construction of the following
natural transformations between additive invariants:

tr : K(−)⇒ HH(−),
ch2i : K(−)⇒ HC(−)[−2i],
ch− : K(−)⇒ C(−) .

(2)

By first evaluating these natural transformations at a noncommutative mixed motive
M , and then passing to the associated functors (1) we obtain, respectively, the Dennis
trace maps, the higher Chern characters, and the negative Chern characters:

trn : Kn(M)→ HHn(M),

ch2i
n : Kn(M)→ HCn+2i(M),

ch−
n : Kn(M)→ HC−

n (M) .

Theorem 2.8. Under the preceding notations the following holds:

(i) To every noncommutative mixed motive M we can associate a cochain (weight)
complex of noncommutative Chow motives

t(M) : · · · −→M (i−1) −→M (i) −→M (i+1) −→ · · · .



132 GONÇALO TABUADA

Moreover, the assignment M 7→ t(M) gives rise to a conservative functor from
KMMk towards a certain weak category of complexes Km(NChowk); see [6,
§3.1].

(ii) Every additive invariant L(−) yields a convergent (weight) spectral sequence

Epq
1 (M) = L−q(M

(p))⇒ L−p−q(M) . (3)

Moreover, (3) is functorial on M after the E1-term.

(iii) The above natural transformations (2) respect the spectral sequence (3).

Intuitively speaking, item (i) shows us that all the information concerning a non-
commutative mixed motive can be encoded into a cochain complex. Items (ii) and
(iii) endow the realm of noncommutative mixed motives with a new powerful com-
putational tool which is, moreover, well-behaved with respect to the classical Chern
characters. We intend to develop this computational aspect in future work.

3. Grothendieck ring and Picard group

As explained in [14, 17], the categories KMMk and NChowk are endowed with a
symmetric monoidal structure induced by the tensor product of dg categories. Hence,
the Grothendieck group of KMMk (considered as a triangulated category) and the
Grothendieck group of NChowk (considered as an additive category) are endowed
with a ring structure. The symmetric monoidal structure allows us also to consider
the Picard groups Pic(NChowk) and Pic(KMMk), i.e., the multiplicative groups of
(isomorphism classes of) ⊗-invertible objects. As explained in [20], every Azumaya
k-algebra is ⊗-invertible in the homotopy category of dg categories. Since these
k-algebras remain ⊗-invertible in NChowk, they furnish us with a large class of exam-
ples of elements of Pic(NChowk).

Theorem 3.1. The equivalence of categories of item (vi) of Theorem 1.1 gives rise:

(i) to a ring isomorphism K0(NChowk)
∼→ K0(KMMk),

(ii) to an injective homomorphism Pic(NChowk)× Z→ Pic(KMMk).

Informally speaking, item (i) shows us that “up to extension” the categories KMMk

and NChowk have the same isomorphism classes. In what concerns item (ii), the factor
Z corresponds to shifting.

4. Voevodsky’s versus Kontsevich’s mixed motives

In this section we assume that k is a perfect field. By working with rational coeffi-
cients the weight structure of Theorem 1.1 allows us to establish a precise relationship
between Voevodsky’s (virtual) mixed motives and Kontsevich’s noncommutative (vir-
tual) mixed motives.

Recall from [21, §4] the construction of the triangulated category DMgm(k)Q
of mixed motives (with rational coefficients) and of the functor Mgm(−) : Smk →
DMgm(k)F that associates to every smooth k-schemeX its geometric motiveMgm(X).
On the other hand, let NChow(k)Q and KMM(k)Q be the categories obtained from
NChowk and KMMk by first tensoring each abelian group of morphisms with Q and
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then passing to the idempotent completion. The triangulated categories DMgm(k)Q
and KMM(k)Q are endowed with a symmetric monoidal structure, and so the associ-
ated Grothendieck groups carry an induced ring structure.

