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FORMALITY OF KOSZUL BRACKETS AND DEFORMATIONS
OF HOLOMORPHIC POISSON MANIFOLDS

DOMENICO FIORENZA anpD MARCO MANETTI
(communicated by Jean-Louis Loday)

Abstract

We show that if a generator of a differential Gerstenhaber
algebra satisfies certain Cartan-type identities, then the cor-
responding Lie bracket is formal. Geometric examples include
the shifted de Rham complex of a Poisson manifold and the
subcomplex of differential forms on a symplectic manifold van-
ishing on a Lagrangian submanifold, endowed with the Koszul
bracket. As a corollary we generalize a recent result by Hitchin
on deformations of holomorphic Poisson manifolds.

Dedicated to the memory of J.-L. Loday.

1. Introduction

In the paper [23], Jean-Louis Koszul considered a graded commutative algebra
A = ®pez AP with unit 1 € A° and a differential operator I: A — A of second order,
of odd degree k, such that I(1) =0 and I?> = 0. Then he proved that the bracket
generated by I,

[Ji: AP x A9 — APTITE (g b]; == (—=1)P(I(ab) — I(a)b) — al(D),

satisfies both Poisson and Jacobi identities and then induces on A what is nowadays
called a structure of Batalin-Vilkovisky algebra [6, 14].

Koszul’s construction applies, in particular, when A is the de Rham complex of
a differentiable manifold and I =1, is the Lie derivative with respect to a Poisson
bivector m; the degree of I, is —1 and then it induces, in particular, a structure of
differential graded Lie algebra (DGLA) on the de Rham complex, with degrees shifted
by 1.

However, in this case we have by Cartan formulas that I, = [ir,d] and [lr,%,] =0,
where d is the de Rham differential and %, is the interior product by 7. As a conse-
quence of this fact, Sharygin and Talalaev [28] obtain that such a differential graded
Lie algebra is quasi-isomorphic to an abelian DGLA. In this paper we will reobtain
the Sharygin and Talalaev formality theorem as a particular case of a more general
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statement. More precisely, we will show that if (A, d) is a differential graded commu-
tative algebra endowed with a degree —2k second order differential operatoré: A — A
such that (1) = 0, then (A4, d) carries a natural Gerstenhaber algebra structure whose
underlying DGLA is formal as soon as the differential operator I = [i,d] is such that
[I,] is a second order differential operator. Moreover, our proof also shows that the
same conclusion holds for certain subcomplexes of A; a remarkable example is the
subcomplex of differential forms on a symplectic manifold vanishing on a Lagrangian
submanifold.

The formality of the shifted de Rham complex is particularly relevant and useful
in formal deformation theory, in view of the fact that quasi-isomorphic DGLAs have
isomorphic associated deformation functors. As an application we obtain an extension,
and a new proof, of a recent result by Hitchin [18] on deformations of holomorphic
Poisson manifolds. Namely, let m be a holomorphic Poisson structure on a compact
complex manifold X, and let 7#: QL — O©x be the corresponding anchor map. If the
natural map H?,(X,C) — H?*(X, Ox) is surjective, then for every closed (1,1) form
w, the class [77(w)] € H'(X,©Ox) is tangent to a deformation of X over a smooth
basis.

Glossary and background

We assume that the reader is familiar with the basic theory of differential graded
Lie algebras (DGLA), L.o.-algebras and related notions (Maurer-Cartan equation,
gauge action, etc.). For an introduction to these topics we refer to [12, 13, 24, 26|
and the references therein. We shall say that a DGLA is homotopy abelian if it
is isomorphic to an abelian DGLA in the homotopy category, i.e., if it is quasi-
isomorphic to an abelian differential graded Lie algebra.

For the clarity of exposition, we will distinguish the various Lie brackets appearing
in this paper according to the following notation:

[,]: The graded commutator bracket, i.c., [a,b] = ab— (—1)%%ba, where @ is the
degree of a homogeneous element a;

[, ]Jsn: The Schouten-Nijenhuis bracket on polyvector fields;

[, ]x: The Koszul bracket associated to a tangent bivector field 7.

