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PATH CATEGORIES AND RESOLUTIONS

J.F. JARDINE

(communicated by Gunnar Carlsson)

Abstract
Path categories are defined, and their basic properties

are described, for simplicial and cubical sets. A calculational
method for describing the path category P (K) of a finite ori-
ented simplicial complex K is introduced, which involves a finite
2-category which can be specified by generators and relations.
This method specializes to higher dimensional automata via the
triangulation functor from cubical to simplicial sets, and leads
to calculations of their associated execution paths.

Introduction

The path category P (X) of a simplicial set X defines a functor X 7→ P (X) which
is left adjoint to the nerve functor B : cat → sSet. The first section of this paper
contains an elementary description of this functor, with some of its basic properties.
This construction specializes to a path category functor for cubical sets which appears
in the second section.

The path category construction is not a standard homotopy invariant for simplicial
sets: a map X → Y of simplicial sets which induces a homotopy equivalence |X| → |Y |
of their topological realizations can fail to induce a homotopy equivalence |BP (X)| →
|BP (Y )|. The path category functor is, on the other hand, a strong invariant for
Joyal’s quasi-category model structure for simplicial sets [5], [6] and is, more generally,
a theoretical building block for various approaches to higher category theory.

But there is a question: given a simplicial set X with vertices x and y, how do
you “compute” the morphism set P (X)(x, y)? Is it empty or not? When is it finite?
What does it mean for this set to have more than one element? The purpose of this
paper is to display techniques which give answers to these questions in specific cases
of interest.

The first answers are counterintuitive from the point of view of ordinary homo-
topy theory, even for elementary examples. The path category P (X) only sees the
2-skeleton of a space X (as one might expect), and its morphism sets detect 2-
dimensional holes in X. But they also detect missing 2-simplices in spaces which
are contractible in the usual sense: it is shown here (in the first section) that the
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path categories of the outer horns Λ3
0,Λ

3
3 are not posets, while the path categories of

all inner horns are posets. The non-triviality of the category P (Λ3
0) effectively means

that the path category detects sources in finite oriented simplicial complexes, and the
non-triviality of P (Λ3

3) means that the functor detects sinks — see Example 1.6.
Joyal’s quasi-category model structure gives methods for identifying P (X) up to

equivalence of categories, since every quasi-category weak equivalence X → Y induces
an equivalence of categories P (X) → P (Y ). This is useful for dealing with global
qualitative questions, but one wants some device for determining the morphism sets
P (X)(x, y) explicitly.

The approach taken in this paper, in Sections 3 and 4, is to transfer the question
to simplicial categories (or rather, categories enriched in simplicial sets), in which
ordinary categories C have resolutions Cs. Such resolutions have been used for some
time in homotopy coherence theory: a simplicial functor defined on Cs is used to
specify a diagram on C which is functorial, not on the nose in general, but up to
some coherent family of homotopies.

Gluing copies of the resolutions ns of the ordinal number posets n together along
the incidence relations of the simplices ∆n → X defines a simplicial category P (X)∞
and a map P (X)∞ → P (X) such that the morphism set P (X)(x, y) is the set of
path components of a simplicial set P∞(X)(x, y) (Lemma 3.1). This means that the
question of “computing” P (X)(x, y) can then be approached by studying the ordinary
homotopy type of the space P∞(X)(x, y).

So far, this method works best for finite simplicial complexes K ⊂ ∆N . The sim-
plicial category morphism P∞(K) → Ns has a 2-category image P ′2(K) ⊂ Ns with
path component category P (K). Throwing away degenerate paths gives a subobject
NP ′2(K) ⊂ P ′2(K) with the same homotopy type.

The 2-category NP ′2(K) has morphism categories N ′P2(K)(v, w) which are finite,
and have explicit rules for constructing both their object and morphism sets, starting
from the simplices of K. Furthermore, there is a bijection

π0NP ′2(K)(v, w) ∼= P (K)(v, w). (1)

The isomorphism (1) is a consequence of Theorem 4.4, which is the main result of
this paper.

The methods on display here can be used to construct an algorithm to completely
determine the categories NP ′(K)(v, w) and their sets P (K)(v, w) of path compo-
nents, starting from a list of generating simplices of the finite oriented complex K.
This algorithm has been successfully implemented in various programming languages
as a result of ongoing joint work with Graham Denham and Michael Misamore, and
I thank them both for their contributions.

