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CYCLIC HOMOLOGY VIA DERIVED FUNCTORS

GURAM DONADZE, NICK INASSARIDZE and MANUEL LADRA

(communicated by Graham Ellis)

Abstract
The cyclic, periodic cyclic and negative cyclic homologies

of associative algebras are fitted into the context of cotriple
homology of Barr and Beck. As applications of these results,
an axiomatic description of the cyclic homology theory and the
Hopf type formulas in the sense of Brown-Ellis are given.

1. Introduction

One powerful tool of simplicial algebra is the notion of cotriple derived functors.
It has been applied to the simplicial group approach to algebraic K-theory worked
out by Keune [15] and Swan [20] and further developed in non-abelian homological
algebra by H. Inassaridze [12] and others.

On the other hand, in the works of Barr and Beck [1, 2, 3, 4], Eilenberg-MacLane
group (co)homology, Hochschild and Shukla (co)homology of associative algebras,
André-Quillen (co)homology of commutative algebras, Cartan-Eilenberg and Che-
valley-Eilenberg (co)homology of Lie algebras have been described in terms of non-
abelian derived functors as cotriple (co)homology (see also [8]). Namely, in all these
cases, there is a cotriple on the category in question that comes from the composite
of the underlying and the free functor. Each of the (co)homologies above are com-
puted by applying the derivations functor for the cohomological case and the functor
obtained by tensoring a module on the functor of differentials for the homological case
to the cotriple resolution and then taking the (co)homology of the resulted complex.

This paper is concerned with the description of an analogous philosophy in cyclic
homology. Our main results, filling the gap in the subject, present the cyclic, peri-
odic cyclic and negative cyclic homologies of (non-unital) associative algebras over
a commutative ring k containing the field Q of rational numbers as cotriple derived
functors. As applications of these results, we then obtain an axiomatic description
and the Hopf type formulas in the sense of Brown and Ellis [5, 9] (see also [10] for
the historical note about the subject) for cyclic homology which are interesting in
their own right.
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Some of the results presented in this paper have been announced in [14].
The outline of the paper is as follows: In Section 2, we briefly recall the neces-

sary background information about cotriple derived functors and give some auxiliary
assertions that will be used in main results. We begin Section 3 by giving a long exact
sequence relating Hochschild homology and the cotriple derived functors of the zero
and first Hochschild homology functors (Proposition 3.1). We revisit the old result of
Feigin and Tsygan [11] given for algebras over a field of characteristic zero. General-
ising it for algebras, which are flat as modules over a commutative ring k containing
the field Q of rational numbers, we show that the cyclic homology is isomorphic to
the derived functors of the additive abelianisation functor (Theorem 3.5). We end this
section by giving an axiomatic description and the generalised Hopf type formulas for
the cyclic homology of algebras (Proposition 3.8 and Theorem 3.10). In Section 4, we
describe the periodic cyclic and negative cyclic homology theories as derived functors
(Theorems 4.2 and 4.3).

Notation and conventions

Let k denote a fixed commutative ring with unit and Q the field of rational num-
bers. All tensor products are over k. Moreover, A⊗n = A⊗ · · · ⊗A, n factors. Modules
are k-modules and their category is denoted by Mod, while Comp>0 is the category
of non-negatively graded complexes of modules. For any bicomplex of modules M,
let Tot(M)∗ denote the unbounded complex given by

Tot(M)n =
∏

p+q=n

Mp,q, n ∈ Z

and called the total complex of M. Algebras are (non-unital) associative algebras
over k and their category is denoted by Alg. The term free algebra means a free
(non-unital) algebra over some module. Ideals are always two-sided. For any algebra
A and ideals I1 and I2, let [I1, I2] denote the module of additive commutators, i.e.,
the submodule of A generated by the elements [i1, i2] = i1i2 − i2i1 for i1 ∈ I1, i2 ∈ I2.

2. Preliminaries on derived functors

We assume that the reader is familiar with cotriples, projective classes and derived
functors. We give just a brief introduction to these aspects for the category of algebras.
A fuller account of cotriple derived functors is given in [3, 12]. Note that in some
categorical and homological literature the term ‘comonad’ is used instead of the term
‘cotriple’.

