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A REPRESENTABILITY THEOREM FOR SOME
HUGE ABELIAN CATEGORIES

GEORGE CIPRIAN MODOI

(communicated by Charles A. Weibel)

Abstract
We define quasi-locally presentable categories as big unions of

a chain of coreflective subcategories that are locally presentable.
Under appropriate hypotheses we prove a representability the-
orem for exact contravariant functors defined on a quasi-locally
presentable category taking values in abelian groups. We show
that the abelianization of a well generated triangulated cate-
gory is quasi-locally presentable, and we obtain a new proof of
the Brown representability theorem. Examples of functors that
are not representable are also given.

Introduction

One of the main problems occurring in the theory of triangulated categories is to
construct a left or right adjoint for a given triangulated functor. In his influential book
on this subject, Neeman shows that the problem of finding an adjoint for a functor
between triangulated categories may be equivalently studied at the level of abelian-
izations of these categories, where we have to construct an adjoint for some exact
functor between abelian categories (see [11, Proposition 5.3.9]). Further, Neeman
considers in [11, Remark 5.3.10] that, unfortunately, this idea is “nearly impossible”
to be applied, since “existence theorems of adjoints usually depend on the categories
being well-powered”, that is, one object must have only a set of subobjects (for an
object of an abelian category this it equivalent to having only a set of quotients).
But, in general, the abelianization of a triangulated category with arbitrary coprod-
ucts is huge, that is, it does not satisfy the condition of being well (co)powered;
see [11, Appendix C]. Hence the abelianization is often considered to be too big and
thus not manageable. (See also the Introduction of Krause’s work [8].) This paper
intends to change this perspective a little. More exactly, the result about the exis-
tence of adjoints depending on the categories being well powered is, obviously, the
special Freyd’s adjoint functor theorem: if C is a complete, well powered category
having a cogenerator, then every functor F : C → D has a left adjoint if and only
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if it preserves limits; see [4, p. 89]. We argue that even if the abelianization of a
well generated triangulated category is not always well (co)powered, it has enough
structure to allow us to apply the general Freyd’s adjoint functor theorem: if C is a
complete category, then every functor F : C → D has a left adjoint if and only if it
preserves limits and satisfies the solution set condition (that is, for every f : D ∈ D
there is a set of maps fi : D → F (Ci), i ∈ I in D, where Ci ∈ C, such that every map
D → F (C), with C ∈ C, factors as f = F (k)fi, for some k : Ci → C in C; see [1, 0.7]).
The problem of the existence of the adjoints and the one of representability of a given
functor are strongly related (to fix the settings, suppose that we work with preaddi-
tive categories): First, a functor F : C → D has a left adjoint if and only if the functor
D(D,F (−)) : C → Ab is representable for all D ∈ D. Second, a functor F : C → Ab
has a left adjoint if and only if it is representable (actually it is represented by the
left adjoint evaluated at Z; see [4, pp. 81–82]).

The paper is organized as follows: In the first section we introduce the notion of
quasi-locally presentable category; it is a category that may be written as a union
of a chain of coreflective subcategories that are locally λ-presentable, where λ runs
over all regular cardinals. Under appropriate hypotheses, we prove a representability
theorem for exact, contravariant functors defined on such categories.

In the second section we recall the definition of the abelianization of a triangulated
category, and we show how the study of Brown representability may be done at
the level of this abelianization. For well generated triangulated categories we show
that the abelianization is quasi-locally presentable and satisfies the supplementary
hypotheses allowing us to apply the representability theorem proved in the previous
section. As a consequence we obtain a new proof of Brown representability theorem
for well generated triangulated categories.

All categories that we work with are preadditive (enriched over Ab). Everywhere
in our paper we may equally adopt the point of view of Gödel-Bernays-Von Neumann
axiomatization of set theory, with the distinction made there between classes and sets
or to work in a given Grothendieck universe. In this last case, a set means a small set
relative to that universe, whereas a class is a set that is not necessarily small.
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1. Quasi-locally presentable abelian categories

We begin this section by recalling some definitions: A cardinal λ is said to be
regular provided that it is infinite, and it cannot be written as a sum of less than λ
cardinals, all smaller than λ. Denote by R the class of all regular cardinals.

Let A be an additive category and C ⊆ A be a subcategory. Let F : A → Ab be
a contravariant functor. The category of elements of F |C , where F |C denotes the
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restriction of F at C, is by definition constructed as follows:

C/F = {(X,x) | X ∈ C, x ∈ F (C)},

with the morphisms

C/F ((X1, x1), (X2, x2)) = {α ∈ C(X1, X2) | F (α)(x2) = x1}.

In particular, for any object A ∈ A, let

C/A = C/A(−, A) = {(C, ξ) | C ∈ C, ξ : C → A},

C/A((C1, ξ1), (C2, ξ2)) = {α ∈ C(C1, C2) | ξ2α = ξ1}.

