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STEENROD’S OPERATIONS IN SIMPLICIAL BREDON-ILLMAN
COHOMOLOGY WITH LOCAL COEFFICIENTS

GOUTAM MUKHERJEE and DEBASIS SEN

(communicated by Jean-Louis Loday)

Abstract
In this paper we use Peter May’s algebraic approach to Steen-

rod operations to construct Steenrod’s reduced power opera-
tions in simplicial Bredon-Illman cohomology with local coeffi-
cients of a one vertex G-Kan complex, G being a discrete group.

1. Introduction

The study of cohomology operations has been one of the important areas of research
in algebraic topology for a long time. For instance, they have been extensively used
to compute obstructions [20], to study homotopy type of complexes [23] and to show
essentiality of maps of spheres [3]. A class of basic operations are Steenrod’s squares
and reduced power operations [1, 21, 22]. Steenrod’s squares are defined for cohomol-
ogy with Z2-coefficients whereas Steenrod’s reduced powers are defined in cohomology
with coefficients in Zp, p 6= 2 a prime. A very general and useful method of construct-
ing these operations is given in [14]. A categorical approach to Steenrod operations
can be found in [6]. In [9], S. Gitler constructed reduced power operations in coho-
mology with local coefficients. A well-known result of Eilenberg describes cohomology
of a space with local coefficients by the cohomology of an invariant subcomplex of its
universal cover, equipped with the action of the fundamental group of the space [5].
The main idea of Gitler’s construction is to lift power operations in this invariant
cochain subcomplex and reproduce the operations in cohomology with local coeffi-
cients via Eilenberg’s description. The relevant local coefficients in this context is
obtained by a fixed action of the fundamental group of the space on a fixed cyclic
group of prime order p 6= 2.

Recently, in [17], we introduced simplicial equivariant cohomology with local coef-
ficients, which is the simplicial version of Bredon-Illman cohomology with local coeffi-
cients [15]. The aim of this paper is to construct Steenrod’s reduced power operations
in simplicial Bredon-Illman cohomology with local coefficients, where the equivari-
ant local coefficients take values in Zp-algebras, for a prime p > 2. Throughout our
method is simplicial. It may be mentioned that, for a space with a topological group
action there exists a brace (or homotopy Gerstenhaber) algebra structure [16] on
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the Bredon-Illman cochain complex. This brace algebra structure was used in [8] to
deduce Steenrod’s squares in Bredon-Illman cohomology with local coefficients that
take values in Z2-algebras.

We have the notion of a ‘universal OG-covering complex’ of a one vertex G-Kan
complex X [17]. This is defined as a contravariant functor from the category of
canonical orbits to the category of one vertex Kan complexes and is the analogue,
in the equivariant context, of the universal cover of a one vertex Kan complex [11].
This universal OG-covering complex comes equipped with an action of an OG-group
πX (see Section 4 for details), and an equivariant analogue of the Eilenberg theo-
rem holds [18]. Following Gitler [9], we first construct the power operations in the
πX-equivariant cohomology of the ‘universal OG-covering complex’. This is done by
applying the algebraic description of Steenrod power operations of P. May [14]. We
then use the equivariant version of the Eilenberg theorem to reproduce Steenrod’s
reduced power operations in the present context. It may be remarked that our method
also applies when p = 2 and hence also yields Steenrod squares (cf. Remark 5.15).

The paper is organized as follows: In Section 2, we recall some standard results and
fix notations. The notion of equivariant local coefficients of a simplicial set equipped
with a simplicial group action is based on fundamental groupoid. In Section 3, we
recall these concepts and quickly review the definition of simplicial Bredon-Illman
cohomology with local coefficients. In Section 4, we state the equivariant version of
the Eilenberg theorem. In Section 5, we briefly recall the algebraic method of P. May
and then apply it to construct Steenrod’s reduced power operations in simplicial
Bredon-Illman cohomology with local coefficients.

2. Preliminaries

In this section we set up our notations and recall some standard facts [10, 13].
Throughout, S will denote the category of simplicial sets and simplicial maps. Let

∆[n] denote the standard simplicial n-simplex and ∆n be the unique non-degenerate
n-simplex of ∆[n]. We have simplicial maps δi : ∆[n− 1] → ∆[n] and σi : ∆[n+ 1] →
∆[n] for 0 6 i 6 n defined by δi(∆n−1) = ∂i(∆n) and σi(∆n+1) = si(∆n). The bound-
ary subcomplex ∂∆[n] of ∆[n] is defined as the smallest subcomplex of ∆[n] containing
the faces ∂i∆n, i = 0, 1, . . . , n.

Definition 2.1. Let G be a discrete group. A G-simplicial set is a simplicial object in
the category of G-sets. More precisely, a G-simplicial set is a simplicial set {Xn; ∂i, si,
0 6 i 6 n}n>0 such that each Xn is a G-set, and the face maps ∂i : Xn → Xn−1 and
the degeneracy maps si : Xn → Xn+1 commute with theG-action. AG-simplicial map
between G-simplicial sets is a simplicial map which commutes with the G-action.

For a G simplicial set X, we consider X ×∆[1] as a G-simplicial set with trivial
G-action on ∆[1].

Definition 2.2. Two G-simplicial maps f, g : X → Y between G-simplicial sets X
and Y are G-homotopic if there exists a G-simplicial map H : X ×∆[1] → Y such
that

H ◦ (id×δ1) = f,H ◦ (id×δ0) = g,

where X ×∆[0] is identified with X. The map H is called a G-homotopy from f to
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g, and we write H : f 'G g. If i : X ′ ⊆ X is an inclusion of a subcomplex and f , g
agree on X ′, then we say that f is G-homotopic to g relative to X ′ if there exists
a G homotopy H : f 'G g such that H ◦ (i× id) = α ◦ pr1, where α = f |X′ = g|X′

and pr1 : X
′ ×∆[1] → X ′ is the projection onto the first factor. In this case we write

H : f 'G g(relX ′).

Definition 2.3. A G-simplicial set is a G-Kan complex if for every subgroup H ⊆ G
the fixed point simplicial set XH is a Kan complex.

Remark 2.4. Recall [2, 7] that the category GS of G-simplicial sets and G-simplicial
maps between G-simplicial sets has a closed model structure [19], where the fibrant
objects are the G-Kan complexes and the cofibrant objects are all the G-simplicial
sets. From this it follows that G-homotopy on the set of G-simplicial maps X → Y
is an equivalence relation, for every G-simplicial set X and G-Kan complex Y . More
generally, relative G-homotopy is an equivalence relation if the target is a G-Kan
complex.

We consider G/H ×∆[n] as a simplicial set, where (G/H ×∆[n])q = G/H ×∆[n]q
with face and degeneracy maps as id×∂i and id×si. Note that the group G acts on
G/H by left translation. With this G-action on the first factor and trivial action on
the second factor, G/H ×∆[n] is a G-simplicial set.

Let X be any G-simplicial set. A G-simplicial map σ : G/H ×∆[n] → X is called
an equivariant n-simplex of type H in X.

Remark 2.5. We remark that for a G-simplicial set X, the set of equivariant
n-simplices of type H in X is in bijective correspondence with n-simplices of XH .
For an equivariant n-simplex σ, the corresponding n-simplex is σ′ = σ(eH,∆n). The
simplicial map ∆[n] → XH , ∆n 7→ σ′ will be denoted by σ.

We shall call σ degenerate or non-degenerate according to whether the n-simplex
σ′ ∈ XH

n is degenerate or non-degenerate.

Recall that the category of canonical orbits, denoted by OG, is a category whose
objects are cosets G/H, asH runs over the all subgroups of G. A morphism from G/H
to G/K is a G-map. Such a morphism determines and is determined by a subconju-
gacy relation a−1Ha ⊆ K and is given by â(eH) = aK. We denote this morphism by
â [4].

Definition 2.6. A contravariant functor from OG to the category of simplicial sets
S is called an OG-simplicial set. A map between OG-simplicial sets is a natural trans-
formation of functors.