Let
(F , τ, δ

)
denote the cotriple in Alg constructed in the following way: let

F : Alg→ Alg be the endofunctor defined as follows: for an object A of Alg, let F(A)
denote the free algebra on the underlying module A; for a morphism α : A→ A′ of
Alg, let F(α) be the canonical algebra homomorphism from F(A) to F(A′) induced
by α. Let τ : F → 1Alg be the obvious natural transformation and δ : F → F2 the
natural transformation induced for every A ∈ Alg by the natural inclusion of modules
A ↪→ F(A).
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Let A ∈ Alg; then there is an augmented simplicial object in the category Alg

· · ·→...→ Fn(A)
dn
0→...→

dn
n

· · ·
d2
0→→→

d2
2

F1(A)
d1
0→→

d1
1

F0(A)
d0
0→ A,

written as
(F∗(A), d0

0, A
)
, where Fn(A) = Fn+1(A) = F(Fn(A)

)
, dn

i = F i(τFn−i),
sn

i = F i(δFn−i), 0 6 i 6 n, and which is called the F-cotriple resolution of A (see
also [20]).

The following lemma will be useful.

Lemma 2.1. Let A be an algebra.
(i)

(F∗(A), d0
0, A

)
is acyclic.

(ii) If A is flat as a module, then
(F∗(A)⊗n, d0

0
⊗n

, A⊗n
)
, n > 1, is acyclic.

Proof of (i) The proof of (i) is well known.

Proof of (ii). Proceeding by induction, we suppose that
(F∗(A)⊗(n−1), d0

0
⊗(n−1)

, A⊗(n−1)
)

is acyclic.
It is clear that

(F∗(A)⊗n, d0
0
⊗n

, A⊗n
)

is the diagonal of the augmented bisimplicial

module obtained by tensoring dimensionwise
(F∗(A)⊗(n−1), d0

0
⊗(n−1)

, A⊗(n−1)
)

and(F∗(A), d0
0, A

)
. Since A is flat as a module, it is easy to see that Fp(A)⊗l, p > 0,

l > 1, is also flat as a module. Hence for a fixed p the (vertical) homology is

Hq

(Fp(A)⊗(n−1) ⊗F∗(A)
)

= 0, q > 0

and

H0

(Fp(A)⊗(n−1) ⊗F∗(A)
)

= Fp(A)⊗(n−1) ⊗A.

Using the same argument, we get

Hp

(F∗(A)⊗(n−1) ⊗A
)

= 0, p > 0,

and

H0

(F∗(A)⊗(n−1) ⊗A
)

= A⊗n.

Now the respective Quillen spectral sequence [18] (cf. [12]) yields that
(F∗(A)⊗n, d0

0
⊗n

, A⊗n
)

is acyclic.

Let T : Alg→Mod be a covariant functor. Then the n-th left derived functor

LFn T : Alg→Mod, n > 0,

relative to the cotriple F , is defined by

LFn T (A) = Hn

(
T (F∗(A))

)
and LFn T (α) = Hn

(
T (F∗(α))

)

for any object A ∈ Alg and any morphism α ∈ Alg.
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Suppose now that Φ: Alg→ Comp>0 is a covariant functor. Thus, for any object
A ∈ Alg, we have a complex:

Φ(A) ≡ Φ0(A) d1←−− Φ1(A) d2←−− Φ2(A) d3←−− · · · .
Define the Φ-homology of A, HΦ

∗ (A), by

HΦ
n (A) = Hn

(
Φ(A)

)
, n > 0.

The following assertion will be needed in the sequel.

Proposition 2.2. Let Φ: Alg→ Comp>0 be a functor and A an algebra, subject to
the following conditions:
(i) the augmented simplicial module

(
Φn(F∗(A)), Φn(d0

0), Φn(A)
)

is acyclic for
n > 0;

(ii) HΦ
n

(Fj(A)
)

= 0 for j > 0, n > 0,

where
(F∗(A), d0

0, A
)

is the F-cotriple resolution of A. Then there is a natural iso-
morphism

HΦ
n (A) ∼= LFn HΦ

0 (A), n > 0.