Consider a regular cardinal λ. A non-empty category S is called λ-filtered if the
following two conditions are satisfied:

F1. For every set {si | i ∈ I} of less that λ objects of S, there are an object s ∈ S
and morphisms si → s in S, for all i ∈ I.

F2. For every set {σi : s → t | i ∈ I} of less that λ morphisms in S, there is a mor-
phism τ : t → u such that τσi = τσj , for all i, j ∈ I.

Let A be an object of a category A. Then the functor A(A,−) preserves the colimit
of a diagram S → A, s 7→ X(s) in A (indexed over a category S), if and only if every
map g : A → colims∈S X(s) factors as

A

f

��

g

&&NNNNNNNNNNNN

X(u)
ξu

// colims∈S X(s)

through some of the canonical maps ξu with u ∈ S, and every such factorization is
essentially unique, in the sense that if f1, f2 : A → X(u) with ξuf1 = g = ξuf2, then
there is σ : u → t a map in S such that X(σ)f1 = X(σ)f2. The object A ∈ A is called
λ-presentable if A(A,−) preserves all λ-filtered colimits. The category A is called
locally λ-presentable provided that it is cocomplete and has a set S of λ-presentable
objects such that every X ∈ A is a λ-filtered colimit of objects in S (see [1, Definition
1.17], but also [1, Remark 1.21])). Note that, if A is locally λ-presentable, then the
subcategory Aλ of all λ-presentable objects in A is essentially small, and for every
object A ∈ A, the category Aλ/A is λ-filtered and

A ∼= colim
(X,ξ)∈Aλ/A

X,

as we may see from [1, Proposition 1.22]. A category is called locally presentable if it
is locally λ-presentable for some regular cardinal λ.

Remark 1.1. Let A be a locally λ-presentable category. Observe then that the cate-
gory Aop satisfies the hypotheses of Freyd’s special adjoint functor theorem: it is well
powered, complete and has a cogenerator (since the coproduct of all λ-presentable
objects is a generator for A). In particular, every contravariant functor F : A → Ab
that sends colimits into limits is representable. Indeed, we can view F as a covariant
functor Aop → Ab, which must be representable, having a left adjoint. Let us write
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F ∼= A(−, A) for some A ∈ A. Thus the categories Aλ/A and Aλ/F are isomorphic,
so

F ∼= A
(
−, colim

(X,x)∈Aλ/F
X
)
.

We consider a category A that is a union

A =
∪
λ∈R

Aλ

of a chain of subcategories {Aλ | λ ∈ R} such that Aκ ⊆ Aλ for all κ 6 λ and the
subcategory Aλ locally λ-presentable and closed under colimits in A, for any λ ∈ R.
Denote by Iλ : Aλ → A the inclusion functor Note that by Freyd’s special adjoint
functor theorem, the subcategory Aλ is coreflective, that is, Iλ has a right adjoint
Rλ : A → Aλ. We call quasi-locally presentable a category A as above satisfying the
additional property that Rλ preserves colimits for all λ ∈ R. For such a quasi-locally
presentable category A and a regular cardinal λ, we denote by Aλ

λ the subcategory
of all λ-presentable objects of Aλ that has to be skeletally small.

Lemma 1.2. In a quasi-locally presentable category A, it holds Aκ
κ ⊆ Aλ

λ, for every
κ 6 λ.

Proof. With the notations above, fix two cardinals κ 6 λ. Observe that if we denote
Iκ,λ : Aκ → Aλ the inclusion functor, then it has a right adjoint namely Rκ,λ = RκIλ.
Since Rκ preserves colimits, Rκ,λ satisfies the same property. Then for A ∈ Aκ

κ and
for a λ-filtered (hence also κ-filtered) diagram (Xi)i∈I in Aλ we have the following
chain of isomorphisms, showing that Iκ,λ(A) is λ-presentable:

Aλ(Iκ,λ(A), colimXi) ∼= Aκ(A,Rκ,λ(colimXi)) ∼= Aκ(A, colimRκ,λ(Xi))
∼= colimAκ(A,Rκ,λ(Xi)) ∼= colimAλ(Iκ,λ(A), Xi).

As an example of quasi-locally presentable categories we mention first the classical
locally presentable ones. Clearly if A is locally κ-presentable for some regular cardinal
κ, then it is also quasi-locally presentable, for all regular cardinals λ putting Aλ = A,
if λ > κ, and Aλ = 0 otherwise.

Lemma 1.3. Let F : A → Ab be a contravariant functor that sends colimits into lim-
its, defined on a quasi-locally presentable, abelian category A. Then for every regular
cardinal κ, there is λ ∈ R, λ > κ such that

FIκ ∼= colim
(X,x)∈Aλ

λ/F
A(Iκ(−), X).

Proof. For any λ ∈ R, consider the corresponding coreflective locally λ-presentable
subcategory Iλ : Aλ � A : Rλ.