Theorem 4.1. There exists a zig-zag of triangulated functors

DMgm(k)Q
r→ Kb(NChow(k)Q)

t← KMM(k)Q , (4)

where Kb(−) stands for the homotopy category of bounded complexes. The functor t is
conservative (i.e., it reflects isomorphisms), and for every smooth projective k-scheme

X we have a natural isomorphism r(Mgm(X)Q) ' t(Ddg
perf(X)), where Ddg

perf(X) stands
for the (unique) dg enhancement of the derived category of perfect complexes of OX-
modules; see [12]. Moreover, the functor r induces a well-defined ring homomorphism

K0(DMgm(k)Q)[[Q(−1)[2]]−1] −→ K0(KMM(k)Q) , (5)

where [Q(−1)[2]] denotes the class of the Tate motive.

Informally speaking, Theorem 4.1 establishes a “bridge” between the commuta-
tive and the noncommutative world. All the information concerning Voevodsky’s
mixed motives versus Kontsevich’s noncommutative mixed motives can now be com-
pared using the above zig-zag (4). For instance, the Tate motive Q(−1)[2] is virtually
⊗-trivial from the noncommutative viewpoint. We believe that this “bridge” opens
new horizons and opportunities of research by enabling the interchange of results,
techniques, ideas, and insights between the commutative and the noncommutative
world.

5. Proofs

5.1. Proof of Theorem 1.1

Recall from [11] that a dg category A is called smooth if it is perfect as a bimodule
over itself and proper if for each ordered pair of objects (x, y) in A, the complex of
k-modules A(x, y) is perfect. Recall also that Kontsevich’s construction of KMMk

decomposes in three steps:

(1) First, consider the category KPMk (enriched over spectra) whose objects are the
smooth and proper dg categories, whose morphisms fromA to B are given by the
(connective) algebraicK-theory spectrumK(Aop ⊗L B), and whose composition
is induced by the (derived) tensor product of bimodules.

(2) Then, take the formal triangulated envelope of KPMk. Objects in this new
category are formal finite extensions of formal shifts of objects in KPMk. Let
KTMk be the associated homotopy category.

(3) Finally, pass to the pseudo-abelian envelope of KTMk. The resulting cate-
gory KMMk is what Kontsevich named the category of noncommutative mixed
motives.

Recall from [15, §15] the construction of the additive motivator of dg categories
Motadddg and the associated base triangulated category Motadddg (e). The analogue
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of [7, Prop. 8.5] (with the above definition1 of KMMk and Motlocdg (e) replaced by

Motadddg (e)) holds similarly. Hence, KMMk can be identified with the smallest thick

triangulated subcategory of Motadddg (e) spanned by the noncommutative mixed motives
of smooth and proper dg categories. Similarly, KTMk can be identified with the small-
est triangulated subcategory of Motadddg (e) spanned by the noncommutative mixed
motives of smooth and proper dg categories. In what follows, we will assume that
these identifications have been made.

Now, recall from [14, 17, 18] that the category NChowk of noncommutative Chow
motives is defined as the pseudo-abelian envelope of the category whose objects are
the smooth and proper dg categories, whose morphisms from A to B are given by
the Grothendieck group K0(Aop ⊗L B), and whose composition is induced by the
(derived) tensor product of bimodules.

Proposition 5.1. There is a natural fully-faithful functor

Φ: NChowk −→ KMMk . (6)

Proof. Given dg categories A and B, let D(Aop ⊗L B) be derived category of A-B-
bimodules and rep(A,B) ⊂ D(Aop ⊗L B) the full triangulated subcategory spanned by
those A-B-bimodules X such that for every object x ∈ A, the associated B-module
X(x,−) is perfect; consult [10, §4.2] for further details. Recall from [14, §5] the
construction of the additive category Hmo0: the objects are the dg categories, the
morphisms from A to B are given by the Grothendieck group K0rep(A,B) of the
triangulated category rep(A,B), and the composition is induced by the (derived)
tensor product of bimodules. There is a natural functor

UA : dgcatk −→ Hmo0 (7)

which sends a dg functor F : A → B to the class in K0rep(A,B) of the corresponding
A-B-bimodule. On the other hand, recall from [15, §15] the construction of the functor