Proof. Applying the functor Φ dimensionwise to the simplicial algebra F∗(A), we
arrive at the following bicomplex M:

...
...

...

d3

y −d3

y d3

y
Φ2

(F0(A)
) ←−−−− Φ2

(F1(A)
) ←−−−− Φ2

(F2(A)
) ←−−−− · · ·

d2

y −d2

y d2

y
Φ1

(F0(A)
) ←−−−− Φ1

(F1(A)
) ←−−−− Φ1

(F2(A)
) ←−−−− · · ·

d1

y −d1

y d1

y
Φ0

(F0(A)
) ←−−−− Φ0

(F1(A)
) ←−−−− Φ0

(F2(A)
) ←−−−− · · · ,

where
(F∗(A), d0

0, A
)

is the F-cotriple resolution of A and the horizontal differentials
are obtained by taking alternating sums. Then by (i), we have

Hv
q Hh

p (M) = 0, p > 0, q > 0 and Hv
q Hh

0 (M) = HΦ
q (A), q > 0.

On the other hand, using (ii), we get

Hh
p Hv

q (M) = 0, p > 0, q > 0 and Hh
p Hv

0 (M) = LFp HΦ
0 (A), p > 0.

Now the bicomplex spectral sequence argument completes the proof.

3. Cyclic homology revisited

In this section we revisit the Hochschild and cyclic homologies of algebras, using
methods of non-abelian homological algebra (we refer here to [4, 12, 21]). We give
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several presentations of the cyclic homology of algebras as cotriple derived functors.
Then we give an axiomatic description of the cyclic homology of algebras. We end
the section by giving a decomposition of the cyclic homology of algebras as formulas
of Hopf type all components of which are coming from any free exact n-presentation
of a given algebra.

Let A denote an algebra. Then the standard bar, Cbar(A), and Hochschild, C(A),
complexes of A have the form Cbar

n (A) = Cn(A) := A⊗(n+1), where the boundary
operator of the bar complex is given by

b′(a0 ⊗ · · · ⊗ an) =
n−1∑

i=0

(−1)i(a0 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an),

while the Hochschild boundary is given by

b(a0 ⊗ · · · ⊗ an) = b′(a0 ⊗ · · · ⊗ an) + (−1)n(ana0 ⊗ a1 ⊗ · · · ⊗ an−1).

The Hochschild homology of A, HH∗(A), is defined to be the homology of the complex
Tot

(
CC{2}(A)

)
∗, where CC{2}(A) denotes the bicomplex obtained through deleting

all columns whose indices are 6 −1 or > 2 of the bicomplex CP (A):

...
...

...

b

y −b′
y b

y
· · · N←−−−− A⊗(n+1) 1−t←−−−− A⊗(n+1) N←−−−− A⊗(n+1) 1−t←−−−− · · ·

b

y −b′
y b

y
...

...
...

b

y −b′
y b

y
· · · N←−−−− A⊗2 1−t←−−−− A⊗2 N←−−−− A⊗2 1−t←−−−− · · ·

b

y −b′
y b

y
· · · N←−−−− A

1−t←−−−− A
N←−−−− A

1−t←−−−− · · · .

Here t : A⊗(n+1) → A⊗(n+1), n > 0 denotes the cyclic operator given by t
(
a0 ⊗ · · ·

⊗ an

)
= (−1)n

(
an ⊗ a0 ⊗ · · · ⊗ an−1

)
, and N : A⊗(n+1) → A⊗(n+1) denotes the oper-

ator defined by N = 1 + t + t2 + · · ·+ tn. By deleting all negatively indexed columns
in CP (A), we get the cyclic bicomplex CC(A) and the homology of the complex
Tot

(
CC(A)

)
∗ is called the cyclic homology of A.

