Homology, Homotopy and Applications, vol. 14(1), 2012, pp.281-285

THE ISOMORPHISM BETWEEN MOTIVIC COHOMOLOGY AND K-GROUPS FOR EQUI-CHARACTERISTIC REGULAR LOCAL RINGS

YUKI KATO

(communicated by J.F. Jardine)

Abstract

One of the well-known problems in algebraic K-theory is the comparison of higher Chow groups and K-groups. In this paper, using the motivic complex defined by Voevodsky– Suslin–Friedlander, we prove the comparison theorem for equicharacteristic regular local rings.

1. Introduction

Voevodsky–Suslin–Friedlander [8] defined the motivic cohomology $\operatorname{CH}^{r}_{\operatorname{Zar}}(X,n)$ by using equi-dimensional cycle groups $\mathcal{Z}_{\operatorname{equi}}(X \times \Delta^{\bullet} \times \mathbb{A}^{r}/X \times \Delta^{\bullet}, 0)$ for smooth noetherian schemes X over a field and showed the contravariant functoriality for morphisms of schemes. Friedlander–Suslin [2] proved that $\operatorname{CH}^{r}_{\operatorname{Zar}}(X,n) = \operatorname{CH}^{r}(X,n)$ for smooth quasi-projective schemes X over a field, where $\operatorname{CH}^{r}(X,n)$ is the higher Chow group of X defined by Bloch [1]. For smooth quasi-projective schemes X over a field, Bloch [1] proved that $\bigoplus_{r\geq 0} \operatorname{CH}^{r}(X,n)$ coincides with the *n*-th algebraic K-group $K_n(X)$ after tensoring with \mathbb{Q} . We use the subscript $-\mathbb{Q}$ to mean $-\otimes_{\mathbb{Z}} \mathbb{Q}$.

In this paper, we consider the motivic cohomology groups $\operatorname{CH}_{\operatorname{Zar}}^r(X,n)$ for regular schemes by using an equi-dimensional cycle group [8] and prove that there is an isomorphism between the K-group $K_n(X)$ and the motivic cohomology group $\operatorname{CH}_{\operatorname{Zar}}^r(X,n)$ for the spectrum of an arbitrary regular local ring containing a field after tensoring with \mathbb{Q} .

Theorem 1.1. Let R be a regular local ring containing a prime field. Then the cycle class map

$$\operatorname{cl}^{(r)}: K_n(R)^{(r)}_{\mathbb{Q}} \to \operatorname{CH}^r_{\operatorname{Zar}}(R,n)_{\mathbb{Q}}$$

is an isomorphism for any $n, r \ge 0$, where $cl^{(r)}$ is the cycle-class map constructed in Section 3.1 and $K_n(R)^{(r)}_{\mathbb{Q}}$ is the eigenspace of the Adams operation $\Psi^k \colon K_n(R)_{\mathbb{Q}} \to K_n(R)_{\mathbb{Q}}$ with the eigenvalue k^r for $k = 2, 3, \ldots$.

This theorem is proved by using Popescu's result [6, Corollary 2.7] that says that any equi-characteristic regular local ring R is a directed inductive limit of smooth

 $2000 \ {\rm Mathematics \ Subject \ Classification: 19E15, 14F42, 14C25.}$

Received January 25, 2011, revised July 21, 2011; published on June 8, 2012.

Key words and phrases: algebraic cycles, higher Chow groups, algebraic K-theory.

Article available at http://intlpress.com/HHA/v14/n1/a14 and doi:10.4310/HHA.2012.v14.n1.a14 Copyright © 2012, International Press. Permission to copy for private use granted.

YUKI KATO

sub-algebras R_{α} over a field F. Since we may assume that F is perfect $R = \varinjlim R_{\alpha}$ and $K_n(R) = \varinjlim K_n(R_{\alpha})$, we can reduce Theorem 1.1 to the case of a smooth F-algebra R. Then we have to prove that the functor $\operatorname{CH}^r_{\operatorname{Zar}}(-,n)_{\mathbb{Q}}$ commutes with directed inductive limits of algebras, and this is proved by Proposition 2.2.

Acknowledgements

I would like to express thanks to Professor Masaki Hanamura for his valuable advice. I wish to deeply thank the anonymous referee for very valuable suggestions and comments.

2. Motivic cohomology of equi-dimensional cycles

In this section, we always assume that all schemes are regular noetherian and separated. A morphism $p: X \to S$ of schemes of finite type is said to be *equi-dimensional* of dimension r, if dim $p^{-1}(p(x)) = r$ for any $x \in X$ and any irreducible component of X dominates an irreducible component of S. In particular, any equi-dimensional morphism of dimension zero is a quasi-finite morphism and dominates an irreducible component.