Ua : dgcatk −→ Motadddg (e) . (8)

As proved in [14, Thms. 4.6 and 6.3], UA is the universal functor with values in
an additive category which inverts derived Morita equivalences and sends split exact
sequences2 to direct sums (see condition (iii) of Definition 2.1). Since these conditions
are satisfied by the functor Ua (see [15, Thm. 15.4]) and Motadddg (e) is an additive
category (since it is triangulated), we obtain an induced additive functor Ψ making
the following diagram commute:

dgcatk

UA

��

Ua

%%KKKKKKKKKK

Hmo0
Ψ

// Motadddg (e) .

1In [7, §8.2] we have considered non-connective algebraic K-theory since we were interested in
the relationship with secondary K-theory. However, Kontsevich’s original definition is in terms of
connective algebraic K-theory.
2This condition can equivalently be formulated in terms of a general semi-orthogonal decomposition
in the sense of Bondal-Orlov; see [14, Thm. 6.3(4)].
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Let us denote by Hmosp0 ⊂ Hmo0 the full subcategory of smooth and proper dg cate-
gories. When A (and B) is smooth and proper we have a natural isomorphism

HomHmosp0
(A,B) := K0rep(A,B) ' K0(Aop ⊗L B) ;

see [7, Lemma 4.9]. Hence, we observe that the category NChowk of noncommutative
Chow motives is the pseudo-abelian envelope of Hmosp0 . Since by construction the
triangulated category KMMk ⊂ Motadddg (e) is idempotent complete, the composition

Hmosp0 ⊂ Hmo0
Ψ−→ Motadddg (e) extends then to a well-defined additive functor

Φ: NChowk −→ KMMk ⊂ Motadddg (e) .

Finally, the fact that Φ is fully-faithful follows from the following computation:

HomMotadddg (e)(Ua(A),Ua(B)) ' K0rep(A,B) ' K0(Aop ⊗L B)

for every smooth and proper dg category A; see [15, Prop. 16.1].

In order to prove Theorem 1.1, let us now verify the conditions of Bondarko’s [6,
Thm. 4.3.2 II], with C the triangulated category KTMk ⊂ KMMk and H the essential
image of the composition Hmosp0 ⊂ NChowk → KMMk. By construction, H generates
KTMk in the sense of [6, page 11]. Moreover, given any two smooth and proper dg
categories A and B, we have the following computation:

HomKMMk
(Φ(A),Φ(B)[−n]) '

{
Kn(Aop ⊗L B) n > 0

0 n < 0 .
(9)

This follows from [15, Prop. 16.1] combined with the specific construction of Φ.
Hence, H ⊂ KTMk is negative in the sense of [6, Def. 4.3.1(1)]. The conditions of [6,
Thm. 4.3.2 II] are then satisfied, and so we conclude that there exists a unique
bounded weight structure w on KTMk whose heart is the pseudo-abelian envelope of
H. Note that the heart is then equivalent to NChowk under the above fully-faithful
functor (6). Since the weight structure w is bounded, [6, Prop. 5.2.2] implies that w
can be extended from KTMk to KMMk. The heart remains exactly the same since
the category NChowk is by construction idempotent complete. By [6, Defs. 1.1.1 and
1.2.1] we then conclude that conditions (i)–(vi) of Theorem 1.1 are verified, where

KMMw>0
k (resp. KMM60

k ) is the smallest idempotent complete and extension-stable
subcategory of KMMk (see [6, Def. 1.3.1]) containing the objects Φ(NChowk)[n],
n 6 0 (resp. Φ(NChowk)[n], n > 0). It remains then to verify condition (vii). We start

by proving the equality ∩l∈Z KMMw>0
k [−l] = {0}.