Note that, for a given free algebra F , the Hochschild homology HHn(F ) = 0,
n > 2. Moreover, if k contains Q then the cyclic homology HCn(F ) = 0, n > 1 [17,
Proposition 5.4] (see also [16, Chapter 3]). We also have to mention that

HH0(A) = HC0(A) = Ab(A),

where Ab : Alg→Mod is the additive abelianisation functor given by Ab(A)
=A

/
[A, A] for A ∈ Alg.
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The following proposition gives a relationship between the Hochschild homology
and the derived functors of the additive abelianisation functor.

Proposition 3.1. Let A be an algebra, which is flat as a module. Then there is a
long exact sequence

· · · // LFn+1Ab(A) // LFn−1HH1(A) // HHn(A) EDBC
GF@A

// LFnAb(A) // · · · // LF1 HH1(A) // HH2(A) EDBC
GF@A

// LF2 Ab(A) // LF0 HH1(A) // HH1(A) // LF1 Ab(A) // 0.

Proof. Consider the F-cotriple resolution
(F∗(A), d0

0, A
)

of A. Applying the functor
CC{2} dimensionwise to the simplicial algebra F∗(A), we arrive at the following
bicomplex M:

...
...

...
y

y
y

Tot
(
CC{2}(F0(A))

)
2
←− Tot

(
CC{2}(F1(A))

)
2
←− Tot

(
CC{2}(F2(A))

)
2
←− · · ·

y
y

y
Tot

(
CC{2}(F0(A))

)
1
←− Tot

(
CC{2}(F1(A))

)
1
←− Tot

(
CC{2}(F2(A))

)
1
←− · · ·

y
y

y
Tot

(
CC{2}(F0(A))

)
0
←− Tot

(
CC{2}(F1(A))

)
0
←− Tot

(
CC{2}(F2(A))

)
0
←− · · · .

Since for any fixed q the (horizontal) complex has the form F∗(A)⊗(q+1) ⊕F∗(A)⊗q,
it follows from Lemma 2.1 that its homology is

Hn

(
Tot(CC{2}(F∗(A)))q

)
= 0 for n > 0,

and
H0

(
Tot(CC{2}(F∗(A)))q

)
= A⊗(q+1) ⊕A⊗q.

Therefore, Hn

(
Tot(M)∗

)
= HHn(A). On the other hand, for a fixed p the (vertical)

homology is
Hn

(
Tot(CC{2}(Fp(A)))∗

)
= HHn

(Fp(A)
)
, n > 0.

A consequence of these computations is the existence of a convergent spectral
sequence

E1
pq = HHq

(Fp(A)
)

=⇒ HHp+q(A), (1)

but the Hochschild homology E1
pq = HHq

(Fp(A)
)

= 0 for q > 2, p > 0 (see above).
Moreover, E2

pq = LFp HHq(A) for q = 0, 1, p > 0. Then the degenerated spectral se-
quence E2

pq yields the result.
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Let A be an algebra and I an ideal in A. Let I £ A denote the module given by the
quotient I £ A =

(
I ⊗A

)/
J , where J is the submodule of I ⊗A, generated by the

elements ia⊗ a′ − i⊗ aa′ + a′i⊗ a and i⊗ i′ + i′ ⊗ i for i, i′ ∈ I, a, a′ ∈ A. It is easy
to see that we have a homomorphism of modules

I £ A
eb−→ I given by b̃

(
i £ a

)
= ia− ai.

It is well known that there is an exact sequence

0→ HC1(A)→ A £ A
b̃−→ A→ HC0(A)→ 0. (2)

Lemma 3.2. Let 0→ I
α−→ A

β−→ A′ → 0 be an algebra extension. Then there is an
exact sequence of modules

I £ A
α£1−−−→ A £ A

β£β−−−→ A′ £ A′ −→ 0.

Proof. Straightforward from the well-known fact that there is an exact sequence of
modules (

I ⊗A
)× (

A⊗ I
) ω−→ A⊗A

β⊗β−−−→ A′ ⊗A′ −→ 0,

with w =
(
α⊗ 1

)× (
1⊗ α

)
and from direct observation.

Later, using Theorem 3.5, the following result could be viewed as a description of
cyclic homology via derived functors.