Fix κ ∈ R. For a skeleton C0 of Aκ
κ, denote C0 =

∐
(U,u)∈C0/F

U . Let λ be a regular
cardinal such that

λ > κ+ card C0 +
∑
U∈C0

cardF (U) +
∑
U∈C0

cardA(U,C0) + ℵ1.



A REPRESENTABILITY THEOREM FOR SOME HUGE ABELIAN CATEGORIES 27

Since F : A → Ab sends colimits into limits, the same property is also true for
FIλ : Aλ → Ab. By Remark 1.1 we obtain FIλ ∼= Aλ(−, Fλ) for some Fλ ∈ Aλ satis-
fying

Fλ = colim
(X,x)∈Aλ

λ/F
X = colim

(X,ξ)∈Aλ
λ/Fλ

X,

with the canonical maps γ(X,x) : X → Fλ. Note that γ(X,x) is the image of (X,x) via

the isomorphism of categories Aλ
λ/FIλ

∼=−→ Aλ
λ/Fλ.

We have to show that

F (A) ∼= colim
(X,x)∈Aλ

λ/F
A (A,X) ,

for all A ∈ Aκ. Since A = Iκ(A) = Iλ(A) this means precisely that A(A,−) preserves
the colimit of the diagram Aλ

λ/F → A, (X,x) 7→ X. In order to prove this, consider in
the first step that A is a coproduct of objects in Aκ

κ. Without losing the generality, we
may assume that A =

∐
i∈I Ui, for some set I, and some Ui ∈ C0. Denote by ji : Ui →

A, (i ∈ I) the canonical injections. Let g : A → Fλ be a map in A. Since for all U ∈ C0
we have U ∈ Aκ ⊆ Aλ, we may identify C0/F with C0/Fλ thus C0 =

∐
(U,υ)∈C0/Fλ

U

with the canonical injections ε(U,υ) : U → C0. Since gji ∈ A(Ui, Fλ) we get a unique
f : A → C0, such that fji = ε(Ui,gji) from the universal property of the coproduct.

Put c0 = (υ)(U,υ)∈C0/Fλ
. We know by Lemma 1.2 that Aκ

κ ⊆ Aλ
λ, so the condition

λ >
∑

U∈C0
cardF (U) assures us that (C0, c0) ∈ Aλ

λ/Fλ. It follows (C0, c0) ∈ Aλ
λ/F .

Moreover, by construction, γ(C0,c0)f = g, so g factors through γ(C0,c0).
It remains to show that this factorization is essentially unique. Consider therefore

two maps f1, f2 : A → C0 such that γ(C0,c0)f1 = g = γ(C0,c0)f2. Denote N = {(U, h) |
U ∈ C0, h ∈ A(U,C0) with γ(C0,c0)h = 0}, where C is a skeleton of Aλ

λ and put C1 =∐
(U,h)∈N U with the canonical injections k(U,h) : U → C1. By the choice of λ we have

λ > cardA(U,C0) > cardN , hence (C1, 0) ∈ Aλ
λ/F . We may even consider (C1, 0) ∈

C/F . We have (Ui, (f1 − f2)ji) ∈ N . Hence there is a unique θ : A → C1 such that
θji = k(Ui,(f1−f2)ji) for all i ∈ I. Further, there is a unique morphism η : C1 → C0

such that ηk(U,h) = h for all (U, h) ∈ N . Clearly η is a map in Aλ
λ/F between (C1, 0)

and (C0, c0). If C is defined by the exactness of the sequence C1
η−→ C0

δ−→ C → 0,
then C ∈ Aλ

λ, because Aλ
λ is closed under cokernels (see [1, Proposition 1.16]). Since

F sends cokernels into kernels, we infer that there is c ∈ F (C) such that F (δ)(c) = c0.
Thus δ : (C0, c0) → (C, c) lies in Aλ

λ/F , and δ(f1 − f2) = δηθ = 0, finishing the proof
of the first step above.

Finally, an arbitrary A ∈ Aκ is a colimit of objects in Aκ
κ, so it is a cokernel of the

form A1 → A0 → A → 0 with A1 and A0 being coproducts of objects in Aκ
κ. Using

the first step before, we easily get

F (A) ∼= A(A,Fλ) ∼= colim
(X,x)∈Aλ

λ/F
A(A,X)

canonically.

Remark 1.4. With the notations made in Lemma 1.3 and its proof, the argument used
to show the fact that A(A,Fλ) ∼= colim(X,x)∈Aλ

λ/F
A(A,X), for A =

∐
i∈I Ui, with

Ui ∈ Aκ
κ, is inspired by [3, Lemma 2.11]. However, we did not only change the settings,



28 GEORGE CIPRIAN MODOI

but we also improved the proof of Franke. A simple translation of his argument in our
settings would require the condition cardA(U,X) 6 λ for all U ∈ Aκ

κ and all X ∈ Aλ
λ.

A priori it is not clear how we may choose such a regular cardinal λ. Instead, we
require

∑
U∈C0

cardA(U,C0) < λ, where the left-hand side of this inequality does not
depend of λ.