Given a graded vector space V' we will denote by V[k] the k-fold desuspension of
V,ie., VI[k|' = VF+i,
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2. Review of Koszul brackets

Let X be a smooth differentiable manifold, Tx its tangent bundle and (Ax,d) =
(®pD(A"T%),d) its de Rham complex. For every nn € I'(A” T'x) we denote

iy A% — ALP, i,(a) =noa, the interior product by 7,
L,: A% — AP 1, =[i,,d], the Lie derivative.
Recall that for p = 1, the operator 4,, is a derivation of Ay and @,s, = %y 0 2.
Everyone is familiar with Cartan’s formulas [5, 11, 15]:
Ly, d] =0, [in, 8] =0, [lysdpu] =dpmuisns o lul = Ugpsns
where [,]sn is the Schouten-Nijenhuis bracket on polyvector fields.

Definition 2.1 ([23, pg. 266]). The Koszul bracket associated to a tangent bivector
field 7 € D(A\® Tx) is the bilinear map [,],: A% Ax[1] = Ax[1] defined as

[a, Blr = (—1)P(Lr(aAB) =l (a) AB) — a Al (B), aec A%, B e Ax.

Using the relation I = [ir,d] we may write, for « € A%, § € Ax,

[a, Bl = (—1)P(izd(a A B) —diz(a A B) + d(i(a)) A B —ir(da) A S)
—aNiz(dB) —aAd(ix(B)),

and therefore the Koszul bracket of two closed forms is exact.

The restriction of the bracket to A}, = I'(T%), also known as the Magri bracket [21,
22], can be conveniently described in terms of the morphism of vector bundles

T — Tx,
called the anchor map, defined by the formula
iw#(a)(6> = 1:7‘—(04 N ﬁ), Va, 5 € T)*(

In fact it is well known, and in any case easy to prove, that for o, 3 € A% we have

Lot (o) (dB) = i (@ N dB) — a Nig(dB)
and (see, e.g., [15, 21, 22, 29)])

[, Blr = La#(a)(B) — Lz (p) (@) — diz(a A B)
=it () (dB) — trn(g)(da) + diz (A B).

Assume now that m € T(A\*Tx) is a Poisson structure: this means that [r,7]gy
= 0. By Cartan formulas this implies that

1 1
—— 2 _ 1 _ 1 . .
[lsz] =0, l; = 2[l7ral7r] = 2[[lmz7r]ad] =0.

These conditions ensure (see, e.g., [4, 23, 29] and [15, Lemma 6.3.4]) that the Koszul
bracket satisfies the Jacobi identity, and therefore that the triple (Ax,d,[,]) is a
differential Gerstenhaber algebra with an exact generator l,. These properties will
also be reproven in this paper as a byproduct of our computations.

Another important fact, which we will use in Section 6, is that the Poisson struc-
ture 7 gives a Lie algebroid structure on the cotangent bundle T% [15, 22, 29];
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in particular, the anchor map % is a Lie morphism between the sheaf of 1-forms,
endowed with the Koszul-Magri bracket and the sheaf of tangent vector fields [23,
equation 3.3].

Having in mind application to deformation theory, in this paper we are mainly
interested in the differential graded Lie algebra (Ax[1],d,[,]z). In particular, we will
be concerned with extensions and generalizations of the following formality theorem:

Theorem 2.2 (Sharygin-Talalaev [28]). In the notation above, if m is a Poisson
structure on X, then (Ax[1],d,[,]x) is a formal differential graded Lie algebra.

We recall that a differential graded Lie algebra is called formal if it is quasi-
isomorphic to its cohomology. Since the Koszul bracket is trivial in the de Rham
cohomology of X, the formality of the DGLA (Ax[1],d,[,]r) is equivalent to claiming
that it is quasi-isomorphic to an abelian differential graded Lie algebra.

