Homology, Homotopy and Applications, vol. 12(1), 2010, pp.357-366

ON TRIVIALITIES OF STIEFEL-WHITNEY CLASSES OF VECTOR BUNDLES OVER ITERATED SUSPENSION SPACES

RYUICHI TANAKA

(communicated by Brooke Shipley)

Abstract

A space B is described as W-trivial if for every vector bundle over B, all the Stiefel-Whitney classes vanish. We prove that if B is a 9-fold suspension, then B is W-trivial. We also determine all pairs (k, n) of positive integers for which $\Sigma^k F P^n$ is W-trivial, where $F = \mathbb{R}, \mathbb{C}$ or \mathbb{H} .

1. Introduction and results

A space B is called W-trivial if $W(\alpha) = 1$ holds for every vector bundle α over B. Here $W(\alpha)$ denotes the total Stiefel-Whitney class of α . If B is W-trivial, then a kind of Borsuk-Ulam type theorem holds for every vector bundle α over B; precisely, for any integer i with $i > \dim \alpha$, there does not exist a \mathbb{Z}_2 -map from S^{i-1} to $S(\alpha)$, the sphere bundle of α [6, Proposition 2.2]. Thus it would be interesting to ask whether a space is W-trivial or not. As is well-known, the sphere S^n is W-trivial if and only if $n \neq 1, 2, 4, 8$ (see [5]). Obviously, the projective space FP^n , where $F = \mathbb{R}, \mathbb{C}$ or \mathbb{H} , is not W-trivial for any n > 0. For the stunted projective space FP_m^n , all (m, n)for which FP_m^n is W-trivial were determined in [9]; roughly speaking, FP_m^n is not W-trivial if and only if m is very small compared with n.

As is seen in the case $B = S^n$, it is not true that if B is W-trivial, then its suspension ΣB is also W-trivial. In this paper, we first prove the following theorem.

Theorem 1.1. For a space B, its 8-fold suspension $\Sigma^8 B$ is W-trivial if either of the following conditions is satisfied:

- (1) B is W-trivial.
- (2) The cup product in $\widetilde{H}^*(B; \mathbb{Z}_2)$ is trivial.

In general, the cup product in $H^*(\Sigma B; \mathbb{Z}_2)$ is trivial, so that from the above theorem, we immediately obtain the following result.

Corollary 1.2. For any space B, its 9-fold suspension $\Sigma^9 B$ is W-trivial.

As is easily seen by using the suspension theorem, a k-connected complex B with $\dim B \leq 2k + 1$ is homotopy equivalent to the suspension of a (k - 1)-connected complex of dimension $\dim B - 1$. By iterating this, we see that a k-connected complex

Key words and phrases: Stiefel-Whitney class, vector bundle, squaring operation.

Received March 15, 2010, revised March 28, 2010; published on May 3, 2010.

²⁰⁰⁰ Mathematics Subject Classification: 55R50, 55S05.

This article is available at http://intlpress.com/HHA/v12/n1/a18

Copyright © 2010, International Press. Permission to copy for private use granted.

RYUICHI TANAKA

B is homotopy equivalent to the 9-fold suspension of a (k-9)-connected complex (k > 9) if dim $B \leq 2k - 7$. Therefore, from Corollary 1.2, we obtain the following result.

Corollary 1.3. Let B be a k-connected complex with k > 9. If dim $B \leq 2k - 7$, then B is W-trivial.

This corollary greatly improves Theorem 1.3 in [8]. Since the smallest integer i such that $w_i(\alpha) \neq 0$ is a power of 2 (see [8, Lemma 2.1]), the above corollary is actually useful only when $k \geq 12$. For example, we see that a 16-dimensional complex is W-trivial if it is 12-connected. It should be also noted that the 16-dimensional stunted projective space $\mathbb{R}P_k^{16}$ is W-trivial for 9 < k < 16 while $\mathbb{R}P_9^{16}$ is not W-trivial (see [8, Theorem 4.1]).

Next, in this paper, we investigate whether $\Sigma^k FP^n$ is W-trivial or not, where $F = \mathbb{R}, \mathbb{C}$ or \mathbb{H} . Because of Corollary 1.2, our interests are only in the case when $0 < k \leq 8$. For $F = \mathbb{R}$, we have the following result.

Theorem 1.4. For positive integers k and n, the k-fold suspension $\Sigma^k \mathbb{R}P^n$ of $\mathbb{R}P^n$ is not W-trivial if and only if k and n satisfy one of the following conditions:

- (1) $k = 1, 2, 4 \text{ or } 8 \text{ and } n \ge k$.
- (2) k = 3,5 or 7 and n + k = 4 or 8.
- (3) k = 6 and n = 2 or 3.

This result shows that the condition $k \ge 9$ is best possible for $\Sigma^k B$ to be W-trivial in general.

For $F = \mathbb{C}$ and $F = \mathbb{H}$, we have the following results.

Theorem 1.5. For positive integers k, n with n > 1, the k-fold suspension $\Sigma^k \mathbb{C}P^n$ of $\mathbb{C}P^n$ is not W-trivial if and only if k = 2 or 4.