Recall that we call cofinal a subcategory S of a category C that satisfies the fol-
lowing two properties: For every c ∈ C there is a map c → s in C for some s ∈ S, and
for any two maps c → s1 and c → s2 in C, with s1, s2 ∈ S there are s ∈ S and two
maps s1 → s and s2 → s in S such that the composed morphisms c → s1 → s and
c → s2 → s are equal. It is well-known that if S is a cofinal subcategory of C, then
colimits over C and colimits over S coincide (see [1, 0.11]).

Lemma 1.5. Let A be an abelian category, and let F : A → Ab be a contravariant,
exact functor. Let C ⊆ A be a subcategory closed under finite coproducts and cokernels.
If S is a subcategory of C closed under finite coproducts and satisfying the property
that every X ∈ C admits an embedding 0 → X → S into an object in S, then S/F is
a cofinal subcategory of C/F .

Proof. Let (X,x) ∈ C/F . Consider an embedding 0 → X
α−→ S, with S ∈ S. Thus

F (S)
F (α)−−−→ F (X) → 0 is exact, showing that there exists y ∈ F (S) with F (α)(y) = x.

Therefore, α is a map in C/F between (X,x) and (S, y).
Now we claim that if α : X1 → X2 is a map in C, and x2 ∈ F (X2) is an element with

the property F (α)(x2) = 0, then there is a morphism γ ∈ C/F ((X2, x2), (S, y)) into
an object (S, y) ∈ S/F such that γα = 0. Indeed consider X being defined by exact

sequence X1
α−→ X2

β−→ X → 0. Since the sequence of abelian groups 0 → F (X)
F (β)−−−→

F (X2)
F (α)−−−→ F (X1) is also exact and F (α)(x2) = 0, we obtain an element x ∈ F (X)

such that F (β)(x) = x2. For obtaining the required γ, compose β with a morphism
in C/F from (X,x) into an object (S, y), which is constructed as in the first part of
this proof.

Finally, for two morphisms

α1 ∈ C/F ((X,x), (S1, y1)) and α2 ∈ C/F ((X,x), (S2, y2)),

denote by ρ1 and ρ2 the respective injections of the coproduct S1 q S2. Then
F (ρ1α1 − ρ2α2)(y1, y2) = x− x = 0, so our claim for α = ρ1α1 − ρ2α2 gives a mor-
phism (S1 q S2, (y1, y2)) → (S, y) in C/F , with S ∈ S, such that the composed mor-
phisms X → S1 → S1 q S2 → S and X → S2 → S2 q S2 → S are equal.

Let κ ∈ R. As usual, a κ-(co)product means a (co)product of less that κ objects.
We say that a quasi-locally presentable abelian category A is weakly κ-generated if A
coincides with its smallest full subcategory containing Aκ and is closed under kernels,
cokernels, extensions and κ-coproducts. We also need the following notation:

Injλ A = {S ∈ A | S is injective and S ∈ Aλ
λ}.

Theorem 1.6. Let A be a quasi-locally presentable, abelian category that is weakly
κ-generated, for some regular cardinal κ. Suppose also that, for any regular cardinal
λ > κ, every X ∈ Aλ

λ admits an embedding 0 → X → S into an object S ∈ Injλ A.
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Then every exact, contravariant functor F : A → Ab that sends coproducts into prod-
ucts is representable (necessarily by an injective object).

Proof. Fix a contravariant exact functor F : A → Ab that sends coproducts into prod-
ucts. Consider the obvious natural transformation

φ : colim
(X,x)∈Aλ

λ/F
A(−, X) → F.

Since F sends colimits into limits, Lemma 1.3 applies and tells us that there is λ ∈ R,
λ > κ such that φ restricts to an isomorphism

colim
(X,x)∈Aλ

λ/F
A(Iκ(−), X) ∼= FIκ.

We know that Aλ
λ/F is λ-filtered (see [5, Korollar 5.4]). Hence colimits of abelian

groups indexed over this category are exact and commute with products of less that
λ objects (see [5, Satz 5.2]). Since every X ∈ Aλ

λ admits an embedding in an object
S ∈ Injλ A, we deduce by Lemma 1.5 that Injλ A/F is a cofinal subcategory of Aλ

λ/F ,
so

colim
(X,x)∈Aλ

λ/F
A(−, X) ∼= colim

(S,s)∈Injλ A/F
A(−, S)

is an exact functor. We infer that the full subcategory of A consisting of all objects
A for which φA is an isomorphism contains Aκ and is closed under kernels, cokernels,
extensions and κ-coproducts (since λ > κ). Therefore, it is equal to A forced by the
hypothesis of weak κ-generation. This means that φ is a natural isomorphism, and
hence a skeleton of Aλ

λ forms a solution set for F . We conclude that F is representable
by the general Freyd’s adjoint functor theorem.

Example 1.7. The following example shows that the conclusion of Theorem 1.6 re-
quires some kind of weak generation.