Proposition 3.3. Let k contain Q and A be an algebra. Then there is an isomor-
phism

LFnAb(A) ∼= LFn−1

(−£− )
(A), n > 2

and an exact sequence

0 −→ LF1 Ab(A) −→ A £ A −→ A −→ Ab(A) −→ 0.

Proof. Consider the F-cotriple resolution
(F∗(A), d0

0, A
)

of A. Applying the exact
sequence (2) dimensionwise to the simplicial algebra F∗(A) and using the fact that
HC1

(Fn(A)
)

= 0, n > 0, we obtain the following short exact sequence of simplicial
modules:

0 −→ F∗(A) £ F∗(A)
µ−→ F∗(A) −→ Ab

(F∗(A)
) −→ 0.

Since Hn(F∗(A)) = 0, n > 1, Lemma 3.2 and the induced long exact homology se-
quence clearly complete the proof.

Corollary 3.4. Let k contain Q and A be an algebra. Then there is an isomorphism

HC1(A) ∼= LF1 Ab(A).

Proof. Straightforward from Proposition 3.3 and (2).

Note that this isomorphism between the first cyclic homology and the first derived
functor of the additive abelianisation functor holds without any restriction on the
algebra A. But in higher dimensions we need an extra condition on A to prove the
same result. Namely, we have the following.
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Theorem 3.5. Let k contain Q and A be an algebra, which is flat as a module. Then
there is an isomorphism

HCn(A) ∼= LFnAb(A), n > 0.

Proof. We only have to show that the functor Φ: Alg→ Comp>0, defined by Φ(A)
= Tot

(
CC(A)

)
∗ for A ∈ Alg, satisfies conditions (i) and (ii) of Proposition 2.2.

Thanks to Lemma 2.1, it is easy to see that the augmented simplicial module

(Tot
(
CC(A)

)
n
(F∗(A)), Tot

(
CC(A)

)
n
(d0

0), Tot
(
CC(A)

)
n
(A)

)
, n > 0

is acyclic, where
(F∗(A), d0

0, A
)

is the F-cotriple resolution of A. Condition (i) is
fulfilled.

The fulfilment of condition (ii) follows from the fact that there is an equality
HCn(F(A)) = 0, n > 1, for any algebra A over k containing Q [17].

Remark 3.6.
(i) Theorem 3.5 generalises the result of Feigin and Tsygan [11] given for algebras

over a field of characteristic zero;
(ii) Let k contain Q and F be a free algebra. Then Connes’ Periodicity Exact

Sequence implies that there is a natural isomorphism

Ab(F ) B−→∼= HH1(F ).

Therefore for a given algebra A we have the isomorphism

LFnAb(A) ∼= LFn HH1(A), n > 0.

Using Theorem 3.5 it is easy to check that, in case A is flat as a module, the
long exact sequence of Proposition 3.1 turns into Connes’ Periodicity Exact
Sequence.

Now let A denote an algebra and m > 1. The general linear Lie algebra glm(A)
is the Lie algebra of m×m matrices with entries in A, while the special linear Lie
algebra slm(A) is the Lie algebra of m×m matrices of trace zero (the trace being
evaluated in A

/
[A,A]). It is clear that slm(A) is an ideal in glm(A), and there is the

following short exact sequence of Lie algebras:

0 −→ slm(A) −→ glm(A) −→ A
/
[A,A] −→ 0 (3)

(see [16, Chapter 10]).

Corollary 3.7. Let k contain Q, A be an algebra, which is flat as a module, and
m > 1. Then there is an isomorphism

HCn+1(A) ∼= LFn slm(A), n > 1.

Proof. Thanks to Lemma 2.1(i), it is easy to see that the augmented simplicial module(
glm(F∗(A)), glm(d0

0), glm(A)
)

is acyclic for the F-cotriple resolution
(F∗(A), d0

0, A
)

of the algebra A. Hence Theorem 3.5 and the long exact homology sequence, induced
by the short exact sequence of complexes obtained by applying (3) to

(F∗(A), d0
0, A

)
,

imply the result.
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As an application of Theorem 3.5 we give an axiomatic description of cyclic homol-
ogy of algebras.