Theorem 1.6. For positive integers k, n with n > 1, the k-fold suspension $\Sigma^k \mathbb{H}P^n$ of $\mathbb{H}P^n$ is not W-trivial if and only if k = 4.

It is worth noting that the W-triviality of $\Sigma^k FP^n$ does not depend on n for $F = \mathbb{C}$ or \mathbb{H} .

Throughout this paper, all cohomology is assumed to have coefficients \mathbb{Z}_2 unless otherwise stated. The total Stiefel-Whitney class of α is denoted by $W(\alpha)$, and the total Chern class by $C(\alpha)$.

The following two lemmas are straightforward to show but they are of fundamental importance for our proofs of theorems.

Lemma 1.7.

- (1) If KO(B) = 0, then B is W-trivial.
- (2) Let $f: B \to X$ be a map and suppose that X is W-trivial. If $f^*: KO(X) \to \widetilde{KO}(B)$ is epimorphic, then B is W-trivial.

Lemma 1.8.

- (1) If $H^{2^r}(B) = 0$ for all $r \ge 0$, then B is W-trivial.
- (2) Let $f: X \to B$ be a map and suppose that X is W-trivial. If $f^*: H^{2^r}(B) \to H^{2^r}(X)$ is monomorphic for all $r \ge 0$, then B is W-trivial.

358

2. Proof of Theorem 1.1

In this section, we prove Theorem 1.1. We use the Bott periodicity theorem for KO-theory. Let $j: S^8 \times B \to \Sigma^8 B$ denote the quotient map and let $p_1: S^8 \times B \to S^8$ and $p_2: S^8 \times B \to B$ denote the projections. Let α be an arbitrary vector bundle over $\Sigma^8 B$. By the Bott periodicity theorem, we see that $j^*\alpha$ is stably equivalent to $p_1^*(\nu - 8) \otimes p_2^*(\beta - m)$ for some vector bundle β over B. Here ν denotes the Hopf vector bundle over S^8 and $m = \dim \beta$. Then, we have

$$j^*W(\alpha) = W(p_1^*\nu \otimes p_2^*\beta) \cdot W(p_1^*\nu)^{-m} \cdot W(p_2^*\beta)^{-8}.$$
 (*)

We compute this and show that $W(\alpha) = 1$. Note that $W(p_1^*\nu) = p_1^*W(\nu) = 1 + s \times 1$, where s denotes the generator of $H^8(S^8)$. Let

$$W(p_1^*\nu) = \prod_{i=1}^8 (1+s_i)$$
 and $W(p_2^*\beta) = \prod_{j=1}^m (1+t_j)$

be formal factorizations of $W(p_1^*\nu)$ and $W(p_2^*\beta)$. Then, by an analogous formula to Formula III of Theorem 4.4.3 in [4], we have $W(p_1^*\nu \otimes p_2^*\beta) = \prod_{i,j} (1 + s_i + t_j)$. We first calculate the product for *i*'s by using $\prod_{i=1}^{8} (1 + s_i) = 1 + s \times 1$ as follows:

$$\prod_{i=1}^{8} ((1+t_j)+s_i) = \sum_{k=0}^{8} (1+t_j)^{8-k} \lambda_k(s_1, s_2, \dots, s_8)$$
$$= (1+t_j)^8 + s_1 s_2 \cdots s_8$$
$$= 1+t_i^8 + s \times 1,$$

where λ_k denotes the elementary symmetric polynomial of degree k and we used the fact that $\lambda_k(s_1, s_2, \ldots, s_8) = 0$ for 0 < k < 8. Therefore we have

$$W(p_1^*\nu \otimes p_2^*\beta) = \prod_{j=1}^m ((1+s\times 1)+t_j^8)$$
$$= \sum_{k=0}^m (1+s\times 1)^{m-k} \lambda_k(t_1^8, t_2^8, \dots, t_m^8)$$

Now, we assume that the cup product in $\widetilde{H}^*(B)$ is trivial. Then, we clearly have $W(\beta)^2 = 1$, so that $W(p_2^*\beta)^8 = p_2^*W(\beta)^8 = 1$. This implies that $\prod_{j=1}^m (1+t_j^8) = 1$, so that $\lambda_k(t_1^8, t_2^8, \ldots, t_m^8) = 0$ for every k > 0. Therefore we have

$$W(p_1^*\nu \otimes p_2^*\beta) = (1+s \times 1)^m$$

Substituting these results into (*), we obtain

$$j^*W(\alpha) = (1+s\times 1)^m \cdot (1+s\times 1)^{-m} \cdot 1^{-1} = 1.$$
(**)

Since $j^* \colon H^*(\Sigma^8 B) \to H^*(S^8 \times B)$ is monomorphic, we conclude that $W(\alpha) = 1$. Thus the proof of Theorem 1.1 under the assumption (2) is completed.