Here is a reason to care: Pratt’s higher dimensional automata [7], [2] are finite
cubical complexes. These are precisely the subobjects K ⊂ ¤n of the standard n-
cells ¤n which are the building blocks for the category of cubical sets. These objects
K are geometric concurrency models: the vertices of K represent the states of an n
processor system, each cell of K corresponds to the simultaneous action of subsets the
full collection of processors, and the cells of ¤n which are not in K represent areas of
shared memory (or other resources) that subcollections of the full set of processors
cannot simultaneously occupy or use.
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The morphisms v → w in the path category P (K) for the cubical complex K
represent execution paths from the state v to the state w within the model, and the
main problem for geometric concurrency models of this type is to compute these sets
of execution paths. This problem is completely solved for small examples, by the
results of this paper and the corresponding algorithm and code.

I would like to thank the referee for some remarks which led to a collection of
improvements in the exposition of this paper.

1. The path category functor

Suppose that sSet is the category of simplicial sets [1] and that cat is the category
of small categories. The path category functor

P : sSet → cat

is defined to be the left adjoint of the nerve functor

B : cat → sSet.

The functor P is constructed by specifying its effect on simplices, and then by
taking an appropriate colimit on the simplex category ∆/X for an arbitrary simplicial
set X. In effect, there is a bijection

hom(∆n, BC) ∼= hom(n, C)

for arbitrary small categories C and ordinal numbers (posets)

n = {0, 1, . . . , n},
so that we set P (∆n) = n. Then for a general simplicial set X we set

P (X) = lim−→
∆n→X

n,

where the colimit in cat is indexed by members ∆n → X of the simplex category
∆/X.

Recall [1], [4] that the simplex category ∆/X has as objects all simplices ∆n → X,
and its morphisms are the commutative diagrams of simplicial set maps

∆m

''PPPPPP

²²
X.

∆n

77nnnnnn

It is well known that the nerve BC of a category C is a 2-coskeleton, which means
that the restriction function

hom(X, BC) → hom(sk2(X), BC)

is a bijection for all simplicial sets X. This implies the following:

Lemma 1.1. The inclusion sk2(X) ⊂ X induces a natural isomorphism

P (sk2(X)) ∼= P (X)

for all simplicial sets X.
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Write X61 for the graph X1 ⇒ X0 given by the truncation of a simplicial set X
at level 1. By Lemma 1.1, a simplicial set map f : X → BC can be identified with
a graph homomorphism f61 : X61 → C which takes each degenerate 1-simplex s0(x)
to the identity 1f(x) of the category C, and takes all boundaries

x0
d2(σ) //

d1(σ) !!CC
CC

CC
CC

x1

d0(σ)

²²
x2

of 2-simplices σ : ∆2 → X to commutative diagrams

f(x0)
f(d2(σ))//

f(d1(σ)) ##GG
GG

GG
GG

G
f(x1)

f(d0(σ))

²²
f(x2)

of C. The following is an immediate consequence:

Lemma 1.2. The category P (X) = P (sk2(X)) is the quotient

F (X61)/R,

of the free category on the graph X61 by the congruence R which is generated by the
relations

s0(x) ∼ 1x, x ∈ X0,

d1(σ) = d0(σ)d2(σ), σ ∈ X2.

Recall that a congruence R on a category C is an equivalence relation ∼ on each
of the morphism sets C(x, y) which is compatible with composition in the sense that
if f ∼ f ′, then gfh ∼ gf ′h for all morphisms g, h.

Lemma 1.2 implies that morphisms x → y of the path category P (X) can be
represented as paths

x0
a1−→ x2

a2−→ . . .
ak−→ xk, (2)

of 1-simplices in X, modulo an equivalence relation defined by degenerate 1-simplices
and 2-simplices as in the statement of Lemma 1.2. Composition in P (X) is induced
by concatenation of paths.

This path-based description of P (X) is the primary reason for calling it a path
category. Some authors [6] say that the category P (X) is the “fundamental category”
of X.

In all that follows, we will say that a path (2) is non-degenerate if none of the
constituent 1-simplices a1 is degenerate. Every path in X is equivalent (i.e., congru-
ent) to a non-degenerate path in the description of the path category P (X) given by
Lemma 1.2.
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The unit map η : X → BP (X) for the adjunction is the identity on vertices, and
takes a simplex σ : ∆n → X to the string of arrows in P (X) determined by the 1-
simplices

0 → 1 → · · · → n

in the 1-skeleton of ∆n. We have the following observation:

Lemma 1.3. The natural map η : X → BP (X) induces a bijection

π0(X) ∼= π0(BP (X)).