Let $\mathcal{Z}_{equi}(X/S, r)$ be the free abelian group generated by closed integral subschemes of X which are equi-dimensional of dimension r over S. We call $\mathcal{Z}_{equi}(X/S, r)$ the equi-dimensional cycle group of dimension r.

Let X be an S-scheme of finite type. According to [8, Chapter 2, Theorem 3.3.1, Lemma 3.3.6 and Corollary 3.4.3], for any morphism of regular noetherian schemes $f: T \to S$, we have a homomorphism $f^*: \mathcal{Z}_{equi}(X/S, r) \to \mathcal{Z}_{equi}(X \times_S T/T, r)$ and $\mathcal{Z}_{equi}(X \times_S -/-, r)$ is a contravariant functor for morphisms of regular noetherian schemes. Furthermore, the functor $\mathcal{Z}_{equi}(X \times_S -/-, r)$ is an étale-sheaf [2, p. 816] on S, hence this is a Zariski-sheaf on S. We define the motivic cohomology $\operatorname{CH}^r_{\operatorname{Zar}}(X, n)$ for finite dimensional regular noetherian schemes X:

Definition 2.1. Let X be a regular noetherian scheme of finite dimension. Write $\Delta^n = \operatorname{Spec} \mathbb{Z}[t_0, \ldots, t_n]/(t_0 + \cdots + t_n - 1)$. Then $X \times \Delta^{\bullet}$ is a regular, noetherian cosimplicial scheme in the usual sense, and $\mathcal{Z}_{\text{equi}}(- \times \Delta^{\bullet} \times \mathbb{A}^r / - \times \Delta^{\bullet}, 0)$ is a simplicial sheaf on X. We define the motivic cohomology to be the Zariski-hypercohomology:

$$\operatorname{CH}^{r}_{\operatorname{Zar}}(X, n) = \mathbb{H}^{-n}_{\operatorname{Zar}}(X, \mathcal{Z}_{\operatorname{equi}}(- \times \Delta^{\bullet} \times \mathbb{A}^{r} / - \times \Delta^{\bullet}, 0)).$$

Let $(T_{\alpha}, f_{\alpha\beta})$ be a directed inverse system of smooth schemes over a regular noetherian scheme S with a directed ordered index set I, where each transition map $f_{\alpha\beta}: T_{\beta} \to T_{\alpha}$ is affine and dominant $(\beta \ge \alpha)$. Assume that $T = \varprojlim T_{\alpha}$ is regular and noetherian. Then we have the following:

Proposition 2.2. Let X be a scheme of finite type over T and assume that there exists a scheme X_0 of finite type over S such that $X = X_0 \times_S T$. Then the canonical morphism of Zariski sheaves on T

$$\lim_{\alpha} (f_{\alpha}^* \mathcal{Z}_{\text{equi}}(X_{\alpha} \times_{T_{\alpha}} - / -, 0)_{\mathbb{Q}}) \to \mathcal{Z}_{\text{equi}}(X \times_T - / -, 0)_{\mathbb{Q}}$$

is an isomorphism, where $f_{\alpha} \colon X \to X_{\alpha} = X_0 \times_S T_{\alpha}$ denotes the canonical morphism

282

induced by $T \to T_{\alpha}$ and $f_{\alpha}^* \mathbb{Z}_{equi}(X_{\alpha} \times_{T_{\alpha}} - / -, 0)_{\mathbb{Q}}$ is the inverse image of the Zariski sheaf $\mathbb{Z}_{equi}(X_{\alpha} \times_{T_{\alpha}} - / -, 0)_{\mathbb{Q}}$ on T_{α} .

Proof. Let \mathcal{T}_{α} be the category of Zariski-open subschemes of T_{α} . Note that the family of inverse images

$$\{f_{\alpha}^{-1}(U_{\alpha}) \mid U_{\alpha} \in \mathcal{T}_{\alpha}, f_{\alpha\beta}^{-1}(U_{\alpha}) = U_{\beta} \text{ for } \beta \ge \alpha, \alpha \in I\}$$

is an open basis of $X \times_S T$. We prove that the canonical morphism

$$\lim_{\beta \geqslant \alpha} \mathcal{Z}_{\text{equi}}(X_{\beta} \times_{S} U_{\beta}/U_{\beta}, 0)_{\mathbb{Q}} \to \mathcal{Z}_{\text{equi}}(X \times_{S} U/U, 0)_{\mathbb{Q}}$$

