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COHOMOLOGY OF HECKE ALGEBRAS

DAVID BENSON, KARIN ERDMANN and ARAM MIKAELIAN

(communicated by John Greenlees)

Abstract
We compute the cohomology H∗(H, k) = Ext∗H(k, k) where

H = H(n, q) is the Hecke algebra of the symmetric group Sn at
a primitive `th root of unity q, and k is a field of characteristic
zero. The answer is particularly interesting when ` = 2, which
is the only case where it is not graded commutative. We also
carry out the corresponding computation for Hecke algebras of
type Bn and Dn when ` is odd.

1. Introduction

Let H = H(n, q) be the Hecke algebra of the symmetric group Sn over a field k of
characteristic zero and where q is a primitive `th root of unity. This has generators
T1, . . . , Tn−1 satisfying braid relations together with the relations (Ti + 1)(Ti − q)
= 0. We assume that ` > 2. Write n = `m + a where 0 6 a < `, and let B = H(λ, q)
where λ is the partition

λ = (`m, 1a).

That is, B is the subalgebra of H generated by all Ti, where i < `m and ` does not
divide i. Then B is isomorphic to the tensor product of m copies of H(`, q) and is
a maximal `-parabolic subalgebra of H. It has been proved by Du [7] that every
H-module is relatively B-projective. This suggests that B should play a role similar
to that of the group algebra of a Sylow subgroup of a finite group.

The algebraH has a trivial module k, so it has cohomology H∗(H, k) = Ext∗H(k, k).
Similarly we define H∗(B, k) = Ext∗B(k, k). Here we relate the cohomology ofH to that
of B. We prove an analogue of the result for group algebras, which states that if G is
a finite group and F is a field of characteristic p, then H∗(G,F ) is isomorphic to the
stable part of H∗(P, F ) where P is a Sylow p-subgroup of G (Cartan and Eilenberg [2,
Theorem XII.10.1]), and that if, furthermore, P is abelian, then the stable elements
are the invariants of the action of NG(P )/P (Swan [13], corrected in [14]).

The symmetric group Sm acts naturally on B and on H∗(B, k) = Ext∗B(k, k). Our
main theorem is as follows.
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Theorem 1.1. The restriction map in cohomology induces an isomorphism

H∗(H, k) → H∗(B, k)Sm .

Case 1. If ` > 2, then H∗(B, k) = Λ(y1, . . . , ym)⊗k k[x1, . . . , xm] with |yi| = 2`− 3
and |xi| = 2`− 2. Defining a derivation d on H∗(B, k) via d(xi) = yi, d(yi) = 0, we
have

H∗(H, k) ∼= H∗(B, k)Sm = Λ(dσ1, . . . , dσm)⊗k k[σ1, . . . , σm],

where σi is the ith elementary symmetric polynomial in x1, . . . , xm.

Case 2. If ` = 2, then H∗(B, k) = k〈z1, . . . , zm〉/(zizj + zjzi, i 6= j) with |zi| = 1.
This algebra is not graded commutative, because the degree one elements zi do not
square to zero.

Let vi be the ith elementary symmetric function in z2
1 , . . . , z2

m, so that |vi| = 2i.
There are elements ui ∈ H2i−1(B, k)Sm (1 6 i 6 m) satisfying

u2
i =

i−1∑

l=0

(2l + 1)vi−l−1vi+l (1)

for 1 6 i 6 m (for i = 1 this relation says that u2
1 = v1), and

uiuj + ujui = 2
j−1∑

l=0

(i− j + 2l + 1)vj−l−1vi+l (2)

for 1 6 j < i 6 m, where vi is taken to be zero if i > m and v0 = 1. We have

H∗(H, k) ∼= H∗(B, k)Sm = k〈u1, . . . , um, v2, . . . , vm〉/(R),

where (R) is the following set of relations:
1. vivj = vjvi (1 6 i, j 6 m),
2. uivj = vjui (1 6 i, j 6 m),
3. relation (1) (2 6 i 6 m),
4. relation (2) (1 6 j < i 6 m),

where, in the right-hand side of relations (1) and (2), we take v1 to be u2
1.

In both cases, ` > 2 and ` = 2, the following is the Poincaré series for the coho-
mology:

∑

i>0

ti dimk Hi(H, k) =
(1 + t2(`−1)−1)(1 + t4(`−1)−1) · · · (1 + t2m(`−1)−1)

(1− t2(`−1))(1− t4(`−1)) · · · (1− t2m(`−1))
.

In the final section of the paper we prove the analogous theorem for the Hecke
algebras of types Bn and Dn when ` is odd.

2. Background on Hecke algebras

The standard approach to working with the representation theory of Hecke algebras
of type A was developed by Dipper and James [5]. Given a standard Young subgroup
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Sλ of Sn, they work with a set Dλ of right coset representatives of minimal length.
Since we are working with left modules rather than right modules, we use the set
D−1

λ of inverses of these elements.
In detail, let λ be a partition of n. Let tλ be the tableau of shape λ in which the

numbers 1, 2, . . . , n appear in order along successive rows. Then we take for Sλ the
standard Young subgroup, in which the rows of tλ are the orbits of Sλ. Then the
distinguished set Dλ of right coset representatives of Sλ in Sn consists precisely of
elements g ∈ Sn such that the tableau tλg is row standard. We write D−1

λ for the set
of g−1 with g ∈ Dλ.

We recall from [5] the basic properties of the distinguished coset representatives.