Proposition 5.2. For every noncommutative mixed motive M , there exists an inte-
ger j ∈ Z (which depends on M) such that for every N ∈ Φ(NChowk) we have

HomKMMk
(N,M [i]) = 0 when i > j . (10)

Proof. Let C be a full subcategory of Motadddg (e) containing the zero object. Let us

denote by C[Z] the category ∪n∈ZC[n], by C\ the idempotent completion of C inside
Motadddg (e), and by Ext(C) the subcategory of Motadddg (e) formed by the objects O for
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which there exists a distinguished triangle

M1 −→ O −→M2 −→M1[1] (11)

with M1 and M2 in C. Note that C ⊆ Ext(C). Consider the following

Vanishing condition. There exists an integer j ∈ Z such that, for every object N ∈
Φ(NChowk), we have

HomMotadddg (e)(N,O[i]) = 0 when i > j .

We now show that if by hypothesis the above vanishing condition holds for every
object O of C, then it holds also for every object of the following categories:

(1) The category C[Z]: This is the case since every object in C[Z] is of the form
O[n], with n and integer and O ∈ C.

(2) The category Ext(C): By construction every object O of Ext(C) fits in the above
distinguished triangle (11). Let j1 and j2 be the integers of the vanishing con-
dition which are associated to M1 and M2, respectively. Then, by choosing
j := max{j1, j2} we observe that the object O also verifies the above vanishing
condition.

(3) The category C\: This is the case since every object in C\ is a direct summand
of an object in C; recall that Motadddg (e) admits arbitrary sums and so every
idempotent splits.

Let us now apply the above general arguments to the category C = Φ(NChowk).
By computation (9) the above vanishing condition holds for every object (with j =
0). Recall that KMMk is the smallest thick triangulated subcategory of Motadddg (e)
spanned by the objects N ∈ Φ(NChowk). Hence, every object M ∈ KMMk belongs
to the category obtained from Φ(NChowk) by applying the above constructions
(1)–(3) a finite number of times (the number of times depends on M). As a con-
sequence, we conclude that M satisfies the above vanishing condition and so the
proof is finished.

Let M ∈ ∩l∈Z KMMw>0
k [−l]. Note that equality (10) can be re-written as

HomKMMk
(N [−i],M) = 0 when i > j . (12)

Since KMMw>0
k is the smallest idempotent complete and extension stable subcategory

of KMMk containing the objects Φ(NChowk)[n], n 6 0, we conclude from (12) that

HomKMMk
(O,M) = 0 for every object O belonging to KMMw>0

k [−l] with l > j. Since

by hypothesis M ∈ KMMw>0
k [−l], we then conclude, by the Yoneda lemma, that

M = 0 in KMMw>0
k [−l] (with l > j) and hence in ∩l∈Z KMMw>0

k [−l]. Let us now

prove the equality ∩l∈Z KMMw60
k [−l] = {0}.

Proposition 5.3. For every non-trivial noncommutative mixed motive M , there
exists an integer j ∈ Z, an object N ∈ Φ(NChowk), and a non-trivial morphism
f : N [j]→M .

Proof. We prove the following equivalent statement: if HomKMMk
(N [n],M) = 0 for

every integer n ∈ Z and object N ∈ Φ(NChowk), then M = 0. Recall that KMMk
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is the smallest thick triangulated subcategory of Motadddg (e) spanned by the objects

N ∈ Φ(NChowk). The class of objects O in Motadddg (e) satisfying the equalities

HomMotadddg (e)(O[n],M) = 0 n ∈ Z

is clearly stable under extensions and direct factors. Since by hypothesis it contains
the objects N ∈ Φ(NChowk) it also contains all the objects of the category KMMk.
Hence, by takingO = M and n = 0, the identity morphism ofM allows us to conclude
that M = 0.

Let M ∈ ∩l∈Z KMMw60
k [−l]. If by hypothesis M is non-trivial, then the morphism

f of Proposition 5.3 gives rise to to a non-trivial morphism

0 6= f [−j] : N −→M [−j] . (13)

Since by constructionN belongs to KMMw>0
k , condition (iii) of Theorem 1.1 combined

with the non-trivial morphism (13) implies that M [−j] /∈ KMMw60
k [1]. Hence, M /∈

KMMw60
k [1 + j], and so we obtain a contradiction with our hypothesis. This allows

us to conclude that M = 0, and so the proof of Theorem 1.1 is finished.