Recall that an abelian category is called locally Grothendieck if every set of objects
may be included in a subcategory that is Grothendieck (see [13]). Let K be a field.
The category A =

∪
λ∈R Mod(Kλ) considered in [13] is locally Grothendieck. By

Mod(Kλ) we denote the category of right modules over the ring Kλ. Moreover, the
category A is also quasi-locally presentable. Indeed it is a a big union of a chain of
Grothendieck (hence locally presentable) subcategories Aλ = Mod(Kλ). For all κ 6 λ
in R we have Kκ = Kλe, where e = e(κ, λ) ∈ Kλ is a central idempotent defined by
eγ = 1 for γ 6 κ and 0 otherwise. Thus Kκ is a direct summand of Kλ, and all
X ∈ Mod(Kλ) decomposes as X = Xe⊕X(1− e). Moreover, for X,Y ∈ Mod(Kλ),
there is no nonzero homomorphisms between Xe and Y (1− e). Hence we have

HomKλ(X,Y ) = HomKκ(Xe, Y e)⊕HomKλ(1−e)(X(1− e), Y (1− e)).

Thus we can see Mod(Kκ) as a full split subcategory of Mod(Kλ). We deduce that
for every fixed κ ∈ R and for every X ∈ A, there is λ > κ such that X ∈ Mod(Kλ).
The assignment X 7→ Xe, where e = e(κ, λ) induces a well defined functor Rκ : A →
Mod(Kκ) that is both the left and the right adjoint of the inclusion functor Iκ,
follows by the fact that Mod(Kκ) is a full split subcategory of Mod(Kλ). Thus both
the inclusion functor Mod(Kκ) and its right adjoint preserve colimits.
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Using an idea from [10] we may construct a non-representable exact contravariant
functor F : A → Ab into products. For every λ ∈ R, denote by λ+ the successor of
λ and consider Qλ+ to be an injective cogenerator of Mod(Kλ+

). The Kλ+

-module
Yλ = Qλ+(1− e), where e = e(λ, λ+), is injective and satisfies HomKλ+ (X,Yλ) = 0
for all X ∈ Mod(Kλ). The contravariant functor

F : A → Ab, F (X) =
∏
λ∈R

A(X,Yλ)

is well defined. In fact, for X ∈ Mod(Kκ), we have A(X,Yλ) = 0 if λ > κ, hence
F (X) =

∏
λ<κ A(X,Yλ). Obviously F is exact and sends coproducts into products.

But F is not representable, since the strict inclusion of Mod(Kλ) into Mod(Kλ+

) im-

plies that the cogenerator Qλ+ must contain a nonzero part Yλ in Mod(Kλ+

(1− e)).
The representability of F would mean the existence of the product Y =

∏
λ∈R Yλ in

A. But this is absurd since Y would have a proper class of endomorphisms, and such
objects do not exist in A. Notice that the category

∪
λ∈R Mod(Kλ) was used in [13]

as an example of a category for which the λ-pure global dimension is greater than 1,
for all λ ∈ R. Both this example and our present work have connections with Brown
representability. On the other hand, we have

Proposition 1.8. Consider the above locally Grothendieck category

A =
∪
λ∈R

Mod(Kλ).

A contravariant functor F : A → Ab is representable if and only if it sends colimits
into limits and there is κ ∈ R such that F ∼= FIκRκ.

Proof. If F ∼= A(−, Y ) for some Y ∈ A then there is κ ∈ R such that Y ∈ Mod(Kκ).
Thus for every X ∈ A, there is λ > κ such that X ∈ Mod(Kλ). Hence

F (X) = A(X,Y ) ∼= A(Xe, Y ) ∼= FIκRκ(X).

Conversely, if F sends colimits into limits then, as in the proof of Lemma 1.3,
we obtain FIκ ∼= HomKκ(−, Y ), for some Y ∈ Mod(Kκ). Combining this with F ∼=
FIκRκ we deduce:

F ∼= HomKκ(Rκ(−), Y ) ∼= A(−, Iκ(Y )),

therefore F is representable.

Example 1.9. In Theorem 1.6 the exactness of the functor F : A → Ab (which sends
coproducts into products) is an essential hypothesis. More precisely, the weaker
requirement that F sends colimits into limits is not sufficient to conclude that it
is representable. For showing this suppose that the quasi-locally presentable category
A from the Theorem 1.6 is abelian (as in the motivating case of the next section)
but is not locally presentable; that is, A 6= Aλ for every λ ∈ R. The fact that A is
weakly generated, which is used in combination with the exactness of F , does not play
any role in this example. The exactness of Rλ implies that Aλ is equivalent to quo-
tient category of A modulo the Serre subcategory KerRλ = {X ∈ A | Rλ(X) = 0}.
But Rλ is not an equivalence, forcing KerRλ 6= 0. Consider 0 6= Xλ ∈ A such that
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Rλ(Xλ) = 0, for every λ ∈ R. Strictly speaking we need here a version of axiom of
choice that works for proper classes. As in Example 1.7, we infer that the functor

F =
∏
λ∈R

A(−, Xλ)

is well defined since for every X ∈ A we have X ∈ Aκ for some κ ∈ R, so A(X,Xλ)
= 0 for all λ > κ. It is easy to see that this functor does the job we claim.