Here are some other basic properties of the path category construction:

Lemma 1.4. 1) The counit functor ε : P (BC) → C is an isomorphism of cate-
gories, for all small categories C.

2) The projection functors induce a natural isomorphism

P (X × Y )
∼=−→ P (X)× P (Y ),

for all simplicial sets X and Y .
3) The functor

P (Λn
k ) → P (∆n) ∼= n

which is induced by the inclusion Λn
k ⊂ ∆n of the kth horn Λn

k is an isomorphism
of categories, provided that 0 < k < n.

Proof. Statements 1) and 3) are proved by showing that the displayed functors
between path categories have fully faithful sections. Statement 2) is a consequence of
the fact that the product X × Y is a colimit of products of simplices ∆n ×∆m.

Example 1.5. The path category P (∂∆2) is the universal triangle, while P (∆2) is the
universal commutative triangle. The extension problem

P (∂∆2) α //

²²

C

P (∆2)

<<

has a solution if and only if the triangle of morphisms in C defined by the functor α
commutes. The non-identity morphisms in P (∂∆2) are represented by the picture

0 //

ÂÂ?
??

??
??

ÂÂ?
??

??
??

1

²²
2.

In particular, the two non-trivial morphisms 0 → 2 correspond to the paths

0 → 1 → 2, 0 → 2

of 1-simplices in the simplicial complex ∂∆2.
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Example 1.6. The inclusion ∂∆2 ⊂ Λ3
0 which is induced by the map d0 : ∆2 → ∆3

induces a fully faithful imbedding

i∗ : P (∂∆2) ⊂ P (Λ3
0).

In particular, there are two distinct morphisms 1 → 3 in the category P (Λ3
0). There

is exactly one morphism i → j for any other pair of vertices i, j of Λ3
0 such that i 6 j

in the orientation.
The fact that there are two distinct morphisms 1 → 3 (rather than one) in P (Λ3

0)
is a consequence of the fact that no path from 1 to 3 in Λ3

0 can pass through the
vertex 0, and so the source 0 is detected by the path category P (Λ3

0).
A vertex v of a simplicial complex is said to be a source if there are no non-

degenerate 1-simplices σ with d0(σ) = v. A vertex w of K is said to be a sink if there
are no non-degenerate 1-simplices τ such that d1(τ) = w.

The inclusion ∂∆2 ⊂ Λ3
3 which is induced by the map d3 : ∆2 → ∆3 induces a fully

faithful imbedding
P (∂∆2) ⊂ P (Λ3

3).

It follows that there are two morphisms 0 → 2 in P (Λ3
3) rather than just one, and so

the path category construction detects the sink given by the vertex 3 in Λ3
3. There is

exactly one morphism i → j for any other pair of vertices i, j of Λ3
3 such that i 6 j.

Remark 1.7. Any simplicial set map X → Y which is a weak equivalence for Joyal’s
quasi-category model structure for simplicial sets [6] induces an equivalence of cat-
egories P (X) → P (Y ). Statement 3) of Lemma 1.4 is heavily involved in the proof
of this claim, but one also needs to know that a weak equivalence of quasi-categories
X → Y in Joyal’s model structure induces an equivalence P (X) → P (Y ) of associated
path categories.

It follows that the inclusion Λ3
0 ⊂ ∆3 is not a quasi-category weak equivalence.

This inclusion is a weak equivalence for the standard model structure for simplicial
sets, since the spaces Λ3

0 and ∆3 are both contractible.

2. Cubical sets

The simplicial set (∆1)×n is isomorphic to the nerve B(1×n) of the categorical
hypercube 1×n. The category 1×n is isomorphic to the power set P(n) of the set
n = {1, . . . , n} of n elements, so that a 1-simplex of (∆1)×n can be identified with an
inclusion A ⊂ B of subsets of n.

The top dimensional cells (hypercubes of dimension n− 1) of the boundary sub-
complex

∂(∆1)×n ⊂ (∆1)×n

can be identified with intervals of the form [∅, n− {i}] and [{i}, n] in the power set
poset, for 1 6 i 6 n.