5.2. Proof of Proposition 2.2

The category dgcatk carries a (cofibrantly generated) Quillen model structure
whose weak equivalences are the derived Morita equivalences; see [14, Thm. 5.3].
Hence, it gives rise to a well-defined Grothendieck derivator HO(dgcatk); consult [7,
Appendix A] for the notion of Grothendieck derivator. Since by hypothesisM is stable
and L(−) satisfies conditions (i)–(iii) of Definition 2.1, we then obtain a well-defined
additive invariant of dg categories HO(dgcatk)→ HO(M) in the sense of [15, Nota-
tion 15.5]. By the universal property of [15, Thm. 15.4], this additive invariant factors
through Motadddg giving rise to a homotopy colimit preserving morphism of derivators

Motadddg → HO(M) and hence to a triangulated functor Motadddg (e)→ Ho(M) on the
underlying base categories. As explained in the proof of Theorem 1.1, the category
KMMk can be identified with a full triangulated subcategory of Motadddg (e). The com-
position obtained

L(−) : KMMk ⊂ Motadddg (e) −→ Ho(M)

is then the triangulated functor mentioned in Proposition 2.2.

5.3. Proof of Theorem 2.8

As explained in the proof of Theorem 1.1, the category KMMk is endowed with
a non-degenerate bounded weight structure w whose heart is equivalent to the cate-
gory NChowk of noncommutative Chow motives. In particular, we have the following
equalities:

KMM+
k = KMMk = KMM−

k ;

see [6, Def. 1.3.5]. Hence, by combining [6, Thm. 3.2.2 II] with [6, Thm. 3.3.1] one
obtains the claim of item (i). By Proposition 2.2 every additive invariant L(−) gives
rise to a triangulated functor L(−) : KMMk → Ho(M) and hence to a composed
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functor

KMMk
L(−)−−−→ Ho(M)

Hom(1,−)−−−−−−→ Ab. (14)

Note that (14) is homological, i.e., it sends distinguished triangles to long exact
sequences, and that we have the following identifications:

Hom(1, L(M [−i])) ' Hom(1, L(M)[−i]) ' Hom(1[i], L(M)) = Li(M) . (15)

Since the weight structure w is bounded, we have KMMk = KMMb
k; see [6, Def. 1.3.5].

Hence, item (ii) follows from [6, Thms. 2.3.2 II and IV] (with H = (14)) and from
the above identifications (15). Finally, item (iii) follows from [6, Thm. 2.3.2 III] since
all the Chern characters (2) are natural transformations of additive invariants.

Remark 5.4. As the above proof clearly shows, Theorem 2.8(ii) applies also to periodic
cyclic homology; see Example 2.6.

5.4. Proof of Theorem 3.1

Let us start by proving item (i). As explained in [7, Thm. 7.5], the functor (8)
is symmetric monoidal. Since (7) is also symmetric monoidal, we conclude from the
construction of (6) that this latter functor is also symmetric monoidal. Recall from the
proof of Theorem 1.1 that the category KMMk is endowed with a bounded weight
structure w. Since the functor (6) is symmetric monoidal, the heart Φ(NChowk)
of w is then a full additive symmetric monoidal subcategory of KMMk. Hence, by
combining [6, Thm. 5.3.1] with [6, Remark 5.3.2], one obtains the ring isomorphism
K0(NChowk) ' K0(KMMk).

Let us now prove item (ii), i.e., that the homomorphism

Pic(NChowk)× Z −→ Pic(KMMk) (A, n) 7→ Φ(A)[n] (16)

is injective. As explained above, the functor Φ is symmetric monoidal and so the homo-
morphism (16) is well-defined. Given non-isomorphic objects A and B of NChowk,
one needs to show that the objects Φ(A)[n] and Φ(B)[m] of KMMk remain non-
isomorphic for all n,m ∈ Z. When n = m this follows from the fact that the functor
Φ is fully-faithful; see Proposition 5.1. When n > m this follows from the natural
isomorphisms

HomKMMk
(Φ(A)[n],Φ(B)[m]) ' HomKMMk

(Φ(A),Φ(B)[n−m])
(9)
' 0 .