We will recover the Sharygin-Talalaev formality theorem in Section 4, as a corollary
of a more general statement involving a differential graded commutative algebra (A4, d)
equipped with an even degree second order differential operator : A — A with (1)
= 0 and such that [[4,d], 4] is also a second order differential operator.

3. A simple formality criterion for DGLA

Given a graded vector space V' on a characteristic 0 field K, we will denote by
S(V) = @51 "V the graded symmetric coalgebra cogenerated by V. Denoting by

D(V) = Homg (S(V),V) = [[ Di(V), where D;(V) = Homj ( it+1

i>0

v, V),

the composition on the right with the natural projection S(V) — @Hl V gives an
inclusion D; (V') C D(V'), while the composition on the left with the natural projection
S(V) — V gives an isomorphism of graded vector spaces (see, e.g., [20, 26])

Coderg (S(V)) = D(V).

By the inverse isomorphism, an element ¢ in D, (V') corresponds to the coderivation

a© a1 OO apym — ZS(O—)Q(GU(O% ) ao(m)) © Qo (m41) OO Ao (nt+m)>

where (o) is the Koszul sign and the sum is carried over all the (m + 1, n)-unshuffles
o. The graded vector space Coderg (S(V)) is a linear subspace of the graded asso-
ciative algebra Endy (S(V)) of linear endomorphisms of S(V'), which is closed under
the graded commutator bracket; hence D(V') inherits a natural graded Lie algebra
structure. A simple computation shows that for f € D, (V) and g € D, (V) we have

[f.9l=feg—(~1)T9ge f € Dyppn(V),

where
f i g(G/Oa ) an+m) = ZE(U)JC(Q(G’J(O)7 B aa(m))7 Ao(m+1)y- -+ 7aa'(n+m)>-

To prevent a possible misinterpretation, let us explicitly remark that the pre-Lie
operation e on D(V) is not associative. Notice that the induced bracket on the graded
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Lie subalgebra Dy (V) is the same as the graded commutator bracket on Homg (V, V).

Recall that L., structures on the graded vector space V[—1] are the degree 1
elements 0 in D(V) such that [0, 9] = 0; following [20], an L., structure 9 is called
linear if 0 € Dy(V).

If (V,d) is a chain complex, then we can look at (V,d) as a linear L..-algebra,
and so at d as an L, structure on V. Using d (seen as a coderivation) to “translate
the origin” in Coderg (S(V)), we have that Lo, structures on V can be seen as the
degree 1 coderivations £ on S(V) such that (d + £)? = 0. This is conveniently rewritten
as the Maurer-Cartan equation for the DGLA Coderg (S(V)):

€+ 16,6 =0,

where ¢ is the adjoint of d seen as a coderivation.
For any degree zero coderivation R € Dso(V) =[], Di(V), the exponential et

is a well defined element in the graded associative algebra Endg (S(V)), and it is
immediate to see that, since R is a coderivation, e is actually a graded coalgebra
automorphism of S(V') with inverse e . Moreover, in the graded associative algebra
Endg (S(V)) we have, for any solution £ of the Maurer-Cartan equation in D(V),

efld+ e B =d+elfx¢,
where * denotes the gauge action in D(V) (see, e.g., [27]):

Rk = £+§j “R ([R.€ + [R,d).

In particular, for any degree zero coderivation R € D~o(V'), the coderivation g =
el x 0 defines an L.-algebra structure isomorphic (via e?) to a linear one: efde=f =
d+ &g

Remark 3.1. The isomorphism e can be conveniently written in terms of an operadic
“forest formula”. Namely, the Homg (O™ V, " V))-component of e® can be written
as a weighted sum over oriented forests with n roots and m leaves, and whose internal
k-valent vertices are decorated by the Homg (@k V,V)-component of R. As usual in
this kind of formula, the weights are given by the (inverse of the) cardinality of the
automorphism groups of the forests.

Theorem 3.2. Let (A,d) be a chain complex, let R € Homg?*(A® A, A) be consid-
ered as a degree zero element of D(A[2k]), let Q = [R,d], and let

[a, b]Q = (_1)6Q(a7 b) (1)
be the degree zero bracket on A[2k — 1] induced by Q via decalage. If [R,Q] =0, then

the bracket (1) gives a formal homotopy abelian DGLA structure on (A[2k — 1],d).