For A ⊂ B ⊂ n the interval [A, B] is the poset of subsets C ⊂ n such that A ⊂
C ⊂ B. There is an isomorphism of posets

[A,B] ∼= P(B −A).

It follows that a 1-simplex A ⊂ B of (∆1)×n is in ∂(∆1)×n if and only if either
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A 6= ∅ or B 6= n. This means in particular that ∅ ⊂ n is the only 1-simplex of (∆1)×n

which is not in the boundary ∂(∆1)×n. A non-degenerate path ∅ → n in ∂(∆1)×n can
therefore be identified with a flag of proper inclusions

A : ∅ = A0 ⊂ A1 ⊂ · · · ⊂ Ak = n

with A1 6= n.
Suppose that

B : ∅ = B0 ⊂ B1 ⊂ · · · ⊂ Bm = n

is a second non-degenerate path ∅ → n in the boundary. Here are some cases:

1) If A1 and B1 have a common element x then A is equivalent to the flag

∅ ⊂ {x} ⊂ A1 ⊂ · · · ⊂ Ak = n

while B is equivalent to the flag

∅ ⊂ {x} ⊂ B1 ⊂ · · · ⊂ Bm = n.

The subflags {x} ⊂ A1 ⊂ · · · ⊂ n and {x} ⊂ B1 ⊂ · · · ⊂ n are equivalent, because
both lie in the face poset [{x}, n], so that A is equivalent to B.

2) Suppose that A1 ∩B1 = ∅, and choose x ∈ A1 and y ∈ B1. Then the picture of
inclusions

∅ //

²²

{x} //

²²

A1
//

²²

. . . // n

=

²²
{y} // {x, y} // A1 ∪ {y} // . . . // n

(note that {x, y} 6= n since n > 3) implies that A ∼ Ax is equivalent to the path

∅ ⊂ {y} ⊂ {x, y} ⊂ A1 ∪ {y} ⊂ · · · ⊂ n,

which is equivalent to By ∼ B. It follows that A is equivalent to B.
We have effectively proved:

Lemma 2.1. Suppose that n > 3. Then the inclusion ∂(∆1)×n ⊂ (∆1)×n induces an
isomorphism

P (∂(∆1)×n) ∼= P ((∆1)×n)

of path categories.

Proof. There is a path between any two vertices in the complex ∂(∆1)×n, and

P ((∆1)×n) ∼= P (∆1)×n ∼= 1×n

is a poset by Lemma 1.4. It therefore suffices to show that any two paths between a
fixed pair of vertices are equivalent.

This will be so for any pair of vertices A ⊂ B with either A 6= ∅ or B 6= n, because
pairs of paths of this form are in one of the generating (n− 1)-cells of ∂(∆1)×n. The
cases corresponding to A = ∅ and B = n are dealt with in the paragraphs preceding
the statement of the Lemma.
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Recall from [4] that the triangulation |Y | of a cubical set Y is the simplicial set
defined by

|Y | = lim−→
¤n→Y

(∆1)×n,

where the colimit is indexed by objects ¤n → Y of the cell category ¤/Y . This
functor has a right adjoint S¤ : sSet → cSet, which is sometimes called the cubical
singular functor. The triangulation functor takes the cubical set inclusion ∂¤n ⊂ ¤n

to the simplicial set inclusion ∂(∆1)×n ⊂ (∆1)×n, up to isomorphism. More gener-
ally triangulation takes any finite cubical subcomplex K ⊂ ¤N to a finite simplicial
complex |K|, where

|K| ⊂ (∆1)×n ⊂ ∆2n−1.

Corollary 2.2. 1) Suppose that the diagram

∂¤n //

²²

X

i

²²
¤n // Y

is a pushout in the category of cubical sets, where n > 3. Then the induced
map of triangulations i∗ : |X| → |Y | induces an isomorphism of path categories
i∗ : P (|X|) ∼= P (|Y |).

2) The inclusion sk2(X) ⊂ X of the 2-skeleton sk2(X) of a cubical set X induces
an isomorphism of path categories P (| sk2(X)|) ∼= P (|X|).

To put it a different way, if Y is a cubical set and X is obtained from Y by removing
an n-cell, where n > 3, then P (|X|) ∼= P (|Y |).