We shall denote the category of OG-simplicial sets by OGS.
For a commutative ring Λ, let Λ-alg denote the category of commutative Λ-algebras

with unity and algebra homomorphisms preserving unity. The category of Λ-modules
and module maps is denoted by Λ-mod. The category of chain complexes of Λ-modules
is denoted by chΛ. The notion of OG-groups, OG-Λ-algebras or OG-chain complexes
has the obvious meaning replacing S by Grp (the category of groups), Λ-alg or chΛ,
respectively.
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For any two OG-simplicial sets (respectively, OG-groups) T and T ′, we define their
product (T × T ′) ∈ OGS (respectively, OG-Grp) as

(T × T ′)(G/H) = T (G/H)× T ′(G/H)

for objects G/H of OG and (T × T ′)(â) = T (â)× T ′(â) for a morphism â of OG.
For a G-simplicial set X, with a G-fixed 0-simplex v, we have an OG-group πX

defined as follows: For any subgroup H of G,

πX(G/H) := π1(X
H , v),

and for a morphism â : G/H → G/K, a−1Ha ⊆ K, πX(â) is the homomorphism of
the fundamental groups induced by the simplicial map a : XK → XH .

Definition 2.7. An OG-group ρ is said to act on an OG-simplicial set (OG-Λ-algebra
or OG-chain complex) T if for every subgroup H ⊆ G, ρ(G/H) acts on T (G/H) and
this action is natural with respect to maps of OG. Thus if

φ(G/H) : ρ(G/H)× T (G/H) → T (G/H)

denotes the action of ρ(G/H) on T (G/H), then for each subconjugacy relation a−1Ha
⊆ K,

φ(G/H) ◦ (ρ(â)× T (â)) = T (â) ◦ φ(G/K).

Definition 2.8. Let an OG-group ρ act on the OG-simplicial sets T and T ′. A map
f : T → T ′ is called ρ-equivariant if

f(G/H)(ax) = af(G/H)(x), a ∈ ρ(G/H), x ∈ T (G/H),

for each subgroup H of G.

Definition 2.9. Let L,L′ be OG-chain complexes. Two natural transformations v =
{vn},w = {wn} : L→ L′ are said to be homotopic if there exist natural transforma-
tions

Hn : vn → wn+1, n > 0,

such that {Hn(G/H)}n>0 is a chain homotopy of the chain maps v(G/H),w(G/H)
for each subgroup H of G. Symbolically we write H : v ' w.

If an OG-group ρ acts on L,L′ and v,w are ρ-equivariant, then v,w are said to be
ρ-equivariantly homotopic if there exists a homotopy H : v ' w which satisfies

Hn(G/H)(ax) = aHn(G/H)(x) for a ∈ ρ(G/H), x ∈ vn(G/H), H ⊆ G.

Definition 2.10. The tensor product L⊗ L′ : OG → chΛ of two OG-chain complexes
L and L′ is defined as

(L⊗ L′)(G/H) = L(G/H)⊗ L′(G/H),

for each object G/H of OG and (L⊗ L′)(â) = L(â)⊗ L′(â) for a morphism â of OG.

Note that a chain complex W can be considered as an OG-chain complex in the
trivial way, that is, W (G/H) =W , W (â) = id. So the tensor product of W with an
OG-chain complex is defined.

Throughout the paper, unless otherwise mentioned explicitly, all the tensor prod-
ucts are over the ring Λ.
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3. Simplicial Bredon-Illman cohomology with local coefficients

In this section we recall [17] the relevant notion of a fundamental groupoid of a
G-simplicial set X, the notion of equivariant local coefficients on X and the definition
of simplicial Bredon-Illman cohomology with local coefficients.

We begin with the notion of a fundamental groupoid. Recall [10] that the fun-
damental groupoid πX of a Kan complex X is a category having as objects all
0-simplexes of X and a morphism x→ y in πX is a homotopy class of 1-simplices
ω : ∆[1] → X rel ∂∆[1] such that ω ◦ δ0 = y, ω ◦ δ1 = x. If ω2 represents an arrow from
x to y and ω0 represents an arrow from y to z, then their composite [ω0] ◦ [ω2] is repre-
sented by Ω ◦ δ1, where the simplicial map Ω: ∆[2] → X corresponds to a 2-simplex,
which is determined by the compatible pair (ω′

0, , ω′
2). For a simplicial set X, the

notion of a fundamental groupoid is defined via the geometric realization and the
total singular functor.

The fundamental groupoid of a G-simplicial set is defined as follows:

Definition 3.1. Let X be a G-Kan complex. The fundamental groupoid ΠX is a
category with objects equivariant 0-simplices

xH : G/H ×∆[0] → X

of type H, as H varies over all subgroups of G. Given two objects xH and yK in
ΠX, a morphism from xH −→ yK is defined as follows: Consider the set of all pairs
(â, φ) where â : G/H → G/K is a morphism in OG, given by a subconjugacy relation
a−1Ha ⊆ K, a ∈ G, so that â(eH) = aK and φ : G/H ×∆[1] → X is an equivariant
1-simplex such that

φ ◦ (id×δ1) = xH , φ ◦ (id×δ0) = yK ◦ (â× id).

The set of morphisms in ΠX from xH to yK is a quotient of the set of pairs
mentioned above by an equivalence relation ‘ ∼ ’, where (â1, φ1) ∼ (â2, φ2) if and
only if a1 = a2 = a (say), and there exists a G-homotopy H : G/H ×∆[1]×∆[1]
→ X of G-homotopies such that H : φ1 'G φ2(relG/H × ∂∆[1]). Since X is a G-Kan
complex, by Remark 2.4, ∼ is an equivalence relation. We denote the equivalence
class of (â, φ) by [â, φ]. The set of equivalence classes is the set of morphisms in ΠX
from xH to yK .

The composition of morphisms in ΠX is defined as follows: Given two morphisms

xH yK zL,-[â1,φ1] -[â2,φ2]

their composition [â2, φ2] ◦ [â1, φ1] is [â1a2, ψ] : xH → zL, where the first factor is the
composition

G/H G/K G/L,-â1 -â2

and ψ : G/H ×∆[1] → X is an equivariant 1-simplex of type H as described below.
Let x be a 2-simplex in the Kan complex XH determined by the compatible pair
of 1-simplices (a1φ

′
2, , φ′1) so that ∂0x = a1φ

′
2 and ∂2x = φ′1. Then ψ is given by

ψ(eH,∆1) = ∂1x.
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Observe that φ′ is a 1-simplex in XH such that ∂1φ
′ = x′H and ∂0φ

′ = ay′K . More-
over, the 0-simplex ay′K in XH corresponds to the composition

G/H ×∆[0]
â×id−−−→ G/K ×∆[0]

yK−−→ X

and φ is a G-homotopy xH 'G yK ◦ (â× id) (cf. Remark 2.5 for notations).
It is proved in [17] that the composition is well defined. For a version for the

fundamental groupoid of a G-space we refer to [12, 15].
Observe that if X is a G-simplicial set then S|X| is a G-Kan complex, where for

any space Y , SY denotes the total singular complex and for any simplicial set X, |X|
denotes the geometric realization of X.

Definition 3.2. For a G-simplicial set X, we define the fundamental groupoid ΠX
of X by ΠX := ΠS|X|.

Note that if F : X → Y is a G-simplicial map then there exists an obvious induced
functor Π(F ) : ΠX → ΠY which assigns to each object xH of ΠX, the object F ◦ xH
of ΠY and a morphism [â, φ] in ΠX to the morphism [â, F ◦ φ] of ΠY .

Remark 3.3. Suppose ξ is a morphism from x to y in πXH , given by a homotopy
class [ω], where ω : ∆[1] → XH represents the 1-simplex in XH from x to y. Let xH
and yH be the objects in πXH defined respectively by

xH(eH,∆0) = x, yH(eH,∆0) = y.

Then we have a morphism [id, ω] : xH → yH in ΠX, where ω(eH,∆1) = ω(∆1). We
shall denote this morphism corresponding to ξ by bξ.

Definition 3.4. Equivariant local coefficients on a G-simplicial set X are a con-
travariant functor from ΠX to the category Λ-alg.

Next, we briefly describe the simplicial version of Bredon-Illman cohomology with
local coefficients as introduced in [17].

Let X be a G-simplicial set and M equivariant local coefficients on X. For each
equivariant n-simplex σ : G/H ×∆[n] → X, we associate an equivariant 0-simplex
σH : G/H ×∆[0] → X given by

σH = σ ◦ (id×δ(1,2,...,n)),

where δ(1,2,...,n) is the composition

δ(1,2,...,n) : ∆[0]
δ1−→ ∆[1]

δ2→ · · · δn→ ∆[n].