Lemma 2.1. Let d ∈ D−1
λ . Then

(i) For each w ∈ Sλ, we have l(dw) = l(w) + l(d).
(ii) Write S for the set of transpositions of the form si = (i, i + 1) in Sn. If v ∈ S,

then either vd ∈ D−1
λ , or d−1vd ∈ Sλ ∩ S and l(vd) = l(d) + 1.

We will also need to work with double cosets of Young subgroups, and we recall
what we need from Lemma 1.6 of Dipper and James [5].

Lemma 2.2. Let Dλ,λ = Dλ ∩ D−1
λ . Note that Dλ,λ = D−1

λ,λ.
(a) Dλ,λ is a system of (Sλ, Sλ) double coset representatives in Sn.
(b) Each d ∈ Dλ,λ is the unique element of minimal length in its double coset.
(c) If d ∈ Dλ,λ, then dSλd−1 ∩ Sλ is a standard Young subgroup, which we denote

by Sλ(d) where λ(d) is a composition of n.
(d) If v = dud−1 ∈ Sλ(d) for u ∈ Sλ, then l(u) = l(v).

(e) Every element w ∈ Sn has a unique expression as w = udv with u ∈ D−1
λ(d) ∩ Sλ

and d ∈ Dλ,λ and v ∈ Sλ. Moreover, l(w) = l(u) + l(d) + l(v) and

D−1
λ =

⋃

d∈Dλ,λ

(D−1
λ(d) ∩ Sλ)d.

By part (e) of the lemma, any w ∈ D−1
λ has a unique expression of the form w = td

for d ∈ Dλ,λ and t ∈ D−1
λ(d) ∩ Sλ. We set Td = D−1

λ(d) ∩ Sλ for d ∈ Dλ,λ, and then we
have

D−1
λ =

⋃

d∈Dλ,λ

⋃

t∈Td

{td}. (3)

The q-analogue of Lagrange’s Theorem
Suppose that Sµ ⊆ Sλ ⊆ Sn are standard parabolic subgroups. Then Sλ can be

written as a disjoint union of left cosets

Sλ =
⋃

d∈D−1
µ ∩Sλ

dSµ.

Definition 2.3. We define the q-index of Sµ in Sλ to be the number

(Sγ : Sµ)q =
∑

d∈D−1
µ ∩Sγ

ql(d).
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The following is an analogue for Hecke algebras of Lagrange’s Theorem for groups:

Lemma 2.4. We have

(Sλ : Sµ)q(Sµ : 1)q = (Sλ : 1)q.

Proof. If w ∈ Sγ , then w has a unique factorisation as w = dv with v ∈ Sµ and d a
distinguished coset representative, and l(w) = l(d) + l(v).

Furthermore, we have a summation formula, corresponding to the double coset
decomposition.

Lemma 2.5. We have

(Sn : Sµ)q =
∑

d∈D
(Sµ : Sµ(d))qq

l(d).

Proof. This follows from Lemma 2.4, using (3), since
∑

d∈D−1
λ

ql(d) =
∑

d∈Dλ,λ

( ∑

t∈Td

ql(t)
)
ql(d) =

∑

d∈Dλ,λ

(Sµ : Sµ(d))q.

A divisibility lemma
From now we take λ = (`m, a) where n = `m + a and 0 6 a < `. We shall need to

use the fact that the length of an element

g ∈ N(Sλ) ∩ Dλ = N(Sλ) ∩ D−1
λ = N(Sλ) ∩ Dλ,λ,

which fixes the fixed points of Sλ, is divisible by `. This will play a role several times
in simplifying identities.

Recall that the length of a permutation x ∈ Sn is the size of its inversion set,
which is defined to be

inv(x) = {(i, j) : 1 6 i < j 6 n and ix > jx}
(see Exercise 2 in Section 1.6 of Humphreys [10]). Take x ∈ Dλ, and assume that
x fixes each fixed point of Sλ. Then the tableau tλx is row standard, and hence if
i < j and i, j are in the same row of tλ, then (i, j) is not in inv(x). Writing Ri for
the ith row of tλ, the inversion set is therefore the disjoint union of sets inv(x)b,c =
inv(x) ∩ (Rb ×Rc) where 1 6 b < c 6 m.

Lemma 2.6. Let x ∈ Dλ. Assume that one of Rbx or Rcx is equal to some row of tλ

where b < c 6 m. Then the size of inv(x)b,c is divisible by `.

Proof. Say Rbx is some row of tλ; then Rbx consists of consecutive numbers. Fix some
j ∈ Rc; then jx is different from the numbers in Rbx, so either ix > jx for all i ∈ Rb,
or ix < jx for all i ∈ Rb. So if M is the set of all j ∈ Rc such that (i, j) ∈ inv(x) for
some i ∈ Rb, then inv(x)b,c has size |Rb| · |M | = ` · |M |.
Corollary 2.7. Suppose that g ∈ N(Sλ) ∩ Dλ, and g fixes each fixed point of Sλ.
Then the length of g is divisible by `.

Proof. In this case, for any 1 6 b 6 m, the set Rbg is a row of tλ and hence the size
of inv(x)b,c is divisible by `. Furthermore, the fixed points of Sλ do not contribute to
the inversion set of g.
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Some explicit q-indices
Recall that we are assuming that λ = (`m, 1a) where n = `m + a and 0 6 a < `,

so that Sλ is maximal `-parabolic.

Lemma 2.8.

1. We have (Sn : 1)q = [n]q!. Furthermore, if µ = (µi) is a composition of n, then
(Sµ : 1)q =

∏
i(Sµi : 1)q.

2. We have (Sn : Sλ)q = m![a]q!.
3. If Sλ(d) is a proper subgroup of Sλ, then (Sλ : Sλ(d))q = 0.

Recall that the q-factorial is defined as [a]q! = [1]q[2]q · · · [a]q, where [a]q denotes
1 + q + · · ·+ qa−1.