is bijective. The injectivity is obvious. We prove its surjectivity. Let $[W] \in \mathcal{Z}_{equi}(X \times_T U/U, 0)_{\mathbb{Q}}$ be the cycle of an integral scheme $W \subset X \times_T U$. Since $W \to U$ is quasifinite, there exists an index γ and a closed integral subscheme $W_{\gamma} \subset X_{\gamma} \times_{T_{\gamma}} U_{\gamma}$ such that $W = W_{\gamma} \times_{U_{\gamma}} U$ and each $W \times_{T_{\gamma}} T_{\gamma'} \to U_{\gamma} \times_{T_{\gamma}} T_{\gamma'}$ is quasifinite for $\gamma' \geq \gamma$ by [4, Theorem 8.10.5]. Since $W \to U$ and $U \to U_{\gamma}$ are dominant, $W_{\gamma} \to U_{\gamma}$ is dominant. Hence the cycle $[W_{\gamma}]$ is in $\mathcal{Z}_{equi}(X_{\gamma}/U_{\gamma}, 0)$. By [8, Chapter 2, Lemma 3.3.6], $f_{\gamma}[W_{\gamma}]$ is a formal linear combination of irreducible components of $W = W_{\gamma} \times_{U_{\gamma}} U$, and by [8, Chapter 2, Lemma 3.5.9] there exists a positive integer m such that $f_{\gamma}^{*}[W_{\gamma}] = m[W]$. Thus $[W] = f_{\gamma}^{*}(m^{-1}[W_{\gamma}])$.

3. The proof of main theorem

3.1. The cycle class maps

In this section, we assume that all schemes are noetherian and separated. Let $\mathcal{CP}(X)$ be the category of bounded complexes of big vector bundles on X. Let \mathcal{F} be a family of closed subschemes of X and $\mathcal{CP}^{\mathcal{F}}(X)$ the full subcategory of $\mathcal{CP}(X)$ consisting of complexes acyclic outside of $\bigcup_{W \in \mathcal{F}} W$. We make $\mathcal{CP}^{\mathcal{F}}(X)$ into a Waldhausen category by cofibrations and weak equivalences to be degree-wise split monomorphisms and quasi-isomorphisms, respectively. (See [7] and [9].)

Assume further that $f: Y \to X$ is a morphism of schemes and \mathcal{F}' is a family of closed subschemes of Y. The functor f^* takes $\mathcal{CP}^{\mathcal{F}}(X)$ to $\mathcal{CP}^{\mathcal{F}'}(Y)$ provided that $f^{-1}(W) \subset \bigcup_{W' \in \mathcal{F}'} W'$ for all $W \in \mathcal{F}$. Furthermore, for a composition $Z \xrightarrow{g} Y \xrightarrow{f} X$ of morphisms of X-schemes, one has $(g \circ f)^* = f^* \circ g^*$ if f^* , g^* and $(g \circ f)^*$ are defined.

Let S be a regular noetherian scheme. For any regular noetherian schemes X, $S_{\bullet}C\mathcal{P}^{\mathcal{Q},S}(X)$ denotes the Waldhausen's S-construction (cf. [9]) of $C\mathcal{P}^{\mathcal{Q},S}(X) := C\mathcal{P}^{\mathcal{Q}_X(X \times_{\mathbb{Z}} S)}(X \times S)$ with the family of supports $\mathcal{Q}_X(X \times_{\mathbb{Z}} S)$ consisting of all closed subschemes quasi-finite over X. Further, $K_n^{\mathcal{Q},\mathcal{S}}(X)$ denotes the *n*-th K-group of $C\mathcal{P}^{\mathcal{Q},S}(X)$.

For any abelian group A, $B_{\bullet}(A)$ denotes the classifying space of A. For any small category \mathcal{C} , $N_{\bullet}(\mathcal{C})$ denotes the nerve of \mathcal{C} . If $S = \mathbb{A}^r$, we define a map $\mathrm{cl}_0^r \colon B_{\bullet}(K_0^{\mathcal{Q},\mathbb{A}^r}(X)) \to B_{\bullet}(\mathcal{Z}_{\mathrm{equi}}(X \times \mathbb{A}^r/X, 0))$ of simplicial sets by the formula

$$\mathrm{cl}_0^r(\mathcal{F}) = \sum_{W \subset X \times_k \mathbb{A}^r} \mathrm{length}(\mathcal{F}_W)[W],$$