More precisely, the exponential of the coderivation R is an Lso-isomorphism between
the DGLA (A[2k —1],d,0) and (A[2k —1],4d,[,]q)-

Proof. Since R is a degree zero element of D~o(A[2k]) and [R, [R,d]] = 0, we have

adR)
+1)!
Hence the two DGLAs (A[2k — 1],d,0) and ( [2k —1],d,],]@) have isomorphic Bar

R

eflde B =d+el *O_d+z (R, d)) = d+ Q.
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constructions, i.e., they are isomorphic as L.-algebras. Therefore, according to the
Bar-Cobar resolution [24], they are quasi-isomorphic as differential graded Lie alge-
bras. O

The above theorem is one of the possible formality criteria and finds application
only in some particular cases, for instance for the Koszul brackets. The reader may
find similar results in [9, 16] and [26, Thm. 9.13].

4. Differential operators on graded commutative algebras

The theory of differential operators on commutative rings (see, e.g., [8, 15]) extends
without difficulties to the graded case. Let A = ®A? be a graded commutative algebra
with unit 1 € A° over a field K of characteristic 0. Every a € A is also considered as
an element of Homy (A, A) acting by left multiplication:

a: A— A, a(b) = ab.
Denote by [,] the graded commutator on Homj (A, A) and by
Diff,(A) = @D Diff} (4) C Homg (4, A)
neZ
the graded subspace of differential operators of order < k. Recall that Diffy(A) is
defined recursively by setting Diff;(A) = 0 for k < 0 and
Diffx(A) = {f € Homg (A, A) | [f, a] € Diffy_1(A4) Va € A}

for k > 0.
Moreover,

Diff(A) Diff,(A) C Diff 41 (A),  [Diffy(A), Diff,(A)] C Diffp4r-1(A),

and therefore the space Diff (4) = J, Diff(A) of differential operators is a Lie sub-
algebra of Homy (A, A).

The differential operators of order < k are stable under scalar extension: if f €
Diff;,(A) and B is a graded commutative algebra, then f ® Id € Diff;(A ®x B).

For a fixed even integer 2k, let V = A[2k], i.e., V = DiezV? with Vi = A+2k,
According to the natural isomorphism Dy(V) = Homg (V, V) = Homg (A, A), we may
consider Diff (A) as a Lie subalgebra of D(V).

Also, for every n > 0 consider the multiplication map

Mn : A®n+1 —)A’ un(a()@@an) = Qagay - Qy.
We shall look at p, as a degree 2kn element in D,,(V), for every n > 0.

Remark 4.1. The Lie subalgebra of D(A) generated by the operators p,, n >0 is

isomorphic to the Lie algebra of polynomial vector fields on the affine line vanishing
_tn+1 d

in the origin, with corresponding to ———— —.

Lemma 4.2. For a linear map f € Homg (A, A) the following conditions are equiv-
alent:

1. f € Derg (A);
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2. [f, pn] =0 for every n > 0;
5. [fom] =0,

Proof. For every a,b € A we have

[f, u1](a,b) = f(ab) — f(a)b— (~1)*Pf(b)a = f(ab) — f(a)b— (~1)* Taf(b),

and therefore f is a derivation if and only if [f, u1] = 0. The proof that if f is a
derivation then [f, u,] = 0 for every n > 0 is easy and omitted. O

Theorem 4.3. For a linear map f € Homg (A, A), the following conditions are equiv-
alent:

1. f € Diff3(A) and f(1) =0;

2. f satisfies the “seven terms” condition
f(abe) + fla)be + (~1)2 P f(b)ac+(—1)°@+D) f(c)ab
= f(ab)e+ (=) f(be)a + (~1)" f(ac)b;