Proof. Part (1) is well known, and part (2) is proved in Corollary 2.5 of [4]. To prove
part (3), note that λ(d) is a refinement of λ, so we can factorise the q-index, and it
suffices to show that (S` : Sµ)q = 0 if µ is a composition of ` and µ 6= (`). We have

(S` : Sµ)q(Sµ : 1)q = (S` : 1)q = [`]q! = 0,

and (Sµ : 1)q is non-zero since all parts of µ are strictly less than `. So it follows that
(S` : Sµ)q = 0.

The transfer map
Assume that M and N are H-modules, and y ∈ HomB(M, N). Define

trB,H(y)(x) =
∑

d∈D−1
λ

q−l(d)Tdy(Td−1x) for x ∈ M.

Lemma 2.9. The map trB,H(y) is a H-module homomorphism.

Proof. The argument for this is given in [4], but since the context and notation are
slightly different we give the proof here for the convenience of the reader.

Fix s ∈ S where S is the set of basic transpositions. We must show that trB,H(y)
commutes with Ts. Let

D1 = {d ∈ D−1
λ : d−1sd ∈ Sλ ∩ S, l(sd) = l(d) + 1},

D2 = {d ∈ D−1
λ : sd ∈ D−1

λ , l(sd) = l(d) + 1},
D3 = {d ∈ D−1

λ : sd ∈ D−1
λ , l(sd) = l(d)− 1} = sD2.

By Lemma 2.1, these sets form a partition of D−1
λ . So we have

trB,H(y) =
∑

d∈D1

q−l(d)TdyTd−1 +
∑

d∈D2

(q−l(d)TdyTd−1 + q−l(d)−1TsdyT(sd)−1). (4)

If d ∈ D1, write s′ = d−1sd. Then

Td−1Ts = Td−1s = Ts′d−1 = Ts′Td−1 ,

and
TdTs′ = Tds′ = Tsd = TsTd.
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So
TdyTd−1Ts = TdyTs′Td−1 = TdTs′yTd−1 = TsTdyTd−1 .

This proves that Ts commutes with the first sum in (4).
Now let d ∈ D2; then

(q−l(d)TdyTd−1+q−l(d)−1T(sd)yT(sd)−1)Ts = q−l(d)TdyTd−1s + q−l(d)−1TsdyTd−1(Ts)2

= q−l(d)TdyTd−1s + q−l(d)−1(q − 1)TsdyTd−1s + q−l(d)TsdyTd−1

= Ts(q−l(d)−1T(sd)yT(sd)−1 + q−l(d)TdyTd−1).

This proves that Ts commutes with the second sum in (4).

We will only use this when N = k, the trivial module. Then the formula becomes

trB,H(y)(x) =
∑

d∈D−1
λ

y(Td−1x).

Next, still assuming N = k, we write trB,H(y) =
∑

d∈Dλ,λ
yd, where

yd(x) =
∑

t∈Td

y(Td−1Tt−1x) (x ∈ M) (5)

and Td = D−1
λ(d) ∩ Sλ.

Definition 2.10. Suppose that M is an H-module; then y ∈ HomB(M,k) is stable
provided for all d ∈ Dλ,λ we have y[Td−1(−)] = ql(d)y(−).

Remark 2.11. Any d in N(Sλ) ∩ Dλ can be written as d = d1d2 = d2d1, where d1 fixes
the fixed points of Sλ and d2 fixes the remaining points. Furthermore, d1 and d2 are
also in N(Sλ) ∩ Dλ. For such a d, the stability condition of Definition 2.10 reduces to
the condition for d1. This observation will be used in the proof of Proposition 3.2(ii).

Lemma 2.12. If y ∈ HomB(M, k) is an H-module homomorphism, then it is stable.

Proof. In this case, for x ∈ M we have

y[Td−1(x)] = Td−1y(x) = ql(d)y(x)

since y maps into the trivial module.

Now assume that y ∈ HomB(M, k) is stable, and consider the map yd defined in (5).
Since y is a B-module homomorphism, this can then be written as

yd(x) = ql(d)
∑

t∈Td

Tt−1y(x) = ql(d)[
∑

t

ql(t)]y(x) = ql(d)(Sλ : Sλ(d))qy(x). (6)

3. Relating cohomology of H and B
In the following we write H∗(H, k) for Ext∗H(k, k) and H∗(B, k) for Ext∗B(k, k).

The multiplicative structure on cohomology is given by Yoneda composition. Since H
and B are not Hopf algebras, there is no a priori reason why these cohomology rings
should be graded commutative, and indeed we shall see that for ` = 2 it is not.
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To compute H∗(H, k), we take a projective resolution of k as an H-module

· · · → Pi → Pi−1 → · · · → P0 → 0 (7)

and then take the cohomology of the complex

0 → HomH(P0, k) → · · · → HomH(Pi−1, k) → HomH(Pi, k) → · · · .

We take for P∗ a minimal resolution forH, so that we have Hi(H, k) ∼= HomH(Ωik, k),
where Ωik is the kernel of Pi−1 → Pi−2 for i > 2, Ωk is the kernel of P0 → k, and
Ω0k = k.

Since H is a free B-module (see, for example, Lemma 2.4 of [5]), the restriction of
a projective H-module to B is a projective B-module. So we may compute H∗(B, k)
using the same resolution, but we need to note that for B it is not the minimal
resolution. So Hi(B, k) is the quotient HomB(Ωik, k) of HomB(Ωik, k) by the maps
PHomB(Ωik, k) that factor through a projective module.