Similarly, when n < m this follows from the natural isomorphisms

HomKMMk
(Φ(B)[m],Φ(A)[n]) ' HomKMMk

(Φ(B),Φ(A)[m− n])
(9)
' 0 .

5.5. Proof of Theorem 4.1

By construction, the category NChow(k)Q is additive, symmetric monoidal and,
moreover, idempotent complete. In what concerns KMM(k)Q recall from (9) that
HomKMMk

(Φ(k),Φ(k)) ' K0(k). Since by hypothesis k is a field, the endomorphism
ring of the ⊗-unit Φ(k) is K0(k) = Z. Hence, by first applying [1, Thm. 3.6] to the
multiplicative set S := Z\{0} ⊂ K0(k) and then using [2, Thm. 1.5], one obtains a
canonical ⊗-triangulated structure on KMM(k)Q. Now, recall from [17, Thm. 1.1]
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and [18, Thm. 4.6] the following construction:

Chow(k)Q
π−→ Chow(k)Q/−⊗Q(1)

R−→ NChow(k)Q . (17)

Some explanations are in order: Chow(k)Q stands for the category of Chow motives
(with rational coefficients) and Chow(k)Q/−⊗Q(1) stands for the orbit category associ-
ated to the Tate motive Q(1). Roughly speaking, two Chow motives which differ from
a Tate twist become isomorphic in Chow(k)Q/−⊗Q(1). The functors π and R are addi-
tive, Q-linear, conservative, symmetric monoidal, and R is, moreover, fully-faithful.
They give then rise to triangulated functors

Kb(Chow(k)Q) −→ Kb(Chow(k)Q/−⊗Q(1)) −→ Kb(NChow(k)Q) (18)

between the homotopy categories of bounded complexes. Recall from [6, §§6.5–6.6]
that since by hypothesis k is a perfect field the triangulated category DMgm(k)Q
carries a bounded Chow weight structure. Its heart is the essential image of a fully-
faithful functor3

Chow(k)Q −→ DMgm(k)Q (19)

sending Q(1) to Q(−1)[2]. By [6, §5] there exists then a well-defined conservative
triangulated (weight complex) functor t0 : DMgm(k)Q → Kb(Chow(k)Q). By precom-
posing (18) with t0 we obtain then the functor r of the zig-zag (4).

Let us now show that the triangulated category KMM(k)Q carries a bounded
weight structure, as in Theorem 1.1, with heart naturally isomorphic to Chow(k)Q. By
construction, (6) gives rise to a fully-faithful functor ΦQ : NChow(k)Q → KMM(k)Q.
Moreover, since NChowk generates KMMk, the additive category NChow(k)Q gener-
ates KMM(k)Q. Furthermore, the computation (9) implies that

HomKMM(k)Q(ΦQ(A),ΦQ(B)[−n]) '

{
Kn(Aop ⊗L B)Q n > 0

0 n < 0
(20)

for all smooth and proper dg categoriesA and B. Hence, one concludes (as in the proof
of Theorem 1.1) that the conditions (i)–(vi) are verified. In what concerns condition

(vii), the equality ∩l∈Z KMM(k)w>0
Q [−l] = {0} follows from the vanishing condition

HomKMM(k)Q(N,M [i]) = 0 when i > j ;

see Proposition 5.2. In what concerns the equality ∩l∈Z KMM(k)w60
Q [−l] = {0}, the

proof is similar to the one of Proposition 5.3 (and of what it follows).
Now, let us endow the triangulated category KMM(k)Q with a negative differ-

ential graded enhancement KMM(k)dgQ . Given a smooth and proper dg category C,
let us write Ĉ for the associated Waldhausen category [22] of perfect C-modules,
with weak equivalences the quasi-isomorphisms and cofibrations the morphisms which
admit retractions as morphisms of graded C-modules; see [10, §5.2]. Following Gillet-