3. The bilinear form ®(a,b) = f(ab) — f(a)b — (=1)% af(b) satisfies the Poisson
identity

®(a,bc) = ®(a,b)c + (—1) @D (a, o);
4. fs p2] = (IS, ], ]

Proof. Tf f € Diff5(A) then [[[f,a],b],c] = 0 for every a,b,c € A and if, in addition,
f(1) = 0 then also

[[[£, al, 8], ](1) + f(1)abe = 0

for every a,b,c € A. Expanding the above expression one finds the seven terms con-
dition, hence (1) implies (2). That (2) implies (3) is immediate. Next, the Poisson
identity means that for every a the operator ®(a,—) is a derivation. Since [f,a] =
®(a,—) + f(a), this implies that [f,a] € Diff1(A) for any a, and so f € Diff2(A).
Moreover, by the Poisson identity again, f(1) = —®(1,1) = 0. This shows that (3)
implies (1). Finally, showing that (4) is equivalent to (2) is tedious but straightfor-
ward. O

Definition 4.4. A linear map f: A — A will be called a quasi-Batalin-Vilkovisky
operator if it satisfies any of the equivalent conditions of Theorem 4.3.

Remark 4.5. The name quasi-Batalin-Vilkovisky operator is motivated from the
fact [14, 23] that a Batalin-Vilkovisky algebra may be defined as the data of a
graded commutative algebra A and a quasi-BV operator A of odd degree such that
A% =0.

5. Formality of Koszul brackets

Throughout this section, (A, d) will be a differential graded commutative algebra
(with a differential d of degree 1) over a field of characteristic 0, and 7 a quasi-BV
operator on A of even degree —2k. We will write I = [¢,d]. Since d is a derivation, 1
is also a quasi-BV operator on A of degree —2k + 1.
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Lemma 5.1. In the notation above, assume that [l,] is also a quasi-BV operator on
A. Let R € Homg?*(A® A, A) and Q € Homg** T (A ® A, A) be the bilinear opera-
tors defined respectively as

R(a,b) = i(ab) — i(a)b — ai(b)
and
Q(a,b) = l(ab) — U(a)b — (—1)%al(b).
Then Q = [R,d] and [Q, R] = 0 in the graded Lie algebra D(A[2K]).

Proof. Tt is immediate to check that in D(A[2k]) one has @ = [R, d]. Moreover, by
definition, R = [, u1] and Q = [I, u1]. By assumption we have

[6, o] = [[4, ], pa]s  [Lpe] =[], [[Ld]pe] = ([T g]pa], pa].
The graded Jacobi identity gives
[[[L i]v Ml]v /1'1] = [[[l7 Ml]v 7:]7 1“’1] + Hlv [i, ILLl]]7 /1'1]
= [[[lvﬂl]hufl]v 7’] + 2[[la ,L"l]v [7'7/141]] + [lv [[Za /Ufl]aﬂl]]
and
Hl’i]vﬂﬂ = [[L/’Q]a 7’] + [l’ [i’u2]]'
Therefore,
0= [[[t, 4], pa], pa] — [T, 2], pa] = 2[[L, pua], [, pa]] = 2[Q, R]. O

Ezample 5.2. Let (Ax,d) be the de Rham complex of a manifold X. Given 7 €
(A" Tx) we have 4, € Diff,(Ax); moreover, %, € Diff,_1(Ax) if and only if n = 0.
According to the formula

Ly, ip] = Un,Blsn
we have that, for 7 € T(A® T ), the operators 4, and [l,,%,] are quasi-BV if and only
if [r,7]sy = 0, i.e., if and only if 7 is a Poisson structure.
From Theorem 3.2 we therefore obtain

Theorem 5.3. In the notation above, assume that [l,1] is also a quasi-BV operator
on A, and let [,]; be the degree —2k + 1 bracket on A defined by

0,V = (~1)(1(ab) — 1(@)P) — al(3).
Then (A,d,-,[,]1) is a Gerstenhaber algebra, whose underlying DGLA (A[2k — 1], d,

[.l) is a homotopy abelian DGLA. If, in addition, 1> =0, then (A,d,-,[,]i,1) is a
Batalin- Vilkovisky algebra.