In particular, the composite of

resH,B : HomH(Ωik, k) → HomB(Ωik, k)

with the surjection HomB(Ωii, k) → HomB(Ωik, k) gives the restriction map

resH,B : Hi(H, k) → Hi(B, k),

which is a ring homomorphism with respect to Yoneda composition.
We also have the transfer map

trB,H : HomB(Pi, k) → HomH(Pi, k),

which commutes with the differentials and hence induces a transfer map in cohomol-
ogy

trB,H : Hi(B, k) → Hi(H, k).

As an intermediary, the transfer map

trB,H : HomB(Ωik, k) → HomH(Ωik, k)

sends maps that factor through a projective module to zero, and this gives the map
in cohomology.

Lemma 3.1. Let y ∈ HomH(Ωik, k). Then we have

trB,HresH,B(y) = (Sn : Sλ)qy.

In particular, (Sn : Sλ)q 6= 0, so that

resH,B : H∗(H, k) → H∗(B, k)

is injective.

Proof. Since y is an H-module homomorphism, we can write for x ∈ Ωik

trB,HresH,B(y)(x) =
∑

d∈D−1
λ

y(Td−1x) =
∑

d∈D−1
λ

Td−1y(x) = (Sn : Sλ)qy(x),

and by Lemma 2.8 the q-index is non-zero. This shows that

resH,B : HomH(Ωik, k) → HomB(Ωik, k)
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is injective. Since the transfer of an element of PHomB(Ωik, k) is always zero, we
deduce that resH,B : H∗(H, k) → H∗(B, k) is injective as required.

This shows that H∗(H, k) is isomorphic to the image of the restriction. We will
now give a description of this in terms of stable elements.

Proposition 3.2.

(i) The intersection of the stable elements of HomB(Ωik, k) with the projective
homomorphisms PHomB(Ωik, k) is equal to {0}, so that it makes sense to talk of
stable elements of Hi(B, k) ∼= HomB(Ωik, k). The image of the restriction map

resH,B : H∗(H, k) → H∗(B, k)

consists precisely of the stable elements.
(ii) The inclusion H(`m, q) ⊆ H induces an isomorphism

H∗(H, k) → H∗(H(`m, q), k).

Proof of (i). Suppose that y ∈ Hi(H, k). Then resH,B(y) ∈ HomB(Ωik, k) is stable;
see Lemma 2.12.

Conversely, suppose that y ∈ HomB(Ωik, k) and assume that y is stable. Using the
Mackey formula, we have

resH,BtrB,H(y) =
∑

d∈Dλ,λ

yd

with yd as in (5). Since y is assumed to be stable, we can apply (6) to get

y(x) =
∑

d∈Dλ,λ

ql(d)(Sλ : Sλ(d))qy(x),

where x ∈ Ωi(k) and Sλ(d) = dSλd−1 ∩ Sλ. By Lemma 2.8 if Sλ(d) is a proper subset
of Sλ, then the q-index is zero. So we get

y(x) =
∑

d∈N(Sλ)∩Dλ

ql(d)y(x). (8)

By Lemma 2.5 and parts 2 and 3 of Lemma 2.8, we have that
∑

d∈N(Sλ)∩Dλ

ql(d) = m![a]q!

hence is non-zero. Therefore we have proved that

y = resH,B[trB,H(y)] · 1
m![a]q!

,

so it is in the image of the restriction map.
Finally, the transfer of any projective map is zero, so that if a stable map is also

projective, then it is equal to zero.

Proof of (ii). From Remark 2.11 and equation (8) it follows that an element of
HomB(Ωik, k) is stable with respect to H if and only if it is stable with respect
to H(`m, q).
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4. Action of Sm on B and on H∗(B, k)

The next aim is to characterise the image of the restriction map as fixed points of
an action. According to Proposition 3.2(ii), we may assume without loss of generality
that n = `m, i.e., that a = 0. We write λ for the partition (`m).

The braid group
We begin by recalling that the braid group Bn on n strings has a presentation

with generators Ti (1 6 i 6 n− 1) and relations TiTi+1Ti = Ti+1TiTi+1 and TiTj

=TjTi for |i− j| > 2. For any w ∈ Sn, let w = si1 · · · sil
be a shortest word in the

transpositions si = (i i + 1) giving w, and set Tw = Ti1 · · ·Til
; this is independent of

the choices.
There is a homomorphism from Bn to H(n, q), taking Ti to the element of the

same name. Note that in H(n, q), Ti is invertible with inverse q−1(Ti − q + 1).
For each i with 1 6 i 6 m, let di ∈ N(Sλ) be the element swapping the ith block

of ` elements with the i + 1st. Thus

jdi =





j + ` if `i < j 6 `(i + 1)
j − ` if `(i + 1) < j 6 `(i + 2)
j otherwise.

Then di swaps the ith and i + 1st rows of the tableau tλ and leaves the order of
the elements within each row unchanged. Thus di is an involution and tλdi is row
standard, so di ∈ Dλ,λ.

It is not hard to verify directly that the elements Tdi (1 6 i 6 m) satisfy the braid
relations. So inside Bn we have a wreath product B` oBm generated by the elements
Ti (1 6 i < n, ` - i) and the elements Tdi (1 6 i 6 m). This is the same as the group
generated by the Tw for w ∈ N(Sλ).

Conjugation by di interchanges the generators in the ith factor of Sλ with the
generators of the i + 1st factor and fixes all other generators. So for sj ∈ Sλ ∩ S (i.e.,
` - j) we have

disj =





sj+`di `i < j < `(i + 1)
sj−`di `(i + 1) < j < `(i + 2)
sjdi otherwise.