2. The abelianization of a well generated triangulated cate-
gory

The main purpose of this section is to show that the abelianization of a triangulated
category that is well generated in the sense of Neeman is quasi-locally presentable
and satisfies the hypothesis of Theorem 1.6. Consequently we obtain a new proof of
Brown representability theorem for such triangulated categories.

Consider a preadditive category T . By a T -module we understand a functor
X : T op → Ab. Such a functor is called finitely presentable if there is an exact sequence
of functors

T (−, y) → T (−, x) → X → 0

for some x, y ∈ T . Using Yoneda lemma, we know that the class of all natural trans-
formations between two T -modules X and Y denoted HomT (X,Y ) is actually a
set, provided that X is finitely presentable. We consider the category mod(T ) of
all finitely presentable T -modules, having HomT (X,Y ) as morphisms spaces, for all
X,Y ∈ mod(T ). The Yoneda functor

H = HT : T → mod(T ) given by HT (x) = T (−, x)

is an embedding of T into mod(T ), according to Yoneda lemma. If, in addition, T
has coproducts then mod(T ) is cocomplete and the Yoneda embedding preserves
coproducts. It is also well-known (and easy to prove) that, if F : T → A is a functor
into an additive category with cokernels, then there is a unique, up to a natural
isomorphism, right exact functor F ∗ : mod(T ) → A, such that F = F ∗HT (see [8,
Lemma A.1]). Moreover, F preserves coproducts if and only if F ∗ preserves colimits.

In this section the category T will be triangulated with splitting idempotents.
For the definition and basic properties of triangulated categories the standard refer-
ence is [11]. Note that T has splitting idempotents, provided that T has countable
coproducts, according to [11, Proposition 1.6.8]. Recall that T is supposed to be
additive. A functor T → A into an abelian category A is called homological if it
sends triangles into exact sequences. A contravariant functor T → A that is homo-
logical when regarded as a functor T op → A is called cohomological (see [11, Defi-
nition 1.1.7 and Remark 1.1.9]). An example of a homological functor is the Yoneda
embedding HT : T → mod(T ). We know that mod(T ) is an abelian category, and
for every functor F : T → A into an abelian category, the unique right exact functor
F ∗ : mod(T ) → A extending F is exact if and only if F is homological, by [6, Lemma
2.1]. This is the reason for which mod(T ) is called the abelianization of the triangu-
lated category T and is sometimes denoted by A(T ). By [11, Corollary 5.1.23], A(T )
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is a Frobenius abelian category with enough injectives and enough projectives that
are, up to isomorphism, exact objects of the form T (−, x) for some x ∈ T .

A first link between representability of functors defined on T , respectively on A(T )
is given by:

Lemma 2.1. If T is a triangulated category with splitting idempotents, then a coho-
mological functor F : T → Ab is representable if and only if its extension F ∗ : A(T ) →
Ab is representable.

Proof. The cohomological functor F : T → Ab can be interpreted as a homological
functor T → Abop that has a unique extension to A(T ). Therefore, F extends uniquely
to a contravariant, exact functor F ∗ : A(T ) → Ab, defined as F ∗ ∼= HomT (−, F ). We
recall that Hom denotes the set of all natural transformations, and it coincides with
the morphisms spaces in A(T ) only if F ∈ A(T ).

If F is representable, then F ∈ A(T ), and F ∗ is represented by F . Conversely if
F ∗ is representable by an object in A(T ), then this object must be isomorphic to F ;
therefore F ∈ A(T ). Because F ∗ is exact, F must be injective, hence representable.

We say that T satisfies the Brown representability theorem if every cohomological
functor F : T → Ab that sends coproducts into products is representable. Then we
record:

Corollary 2.2. Let T be a triangulated category with coproducts. The following are
equivalent:

(i) T satisfies Brown representability theorem.

(ii) Every exact contravariant functor F : A(T ) → Ab that sends coproducts into
products is representable.

(iii) Every exact covariant functor F : A(T ) → A that preserves colimits, having
values into an abelian cocomplete category with enough injectives, has a right
adjoint.

Proof. The equivalence (i) ⇔ (ii) follows by Lemma 2.1, whereas the implication
(iii) ⇒ (ii) is obvious, by replacing contravariant functors A(T ) → Ab with covariant
functors A(T ) → Abop. Finally, (i) ⇒ (iii) follows by [2, Theorem 1.1].