The j-th face of σ is an equivariant (n− 1)-simplex of type H, denoted by σ(j), and
is defined by

σ(j) = σ ◦ (id×δj), 0 6 j 6 n.

Remark 3.5. Note that σ
(j)
H = σH for j > 0, and σ

(0)
H = σ ◦ (id×δ(0,2,...,n)).

Let CnG(X;M) be the Λ-module of all functions f defined on equivariant n-sim-
plexes σ : G/H ×∆[n] → X such that f(σ) ∈M(σH) with f(σ) = 0, if σ is degener-

ate. We have a morphism σ∗ = [id, α] in ΠX from σH to σ
(0)
H induced by σ, where
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α : G/H ×∆[1] → X is given by α = σ ◦ (id×δ(2,...,n)). Define a homomorphism

δ : CnG(X;M) → Cn+1
G (X;M); f 7→ δf

where for any equivariant (n+ 1)-simplex σ of type H,

(−1)n+1δf(σ) =M(σ∗)f(σ
(0)) +

n+1∑
j=1

(−1)jf(σ(j)).

A routine verification shows that δ ◦ δ = 0. Thus {C∗
G(X;M), δ} is a cochain complex.

We are interested in a subcomplex of this cochain complex as described below.

Let η : G/H ×∆[n] → X and τ : G/K ×∆[n] → X be two equivariant n-simplex-
es. Suppose there exists a G-map â : G/H → G/K, a−1Ha ⊆ K, such that τ ◦ (â× id)
= η. Then η and τ are said to be compatible under â. Observe that if η and τ are
compatible as described above then η is degenerate if and only if τ is degenerate.
Moreover, notice that in this case, we have a morphism [â, k] : ηH → τK in ΠX,
where k = ηH ◦ (id×σ0), where σ0 : ∆[1] → ∆[0] is the simplicial map as described
in Section 2. Let us denote this induced morphism by a∗.

Definition 3.6. We define SnG(X;M) to be the submodule of CnG(X;M) consisting
of all functions f such that if η and τ are equivariant n-simplexes in X which are
compatible under â, then f(η) =M(a∗)(f(τ)).

If f ∈ SnG(X;M) then one can verify that δf ∈ Sn+1
G (X;M). Thus we have a

cochain complex of Λ-modules SG(X;M) = {SnG(X;M), δ}.

Definition 3.7. Let X be a G-simplicial set with equivariant local coefficients M on
it. Then the n-th Bredon-Illman cohomology of X with local coefficientsM is defined
by

Hn
G(X;M) := Hn(SG(X;M)).

Suppose that X,Y are G-simplicial sets andM,N are equivariant local coefficients
on X and Y respectively. A map from (X,M) to (Y,N) is a pair (F, γ), where F : X
→ Y is a G-simplicial map, and γ : N ◦Π(F ) →M is a natural transformation of
functors, Π(F ) : ΠX → ΠY being the map induced by F . A map (F, γ) : (X,M) →
(Y,N) naturally induces a cochain map (F, γ)# : S∗

G(Y ;N) → S∗
G(X;M) as follows:

For f ∈ S∗
G(Y ;N) and an equivariant n-simplex σ in X of type H, (F, γ)#(f)(σ) =

γ(σH)f(F ◦ σ). Therefore we have an induced map (F, γ)∗ : H∗
G(Y ;N) → H∗

G(X;M)
in cohomology.

We now define the cup product in simplicial Bredon-Illman cohomology with
local coefficients. Let σ : G/H ×∆[n+m] → X be an equivariant (n+m)-simplex of
type H. Then define σcn = σ ◦ (idG/H ×δ(n+1,...,n+m)), bmσ = σ ◦ (idG/H ×δ(0,...,n))
where δ(n+1,...,n+m) : ∆[n] → ∆[n+m] and δ(0,...,n) : ∆[m] → ∆[n+m] are defined
as before. For cochains f ∈ SnG(X;M) and g ∈ SmG (X;M), the cup product f ∪ g ∈
Sn+mG (X;M) is the cochain whose value on σ is given by the formula

(f ∪ g)(σ) = (−1)mnf(σcn)(M(σn+1)g(bmσ)),

where σn+1 = [id, σ ◦ (idG/H ×δ(1,...,n,n+2,...,n+m))] is a morphism in ΠX from (σcn)H
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to (bmσ)H . A routine verification shows that f ∪ g belongs to Sn+mG (X;M), and

d(f ∪ g) = df ∪ g + (−1)deg(f)f ∪ dg.

Therefore it induces a product in cohomology which is associative and graded com-
mutative. Thus H∗

G(X;M) is an associative graded algebra.
Suppose M is equivariant local coefficients on a G-simplicial set X with a G-fixed

0-simplex v. Then M determines an OG-Λ-algebra M0 equipped with an action of
the OG-group πX as described below.

For any subgroup H of G, let vH be the object of type H in ΠX defined by

vH : G/H ×∆[0] → X, vH(eH,∆0) = v.

Then for any morphism â : G/H → G/K in OG given by a subconjugacy relation
a−1Ha ⊆ K, we have a morphism [â, k] : vH → vK in ΠX, where k : G/H ×∆[1] → X
is given by k(eH,∆1) = s0v. Define an OG-Λ-algebra M0 by

M0(G/H) :=M(vH), H ⊆ G

and M0(â) =M [â, k] for a morphism â in OG.
We now describe the action of the OG-group πX onM0. Let α = [φ] ∈ πX(G/H) =

π1(X
H , v). Then the morphism [id, φ] : vH → vH , determined by φ(eH,∆1) = φ(∆1),

is an equivalence in the category ΠX. This yields a group homomorphism

b : π1(X
H , v) → AutΠX(vH), α = [φ] 7→ b(α) = [id, φ].

The composition of the map b with the group homomorphism

AutΠX(vH) → AutΛ-alg(M(vH)),

which sends α ∈ AutΠX(vH) to [M(α)]−1, defines the action of π1(X
H , v) on

M0(G/H). It is routine to check that this action is natural with respect to mor-
phisms of OG.

Conversely, an OG-Λ-algebra M0, equipped with an action of the OG-group πX,
defines equivariant local coefficients M on X, where X is G-connected and v ∈ XG

a fixed 0-simplex [17].

4. The Eilenberg theorem

In this section we recall a version of the Eilenberg theorem [18] for simplicial
Bredon-Illman cohomology with local coefficients.

Let AΛ denote the category with objects the triples (T,M0, ρ), where T is an OG-
simplicial set, M0 an OG-Λ-algebra and ρ is an OG-group which operates on both
T and M0. A morphism from (T,M0, ρ) to (T ′,M ′

0, ρ
′) is a triple (f0, f1, f2), where

f0 : T → T ′, f1 : M
′
0 →M0 and f2 : ρ→ ρ′ are maps in the appropriate categories

such that

f0(G/H)(αx) = f2(G/H)(α)f0(G/H)(x), f1(G/H)[f2(G/H)(α)m′
0]i

= αf1(G/H)(m′
0),H ⊆ G, x ∈ T (G/H), α ∈ ρ(G/H),m′

0 ∈M ′
0(G/H).

The ρ-equivariant cohomology of T with coefficients M0 is defined as follows: We
have an OG-chain complex {C∗(T ), ∂∗} defined by
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Cn(T ) : OG → Λ-mod, G/H 7→ Cn(T (G/H); Λ),

where Cn(T (G/H); Λ) is the free Λ-module generated by the non-degenerate n-sim-
plices of T (G/H). For any morphism â : G/H → G/K in OG,

Cn(T )(â) = a# : Cn(T (G/K); Λ) → Cn(T (G/H); Λ)

is induced by the simplicial map T (â) : T (G/K) → T (G/H). The boundary map

∂n : Cn(T ) → Cn−1(T )

is a natural transformation defined by

∂n(G/H) : Cn(T (G/H); Λ) → Cn−1(T (G/H); Λ),

where ∂n(G/H) is the ordinary boundary map of the simplicial set T (G/H). The
action of ρ on T induces an action of ρ on the OG-chain complex {C∗(T ), ∂∗}. We
form the cochain complex

{C∗
ρ(T ;M0) = Homρ(C∗(T ),M0), δ

∗},

where Homρ(Cn(T ),M0) consists of all natural transformations Cn(T )
f−→M0 res-

pecting the action of ρ and δnf is given by f ◦ ∂n+1. Then the n-th ρ-equivariant
cohomology of T with coefficients M0 is given by

Hn
ρ (X;M0) := Hn(C

∗
ρ(T ;M0)).