Proof. The only thing to be checked is the Poisson identity for the bracket [,];; by
Theorem 4.3, this is equivalent to saying that [ is a quasi-BV operator. O

Remark 5.4. An alternative proof of the above theorem can be given using the results
of [2], where it is (implicitly) proved that the series of higher Koszul brackets gives
a morphism of graded Lie algebras and then commutes with adjoint actions; this is
essentially the argument used in [7].
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Example 5.5. An immediate application of the above theorem is the following refined
version of Theorem 2.2: Let X be a smooth manifold, (Ax,d,A) be its de Rham
algebra, and let [,]; be the Koszul bracket induced by a Poisson bivector field .
By Example 5.2, the operator i, satisfies the hypothesis of Theorem 5.3, and so
(Ax,d, N, [,]x) is a Gerstenhaber algebra whose underlying DGLA (Ax([1],d,[,]x) is
homotopy abelian.

Corollary 5.6. In the hypothesis of Theorem 5.3, let B a differential graded
linear subspace of A which is closed under the bilinear operator R = [i,u1]. Then

(B[2k —1],d,[,]s) is a formal DGLA.

Proof. Since B is closed under R, then S(B) is preserved by ef and the proof of
Theorem 3.2 applies. O

Example 5.7. Let A and 4 be as in Theorem 5.3. Then, for any py > 2k, the subcom-
plex B = ®p>p0 AP satisfies the assumptions of Corollary 5.6.

Ezxample 5.8. Let X be a symplectic manifold, and let j: Y < X be the inclusion of
a Lagrangian submanifold. Then the differential ideal B := ker j* C Ax satisfies the
assumptions of Corollary 5.6; this immediately follows by the Lagrangian Neighbor-
hood Theorem. In particular, the Koszul bracket induces a homotopy abelian DGLA
structure on the (shifted) complex of differential forms vanishing on Y.

Corollary 5.9. Let A, be a cosimplicial commutative differential graded algebra, and
let 1o: Ae = Ao be a cosimplicial linear map such that i,: A, — A, satisfies the
assumption of Theorem 5.3 for every n. Then the totalization of the cosimplicial
DGLA (A¢[2k — 1], de, [, ]1.) is a homotopy abelian differential graded Lie algebra.

Proof. The proof is an immediate consequence of the definition of totalization, see,
e.g., [3, 10, 12, 17, 19], and of the fact that differential operators of order < 2 are
stable under scalar extension. O

6. An application to deformations of holomorphic Poisson
manifolds

In this section we will denote by X a compact complex manifold, by ©y and Q%
the sheaves of holomorphic vector fields and holomorphic 1-forms respectively, by
ABRT the space of differentiable forms of type (p,¢) and by H},(X,C) the de Rham
cohomology of X.

A holomorphic Poisson structure on a complex manifold X is a holomorphic tan-
gent bivector field 7 € H(X, \” ©x) such that [, 7]gy = 0. As in the differentiable
case, the Poisson structure induces both a Koszul bracket

[]rt ART 5 AT — AT Lats

and an anchor map 7% : QY — ©x which is a morphism of sheaves of Lie algebras.
Denoting by F$ D Fi D --- the Hodge filtration,

i p,q
Fy = P 4%,
P21,q

we have, by previous results, that the DGLA (F%[1],d,[,]x) is quasi-isomorphic to
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an abelian DGLA, and (F%[1],d,][,]x) is a differential graded Lie subalgebra. This is
not sufficient to ensure the formality of F[1]. However, we have

Lemma 6.1. Assume that the inclusion F < FY$ is injective in cohomology (e.g.,
if X is Kihler); then the DGLA (Fx[1],d,[,]x) is quasi-isomorphic to an abelian
DGLA.