Lemma 4.1. We have

TdiTj =





Tj+`Tdi `i < j < `(i + 1)
Tj−`Tdi `(i + 1) < j < `(i + 2)
TjTdi otherwise.

Proof. Since di is a distinguished coset representative, we have for any sj in Sλ that
l(disj) = l(di) + 1 = l(sjdi) and therefore if, for example, sj is in the ith factor, then

TdiTj = Tdisj = Tsj+ldi = Tj+lTdi .

Similarly one gets the other identities.
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The action of Sm on B
The algebra B is the tensor product of m copies of H(`, q), say B =

⊗m
i=1 Bi, where

Bi is supported on the numbers in the ith row of tλ. Therefore the symmetric group
Sm acts by permuting the factors. This will induce an action on the cohomology of B,
and we want to show that the fixed points under this action are precisely the stable
elements. We shall realise this action through conjugation by elements of B` oBm.
Namely, if y ∈ HomB(Ωik, k) and w ∈ N(Sλ), then we define Tw · y via

(Tw · y)(x) = Tw(y(T−1
w x)) = ql(w)y(T−1

w x) (9)

for x ∈ Ωik.
This is the usual formula for group actions on homomorphisms, but it is not the

same as the formula for the action of the Hecke algebra on a dual space. Recall
that for an H-module M , the dual space Homk(M,k) is an H-module, using the
anti-involution on H defined by

(Tg)∗ = Tg−1

and linear extension; see §4 in [5]. We write the action of Tg ∈ H on Homk(M, k) as

Tgf(m) = f(Tg−1m). (10)

We view HomB(M,k) and HomH(M, k) as subspaces of M∗.
The advantage of (9) over (10) is that it gives a well-defined action of the group

B` oBm on HomB(Ωik, k). Our strategy is as follows: The next proposition shows
that the normal subgroup B×m

` acts trivially, so that we are reduced to an action of
Bm. Then Proposition 4.5 will show that the pure braid group acts trivially up to
projective homomorphisms, so that we are reduced to an action of Sm on H∗(B, k).

Proposition 4.2. Let M be an H-module, y ∈ HomB(M, k) and g ∈ Sλ. Then
Tg · y = y.

Proof. Using T−1
i = q−1(Ti − q + 1) we see that T−1

g belongs to B, and then the
statement is clear from the definition.

Lemma 4.3. If g ∈ N(Sλ) ∩ Dλ, then the element TgTg−1 ∈ H(n, q) centralises B.
In particular, T 2

di
centralises B.

Proof. The algebra B is generated by the Tj for sj ∈ Sλ ∩ S. If sj ∈ Sλ ∩ S, then for
some j′ we have sjg = gsj′ . Thus

TgTg−1Tj = TgTg−1sj
= TgTsj′g−1= TgTj′Tg−1

= Tgsj′Tg−1= TsjgTg−1 = TjTgTg−1 .

The following lemma is copied from a standard argument in group cohomology.
We shall need to use it not only when Q = B, but also when Q is a proper parabolic
subalgebra of B.

Lemma 4.4. Let Q be a parabolic subalgebra of H and γ ∈ H be an element central-
ising Q and acting as the identity on k. Then γ : Ωik → Ωik is a Q-module map, and
γ − 1 factors through a projective Q-module.
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Thus for y ∈ HomQ(Ωik, k), the element y ◦ γ : x 7→ y(γx) of HomQ(Ωik, k) differs
from y by an element of PHomQ(Ωik, k), so that y and y ◦ γ represent the same
element of Hi(Q, k).

Proof. Multiplication by γ commutes with the action of Q and therefore induces a
map of chain complexes on the resolution (7), lifting the identity on k. Thus there is
a chain homotopy to the identity, consisting of maps hi : Pi → Pi−1:

· · · // Pi
δ //

γ

²²

Pi−1
δ //

γ

²²
hi−1

}}||
||

||
||

||
|

Pi−2
δ //

γ

²²
hi−2

||yy
yy

yy
yy

yy
yy

· · · δ // P0

γ

²²
· · · // Pi

δ // Pi−1
δ // Pi−2

δ // · · · δ // P0

satisfying δhi−1 + hi−2δ = γ − 1. On Ωik = ker(δ : Pi−1 → Pi−2), we have δ = 0 and

so γ − 1: Ωik → Ωik factors as Ωik
hi−1−−−→ Pi

δ−→ Ωik.

Proposition 4.5.

(i) If y ∈ HomB(Ωik, k), then Tdi · y and Tdiy differ by an element of

PHomB(Ωik, k)

and hence represent the same element of Hi(B, k).
(ii) The elements T 2

di
∈ Bm act trivially on H∗(B, k).

Proof. The elements Tdi act as multiplication by ql(di) on k, and by Lemma 2.7 we
have ql(di) = 1. Thus T 2

di
also acts trivially on k. By Lemma 4.3, T 2

di
also centralises

B. From (9) and (10) we have Tdi · y = y ◦ T−1
di

, while Tdiy = y ◦ Tdi . Thus Tdiy

=(Tdi · y) ◦ T 2
di

, and (i) now follows from Lemma 4.4. Similarly for part (ii) we have
T 2

di
· y = y ◦ T−2

di
, and we can again apply Lemma 4.4.

Theorem 4.6. The action of B` oBm on H∗(B, k) factors through the surjection
B` oBm → Sm. Formulas (9) and (10) both describe the resulting action of Sm on
H∗(B, k).

Proof. This follows from Propositions 4.2 and 4.5.