Remark 4.1. It is easy to observe that a morphism in AΛ (f0, f1, f2) : (T,M0, ρ) →
(T ′,M ′

0, ρ
′) induces a cochain map C∗(f0, f1, f2) : C

∗
ρ(T ;M0) → C∗

ρ′(T
′;M ′

0).

The cochain complex C∗
ρ (T ;M0) is equipped with a cup product, defined as follows:

We have a natural transformation

ξ : C∗(T × T ) → C∗(T )⊗ C∗(T ),

where ξ(G/H) is the Alexander-Whitney map for the simplicial set T (G/H),
H ⊆ G [13]. We have a ρ-action on C∗(T ) induced by the ρ-action on T and hence
diagonal actions of ρ on T × T and on C∗(T )⊗ C∗(T ). Since the Alexander-Whitney
map of simplicial sets is a natural map, ξ is equivariant with the induced actions of
ρ on C∗(T × T ) and C∗(T )⊗ C∗(T ). Then the cup product is defined as the compo-
sition of the maps

C∗
ρ (T ;M0)⊗ C∗

ρ(T ;M0)
α−→ Homρ(C∗(T )⊗ C∗(T ),M0)

ξ∗

−→ C∗
ρ(T × T ;M0)

with the map

C∗
ρ(T × T ;M0)

D∗

−−→ C∗
ρ(T ;M0).

Here α : C∗
ρ(T ;M0)⊗ C∗

ρ (T ;M0) → Homρ(C∗(T × T ),M0) is defined by

α(f ⊗ g)(G/H)(x⊗ y) = (−1)deg(x) deg(y)f(G/H)(x)g(G/H)(y),

where f, g ∈ C∗
ρ (T ;M0) and x, y ∈ C∗(T )(G/H) and D : T → T × T is the diagonal

map.

Remark 4.2. The cochain complex C∗
ρ (T ;M0), equipped with the above cup product,

is an associative differential Λ-algebra, and the induced product in the cohomology
is associative and graded commutative.
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We now relate the simplicial Bredon-Illman cohomology with local coefficients of
a one vertex G-Kan complex with the equivariant cohomology of its universal OG-
covering complex [18].

Let X be a one vertex G-Kan complex. We denote the G-fixed vertex by v. Let
M be equivariant local coefficients on X and M0 be the associated OG-Λ-algebra, as
described at the end of the previous section. For any subgroup H of G, let

pH : X̃H → XH

be the universal cover [11, 18] of XH . The left translation a : XK → XH , cor-
responding to a G-map â : G/H → G/K, a−1Ha ⊆ K, induces a simplicial map

ã : X̃K → X̃H such that pH ◦ ã = a ◦ pK . This defines an OG-Kan complex X̃ by set-

ting X̃(G/H) = X̃H and X̃(â) = ã. This is called the universal OG-covering complex
of X. This is the simplicial analogue of the OG-covering space as introduced in [15].
We refer to [12] for a more general version, called the ‘universal covering functor’.

The natural actions of πX(G/H) = π1(X
H , v) on X̃(G/H) = X̃H as H varies over

subgroups of G, define an action of the OG-group πX on X̃. Thus (X̃,M0, πX) is an
object of AΛ.

Theorem 4.3 ([18]). Let X be a one vertex G-Kan complex with equivariant local
coefficients M on it. Then, with notations as above, there exists an isomorphism of
graded algebras

H∗
G(X;M) ∼= H∗

πX(X̃;M0).

The proof is obtained by constructing isomorphism at the cochain level. The
explicit isomorphism is described as follows [18]: Define

µ : SnG(X;M) → HomπX(Cn(X̃),M0)

as follows: Let f ∈ SnG(X;M) and y be a non-degenerate n-simplex in X̃H . Let σ be

the equivariant n-simplex of type H in X such that σ = pH ◦ y, where y : ∆[n] → X̃H

is the simplicial map with y(∆n) = y. Then µ(f) ∈ HomπX(Cn(X̃),M0) is given by

µ(f)(G/H)(y) =M(bξH(∂(1,2,...,n)y))f(σ),

where ∂(1,2,...,n)y = ∂1∂2 · · · ∂ny.
The inverse of µ,

µ−1 : HomπX(Cn(X̃),M0) → CnG(X;M),

is described as follows: Let f ∈ HomπX(Cn(X̃),M0) and σ be a non-degenerate

equivariant n-simplex of type H in X. Choose an n-simplex y in X̃H such that
pH(y) = σ(eH,∆n). Then µ

−1(f) is given by

µ−1(f)(σ) =M(bξH(∂(1,2,...,n)y))
−1f(G/H)(y).

It is easy to check that µ(f ∪ g) = µ(f) ∪ µ(g) for f, g ∈ S∗
G(X;M). Hence we have

an isomorphism

µ∗ : H∗
G(X;M) ∼= H∗

πX(X̃;M0)

of graded Λ-algebras.
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5. Steenrod reduced power operations

In this section we briefly recall the relevant part of the general algebraic approach
to Steenrod operations by P. May [14], necessary for our purpose. We apply this
method to construct Steenrod power operations in equivariant cohomology of OG-
simplicial sets in general. In particular, for a one vertex G-Kan complex X, we have
reduced power operations defined for πX-equivariant cohomology of the universal
OG-covering complex X̃. We then apply Theorem 4.3 to deduce the Steenrod power
operations in simplicial Bredon-Illman cohomology with local coefficients.

Let Λ be a commutative ring. By a Λ-complex K, we will mean a Z-graded cochain
complex of Λ-modules with differential of degree 1. A morphism of Λ-complexes is
a degree zero map commuting with the differential. If π is a group, then we let Λπ
denote its group ring over Λ.

Let p be an odd prime and Σp denote the symmetric group on p-letters. For the rest
of this section, unless otherwise stated, Λ will be the commutative ring Zp and π will
be the cyclic subgroup of Σp, generated by the permutation α = (p, 1, 2, . . . , p− 1).
If not mentioned explicitly, all tensor products are over the ring Λ.

Let V,W be free resolutions of Λ over ΛΣp,Λπ respectively. We shall use the
following canonical model ofW : LetWi be Λπ-free module on one generator ei, i > 0.
Let N = 1 + α+ · · ·+ αp−1 and T = α− 1 in Λπ. Define differential d, augmentation
ε : W0 → Λ, and coproduct ψ on W , respectively by the formulas

d(e2i+1) = Te2i, d(e2i) = Ne2i−1, ε(α
je0) = 1,

ψ(e2i+1) =
∑
j+k=i

e2j ⊗ e2k+1 +
∑
j+k=i

e2j+1 ⊗ αe2k,

ψ(e2i) =
∑
j+k=i

e2j ⊗ e2k +
∑

j+k=(i−1)

∑
06r<s<p

αre2j+1 ⊗ αse2k.

Thus W is a differential Λπ-coalgebra and a Λπ-free resolution of Λ.

We denote the p-fold tensor product K ⊗ · · · ⊗K by Kp. Then Kp becomes a
Λπ-complex by the following π operation:

τ(u1 ⊗ · · · ⊗ up) = γ(τ)u1 ⊗ · · ·ui−1 ⊗ ui+1 ⊗ ui ⊗ ui+2 · · · ⊗ up,

where γ(τ) = (−1)deg(ui) deg(ui+1) if τ is the interchange of the i-th and (i+ 1)-th
factor. We consider W as a non-positively graded Λπ-complex. The inclusion of π in
Σp induces a morphism j : W → V of Λπ-complexes.

We have the following algebraic category C(p) on which the Steenrod operations
are defined: The objects of this category are pairs (K, θ), where K is a Λ-complex,
equipped with a homotopy associative multiplication K ⊗K → K, and θ : W ⊗Kp

→ K is a morphism of Λπ-complexes, satisfying the following two conditions:

1. The restriction of θ to e0 ⊗Kp is Λ-homotopic to the iterated product Kp → K,
associative in some order.

2. The morphism θ is Λπ-homotopic to a composite W ⊗Kp j⊗1−−→ V ⊗Kp ∅−→ K,
where ∅ is a morphism of ΛΣp-complexes.

A morphism f : (K, θ) → (K ′, θ′) is a morphism of Λ-complexes f : K → K ′ such that
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the following diagram is Λπ-homotopy commutative:

W ⊗Kp K

W ⊗ (K ′)p K ′.