Let L be a full subcategory of the category Alg consisting of all algebras, which
are flat as modules. It is easy to see that F(L) ∈ L for L ∈ L (cf. Lemma 2.1). Then
we have the following.

Proposition 3.8. Let k contain Q and Φ: Alg→ Comp>0 be a functor satisfying
the following axioms:

(a) the augmented simplicial module
(
Φn

(F∗(L)
)
, Φn(d0

0), Φn(L)
)

is acyclic for
L ∈ L and n > 0, where

(F∗(L), d0
0, L

)
is the F-cotriple resolution of L;

(b) HΦ
n

(F(L)
)

= 0 for L ∈ L and n > 0;

(c) there is a natural isomorphism HΦ
0 (L) ∼= HC0(L) for L ∈ L.

Then there is a natural isomorphism HΦ
n (L) ∼= HCn(L) for L ∈ L and n > 0.

Proof. By (c), we have the isomorphism of augmented simplicial modules
(
HΦ

0 (F∗(L)),HΦ
0 (d0

0),H
Φ
0 (L)

) ∼=
(
HC0(F∗(L)),HC0(d0

0),HC0(L)
)
.

Thus there is a natural isomorphism

LFn HΦ
0 (L) ∼= LFn HC0(L) for L ∈ L and n > 0.

Since the functor Φ: Alg→ Comp>0 satisfy the axioms (a) and (b), it follows from
Proposition 2.2 that we have a natural isomorphism

HΦ
n (L) ∼= LFn HΦ

0 (L) for L ∈ L and n > 0.

Hence Theorem 3.5 completes the proof.

Another application of Theorem 3.5 is to obtain the generalised Hopf type for-
mulas for the cyclic homology of algebras, using the method of n-fold Čech derived
functors [7, 13]. We can think as an initial result in this direction the exact sequence

HC1(F ) −→ HC1(A) −→ I/[I, F ] −→ F/[F, F ] −→ A/[A,A] −→ 0 (4)

(see [19]), where F
α−→ A is a surjective homomorphism of algebras and I = Ker α. In

case α is a free presentation of the algebra A, then (4) induces the Hopf formula for
the first cyclic homology

HC1(A) ∼=
(
I ∩ [F, F ]

)/
[I, F ]. (5)

We generalise formula (5) to any dimension.
Now let n be a non-negative integer and let Cn denote the category determined by

the ordered set of all subsets of the set 〈n〉 = {1, . . . , n}. An n-cube of algebras is a
functor F : Cn → Alg, and we will denote its component parts by X 7→ FX , ρX

Y 7→ αX
Y .
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Example 3.9. Let (A∗, d0
0, A) be an augmented simplicial algebra. A natural n-cube

of algebras A(n) : Cn → Alg, n > 1 is defined in the following way:

A
(n)
A = An−1−|X| for all X ⊆ 〈n〉

and

αX
X∪{j} = d

n−1−|X|
k−1 for all X 6= 〈n〉, j /∈ X,

where A−1 = A, δ(k) = j and δ : 〈n− |X|〉 → 〈n〉 \X is the unique monotone bijec-
tion.

Given an n-cube of algebras F, it is easy to see there exists a natural homomorphism
FX

αX−→ lim
Y⊃X

FY for each X ⊆ 〈n〉, X 6= 〈n〉.
Let A denote an algebra. An n-cube of algebras F is called an n-presentation of

the algebra A if F〈n〉 = A. An n-presentation F of A is called free if the algebra FX

is free for each X 6= 〈n〉 and called exact if the homomorphism αX has a k-linear
splitting for each X 6= 〈n〉.

Let (F∗, d0
0, A) be an augmented simplicial algebra. It is easy to check that

(F∗, d0
0, A) is a free simplicial resolution of A if and only if the n-cube of algebras

F (n) is a free exact n-presentation of A for any n > 1. Clearly, this fact ensures
the existence of free exact n-presentations of algebras. Note also that one can con-
struct a free exact n-presentation of an algebra step-by-step similarly to a fibrant
n-presentation of a group in the sense of Brown-Ellis [5].