Proof. This is an easy consequence of the homotopy classification of DGLAs and
Loo-algebras [20]. Indeed, let f: g — b be a DGLA morphism, with H*(f) injective
and h quasi-abelian. Then, by the fact that § quasi-abelian, we have a zigzag of quasi-
isomorphisms of DGLAs h <~ ¢ = V with V a graded vector space (considered as
a DGLA with trivial differential and bracket). Let the DGLA [ be the homotopy
fiber product of g with € over h, let the graded vector space W be the image of
H*() > H*(¢) @ H*(V) =V, and let my: V — W be a graded linear projection.
Then we have a homotopy commutative diagram of DGLAs

g/[\e
\fh/ \V

T~

w

whose homotopy commutative square on the left is a homotopy pullback. In par-
ticular, the morphism [ — g is a quasi-isomorphism, and so the morphism [ — £ is
injective in cohomology. Therefore, the composition [ — W is a quasi-isomorphism
and we have the zigzag of quasi-isomorphisms g <= [ = W, with W abelian. O

If we are interested in obstructions of lifting Maurer-Cartan elements, then the
assumption of Lemma 6.1 can be relaxed. Denoting by Art the category of local
Artinian C-algebras, for any DGLA L the associated deformation functor Defy, : Art
— Set is defined as

_ {r e L' @me | dz + [z, 2] = 0}

Def (C
ef1(C) gauge equivalence

)

where m¢ is the maximal ideal of C. Among the basic facts about DGLA and asso-
ciated deformation functors we have (see, e.g., [26, 27| for proofs and more details):

1. Quasi-isomorphic DGLAs have isomorphic associated deformation functors;
2. Abelian DGLAs have unobstructed associated deformation functors;

3. If L — M is a morphism of DGLAs and Def; is unobstructed, then the obstruc-
tions of Defy, are contained in the kernel of H?(L) — H?(M).

Lemma 6.2. Assume that the natural map H3p(X,C) — H?(X,Ox) is surjective.
Then the functor Defpy 1) is unobstructed.

Proof. Since F$[1] is quasi-isomorphic to an abelian DGLA, the functor Def o 4 is
unobstructed, and therefore the obstructions of Defpy 1) are contained in the kernel
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of H3(F%[1]) — H%(F%[1]). Now the exact sequence

H?(Fy) —— H*(FY) H*(FY /Fy) — H*(Fx[1]) — H*(FX[1])

-

H2,(X,C) —— H*(X,Ox)

implies that H?(F%[1]) — H?(F%[1]) is injective. O

Theorem 6.3. Let w be a holomorphic Poisson structure on a compact complex man-
ifold X such that the natural map H3x(X,C) — H?*(X,Ox) is surjective. Then for
every closed (1,1) form w, the class [77 (w)] € HY(X, ©x) is tangent to a deformation
of X over a smooth basis.

Proof. Since X is compact, it has a semiuniversal deformation. According to Artin’s
theorem on the solution of analytic equations [1], it is sufficient to prove that the
class of 7#(w) extends to a formal deformation over C[[t]]. The anchor map 7#,
being holomorphic, extends to a morphism of differential graded Lie algebras

rojection * # *
ve Fx[1] B AR () T A (Ox).
The DGLA Ag(’*(é) x) is the Kodaira-Spencer algebra of X, and its associated defor-
mation functor is isomorphic to the functor of infinitesimal deformations of X; see [25]
and the references therein. According to Lemma 6.2 the functor Def FL[1) 18 unob-
structed, and therefore the class
Clt]

(w] € H(FL[1]) = Def py (u))

extends to an element of Def 1 1(C[[t]]). This implies, in particular, that y([w]) =
[77#(w)] extends to a deformation of X over C[[t]]. O

Remark 6.4. Theorem 6.3 has been recently proved by Hitchin [18] under the assump-
tion that either X is Kéhler or H%(X,Ox) = 0. The proof of Theorem 6.3 also shows
that the assumption Ow = dw = 0 can be replaced by the existence of a form 7 € Ai’o
such that dn = 0, On = Ow and dw = 0. In fact, since y(w) = y(w — 1), it is sufficient

to consider the cohomology class [w — 7] € H!(F%[1]) as a Maurer-Cartan element.
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