?
id⊗fp

-θ

?
f

-θ
′

The tensor product of two objects (K, θ) and (K ′, θ′) is the pair (K ⊗K ′, θ̃), where
θ̃ is the composite

W ⊗ (K ⊗K ′)p
ψ⊗Ũ−−−→W ⊗W ⊗Kp ⊗K ′p id⊗t̃⊗id−−−−−→W ⊗Kp ⊗W ⊗K ′p

θ⊗θ′−−−→ K ⊗K ′.

Here ψ : W →W ⊗W is the coproduct, Ũ : (K ⊗K ′)p → Kp ⊗K ′p is the shuffling
isomorphism and t̃(x⊗ y) = (−1)deg(x) deg(y)y ⊗ x.

Definition 5.1. An object (K, θ) ∈ C(p) is said to be a Cartan object if the product
K ⊗K → K is a morphism from (K ⊗K, θ̃) to (K, θ).

For an object (K, θ) of C(p), there are maps Di : H
q(K) → Hpq−i(K), i > 0,

defined as follows: For x ∈ Hq(K), ei ⊗ xp is a well-defined element of
Hpq−i(W ⊗Λπ K

p) [14] and defineDi(x) = θ∗(ei ⊗ xp), where θ∗ : H
pq−i(W ⊗Λπ K

p)
→ Hpq−i(K) is induced by θ. We make the convention that Di = 0 for i < 0. Then
the Steenrod power operations

Ps : Hq(K) → Hq+2s(p−1)(K), βPs : Hq(K) → Hq+2s(p−1)+1(K)

are defined by the following formulas:

Ps(x) = (−1)r(m!)qD(q−2s)(p−1)(x), βPs(x) = (−1)r(m!)qD(q−2s)(p−1)−1(x),

where m = (p− 1)/2 and r = s+m(q + q2)/2.

Proposition 5.2. The power operations satisfy the following properties:

1. Ps and βPs are natural homomorphisms.

2. Ps(x) = 0 if 2s > q, βPs = 0 if 2s > q, and Ps(x) = xp if 2s = q.

3. If (K, θ) is a Cartan object, then Ps satisfies the Cartan formulas

Ps(xy) =
∑
i+j=s

Pi(x)Pj(y),

βPs+1(xy) =
∑
i+j=s

[βPi+1(x)Pj(y) + (−1)deg(x)Pi(x)βPj+1(y)].

Remark 5.3. In general, βPs is single notation. But if (K, θ) is reduced mod p ([14]),
then the Bockstein homomorphism

β : Hn(K) → Hn+1(K)

can be defined, and βPs is the composition of Ps with the Bockstein.
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Next we recall the definition of an ‘Adem object’ in C(p) [14]. We need the following
notations for the definition: Consider Σp2 as permutations on the p2 symbols {(i, j) |
1 6 i, j 6 p}. Embed π = 〈α〉 (⊆ Σp) in Σp2 by letting α(i, j) = (i+ 1, j). Let αi ∈
Σp2 , 1 6 i 6 p, be defined by αi(i, j) = (i, j + 1) and αi(k, j) = (k, j) for k 6= i. Let

β = α1 · · ·αp, ν = 〈β〉, σ = πν, τ = 〈α1, . . . , αp, α〉.

Note that β and αi are of order p and the following relations hold:

ααi = αi+1α;αiαj = αjαi;αβ = βα.

LetW1 =W andW2 =W regarded as Λπ-free and Λν-free resolutions of Λ respec-
tively. Let ν, π operate trivially on W1,W2 respectively. Then W1 ⊗W2 is a Λσ-free
resolution of Λ with the diagonal action of σ on W1 ⊗W2.

For any ν-module M , let τ operate on Mp by letting α operate by cyclic permu-
tation and by letting αi operate on the i-th factor as does β. Let αi operate trivially
on W1. Then τ operates on W1 and hence τ operates diagonally on W1 ⊗Mp. In
particular, W1 ⊗W p

2 is then a Λτ -free resolution of Λ.

Let (K, θ) ∈ C(p). We let Σp2 operate on Kp2 by permutations, where we consider

Kp2 as ⊗pi=1(⊗
p
j=1Ki,j),Ki,j = K. We let ν operate on W2 ⊗Kp by letting β act as

a cyclic permutation on Kp. By the previous paragraph this fixes an action of τ on
W1 ⊗ (W2 ⊗Kp)p.

Let Y be any ΛΣp2-free resolution of Λ with Y0 = ΛΣp2 and let w : W1 ⊗W p
2 → Y

be any morphism of Λτ -complexes. Observe that w exists since Y is acyclic and any
two choices of w are Λτ -equivariantly homotopic.

With these notations, we have the following definition:

Definition 5.4. Let (K, θ) ∈ C(p). We say that (K, θ) is an Adem object if there

exists a morphism of ΛΣp2-complexes η : Y ⊗Kp2 → K, such that the following dia-
gram is Λτ -equivariant homotopy commutative:

(W1 ⊗W p
2 )⊗Kp2

Y ⊗Kp2 K

W1 ⊗ (W2 ⊗Kp)p W1 ⊗Kp K.

-w⊗id -η

6
id×Ũ

-id⊗θp -θ

6
id

Here Ũ is the shuffle map and Σp2 acts trivially on K.

The following relations among the operations Ps and βPs are valid on all coho-
mology classes of Adem objects in C(p), p > 2 a prime [14]:

• If a < pb, then

βePaPb =
∑
i

(−1)a+i(a− pi, (p− 1)b− a+ i− 1)βePa+b−iPi.
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• If a 6 pb, then

βePaβPb = (1− e)
∑
i

(−1)a+i(a− pi, (p− 1)b− a+ i− 1)βPa+b−iPi

−
∑
i

(−1)a+i(a− pi− 1, (p− 1)b− a+ i)βePa+b−iβPi,

where e = 0, 1 and β0Ps = Ps and β1Ps = βPs.
We apply the above algebraic construction to define Steenrod reduced power oper-

ations in equivariant simplicial cohomology of an OG-simplicial set, as defined in the
Section 4. This is done by constructing a functor Γ from AΛ to C(p).

Let (T,M0, ρ) be an object of AΛ. Recall that the cochain complex C∗
ρ (T ;M0),

equipped with the cup product, is an associative differential graded Λ-algebra (cf.
Remark 4.2). We now construct a morphism of Λπ-complexes

θ : W ⊗ C∗
ρ (T ;M0)

p → C∗
ρ(T ;M0),

so that (C∗
ρ (T ;M0), θ) becomes an object of the category C(p).

For a simplicial set L, let C∗(L) denote the normalized chain complex of L with
coefficients Λ. We recall the following lemma from [14]:

Lemma 5.5. Let π be a subgroup of Σp (π not necessarily cyclic of order p) and W
be a Λπ-free resolution of Λ such that W0 = Λπ with generator e0. For simplicial sets
L1, . . . , Lp, there exists a chain map

Φ: W ⊗ C∗(L1 × · · · × Lp) →W ⊗ C∗(L1)⊗ · · · ⊗ C∗(Lp),

which is natural in the Li and satisfies the following properties:

1. For σ ∈ π, the following diagram is commutative:

W ⊗ C∗(L1 × · · · × Lp) W ⊗ C∗(L1)⊗ · · · ⊗ C∗(Lp)

W ⊗ C∗(Lσ(1) × · · · × Lσ(p)) W ⊗ C∗(Lσ(1))⊗ · · · ⊗ C∗(Lσ(p)).

-Φ

?

σ

?

σ

-Φ

2. Φ is the identity homomorphism on W ⊗ C0(L1 × · · · × Lp).

3. Φ(e0 ⊗ (x1, . . . , xp)) = e0 ⊗ ξ(x1, . . . , xp), where xi ∈ Lj for 1 6 i 6 p and

ξ : C∗(L1 × · · · × Lp) → C∗(L1)⊗ · · · ⊗ C∗(Lp)

is the Alexander-Whitney map.

4. Φ(W ⊗ Cj(L1 × · · · × Lp)) ⊆
∑
k6pjW ⊗ [C∗(L1)⊗ · · · ⊗ C∗(Lp)]k.