YUKI KATO

where the sum is over all closed integral subschemes W of $X \times \mathbb{A}^r$ which are quasifinite and dominant over a component of X. We consider the composition

$$\mathrm{cl}^r \colon N_{\bullet} \mathbf{w} S_{\bullet} \mathcal{CP}^{\mathcal{Q}, \mathbb{A}^r}(X) \to B_{\bullet}(K_0^{\mathcal{Q}, \mathbb{A}^r}(X)) \xrightarrow{B_{\bullet}(\mathrm{cl}_0^{\circ})} B_{\bullet}(\mathcal{Z}_{\mathrm{equi}}(X \times \mathbb{A}^r/X, 0)),$$

where $\mathbf{w}S.\mathcal{CP}^{\mathcal{Q},\mathbb{A}^r}(X)$ is the subcategory of weak-equivalences in $S.\mathcal{CP}^{\mathcal{Q},\mathbb{A}^r}(X)$, and $\mathbf{w}S.\mathcal{CP}^{\mathcal{Q},\mathbb{A}^r}(X) \to (K_0^{\mathcal{Q},\mathbb{A}^r}(X))^n$ is the canonical map of bisimplicial sets. (See [7, Section 1].)

For any morphism $f: Y \to X$ of regular noetherian schemes, $f^*: K_0^{\mathcal{Q}, \mathbb{A}_{\mathbb{Z}}^r}(X) \to K_0^{\mathcal{Q}, \mathbb{A}_{\mathbb{Z}}^r}(Y)$ coincides with the map $\mathcal{F} \mapsto \sum_{i \ge 0} (-1)^i \mathbb{L}_i f^*(\mathcal{F})$, where each $\mathbb{L}_i f^*$ is the *i*-th left derived functor of the inverse image f^* . Using [8, Theorem 3.3.1 and Lemma 3.5.9], we have that the map $B_{\bullet}(\mathrm{cl}_0^r)$ is functorial for any morphism of regular noetherian schemes by the direct calculation. Hence cl^r is functorial for any regular noetherian schemes. In particular, cl^r commutes with all coface maps and codegeneracy maps of the regular noetherian cosimplicial scheme $X \times \Delta^{\bullet}$. Thus we obtain the map

$$cl^{r} \colon N_{\bullet} \mathbf{w} S_{\bullet} \mathcal{CP}^{\mathcal{Q}, \mathbb{A}^{r}}(X \times \Delta^{\bullet}) \to B_{\bullet}(K_{0}^{\mathcal{Q}, \mathbb{A}^{r}}(X \times \Delta^{\bullet})) \\ \to B_{\bullet}(\mathcal{Z}_{equi}(X \times \Delta^{\bullet} \times \mathbb{A}^{r}/X \times \Delta^{\bullet}, 0))$$

called the *cycle-class map*. Here $B_{\bullet}(A_{\bullet})$ is the classifying space of a simplicial abelian group A_{\bullet} , and $B_{\bullet}(A_{\bullet})$ is a bisimplicial set.

3.2. Friedlander–Suslin's spectral sequence

In this section, we consider the case where X is smooth over a field F. Let $K_n^{\mathcal{Q},\mathbb{A}^r}(X \times \Delta^{\bullet})$ denote the n + 1-th homotopy group of the diagonal of a 3-fold simplicial set $N_{\bullet} \mathbf{w} S_{\bullet} \mathcal{CP}^{\mathcal{Q},\mathbb{A}^r}(X \times \Delta^{\bullet})$. In the case that X is a smooth scheme over a field, Friedlander–Suslin [2] proved that there exists a strongly convergent spectral sequence:

$$E_2^{pq} = \operatorname{CH}_{\operatorname{Zar}}^{-q}(X, -p-q) \Longrightarrow K_{-p-q}(X)$$

by an exact couple $(D_2^{p,q}, E_2^{p,q}, i, j, k)$ defined by the following:

$$D_2^{p,q} = K^{\mathcal{Q},\mathbb{A}^{-q+1}}_{-p-q}(X \times \Delta^{\bullet}), \quad E_2^{p,q} = \operatorname{CH}_{\operatorname{Zar}}^{-q}(X, -p-q),$$

where j is the cycle-class map. (See [2, Section 13].) We have that Friedlander–Suslin's spectral sequence admits Adams operations:

Proposition 3.1 (cf. [3, Theorem 7]). Let X be a smooth scheme over a field F. Then the spectral sequence

$$E_2^{pq} = \operatorname{CH}_{\operatorname{Zar}}^{-q}(X, -p-q) \Longrightarrow K_{-p-q}(X)$$

admits Adams operations Ψ^k with the following properties:

- (1) The Ψ^k are natural in Sm_F .
- (2) The $\Psi^k : K^{\mathcal{Q},\mathbb{A}^q}_*(X \times \Delta^{\bullet}) \to K^{\mathcal{Q},\mathbb{A}^q}_*(X \times \Delta^{\bullet})$ are compatible with the Adams operations Ψ^k on $K_*(X) = K^{\mathcal{Q},\mathbb{A}^q}_*(X)$.
- (3) On the E₂-term $\operatorname{CH}_{\operatorname{Zar}}^{-q}(X, -p-q)$, Ψ^k acts by multiplication by k^{-q} .