Theorem 4.7. The image of the restriction map H∗(H, k) → H∗(B, k) consists pre-
cisely of the fixed points in H∗(B, k) under the action of the symmetric group Sm.

Proof. By Proposition 3.2, H∗(H, k) consists of the stable elements of H∗(B, k). If
y ∈ Hi(B, k) is stable, then y is in particular a fixed point. For the converse, let
y ∈ Hi(B, k) be a fixed point under Sm. We must show that then y is stable.

Take d ∈ D−1
λ , and let Q be the parabolic subalgebra of H corresponding to Sλ(d).

We must show that on restriction to Q we have Tdy = ql(d)y as an element in Hi(Q, k)
By the Lemma 4.8 below, there is w ∈ D−1

λ such that dSλd−1 = wSλw−1 and w
centralises Sλ(d), and such that, moreover, if g = w−1d, then ql(g)+l(w) = ql(d).

Since w centralises Q, we know by applying Lemma 4.4 to q−l(w)Tw−1 that Twy
= ql(w)y, as elements in Hi(Q, k). We must relate Tdy and Twy.
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We have d = wg; therefore (Td)∗ = (Tg)∗(Tw)∗ and

Tdy(x) = y((Td)∗x) = y((Tg)∗(Tw)∗x) = (Tgy)((Tw)∗x).

Since g ∈ N(Sλ) and y is a fixed point, we know Tgy = ql(g)y, so

Tdy(x) = ql(g)(Twy)(x) = ql(g)+l(w)y(x).

By Lemma 4.8 this is precisely ql(d)y(x) as required.

Lemma 4.8. Let d ∈ Dλ,λ and Q = dSλd−1 ∩ Sλ. Then there is some w ∈ C(Q)
∩Dλ,λ such that wSλw−1 = dSλd−1, and if g = w−1d then ` divides l(g), and

ql(d) = ql(w)+l(g) = ql(w).

Proof. Since the rows of tλ are the support sets of Sλ, we see that the rows of tλd−1

are the support sets of dSλd−1. Hence the rows which are common to tλ and tλd−1

(not necessarily in the same places) are then precisely the support sets of Q. Note
that the natural order on numbers induces a linear order on the rows of tλ.

Let Ri1 < Ri2 < · · · < Rit be the rows of tλ such that if Rjm = Rimd−1, then the
Rjm are the support sets of the intersection Q. Then let A1 < A2 < · · · < Ar−t be
the rows of tλ other than the Rim , and B1 < B2 < · · · < Br−t be the rows of tλ other
than the rows Rjm .

We define now g ∈ Sn by

Big = Ai, Rjrg = Rir .

Then g induces a permutation of the rows of tλ, keeping each row in order. Hence
g ∈ N(Sλ) ∩ D−1

λ (and therefore g ∈ Dλ,λ). Define w−1 = gd−1. Then

Rjrw
−1 = Rjr , Biw

−1 = Aid
−1.

Hence w−1 ∈ Dλ and it fixes the support of Q pointwise and therefore it centralises
Q. We will show that this satisfies the condition on the length. By Corollary 2.6, we
know that l(g) is divisible by `.

So we must show that l(d−1) ≡ l(w−1) mod `. Let b < c. If one of Rbd
−1 or Rcd

−1

is a row of tλ, then inv(d−1)b,c is divisible by `, by Corollary 2.6. So we only need
to consider such sets where neither Rbd

−1 nor Rcd
−1 is a row of tλ, and the same

reduction holds for the inversion set of w−1.
Suppose that b < c are such that neither Rbd

−1 nor Rcd
−1 are rows of tλ. We show

that there are u < v such that |inv(d−1)b,c| = |inv(w−1)u,v|, where neither Ruw−1 nor
Rvw−1 are rows of tλ and where this produces a bijection between the relevant parts
in the partitions of inv(d−1) and inv(w−1). Since the remaining parts of inv(d−1) and
inv(w−1) have size divisible by `, the lemma will follow.

By assumption, Rb = Ab′ and Rc = Ac′ for b′ < c. Now, Ab′d
−1 = Bb′w

−1 and
Ac′d

−1 = Bc′w
−1. There are unique u, v such that Ru = Bb′ and Rv = Bc′ , and then

u < v. Let (i, j) ∈ inv(d−1)b,c. Then id−1 > jd−1, so

id−1 = i′w−1, jd−1 = j′w−1 (i′ ∈ Bb′ , j
′ ∈ Bc′),

and then (i′, j′) ∈ inv(w−1)u,v. The converse also holds, and this gives the required
bijection between inv(d−1)b,c and inv(w−1)u,v.
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5. Invariant theory

Let k be a field of characteristic zero, and let H = H(n, q) be the Hecke algebra of
degree n with parameter q a primitive `th root of unity, ` > 2. Let H1 = H(`, q), let
n = `m + a with 0 6 a < `, and let B = H⊗m

1 ⊆ H. From the stable element compu-
tation in the last section, we have

H∗(H, k) = H∗(B, k)Sm . (11)

In this section we compute the right-hand side using invariant theory.
The structure of the algebra H∗(H1, k) depends on whether ` = 2 or ` > 2. If ` > 2,

then

H∗(H1, k) = Λ(y)⊗k k[x], |y| = 2`− 3, |x| = 2`− 2, (12)

while if ` = 2, then

H∗(H1, k) = k[z], |z| = 1. (13)

Here Λ(y) denotes an exterior algebra in one variable. Thus we have y2 = 0.
To obtain H∗(B, k), we apply the version of the Künneth theorem given in

Yoneda [15], which describes the Ext algebra of a tensor product of algebras as
the graded tensor product of the Ext algebras, with the usual sign conventions.