Let T is a triangulated category with coproducts. We need the following definitions:
For a regular cardinal λ, a λ-localizing subcategory of T is a triangulated subcate-
gory closed under λ-coproducts. A localizing subcategory is a subcategory that is
λ-localizing for all λ. Consider a set of objects S ⊆ T that is closed under suspen-
sions and desuspensions. We say that T is generated (in the triangulated sense) by S,
provided that an object t ∈ T vanishes, whenever T (s, t) = 0 for all s ∈ S. Further,
we say that T is perfectly generated by the set of objects S if S generates T , and, for
any s ∈ S, the map T (s,

∐
i∈I xi) → T (s,

∐
i∈I yi) is surjective, for every set of maps

{xi → yi | i ∈ I} such that T (s, xi) → T (s, yi) is surjective, for all i ∈ I. Finally, T is
called well λ-generated, where λ ∈ R, provided that T is perfectly generated by a set
of objects, which are also λ-small, that is, every map s →

∐
i∈I xi, with s ∈ S, factors

trough a coproduct
∐

i∈I′ xi with card I ′ < λ; the category T is well generated if it is
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well λ-generated, for some λ. Following [7, Theorem A], this definition is equivalent
to the original one given by Neeman. Note that, by [9, Corollary 2.6], if T is perfectly
generated by S, then T coincides with its smallest ℵ1-localizing subcategory that
contains arbitrary coproducts of objects in S.

A category C is called λ-cocomplete if C has λ-coproducts and cokernels. It is
easy to see that C is λ-cocomplete if and only if it contains all colimits of dia-
grams with less that λ morphisms. A C-module over a λ-cocomplete category is called
λ-left exact if it is left exact and sends λ-coproducts into products. Provided that the
category C is essentially small, the class HomC(X,Y ) is actually a set for all C-modules
X,Y . Thus we are allowed to consider the category Mod(C) of all C-modules. If C is
also λ-cocomplete, then denote by Lexλ(C

op

,Ab) the full subcategory of Mod(C) con-
sisting of λ-left exact modules. We know that Lexλ(C

op

,Ab) is a locally λ-presentable
category, and the embedding C → Lexλ(C

op

,Ab) given by X 7→ C(−, X) identifies C,
up to isomorphism, with the subcategory of λ-presentable objects in Lexλ(C

op

,Ab)
(see [5, Korollar 7.9]).

As before, let λ denote a regular cardinal. If S is a preadditive, essentially small
category with λ-coproducts, then denote by Prodλ(S

op

,Ab) the full subcategory of
Mod(S), consisting of those modules that preserve λ-products. Clearly a finitely pre-
sentable S-module, that is, an element in mod(S), preserves arbitrary products, hence
it belongs to Prodλ(Sop,Ab).

Lemma 2.3. For a regular cardinal λ, consider an additive, essentially small category
S having λ-coproducts. Then Prodλ(S

op

,Ab) is a locally λ-presentable category, and

the embedding mod(S) ⊆−→ Prodλ(S
op

,Ab) identifies mod(S) with the full subcategory
of Prodλ(S

op

,Ab) consisting of all λ-presentable objects.

Proof. The category mod(S) has obviously λ-coproducts and cokernels, so it is
λ-cocomplete. According to [8, Lemma B.1], there is an equivalence of categories

Lexλ(mod(S)
op

,Ab) → Prodλ(S
op

,Ab), X 7→ XHS ,

where HS : S → mod(S) denotes the Yoneda functor. Thus Prodλ(Sop,Ab) is locally
λ-presentable. Further, the identification of λ-presentable objects in Prodλ(Sop,Ab)
follows by discussion above concerning λ-presentable objects in Lexλ(Cop,Ab).

Suppose now that T is well κ-generated triangulated category, having a perfectly
generating set S consisting of κ-small objects. For any λ > κ, we consider the smallest
λ localizing subcategory of T that contains S and denote it by T λ. The objects in
T λ are called λ-compact. By [7, Lemma 5] the category of λ-compact objects in T
is independent of S. Clearly it is essentially small and a skeleton of T λ generates
T . Moreover T λ has λ-coproducts. Denote Aλ(T ) = Prodλ((T λ)op,Ab), for λ > κ
and Aλ(T ) = 0 otherwise. We know by [11, Proposition A.1.8] that Aλ(T ) is locally
λ-presentable, and by [11, Proposition 6.5.3] that the restriction functor Rλ : A(T ) →
Aλ(T ) has a fully faithful left adjoint Iλ : Aλ(T ) → A(T ), therefore we may identify

Aλ(T ) to a coreflective subcategory of A(T ).