5. Any two such Φ are naturally equivariantly homotopic.

In the special case L1 = · · · = Lp = L, we obtain a natural morphism of chain
complexes of Λπ-modules
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Φ: W ⊗ C∗(L
p) →W ⊗ C∗(L)

p,

which satisfies the last four conditions of Lemma 5.5.
Let T ∈ OGS. Applying the above special case of Lemma 5.5 to each simplicial set

T (G/H), we obtain the chain map ΦH : W ⊗ C∗(T (G/H)p) →W ⊗ C∗(T (G/H))p

which is π-equivariant. Since ΦH is natural with respect to maps of simplicial sets,
we see that ΦH ◦ (idW ⊗C∗(T (â)

p)) = (idW ⊗C∗(T (â))
p) ◦ ΦK , where a−1Ha ⊆ K.

Thus we have a morphism Φ of OG-chain complexes

Φ: W ⊗ C∗(T
p) →W ⊗ C∗(T )

p, defined by Φ(G/H) = ΦH , G/H ∈ OG.

Now suppose that an OG-group ρ operates on T . The diagonal action of ρ on T p

induces a ρ-action on C∗(T
p). Also we have an induced ρ-action on C∗(T ). We let ρ

operate diagonally on C∗(T )
p and trivially on W . The naturality of ΦH with respect

to maps from T (G/H) into itself shows that ΦH is ρ(G/H)-equivariant. Thus the
map Φ is (π × ρ)-equivariant. Hence we obtain the following corollary:

Corollary 5.6. Let T ∈ OGS and an OG-group ρ operates on T . For a subgroup π
of Σp (π not necessarily cyclic of order p), let W be a Λπ-free resolution of Λ such
that W0 = Λπ with generator e0. Then there is a natural transformation

Φ: W ⊗ C∗(T
p) →W ⊗ C∗(T )

p

such that

1. The map Φ is (π × ρ)-equivariant;

2. The map Φ is the identity homomorphism on W ⊗ C0(T
p);

3. For each object G/H of OG,

Φ(G/H)(e0 ⊗ (x1, . . . , xp)) = e0 ⊗ ξ(G/H)(x1, . . . , xp),

where xi ∈ T (G/H) for 1 6 i 6 p and ξ(G/H) : C∗(T (G/H)p) → C∗(T (G/H))p

is the Alexander-Whitney map of the simplicial set T (G/H);

4. Φ(G/H)(W ⊗ Cj(T (G/H)p)) ⊆
∑
k6pjW ⊗ (C∗(T (G/H))p)k;

5. The map Φ is natural with respect to equivariant maps of OG-simplicial sets and
any two such Φ are naturally equivariantly homotopic.

Next we construct the map θ : W ⊗ C∗
ρ(T ;M0)

p → C∗
ρ(T ;M0).

For an object (T,M0, ρ) ∈ AΛ, let D : T → T p be the diagonal map

D(G/H)(x) = (x, . . . , x), x ∈ T (G/H),

which induces a map D∗ : C∗(T ) → C∗(T
p). Define ∆: W ⊗ C∗(T ) → C∗(T )

p to be
the composite

∆: W ⊗ C∗(T )
id⊗D∗−−−−→W ⊗ C∗(T

p)
Φ−→W ⊗ C∗(T )

p → C∗(T )
p,

where the last map is the augmentation. Observe that the map ∆ is (π × ρ)-equivar-
iant. Moreover, we have a natural map

α : [C∗
ρ(T ;M0)]

p → Homρ(C∗(T )
p,M0)

defined by

α(f1 ⊗ · · · ⊗ fp)(G/H)(x1 ⊗ · · · ⊗ xp) = (−1)af1(G/H)(x1) · · · fp(G/H)(xp),
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where fi ∈ C∗
ρ(T ;M0), xi ∈ C∗(T )(G/H), i = 1, . . . , p and a =

∏p
k=1 deg(xk). Hence

dualising ∆, we get a natural morphism of Λπ-complexes,

θ : W ⊗ C∗
ρ (T ;M0)

p → C∗
ρ(T ;M0),

given by

θ(w ⊗ f)(G/H)(x) = (−1)deg(w) deg(x)α(f)(G/H)(∆(G/H)(w ⊗ x)),

where w ∈W, f ∈ C∗
ρ (T ;M0)

p, x ∈ C∗(T (G/H)).

Remark 5.7. Note that θ(e0 ⊗ f) = D∗ξ∗α(f) for any f ∈ C∗
ρ(T ;M0)

p. As before, let
V denote a ΛΣp-free resolution of Λ and j : W → V be the map induced by the inclu-

sion π ↪→ Σp. We apply Corollary 5.6 for the (sub)group Σp to get Φ̃ : V ⊗ C∗(T
p) →

W ⊗ C∗(T )
p. Then Φ̃ ◦ (j ⊗ id) satisfies the first four conditions of Corollary 5.6 for

the subgroup π and hence must be equivariantly homotopic to Φ. Therefore, θ̃ : V ⊗
C∗
ρ(T ;M0)

p → C∗
ρ (T ;M0) can be defined such that θ̃ ◦ (j ⊗ id) is Λπ-equivariantly

homotopic to θ. Therefore (C∗
ρ (T ;M0), θ) is an object of the category C(p). Thus we

obtain a contravariant functor Γ: AΛ → C(p) by letting Γ(T,M0, ρ) = (C∗
ρ(T ;M0), θ)

and Γ(f0, f1, f2) = C∗(f0, f1, f2) on morphisms (cf. Remark 4.1).

The next lemma is the key to show that (C∗
ρ(T ;M0), θ) is a Cartan object of

C(p). Let φ = (ε⊗ id)Φ where Φ is obtained from Lemma 5.5 and ε : W → Λ is the
augmentation.

Lemma 5.8. Let Li, Si, i = 1, . . . , p be simplicial sets. Let

u :
( p∏
i=1

Li ×
p∏
i=1

Si

)
→

p∏
i=1

(Li × Si)

and

U : (⊗pi=1C∗(Li))⊗ (⊗pi=1C∗(Si)) → ⊗pi=1[C∗(Li)⊗ C∗(Si)]

be shuffle maps. Let t denote the flip map, that is, t(x⊗ y) = y ⊗ x. Then there exists
a homotopy

H : W ⊗ C∗

( p∏
i=1

Li ×
p∏
i=1

Si

)
→

p⊗
i=1

[C∗(Li)⊗ C∗(Si)]

of the chain maps ξpφ(id⊗u) and U(φ⊗ φ)(id⊗t⊗ id)(ψ ⊗ id⊗ id)(id×ξ), so that
the following diagram is homotopy commutative:

W ⊗ C∗

( p∏
i=1

Li ×
p∏
i=1

Si
)

W ⊗ C∗

( p∏
i=1

(Li × Si)
) p⊗

i=1

[C∗(Li × Si)]

W ⊗ C∗

( p∏
i=1

Li
)
⊗ C∗

( p∏
i=1

Si
) p⊗

i=1

[C∗(Li)⊗ C∗(Si)].

-id×u

?
id⊗ξ

-φ

?
ξp

-
U(φ⊗φ)(id⊗t⊗id)(ψ⊗id⊗ id)
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Moreover, the homotopy H is natural in the Li, Si and the following diagram com-
mutes for σ ∈ π:

W ⊗ C∗

( p∏
i=1

Li ×
p∏
i=1

Si

) p⊗
i=1

[C∗(Li)⊗ C∗(Si)]

W ⊗ C∗

( p∏
i=1

Lσ(i) ×
p∏
i=1

Sσ(i)

) p⊗
i=1

[C∗(Lσ(i))⊗ C∗(Sσ(i))].

-H

?

σ⊗σ

?