I write P (Y ) = P (|Y |) for cubical sets Y , and say that P (Y ) is the path category
of the cubical set Y . The functor Y 7→ P (Y ) is left adjoint to the cubical nerve functor
C 7→ B¤(C). The cubical nerve B¤(C) of a small category C is the cubical set whose
n-cells are the functors 1×n → C.

The path category P (∂¤2) is the universal square diagram while the path category
(P¤2) is the universal commutative square, and the extension problem

P (∂¤2) α //

²²

C

P (¤2)

<<

has a solution if and only if the square diagram defined by α commutes. We then
have the following analog of Lemma 1.2 for cubical sets:

Lemma 2.3. The path category P (X) for a cubical set X is isomorphic to the free
category on the graph sk1 X, modulo the relations ba = a′b′ arising from all 2-cells
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σ : ¤2 → X with boundary

x
a //

b′

²²

y

b

²²
z

a′
// w

in X, as well as s0x = 1x for all vertices x of X.

3. Simplicial categories

In all that follows, a simplicial category will be a category which is enriched in
simplicial sets.

We begin by recalling a construction from [1, IX.3.2], [3]. Suppose that I is a small
category, and let a, b be objects of I. There is a category Is(a, b) whose objects are
the strings of arrows θ : n → I which start at a and end at b. A morphism of Is(a, b)
is a commutative diagram of functors

n

&&LLLLLL

γ

²²
I

m

88rrrrrr

(3)

where the functor γ is end-point preserving in the sense that γ(0) = 0 and γ(n) = m.
Concatenation of strings defines functors

Is(a, b)× Is(b, c) → Is(a, c)

and Is is therefore a 2-category with 0-cells the objects of I, 1-cells the strings of
composable arrows, and 2-cells defined by the end-point preserving functors γ above.
Taking all classifying spaces BIs(a, b) together gives a simplicial category BIs and a
natural map ε : BIs → I of simplicial categories (where I is discrete in the simplicial
direction).

The map ε : BIs(a, b) → I(a, b) is a weak equivalence, since the path component
corresponding to the morphism f : a → b of Is(a, b) has an initial object given by the
1-simplex f : 1 → I. It follows that the map ε : BIs → I is a resolution of the category
I in simplicial categories.

Morphisms γ as in the diagram (3) are generated by cofaces dj : k− 1 → k such
that 0 < j < k, and all codegeneracies sj : k → k− 1, subject to the cosimplicial iden-
tities. Each dj is a join (or concatenation) of the form 1 ∗ d1 ∗ 1 for d1 : 1 → 2. Sim-
ilarly, each codegeneracy sj has the form sj = 1 ∗ s0 ∗ 1 for s0 : 1 → 0. Among the
cosimplicial identities, the only ones which are not satisfied trivially by being in dif-
ferent “join factors” are the cocycle conditions, namely the identities (diagrams)

1
d1

//

d1

²²

2

d1

²²
2

d2
// 3
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and

1

d1

²²

1

ÄÄ¡¡
¡¡

¡¡
¡

1

ÂÂ@
@@

@@
@@

1 2
s0

oo
s1

// 1.

It follows that a 2-functor f : Is → D is a lax diagram on I taking values in the
2-category D, and that the 2-category Is is the universal lax diagram on the category
I.

Any simplicial category E has a path component category π0(E) whose objects
are those of E, and such that

(π0(E))(x, y) = π0(E(x, y)).

Observe that the functors

E1

d0 //
d1

// E0
// π0(E)

form a coequalizer in cat, because all displayed categories have the same sets of
objects, and all induced functions on objects are identities.

If D is a 2-category, then forming the classifying spaces BD(x, y) of the morphism
categories D(x, y) determines a simplicial category BD. If E is a simplicial category,
then the path category functor determines categories PE(x, y), and then Lemma 1.4
can be used to show that the categories PE(x, y) define a 2-category PE. The functor
E 7→ PE is left adjoint to the functor D 7→ BD.

Now suppose that X is a simplicial set, and write P∞(X) for the simplicial category
which is defined by

P∞(X) = lim−→
∆n→X

Bns,

where the colimit is in the category of simplicial categories. This colimit is formed by
taking the colimit in categories in each simplicial degree. I write

P2(X) = P (P∞(X))

to define a functor P2 : sSet → 2− cat which is left adjoint to the 2-category nerve
functor B2 : 2− cat → sSet. For a 2-category D, the n-simplices of B2(D) are the 2-
category morphisms ns → D, or equivalently the lax functors on n which take values
in D.