The case ` > 2.
We deal with the easy case ` > 2 first. In this case, the Künneth theorem and (12)

give

H∗(B, k) = Λ(y1, . . . , ym)⊗k k[x1, . . . , xm], |yi| = 2`− 3, |xi| = 2`− 2. (14)

The action of the symmetric group Sm is by permutation of the variables y1, . . . , ym

and simultaneously the variables x1, . . . , xm. The invariants are given by a theorem of
Solomon [12] as follows: Define a derivation d on H∗(B, k) via d(xi) = yi, d(yi) = 0.
This differential commutes with the action of Sm, so it sends invariants to invariants.
Let σ1, . . . , σm be the elementary symmetric polynomials in x1, . . . , xm, so that

k[x1, . . . , xm]Sm = k[σ1, . . . , σm].

The main theorem of [12] shows in this case that

(Λ(y1, . . . , ym)⊗k k[x1, . . . , xm])Sm = Λ(dσ1, . . . , dσm)⊗k k[σ1, . . . , σm]. (15)

Combining (11), (14) and (15), we obtain

H∗(H, k) = Λ(dσ1, . . . , dσm)⊗k k[σ1, . . . , σm].

A standard computation now shows that the Poincaré series for H∗(H, k) is as given
in Theorem 1.1.

The case ` = 2.
What is different in the case ` = 2 is that the algebra (13) is not graded commu-

tative, since there is an element of degree one that does not square to zero. So taking
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into account the signs given by the Künneth theorem, we get

H∗(B, k) = k〈z1, . . . , zm〉/(zizj + zjzi) (i 6= j).

Here, the relations say that the variables anticommute, but do not square to zero.
In this case, we define a finite filtration on H∗(B, k) and pass to the associated

graded. The filtration is given by setting Fi equal to the linear span of the monomials
in the generating variables in which at most i of the variables appear with odd
exponent. We have

k[z2
1 , . . . , z2

m] = F0 ⊂ F1 ⊂ · · · ⊂ Fm = H∗(B, k).

This is a multiplicative filtration, in the sense that FiFj ⊆ Fi+j , so the associated
graded

GrH∗(B, k) =
m⊕

i=0

Fi/Fi−1

has a ring structure, where F−1 is interpreted as zero. In this ring, we write yi for
the image of zi ∈ F0, so that y2

i = 0, and we write xi for the image of z2
i ∈ F2. It is

not hard to check that

GrH∗(B, k) = Λ(y1, . . . , ym)⊗k k[x1, . . . , xm].

Since the filtration is invariant under the action of Sm, we have

FSm
i = Fi ∩H∗(B, k)Sm ,

and by Maschke’s theorem we have

(Fi/Fi−1)Sm = FSm
i /FSm

i−1 .

Setting

Gr H∗(B, k)Sm =
m⊕

i=0

FSm
i /FSm

i−1 ,

we again use Solomon’s formula (15) to obtain

Gr H∗(B, k)Sm = Λ(dσ1, . . . , dσm)⊗k k[σ1, . . . , σm]. (16)

At this stage, it follows that the Poincaré series for H∗(H, k) with ` = 2 is as given in
Theorem 1.1, and it remains to ungrade the relations (dσi)2 = 0 in the presentation
for Gr H∗(B, k)Sm to give a presentation for H∗(H, k).

We define elements vi ∈ H∗(B, k) (1 6 i 6 m) to be the elementary symmetric
functions in z2

1 , . . . , z2
r , with image σi in Gr H∗(B, k), so that |vi| = 2i, and we define

elements ui (1 6 i 6 m) by lifting dσi in the obvious way to H∗(B, k). Namely,

ui =
∑

zαz2
β1
· · · z2

βi−1
,

where the sum is over indices that are all different and satisfy β1 < · · · < βi−1. Then
u2

1 = v1, so v1 is a redundant generator and may be removed from the list. More
generally, for i > 1, u2

i and uiuj + ujui are polynomials of degree 2i− 1, respectively
i + j − 1, in v1, . . . , vm. Our next task is to determine these polynomials explicitly.



COHOMOLOGY OF HECKE ALGEBRAS 367

Lemma 5.1. Let ν > µ > 0. Then

(ν − 2µ)
(

ν

µ

)
+ (ν − 2µ + 2)

(
ν

µ− 1

)
+ · · ·+ (ν − 2)

(
ν

1

)
+ ν

(
ν

0

)
= (ν − µ)

(
ν

µ

)
.

Proof. This is an easy induction on µ using the fact that

(ν − µ)
(

ν

µ

)
= (µ + 1)

(
ν

µ + 1

)
.

Proposition 5.2. Set v0 = 1. Then for 1 6 i 6 m we have

u2
i =

i−1∑

l=0

(2l + 1)vi−l−1vi+l

= vi−1vi + 3vi−2vi+1 + 5vi−3vi+2 + · · ·+ (2i− 1)v2i−1,

and for 1 6 j < i 6 m we have

uiuj + ujui = 2
j−1∑

l=0

(i− j + 2l + 1)vj−l−1vi+l

= 2(i− j + 1)vj−1vi + 2(i− j + 3)vj−2vi+1 + · · ·+ 2(i + j − 1)vi+j−1.

Proof. The formula for u2
i is really just the case i = j of the second formula, after

dividing both sides by 2, so we shall concentrate on the second formula assuming
1 6 j 6 i 6 m.