Theorem 3.10 (Hopf type formulas for cyclic homology). Let k contain Q, A be an
algebra, which is flat as a module and F a free exact n-presentation of A. Then there
is an isomorphism

HCn(A) ∼=
(
∩

i∈〈n〉
Ii ∩ [F, F ]

)/( ∑

X⊆〈n〉
[ ∩
i∈X

Ii, ∩
i/∈X

Ii]
)
, n > 1,

where
(
F ; I1, I2, . . . , In

)
is the normal (n + 1)-ad of algebras induced by F in the

following way: F = F∅ and Ii = Ker α∅{i}, i ∈ 〈n〉.

Proof. Using the method of n-fold Čech derived functors, the proof is similar to that
given in [6, 7] and is left to the reader. For the sketch of the proof see [14].

4. Periodic and negative cyclic homologies via derived func-
tors

In this section, continuing the lines of the previous one, we describe the periodic
cyclic and negative cyclic homologies of algebras in terms of cotriple derived functors.

We begin by recalling the definitions of these homology theories. Given an algebra
A, let CN(A) denote the negative cyclic homology bicomplex, obtained from CP (A)
by deleting all columns whose indices are > 2. The homology groups of the complexes
Tot

(
CP (A)

)
∗ and Tot

(
CN(A)

)
∗ define, respectively, the periodic cyclic homology,

HP∗(A), and the negative cyclic homology, HN∗(A), of the algebra A.
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Now, for any n > 0, we define a functor

Bn : Alg −→Mod by Bn(A) = Tot
(
CC(A)

)
n

/
Im ∂n+1, A ∈ Alg,

where ∂n+1 is the boundary operator of Tot
(
CC(A)

)
∗. It is well known that there

is a natural transformation of functors Tot(CC)n+2 −→ Tot(CC)n, n > 0, induc-
ing Connes’ periodicity operator S : HCn+2 → HCn, n > 0. Hence there is a nat-
ural transformation Bn+2 −→ Bn, n > 0, implying the inverse system of functors
{Bn, n is even} and {Bn, n is odd}.

B∞even : Alg −→Mod and B∞odd : Alg −→Mod,

respectively, by the formulas

B∞even(A) = lim←−
k

B2k(A) and B∞odd(A) = lim←−
k

B2k+1(A)

for A ∈ Alg.
For a given algebra A, consider truncated complexes of the periodic cyclic homology

complex Tot
(
CP (A)

)
∗:

Tot>0

(
CP (A)

)
∗ ≡ · · ·

∂odd−−−→
∏

n>0

A⊗n+1 ∂even−−−→
∏

n>0

A⊗n+1 ∂odd−−−→
∏

n>0

A⊗n+1,

Tot>1

(
CP (A)

)
∗ ≡ · · ·

∂even−−−→
∏

n>0

A⊗n+1 ∂odd−−−→
∏

n>0

A⊗n+1 ∂even−−−→
∏

n>0

A⊗n+1,

where the even, ∂even, and the odd, ∂odd, boundaries are total boundaries of CP (A)
induced by

(
1− t,−b′

)
and

(
N, b

)
.

It is clear that we have the equalities

H0

“
Tot>0(CP (A))∗

”
=
Y

n>0

A⊗n+1
.

Im ∂odd, Hi

“
Tot>0(CP (A))∗

”
= HPi(A), i > 1,

and

H0

“
Tot>1(CP (A))∗

”
=
Y

n>0

A⊗n+1
.

Im ∂even, Hi

“
Tot>1(CP (A))∗

”
= HPi+1(A), i > 1.

Lemma 4.1. Let k contain Q and F be a free algebra. Then there are natural iso-
morphisms

B∞even(F ) ∼=
∏

n>0

F⊗n+1
/

Im ∂odd and B∞odd(F ) ∼=
∏

n>0

F⊗n+1
/

Im ∂even.

Proof. We shall prove only the first isomorphism. The proof of the second is similar
and will be omitted.

In fact, by definition

B∞even(F ) = lim←−
n

B2n(F ) = lim←−
n

(
Tot(CC(F ))2n

/
Im ∂2n+1

)
.