Proof. The proof is similar to [3, Theorem 7].

284

Corollary 3.2. Let X be a smooth scheme over a field F. The cycle-class map $\operatorname{cl}^r \colon K_n^{\mathcal{Q},\mathbb{A}^r}(X \times \Delta^{\bullet}) \to \operatorname{CH}^r_{\operatorname{Zar}}(X,n)_{\mathbb{Q}}$ induces an isomorphism

$$\operatorname{cl}^{(r)} \colon K_n(X)^{(r)}_{\mathbb{O}} \to \operatorname{CH}^r_{\operatorname{Zar}}(X, n)_{\mathbb{Q}}$$

for any $n, r \ge 0$.

3.3. The proof of Theorem 1.1

By Popescu's result [6, Corollary 2.7], there exist a prime field F and a directed inductive system $(R_{\alpha}, \psi_{\beta\alpha})$ of smooth F-algebras of R such that its inductive limit is R. Since each $\psi_{\beta\alpha}^{\sharp}$: Spec $R_{\beta} \to$ Spec R_{α} is affine, we have that $\lim_{K \to T} CH_{Zar}^{r}(R_{\alpha}, n)_{\mathbb{Q}} =$ $CH_{Zar}^{r}(R, n)_{\mathbb{Q}}$ follows from [5, Theorem 5.7] and Proposition 2.2. By the functoriality of cycle-class maps and Corollary 3.2, we obtain

$$K_n(R)^{(r)}_{\mathbb{Q}} = \varinjlim K_n(R_\alpha)^{(r)}_{\mathbb{Q}} = \varinjlim \operatorname{CH}^r_{\operatorname{Zar}}(R_\alpha, n)_{\mathbb{Q}} = \operatorname{CH}^r_{\operatorname{Zar}}(R, n)_{\mathbb{Q}}.$$

References

- [1] S. Bloch, Algebraic cycles and higher K-theory, Adv. in Math. 61 (1986), no. 3, 267-304.
- [2] E.M. Friedlander and A. Suslin, The spectral sequence relating algebraic K-theory to motivic cohomology, Ann. Sci. École Norm. Sup. (4) 35 (2002), no. 6, 773–875 (English, with English and French summaries).
- [3] H. Gillet and C. Soulé, *Filtrations on higher algebraic K-theory*, Algebraic K-theory (Seattle, WA, 1997), Proc. Sympos. Pure Math., vol. 67, Amer. Math. Soc., Providence, RI, 1999, pp. 89– 148.
- [4] A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. 3^{eme} partie, Inst. Hautes Études Sci. Publ. Math. 28 (1966), 5–255.
- [5] A. Dold and B. Eckmann (ed.), Théorie des topos et cohomologie étale des schémas. Tome 2, Lecture Notes in Mathematics 270, Springer-Verlag, New York, 1972 (French). Séminaire de Géométrie Algébrique du Bois-Marie 1963–1964 (SGA 4); Dirigé par M. Artin, A. Grothendieck et J.L. Verdier. Avec la collaboration de N. Bourbaki, P. Deligne et B. Saint-Donat.
- [6] D. Popescu, General Néron desingularization and approximation., Nagoya Math. J. 104 (1986), no. Teor. Chisel, Algebra i Algebr. Geom., 85–115.
- [7] R.W. Thomason and T. Trobaugh, Higher algebraic K-theory of schemes and of derived categories, The Grothendieck Festschrift, Vol. III, Progr. Math., vol. 88, Birkhäuser Boston, Boston, MA, 1990, pp. 247–435.
- [8] V. Voevodsky, A. Suslin, and E.M. Friedlander, Cycles, transfers, and motivic homology theories, Annals of Mathematics Studies, vol. 143, Princeton University Press, Princeton, NJ, 2000.
- F. Waldhausen, Algebraic K-theory of spaces, Algebraic and geometric topology (New Brunswick, NJ, 1983), Lecture Notes in Math., vol. 1126, Springer-Verlag, New York, 1985, pp. 318–419.

Yuki Kato ykato.math@gmail.com

Mathematical Institute, Tohoku University, Aoba, Sendai 980-8578 Japan