σ

-
H

Proof. The proof is similar to the proof of Lemma 7.1 of [14]. Let us use the notation
Aj = Cj(

∏p
i=1 Li ×

∏p
i=1 Si) and Bj = [⊗pi=1C∗(Li)⊗ C∗(Si)]j . We construct H on

Wi ⊗Aj by induction on i and for fixed i by induction on j. Note that the two
maps agree on W ⊗A0, so H is the zero map on W ⊗A0. To define H on W0 ⊗Aj ,
j > 0, it suffices to define on e0 ⊗Aj , since H can then be uniquely extended to
all of W0 ⊗Aj using the commutativity of the second diagram. The functor e0 ⊗Aj
is represented by the model ∆[j]p ×∆[j]p and W ⊗Bj is acyclic on this model.
Therefore, by the acyclic model argument,H can be defined on e0 ⊗Aj , providedH is
known on e0 ⊗Aj−1. ButH has already been defined onW0 ⊗A0. Hence by induction
on j, we can define H on e0 ⊗Aj , j > 0. To define H on Wi ⊗Aj , assume that it
has already been defined on Wi′ ⊗Aj , i

′ < i, j > 0 and on Wi ⊗Aj′ , j
′ < j. Choose

a Λπ-basis {wk} for Wi. As before, it suffices to define H on w ⊗Aj , w ∈ {wk}. We
can repeat the acyclic model argument replacing e0 by w, and hence we are through
by induction.

In the special case L1 = · · · = Lp = L, S1 = · · · = Sp = S, we obtain the following
corollary:

Corollary 5.9. For simplicial sets L and S, the two chain maps ξpφ(id⊗u) and
U(φ⊗ φ)(id⊗t⊗ id)(ψ ⊗ id⊗ id)(id×ξ) from W ⊗ C∗(L

p × Sp) to [C∗(L)⊗ C∗(S)]
p

are Λπ-equivariantly homotopic and the homotopy is natural in L and S.

Suppose (T,M0, ρ) and (T ′,M ′
0, ρ

′) are objects of AΛ. With the product actions of
ρ× ρ′ on T × T ′ and M0 ⊗M ′

0, we have an object (T × T ′,M0 ⊗M ′
0, ρ× ρ′) ∈ AΛ.

The lemma below relates Γ(T × T ′,M0 ⊗M ′
0, ρ× ρ′) = (C∗

ρ×ρ′(T × T ′;M0 ⊗M ′
0), θ)

to Γ(T,M0, ρ)⊗ Γ(T ′,M ′
0, ρ

′) = (C∗
ρ(T ;M0)⊗ C∗

ρ′(T
′;M ′

0), θ̃).
Let

α̃ : C∗
ρ(T ;M0)⊗ C∗

ρ′(T
′;M ′

0) → Homρ×ρ′(C∗(T )⊗ C∗(T
′),M0 ⊗M ′

0)

be defined by

α̃(f ⊗ g)(G/H)(x⊗ y) = (−1)deg(x) deg(y)f(G/H)(x)⊗ g(G/H)(y), H ⊆ G,

where f ∈ C∗
ρ(T ;M0), g ∈ C∗

ρ′(T
′;M ′

0), x ∈ C∗(T )(G/H), y ∈ C∗(T
′)(G/H).
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Lemma 5.10. With the notations as above, the following diagram is Λπ-homotopy
commutative:

W ⊗ C∗
ρ×ρ′(T × T ′;M0 ⊗M ′

0)
p C∗

ρ×ρ′(T × T ′;M0 ⊗M ′
0)

W ⊗ [C∗
ρ(T ;M0)⊗ C∗

ρ′(T
′;M ′

0)]
p C∗

ρ(T ;M0)⊗ C∗
ρ′(T

′;M ′
0).

-θ

6

id⊗(ξ∗α̃)p

-θ̃

6

ξ∗α̃

Proof. Let D,D′, and D̃ be the diagonals for T, T ′, and T × T ′ respectively. Let

u : T p × T ′p → (T × T ′)p and U : C∗(T )
p ⊗ C∗(T

′)p → [C∗(T )⊗ C∗(T
′)]p

be the shuffle maps. Let t be the switch map.
By the definitions of θ and θ̃, it suffices to prove that the following diagram of

OG-chain complexes is Λ(π × ρ× ρ′)-equivariant homotopy commutative:

(1)

W ⊗ C∗(T × T ′) C∗(T × T ′)p

W ⊗ C∗(T )⊗ C∗(T
′) [C∗(T )⊗ C∗(T

′)]p.

-∆

?

id×ξ

?

ξp

-ζ

Here

∆ = (ε⊗ id)Φ(id⊗D̃), ζ = U(∆⊗∆)(id⊗t⊗ id)(ψ ⊗ id⊗ id).

Let φ = (ε⊗ id)Φ. Observe that D̃ = u(D ×D′) and

(id⊗D ⊗ id⊗D′)(id⊗t⊗ id)(ψ ⊗ id⊗ id) = (id⊗t⊗ id)(ψ ⊗ id⊗ id)(id⊗D ⊗D′).

Observe that the following diagram commutes by naturality of ξ:

(2)

W ⊗ C∗(T × T ′) W ⊗ C∗(T
p × T ′p)

W ⊗ C∗(T )⊗ C∗(T
′) W ⊗ C∗(T

p)⊗ C∗(T
′p).

-id⊗(D×D′)

?

id⊗ξ

?

id⊗ξ

-id⊗D⊗D′

Let F denote the following diagram of OG-chain complexes of Λ-modules:

(3)

W ⊗ C∗(T
p × T ′p) W ⊗ C∗([T × T ′]p) C∗(T × T ′)p

W ⊗ C∗(T
p)⊗ C∗(T

′p) [C∗(T )⊗ C∗(T
′)]p.

-id⊗u

?

id⊗ξ

-
φ

?

ξp

-
U(φ⊗φ)(id⊗t⊗id)(ψ⊗id⊗ id)
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Then F(G/H) is Λπ-equivariant homotopy commutative, by Corollary 5.9. The nat-
urality of this homotopy with respect to maps from T (G/H) into itself implies that
the homotopy is equivariant for the ρ(G/H)-action on T (G/H). Similarly, the homo-
topy is ρ′(G/H)-equivariant. These natural equivariant homotopies of chain com-
plexes combine together to form Λ(π × ρ× ρ′)-equivariant homotopy, which makes
diagram (3) Λ(π × ρ× ρ′)-equivariant homotopy commutative.

Now observe that diagram (1) is juxtaposition of diagrams (2) and (3). Hence
diagram (1) is Λ(π × ρ× ρ′)-equivariant homotopy commutative.

Proposition 5.11. For an object (T,M0, ρ) of AΛ, Γ(T,M0, ρ) = (C∗
ρ(T ;M0), θ) is

a Cartan object of C(p).

Proof. Recall that (C∗
ρ (T ;M0), θ) is called a Cartan object if the cup product is a

morphism of C(p). Now observe that

(T,M0, ρ)
(D,id,id)−−−−−→ (T × T,M0, ρ)

(id,m,D)−−−−−−→ (T × T,M0 ⊗M0, ρ× ρ)

are morphisms in AΛ, where m : M0 ⊗M0 →M0 is the multiplication, D denotes the
diagonal map, and we let ρ to operate diagonally on T × T .

Applying Lemma 5.10 with (T,M0, ρ) = (T ′,M ′
0, ρ

′), and composing with the mor-
phism C∗(id,m,D), we see that the composite ξ∗α

C∗
ρ (T ;M0)⊗ C∗

ρ(T ;M0)
α−→ Homρ(C∗(T )⊗ C∗(T ),M0)

ξ∗

−→ C∗
ρ(T × T ;M0)

is a morphism in C(p). Also note that C∗(D, id, id) : C∗
ρ(T × T ;M0) → C∗

ρ(T ;M0) is
a morphism in C(p). Hence the cup product is a morphism in C(p).

Next we show that (C∗
ρ(T ;M0) is an ‘Adem object’ in C(p).

Proposition 5.12. For an object (T,M0, ρ) of AΛ, Γ(T,M0, ρ) = (C∗
ρ(T ;M0), θ) is

an Adem object of C(p).

Proof. With the notations of Definition 5.4, we first construct the map

η : Y ⊗ C∗
ρ(T ;M0)

p2 → C∗
ρ(T ;M0).

The procedure is similar to the construction of θ. We remark that the proof of
Lemma 5.5 works for any subgroup π of Σr, r being any positive integer. Thus we
have a chain map

Φ: Y ⊗ C∗(L1 × · · · × Lr) → Y ⊗ C∗(L1)⊗ · · · ⊗ C∗(Lr),

satisfying properties of Lemma 5.5. As before, we specialize to L1 = · · · = Lr = L and
take π = Σr. The naturality of Φ with respect to maps of a simplicial set into itself
allows us to pass to an OG-simplicial set T , equipped with an action of an OG-group ρ,
so that we get Λ(Σr × ρ)-equivariant map of OG-chain complexes Φ: Y ⊗ C∗(T

r) →
Y ⊗ C∗(T )

r. As a consequence, we obtain a map of OG-chain complexes ∆: Y ⊗
C(T ) → C(T )p

2

which is (Σp2 × ρ)-equivariant. Next, following the construction of
the map θ, we obtain η.
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Note that, dualising the diagram in Definition 5.4, it suffices to prove that the
following diagram is Λ(τ × ρ)-homotopy commutative.