Proposition 2.4. Fix a regular cardinal κ > ℵ0. If T is a well κ-generated triangu-
lated category, then A(T ) is a quasi-locally presentable abelian category that is weakly
κ-generated.
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Proof. Denote by A the smallest subcategory of A(T ) that is closed under kernels,
cokernels, extensions, countable coproducts and contains Aκ(T ). Let us show that

A(T ) = A. Observe first that if T → U → X → Y → Z is an exact sequence with
T,U, Y, Z ∈ A then we can construct the commutative diagram with exact rows and
column

0

��
T // U // X ′ //

��

0

T // U // X //

��

Y // Z

0 // X ′′ //

��

Y // Z

0

showing that X ∈ A. Therefore, if x → y → z  is a triangle in T with H(x),H(z) ∈
A then H(y) ∈ A. It is shown in [9, Theorem 2.5] that every object x ∈ T is isomor-
phic to a homotopy colimit of a tower x0 → x1 → · · · such that x0 = 0 and for every
n ∈ N we have a triangle pn → xn → xn+1  with pn being a coproduct of objects in
T κ. Inductively, H(xn) ∈ A, for all n ∈ N. Hence H(

∐
n∈N xn) ∼=

∐
n∈N H(xn) ∈ A,

and finally, H(x) ∈ A. Now, for every X ∈ A(T ) there is an exact sequence H(y) →
H(x) → X → 0, with x, y ∈ T , thus X ∈ A.

Note that we have already shown that T coincides with its smallest ℵ1-localizing
subcategory that contains a skeleton of T κ. Therefore, the proof of [11, Proposition
8.4.2] (more precisely [11, 8.4.2.3]) works for our case. Hence T =

∪
λ>κ T λ, and

further A(T ) =
∪

λ∈R Aλ(T ). In addition an immediate consequence of Lemma [11,
6.5.1] is that the right adjoint of the inclusion functor Aλ(T ) → A(T ) preserves col-
imits, and all conditions from the definition of a weakly κ-generated quasi-locally
presentable category are fulfilled.

Theorem 2.5. If T is a well generated triangulated category, then every functor
F : A(T ) → Ab that is contravariant, exact and sends coproducts into products is
representable.

Proof. Without losing the generality we may assume that T is well κ-generated, for
some κ > ℵ1 (if not, we replace κ by ℵ1). By Proposition 2.4, A(T ) is a weakly κ-
generated quasi-locally presentable category. In order to apply Theorem 1.6, we have
only to show that every λ-presentable object X of Aλ(T ) admits an embedding into
an object in S ∈ Aλ(T ) that is λ-presentable in Aλ(T ) and injective in A(T ). But this
follows immediately from Lemma 2.3, since, according to [11, Corollary 5.1.23], every
X ∈ mod(T λ) admits an embedding into an object of the formH(x) with x ∈ T λ.

Note that the category A(T ) is usually “huge”, in the sense that it is not
well (co)powered, as we learned on [11, Appendix C]. Thus Proposition 2.4 and
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Theorem 2.5 provide an example of such a huge category, which is quasi-locally pre-
sentable and for which representability Theorem 1.6 applies.

Combining Theorem 2.5 with Corollary 2.2 we obtain a new proof for:

Corollary 2.6. Every well generated triangulated categories satisfies Brown repre-
sentability theorem.

Example 2.7. Recall from [12] the definition: A triangulated category with coproducts
is called locally well generated, provided that every localizing subcategory that is
generated (in the triangulated sense) by a set of objects is well generated. The typical
example of a locally well generated triangulated category, which is not well generated,
is the homotopy category K(ModR) where R is a ring that is not pure-semisimple
(see [12, Theorem 3.5]). Objects in this category are complexes of R-modules, and
maps are classes of homotopy equivalent maps of complexes.

Let consider R = Z, so T = K(Ab) is locally well generated, but not well gen-
erated. Then we want to construct a non-representable exact contravariant functor
F : A(K(Ab)) → Ab that sends coproducts into products. For this purpose, observe
that there are objects Yλ ∈ K(Ab) with λ ∈ R such that the functor:

F =
∏
λ∈R

T (−, Yλ) : K(Ab) → Ab

is cohomological, sends coproducts into products but is not representable, as it may
be seen in [10, Example 11]. Note that the argument showing that this functor is well
defined is similar to the one used in Examples 1.7 and 1.9. By Lemma 2.1 the functor

F ∗ : A(K(Ab)) → Ab, F ∗(X) = HomK(Ab)

(
X,
∏
λ∈R

T (−, Yλ)

)
is contravariant, exact, and sends coproducts into products, but it is not representable.
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[5] P. Gabriel and F. Ulmer, Lokal präsentierbare Kategorien, Springer Lecture
Notes in Math. 221, Springer-Verlag, New York, 1971.

[6] H. Krause, Smashing subcategories and the telescope conjecture—an algebraic
approach, Invent. Math. 139 (2000), no. 1, 99–133.

[7] H. Krause, On Neeman’s well generated triangulated categories, Documenta
Math. 6 (2001), 121–126.



36 GEORGE CIPRIAN MODOI

[8] H. Krause, Localization theory for triangulated categories, in Triangulated cat-
egories, London Math. Soc. Lecture Note Ser. 375 (2010), 161–235, Cambridge,
Univ. Press, Cambridge.

[9] G.C. Modoi, On perfectly generating projective classes in triangulated cate-
gories, Comm. Algeba, 38 (2010), no. 3, 995–1011.
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