Since the natural homomorphism Im ∂2n+1 → Im ∂2n−1 is surjective for any n > 1,
we have lim←−

n

(1)
(
Im ∂2n+1

)
= 0 where lim←−

n

(1) is the first right derived functor of lim←−.
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This implies there is a natural isomorphism

B∞even(F ) ∼= lim←−
n

(
Tot(CC(F ))2n

)/
lim←−
n

(
Im ∂2n+1

)
.

It is easy to see that

lim←−
n

(
Tot(CC(F ))2n

) ∼=
∏

n>0

F⊗n+1.

Therefore it remains to show that we have an isomorphism

lim←−
n

(
Im ∂2n+1

) ∼= Im ∂odd.

In fact, we have equalities HC2n(F ) = 0 and HPn(F ) = 0, n > 1. Hence Im ∂2n+1

= Ker ∂2n, n > 1 and Im ∂odd = Ker ∂even. One readily checks that

lim
←
n

Ker ∂2n
∼= Ker ∂even

and the result follows.

Theorem 4.2. Let k contain Q and A be an algebra, which is flat as a module. Then
there are natural isomorphisms

HPn(A) ∼= LFn B∞even(A) and HPn+1(A) ∼= LFn B∞odd(A), n > 1.

Proof. Using Lemma 4.1, we only have to show that the functors Φ, Ψ: Alg→
Comp>0, defined by Φ(A) = Tot>0

(
CP (A)

)
∗ and Ψ(A) = Tot>1

(
CP (A)

)
∗ for

A ∈ Alg, satisfy conditions (i) and (ii) of Proposition 2.2.
Condition (i) is fulfilled, since by Lemma 2.1 the augmented simplicial module

∏

n>0

F∗(A)⊗n+1 →
∏

n>0

A⊗n+1

is acyclic, where
(F∗(A), d0

0, A
)

is the F-cotriple resolution of A.
The fulfilment of condition (ii) follows from the fact that there is an equality

HP∗(F(A)) = 0 for any algebra A over k containing Q.

Now we look at negative cyclic homology HN∗ in positive dimensions. Note that,
in non-positive dimensions, the negative cyclic homology coincides with the periodic
cyclic homology and is already described as cotriple derived functors.

Given an algebra A, consider the natural surjective homomorphism of modules

B∞even(A)→ B0(A) = A
/
[A,A].

Define the functor

B− : Alg −→Mod given by B−(A) = Ker{B∞even(A)→ B0(A)}.
Theorem 4.3. Let k contain Q and A be an algebra, which is flat as a module. Then
there is a natural isomorphism

HNn+2(A) ∼= LFn B−(A), n > 1.
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Proof. It is clear that we have the short exact sequence of complexes

0 −→ Tot>2

(
CN(A)

)
∗ −→ Tot>2

(
CP (A)

)
∗ −→ Tot

(
CC(A)

)
∗ −→ 0 (6)

and the equality Hn

(
Tot>2(CN(A))

)
= HNn+2(A), n > 1. Moreover, the functor

Φ: Alg→ Comp>0, defined by Φ(A) = Tot>2

(
CN(A)

)
∗, A ∈ Alg, satisfies the con-

ditions (i) and (ii) of Proposition 2.2. Hence there is a natural isomorphism

LFn H0

(
Tot>2(CN(A))∗

) ∼= HNn+2(A), n > 1.

Thus, to finish the proof, it suffices to show that H0

(
Tot>2(CN(F ))∗

)
is natu-

rally isomorphic to B−(F ) for any free algebra F . But we have HCn(F ) = HPn(F )
=HNn+1(F ) = 0 for n > 1. Clearly the long exact homology sequence induced by
the short exact sequence (6) gives the short exact sequence of modules

0 −→ H0

(
Tot>2(CN(F ))∗

) −→ H0

(
Tot>2(CP (F ))∗

) −→ HC0(F ) −→ 0.

Hence, by Lemma 4.1, we obtain the natural short exact sequence of modules

0 −→ H0

(
Tot>2(CN(F ))∗

) −→ B∞even(F ) −→ F
/
[F, F ] −→ 0,

which completes the proof.
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