Recall that ui =
∑

zαz2
β1
· · · z2

βi−1
, where the sum is over indices that are all dif-

ferent and satisfy β1 < · · · < βi−1. Since z1, . . . , zm anticommute, we only get non-
zero contributions to uiuj + ujui if the zα terms have the same index, and then
we get a linear combination of monomials of the form z2

α1
· · · z2

αs
z4
β1
· · · z4

βt
where

s = i + j − 2t− 1. The coefficient of such a monomial in uiuj + ujui is

2
s!

(i− t− 1)!(j − t− 1)!
= 2(i− t)

(
i + j − 2t− 1

j − t− 1

)
,

while the coefficient in vj−1−lvi+l is

s!
(i + l − t)!(j − l − t− 1)!

=
(

i + j − 2t− 1
j − l − t− 1

)
.

The proposition then follows from the identity
∑

l>0

(i− j + 2l + 1)
(

i + j − 2t− 1
j − l − t− 1

)
= (i− t)

(
i + j − 2t− 1

j − t− 1

)
.

This identity is obtained from Lemma 5.1 by setting

ν = i + j − 2t− 1 and µ = j − t− 1.

It follows from Proposition 5.2 that after ungrading the invariants given in (16),
we obtain

H∗(H, k) ∼= H∗(B, k)Sm ∼= k〈u1, . . . , um, v2, . . . , vm〉/(R),

where (R) is the set of relations given in Theorem 1.1.
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6. Some Hecke algebras for other types

We consider the other infinite families of finite Coxeter groups of type Bn

(n > 2) and Dn (n > 4). These groups are given by W (Bn) = S2 oSn and W (Dn)
=W (Bn) ∩ A2n, where A2n is the alternating group of degree 2n. There is a Hecke
algebra defined for any finite Coxeter system; see, for example, §68 of Curtis and
Reiner [3] or §8.5 of Geck and Pfeiffer [8]. The Hecke algebra of type An−1 is the
algebra H(n, q) considered in previous sections. The Hecke algebra of a decompos-
able Coxeter system is isomorphic to the tensor product of the Hecke algebras for the
indecomposable factors.

For type Bn the Hecke algebra involves two parameters q and Q, and we write
H(Bn, Q, q). An explicit presentation can be found in §3 of Dipper and James [5].
There is a natural inclusions of H(n, q) in H(Bn, Q, q) which take the elements Ti

(1 6 i 6 n− 1) to the elements Tsi of [5], ignoring the element Tt.
For type Dn there is just one parameter, and we write H(Dn, q). An explicit

presentation in this case can be found in the introduction to Hu [9]. Again there is a
natural inclusion of H(n, q) in H(Dn, q), which takes the elements Ti (1 6 i 6 n− 1)
to the elements of the same name in [9], ignoring T0.

First we treat type Bn for n > 2. We set fn(Q, q) =
∏n−1

i=1−n(Q + qi).

Theorem 6.1 (Dipper-James, [5, Theorem 4.17]1). If fn(Q, q) is invertible in k, then
the Hecke algebra H(Bn, Q, q) is Morita equivalent to the algebra

n∏

j=0

H(j, q)⊗k H(n− j, q).

It may be deduced from the character theory of the Hecke algebra (see, for example,
§§5.5 and 10.3 of Geck and Pfeiffer [8], and especially the remark at the bottom of
page 165) that the trivial module corresponds to the pair of partitions ([n],∅), and
is therefore a representation of the factor Morita equivalent to H(n, q) corresponding
to the term j = n in the above decomposition. Therefore we have the following.

Theorem 6.2. If fn(Q, q) is invertible in k, then the natural inclusion H(n, q) →
H(Bn, Q, q) induces an isomorphism

H∗(H(Bn, Q, q), k) ∼= H∗(H(n, q), k).

Remark 6.3. If Q = q is an `th root of unity and k is a field of characteristic zero,
then the invertibility condition for fn(Q, q) is equivalent to the statement that ` is
odd, so that Case 1 of Theorem 1.1 gives the structure of H∗(H(Bn, Q, q), k) in this
case.

Next, we treat type Dn for n > 4. We set fn(q) = 2
∏n−1

i=1 (1 + qi). The next the-
orem is implicit in Theorems 3.6 and 3.7 of Pallikaros [11] and is made explicit in
Hu [9].

1There is a misprint in the statement of this theorem in [5]: they write (n, n− a) but they mean
(a, n− a), where their a is our j.
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Theorem 6.4. If fn(q) is invertible in k and n is odd, then H(Dn, q) is Morita
equivalent to the algebra

n∏

j=(n+1)/2

H(j, q)⊗k H(n− j, q).

The corresponding theorem for n even was proved by Hu [9]:

Theorem 6.5. If fn(q) is invertible in k and n is even, then H(Dn, q) is Morita
equivalent to the algebra

A(n/2)×
n∏

j=(n+1)/2

H(j, q)⊗k H(n− j, q),

where A(n/2) is an explicitly described algebra.

In both cases, the trivial module again corresponds to the pair of partitions ([n],∅)
(see §§5.6 and 10.4 of [8]). It is therefore a representation of the factor Morita equiv-
alent to H(n, q) corresponding to the term j = n in the decomposition. Therefore we
have the following.

Theorem 6.6. If fn(q) is invertible in k, then the natural inclusion

H(n, q) → H(Dn, q)

induces an isomorphism

H∗(H(Dn, q), k) ∼= H∗(H(n, q), k).

Remark 6.7. Again, if q is an `th root of unity and k is a field of characteristic zero,
then the invertibility condition for fn(q) is equivalent to the statement that ` is odd,
so that Case 1 of Theorem 1.1 gives the structure of H∗(H(Dn, q), k) in this case. We
do not know the answers for type Bn and Dn for ` even, or for the Hecke algebras of
exceptional type.
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