Soulé [8, §6.2], we denote byM∗(Ĉ) the negative differential graded cochain complex of

Q-vector spaces computing rational algebraic K-theory, i.e., such that H−nM∗(Ĉ) '
Kn(C)Q for n > 0. This data allows the following construction:

3Denoted by R in loc. cit.
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(1) First, consider the category KPM(k)dgQ (enriched over negative differential gra-
ded cochain complexes) whose objects are the smooth and proper dg categories,

whose morphisms from A to B are given by the cochain complex M∗( ̂Aop ⊗L B),
and whose composition is induced by the (derived) tensor product of bimodules;

(2) Then, take Bondal-Kapranov’s pretriangulated envelope Tr+(KPM(k)Q) of the

dg category KPM(k)dgQ ; consult [4] for details.

(3) Finally, pass to the pseudo-abelian envelope KMM(k)dgQ of Tr+(KPM(k)Q).

By the above computation (20) and the description of KMMk given at the beginning

of the proof of Theorem 1.1 one observes that KMM(k)dgQ enhances KMM(k)Q. As
explained in [6, §6], we then obtain a well-defined conservative triangulated (weight
complex) functor t : KMM(k)Q → Kb(NChow(k)Q). This concludes the construction
of the zig-zag relating DMgm(k)Q with KMM(k)Q.

Let us now prove the natural isomorphism r(Mgm(X)Q) ' t(Ddg
perf(X)) for every

smooth projective k-scheme X. Recall from [17, Thm. 1.1] the construction of the
following commutative diagram:

SmProjopk
Ddg

perf(−)
//

M
��

dgcat

UA
��

ChowQ

π
��

Hmo0

(−)Q��
ChowQ/−⊗Q(1)

R
// NChowQ ⊂ Hmo\0;Q ,

(21)

where SmProjk stands for the category of smooth projective k-schemes. Since by
hypothesis X is projective the mixed motive Mgm(X)Q belongs to the essential image
of the functor (19), i.e., it belongs to the heart of the Chow weight structure on
DMgm(X)Q. By [6, Thm. 3.3.1 IV] the bounded complex t0(Mgm(X)Q) can then be
identified with M(X) (considered as a complex concentrated in degree zero). Hence,
by definition of r, one obtains a natural isomorphism r(Mgm(X)Q) ' (R ◦ π ◦M)(X)
of complexes in Kb(NChow(k)Q) concentrated in degree zero. By the above commu-
tative diagram (21), one concludes that (R ◦ π ◦M)(X) also identifies with the non-

commutative motive UA(Ddg
perf(X)Q), which we will simply denote by Ddg

perf(X). Since

Ddg
perf(X) clearly belongs to the heart of the weight structure on KMM(k)Q constructed

above, one concludes from [6, Thm. 3.3.1 IV] that t(Ddg
perf(X)) ' Ddg

perf(X). By com-
bining the above arguments, one then obtains a natural isomorphism r(Mgm(X)Q) '
t(Ddg

perf(X)) for every smooth projective k-scheme X.
Let us now describe the ring homomorphism (5). As explained in the proof of

Theorem 3.1(i), the fully-faithful functor ΦQ : NChow(k)Q → KMM(k)Q induces a
ring homomorphism K0(NChow(k)Q) ' K0(KMM(k)Q). Similarly, as explained in [5,
Corollary 6.4.3], the fully-faithful functor (19) induces a ring isomorphism between
K0(Chow(k)Q) and K0(DMgm(k)Q). Hence, since the functors π and R are additive,
Q-linear, and symmetric monoidal, the above composition (17) gives rise to a well-
defined ring homomorphism

K0(DMgm(k)Q) −→ K0(KMM(k)Q) . (22)
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By construction the class [Q(−1)[2]] ∈ K0(DMgm(k)Q) is first mapped to [Q(1)] ∈
K0(Chow(k)Q) and then to the class of the ⊗-unit of Chow(k)Q/−⊗Q(1). As a conse-
quence, (22) gives rise to the ring homomorphism (5).
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