Lemma 3.1. There are isomorphisms of categories

π0(P2(X)) ∼= π0(P∞(X)) ∼= P (X)

which are natural in simplicial sets X.

Proof. The resolution maps ε : B(ns) → n induce isomorphisms π0(B(ns)) ∼= n, as
well as a comparison map

P∞(X) → P (X).

The functor D 7→ π0(D) commutes with colimits in simplicial categories, and so there
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is an induced isomorphism
π0(P∞(X)) ∼= P (X).

The canonical map

η : P∞(X) → BP (P∞(X)) = BP2(X)

induces a natural isomorphism of categories

π0(P∞(X)) ∼= π0(P2(X)),

by Lemma 1.3.

4. Finite simplicial complexes

Suppose that K ⊂ ∆N is a finite simplicial complex. There is a 2-category P ′2(K) ⊂
Ns whose path component category is isomorphic to the path category P (K).

Explicitly, the 2-category P ′2(K) is the subobject of Ns whose objects are the
vertices of K, and whose 1-cells are the functors θ : m → N such that each 1-simplex
θ(i) 6 θ(i + 1) is a 1-simplex of K. The category P ′2(K)(v, w) is the subcategory of
Ns(v, w) whose objects are the 1-cells, and which has morphisms generated by all
codegeneracies, and all end-point preserving cofaces

n− 1
**TTTTTTT

di

²²
P (∆N ) ∼= N

n τ

44iiiiiiii

such that the simplex τ(i− 1) 6 τ(i) 6 τ(i + 1) is a 2-simplex of K.
Alternatively, the 2-category P ′2(K) as the image in Ns of the 2-category morphism

P2(K) → P2(∆N ) = Ns.

Lemma 4.1. There is a 2-functor

γ : P ′2(K) → P (K)

which induces an isomorphism

π0(P ′2(K)) ∼= P (K)

of the path component category π0(P ′2(K)) of P ′2(K) with the path category P (K).

Proof. The functor γ is defined by the functor P ′2(K)0 → P (K) which is the identity
on vertices and takes a morphism θ : m → N in P ′2(K)0 (a path in K) to the morphism
[θ] in P (K) which is represented by θ. Then γd0 = γd1 for the coequalizer

P ′2(K)1
d0 //
d1

// P ′2(K)0 // π0(P ′2(K))

and so there is a canonical induced functor γ∗ : π0(P ′2(K)) → P (K). The category
P (K) has the form P ′2(K)0/R where R is the congruence generated by the 2-simplex
and degeneracy relations in P ′2(K)0. The congruence consisting of pairs of morphisms
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with the same image in π0(P ′2(K)) contains the generating pairs of R, and so there
is a unique functor ζ : P (K) → π0(P ′2(K)) such that the diagram

P ′2(K)0 //

&&LLLLLLLLLL
P (K)

ζ

²²
π0(P ′2(K))

commutes. Then the maps γ∗ζ and ζγ∗ are identities since the morphisms P ′2(K)0 →
P (K) and P ′2(K)0 → π0(P ′2(K)) are surjective in objects and morphisms.

Suppose now that v 6 w are vertices of K, and suppose that P : n → N is an
object of P ′2(K)(v, w). Then the epi-monic factorization

n
P

''NNNNNNN

sP

²²
N

nP
dP

88pppppp

is a canonically defined morphism of P ′2(K)(v, w) such that dP is a non-degenerate
path in K and sP is a co-degeneracy.

Here, a non-degenerate path in K is a path r → N in K which is non-degenerate
as a simplex of ∆N , meaning that it is a monic ordinal number morphism.

Suppose that i is a vertex of n such that 0 < i < n, and let σi : 2 → n be the
2-simplex such that σi(0) = i− 1, σi(1) = i and σi(2) = i + 1. In this notation, the
morphisms of P (K)(v, w) are generated in Ns(v, w) by all codegeneracies and by the
morphisms

n− 1

''OOOOOO

di

²²
N

n θ

66nnnnnnnn

for which the composite

2 σi−→ n θ−→ N

is a 2-simplex of K.