W1 ⊗W p
2 ⊗ C∗(T ) Y ⊗ C∗(T ) C∗(T )

p2

W p
2 ⊗W1 ⊗ C∗(T ) W p

2 ⊗ C∗(T )
p [W2 ⊗ C∗(T )]

p.

-w⊗id

?

t⊗id

-∆

-id⊗∆ -U

6
∆p

Here the notations are as in Lemma 5.10. Define the maps of OG-chain complexes
χ,Ω: W1 ⊗W p

2 ⊗ C∗(T
p2) → C∗(T )

p2 by

χ = φ(w ⊗ idC∗(T
p2 ))andΩ = φpU(idW1⊗Wp

2
⊗φ)(t⊗ idC∗(T

p2 )).

Let D : C∗(T ) → C∗(T
p2) be induced by diagonal. Following [13], we observe that

∆(w ⊗ id) = χ(id⊗ id⊗D)

and

∆pU(id⊗∆)(t⊗ id) = Ω(id⊗ id⊗D).

Therefore it suffices to show that the maps of the OG-chain complex χ,Ω are
Λ(τ × ρ)-equivariantly homotopic. Here τ operates by permutation of factors, and

the OG-group ρ operates diagonally on T p
2

and on C∗(T )
p2 . We replace C∗(T

p2)

by C∗(
∏p
i,j=1 Li,j) and C∗(T )

p2 by
⊗p

i,j=1 C∗(Li,j) in the definitions of the maps
χ and Ω, where Li,js are simplicial sets. Then the chain maps, corresponding to χ
and Ω, can be shown to be τ -equivariantly homotopic, and the homotopy is natu-
ral with respect to maps of simplicial sets. In the special case Li,j = L, 1 6 i, j 6 p,
the naturality of this homotopy for maps of a simplicial set into itself implies that
the chain maps χ(G/H) and Ω(G/H) are Λ(τ × ρ(G/H))-equivariantly homotopic,
H ⊆ G being a subgroup. Again the naturality of homotopy shows that the maps of
OG-chain complexes χ,Ω are Λ(τ × ρ)-equivariantly homotopic.

Thus we have the following theorem.

Theorem 5.13. Let (T,M0, ρ) ∈ AΛ, Λ = Zp, p > 2 a prime. Then there exist func-
tions

Ps : Hq
ρ(T ;M0) → Hq+2s(p−1)

ρ (T ;M0),

βPs : Hq
ρ(T ;M0) → Hq+2s(p−1)+1

ρ (T ;M0),

which satisfy the following properties:

1. Ps and βPs are natural homomorphisms.

2. Ps = βPs = 0 if s < 0. Also Ps(x) = 0 if 2s > q, βPs = 0 if 2s > q.

3. Ps(x) = xp if 2s = q.
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4. (Cartan formula). For x, y ∈ Hq
ρ(T ;M0),

Ps(x ∪ y) =
∑
i+j=s

Pi(x) ∪ Pj(y),

βPs+1(x ∪ y) =
∑
i+j=s

[βPi+1(x) ∪ Pj(y) + (−1)deg(x)Pi(x) ∪ βPj+1(y)].

5. (Adem relation). If a < pb, then

βePaPb =
∑
i

(−1)a+i(a− pi, (p− 1)b− a+ i− 1)βePa+b−iPi.

If a 6 pb, then

βePaβPb = (1− e)
∑
i

(−1)a+i(a− pi, (p− 1)b− a+ i− 1)βPa+b−iPi

−
∑
i

(−1)a+i(a− pi− 1, (p− 1)b− a+ i)βePa+b−iβPi,

where e = 0, 1 and β0Ps = Ps and β1Ps = βPs.

Proof. We only need to prove that Ps = βPs = 0 for s < 0. By definition of the power
operations, it suffices to show that Di(x) = 0 for i > pq − q, deg(x) = q. Recall that
∆ = (ε⊗ id)Φ(id×D) and

Φ(ei ⊗D(x)) ∈
∑
j<pq

Wpq−j ⊗ [C∗(T )]
p
j ⊆ Ker(ε⊗ id) for i > pq − q.

Hence ∆(ei ⊗ x) = 0 for x ∈ Cpq−i(T ).

Let X be a one vertex G-Kan complex and M be equivariant local coefficients
of Λ-algebras on X, where Λ = Zp, p > 2 a prime. We define the Steenrod reduced
power operations in simplicial Bredon-Illman cohomology with local coefficients by

Ps = µ∗−1Psµ∗ and βPs = µ∗−1(βPs)µ∗,

where the symbols Ps and βPs on the right side of the above equalities denote
the power operations as constructed in the category AΛ, and µ

∗ is the isomorphism
µ∗ : H∗

G(X;M) ∼= H∗
πX(X̃;M0), as obtained in Theorem 4.3. Thus we have the fol-

lowing theorem.

Theorem 5.14. Let X be a one vertex G-Kan complex and M be equivariant local
coefficients of Λ-algebras on X, Λ = Zp, p > 2 a prime. Then there exist natural homo-
morphisms

Ps : Hq
G(X;M) → H

q+2s(p−1)
G (X;M),

βPs : Hq
G(X;M) → H

q+2s(p−1)+1
G (X;M),

which satisfy properties (1)–(5) of Theorem 5.13.
If G is trivial, then Ps can be naturally identified with the reduced power operations

in local coefficients [9].
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Proof. Since the isomorphism µ∗ of the Eilenberg theorem, Theorem 4.3 is natural
and respects the cup product, and the first part follows from Theorem 5.13.

For the second part, we just remark that when G is trivial, the map

∆: W ⊗ C∗(T ) → C∗(T )
p

reduces to the (π × ρ)-equivariant chain mapping φ′ : W ⊗ C∗(X) → C∗(X)p, as con-
structed by Gitler in Section 4.2 of [9].

Remark 5.15. Let p = 2, Λ = Z2. For an object (K, θ) ∈ C(2), we have the maps

Di : H
q(K) → H2q−i(K), i > 0,

defined as before by Di(x) = θ∗(ei ⊗ x2) with Di = 0 for i < 0, x ∈ Hq(K). Then the
Steenrod’s square operations are defined by

Sqi(x) := Dq−i(x).

It may be mentioned that in this general setup cup-i products ∪i : K ⊗K → K are
also defined and are given by

x ∪i y := θ(ei ⊗ x⊗ y), x ∈ Kq, y ∈ Kq.

(See [14, §6].) In terms of these ∪i products, Steenrod’s squares are given by

Sqi(x) =

{
x ∪q−i x, 0 6 i 6 q

0 if i > q.

In our situation K = C∗
ρ(T ;M0), where (T,M0, ρ) ∈ AΛ,Λ = Z2, and we obtain

Sqi : Hq
ρ(T ;M0) → Hq+i

ρ (T ;M0) by the above formula. As in the case p > 2, we use
the equivariant Eilenberg theorem to define Steenrod square operations

Sqi : Hq
G(X;M) → Hq+i

G (X;M),

where X is a one vertex G-Kan complex and M is equivariant local coefficients on
X, taking values in Z2-algebras.

Our approach is simplicial and the motivation comes from Gitler’s work [9]. The
key points of our construction are the use of general algebraic approach to Steenrod
operations due to Peter May [14] and that of the equivariant Eilenberg theorem in
the present context.

In contrast, for a topological space X equipped with an action of a topological
group G, Ginot [8] gave a direct construction of Steenrod’s squares on the Bredon-
Illman cohomology of X with local coefficients M that take values in Z2-algebras.
Ginot’s idea was to deduce cup-i products on the Bredon-Illman cochain complex of
X using a brace (or homotopy Gerstenhaber) algebra structure on this complex [16].
For p = 2 and a discrete group action, our construction leads to the same operations
as defined in [8] via the geometric realization functor of simplicial sets.
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