Lemma 4.2. Suppose that s : n → m is an ordinal number epimorphism and that
0 < i < n. Then either the composite s · di is an ordinal number epimorphism, or
there is a (uniquely determined) commutative diagram

n− 1 di
//

t

²²

n

s

²²
m− 1

dk

// m

such that s · σi = σk.
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Proof. It suffices to assume that s = sj : n → n− 1. Recall the cosimplicial identities

sjdi =





disj−1 if i < j,
1 if i = j, j + 1, and
di−1sj if i > j + 1.

Then sj(k) = k for k 6 j so that sj · σi = σi if i < j. Similarly sj(k) = k − 1 for
k > j + 1, so that sj · σi = σi−1 if i > j + 1.

Corollary 4.3. Suppose that the morphism

m
Q

&&MMMMMM

θ

²²
N

n P

88qqqqqq

of P ′2(K)(x, y) is defined by an ordinal number monomorphism θ. Then θ can be
written as a composite of the generators di.

Proof. It suffices to assume that θ be written as a composite

θ = sj · dik . . . di1

of generators. In effect, if θ = θ′ · s where s is a codegeneracy, then s is monic as well
as epi so that s = 1. Thus, θ can be written

θ = θ′′ · (sj · dik . . . di1)

so that the composite
sj · dik . . . di1

is monic.
If k = 1 and θ is a monomorphism then θ = sjdi1 = 1, for otherwise θ is not monic

by the cosimplicial identities.
Suppose that k > 1. If sjdi1 is not the identity, then

sjdi1 = di′sj′

in P ′2(K)(v, w) by Lemma 4.2. Then the composite sj′di2 . . . dik is monic, and can be
written as a product of generators di, by the inductive assumption.

Write NP ′2(K)(v, w) for the full subcategory of P ′2(K)(v, w) on the non-degenerate
paths n → N in K. All morphisms of NP ′2(K)(v, w) are necessarily ordinal number
monomorphisms, and are therefore composites of generating morphisms di by Corol-
lary 4.3. The non-degenerate paths in K are closed under concatenation, and the
inclusions i : NP ′2(K)(v, w) ⊂ P ′2(K)(v, w) together define a 2-functor

i : NP ′2(K) ⊂ P ′2(K).

Theorem 4.4. The functors i : NP ′2(K)(v, w) → P ′2(K)(v, w) are homotopy equiva-
lences, and together induce an isomorphism of path component categories

π0(NP ′2(K)) ∼= π0(P ′2(K)) ∼= P (K).
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Proof. Suppose that

m θ //

Q ½½6
66

66
6 n

P
¥¥­­

­­
­­

N

is a morphism of P ′2(K)(v, w). Then Lemma 4.2 implies that there is a unique mor-
phism θ∗ : dQ → dP of associated non-degenerate paths in P ′2(K)(v, w) such that the
diagram of ordinal number morphisms

m θ //

sQ

²²

n

sP

²²
mQ

θ∗
// nP

commutes.
Define a functor

r : P ′2(K)(v, w) → NP ′2(K)(v, w)

by sending θ : Q → P to the morphism θ∗ : dQ → dP . Then r · i = 1, and the maps
sP define a natural transformation s : 1 → i · r.
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ematics, 174. Birkhäuser Verlag, Basel, 1999. xvi+510pp. ISBN:3-7643-6064-X

[2] Eric Goubault. Some geometric perspectives in concurrency theory. Algebraic
topological methods in computer science (Stanford, CA, 2001). Homology Homo-
topy Appl. 5 (2003), no. 2, 95–136.

[3] J. F. Jardine. Modelling homotopy coherence. Category theory 1991 (Montreal,
PQ, 1991), 267–283, CMS Conf. Proc., 13, Amer. Math. Soc., Providence, RI,
1992.

[4] J. F. Jardine. Categorical homotopy theory. Homology, Homotopy Appl. 8,
(2006), no. 1, 71–144.

[5] A. Joyal. Quasi-categories and Kan complexes. Special volume celebrating the
70th birthday of Professor Max Kelly. J. Pure Appl. Algebra, 175 (2002), no.
1-3, 207–222.

[6] A. Joyal. Notes on quasi-categories, part I. Preprint 2007.
[7] Vaughan R. Pratt. Modeling concurrency with geometry. Proceedings of the 18th

ACM SIGPLAN-SIGACT symposium on Principles of programming languages,
Orlando, FL (1991), 311–322. ISBN:0-89791-419-8

J.F. Jardine jardine@uwo.ca

Department of Mathematics, University of Western Ontario, London, Ontario,
N6A 5B7, Canada