The proof under the assumption (1) is quite similar. Since $W(p_2^*\beta) = 1$ from the assumption that B is W-trivial, we may regard all the t_j 's as zeros in our previous calculations. Then we obtain $W(p_1^*\nu \otimes p_2^*\beta) = (1 + s \times 1)^m$ and have the same result as (**). Thus the theorem under the assumption (1) follows.

RYUICHI TANAKA

Here we prepare the following lemma, which will be used to prove Theorems 1.4 and 1.5 in later sections.

Lemma 2.1. Let d and m be positive integers with $d \leq m$.

(1) If γ is a vector bundle over S^d with dim $\gamma = m$ and β is a line bundle over B, then in $H^*(S^d \times B)$ we have

$$W((p_1^*\gamma - m) \otimes (p_2^*\beta - 1)) = 1 + w_d(\gamma) \times ((1 + w_1(\beta))^{-d} - 1),$$

where $p_1: S^d \times B \to S^d$ and $p_2: S^d \times B \to B$ are the projections.

(2) If γ is a complex vector bundle over S^{2d} with $\dim_{\mathbb{C}} \gamma = m$ and β is a complex line bundle over B, then in $H^*(S^{2d} \times B; \mathbb{Z})$ we have

$$C((p_1^*\gamma - m) \otimes_{\mathbb{C}} (p_2^*\beta - 1)) = 1 + c_d(\gamma) \times ((1 + c_1(\beta))^{-d} - 1),$$

where $p_1: S^{2d} \times B \to S^{2d}$ and $p_2: S^{2d} \times B \to B$ are the projections.

Proof. We prove only (1) since the proof of (2) is quite similar. Let us put $w_d(\gamma) = s$ and $w_1(\beta) = t$. Let $W(p_1^*\gamma) = 1 + s \times 1 = 1^{m-d} \cdot \prod_{i=1}^d (1+s_i)$ and $W(p_2^*\beta) = 1 + 1 \times t = 1 + t_1$ be formal factorizations. Then, just like before, we can calculate as follows:

$$W(p_1^* \gamma \otimes p_2^* \beta) = (1+t_1)^{m-d} \cdot \prod_{i=1}^d (1+s_i+t_1)$$

= $(1+t_1)^{m-d} \cdot ((1+t_1)^d + s \times 1)$
= $(1+1 \times t)^m \cdot (1+s \times (1+t)^{-d}).$

Therefore, we have

$$\begin{split} W((p_1^*\gamma - m) \otimes (p_2^*\beta - 1)) &= W(p_1^*\gamma \otimes p_2^*\beta) \cdot W(p_2^*\beta)^{-m} \cdot W(p_1^*\gamma)^{-1} \\ &= (1 + s \times (1 + t)^{-d}) \cdot (1 + s \times 1)^{-1} \\ &= (1 + s \times (1 + t)^{-d}) \cdot (1 - s \times 1) \\ &= 1 + s \times ((1 + t)^{-d} - 1). \end{split}$$

Thus the lemma follows.

3. Proof of Theorem 1.4

In this section, we investigate whether $\Sigma^k \mathbb{R} P^n$ is W-trivial or not. Since $\Sigma^k \mathbb{R} P^n$ is W-trivial for k > 8 by Corollary 1.2, our interests are only in the case when $0 < k \leq 8$. We divide into three cases: (1) k = 1, 2, 4 or 8, (2) k = 3, 5 or 7 and (3) k = 6.

First we consider the case when k = 1, 2, 4 or 8. The result is as follows.

Proposition 3.1. Let d = 1, 2, 4 or 8. Then $\Sigma^d \mathbb{R}P^n$ is not W-trivial if and only if $n \ge d$.

Proof. Recall that for a vector bundle α , the smallest integer i such that $w_i(\alpha) \neq 0$ is a power of 2 (see [8, Lemma 2.1]). If n < d, then $\Sigma^d \mathbb{R} P^n$ has no cells of dimension a power of 2, so that $\Sigma^d \mathbb{R} P^n$ is W-trivial. Now, let us consider the exact sequence

$$0 \longleftarrow \widetilde{KO}(S^d \vee \mathbb{R}P^n) \xleftarrow{i^*} \widetilde{KO}(S^d \times \mathbb{R}P^n) \xleftarrow{j^*} \widetilde{KO}(\Sigma^d \mathbb{R}P^n) \longleftarrow 0,$$

360

where *i* and *j* are obvious maps. Let ν denote the Hopf vector bundle over S^d and let ξ denote the canonical line bundle over $\mathbb{R}P^n$. Since $i^*((p_1^*\nu - d) \otimes (p_2^*\xi - 1)) = 0$, there is a vector bundle α over $\Sigma^d \mathbb{R}P^n$ such that $j^*\alpha$ is stably equivalent to $(p_1^*\nu - d) \otimes (p_2^*\xi - 1)$. By Lemma 2.1, in $H^*(S^d \times \mathbb{R}P^n)$ we have

$$W(j^*\alpha) = 1 + s \times ((1+t)^{-d} - 1)$$

= 1 + s × (t^d + t^{2d} + t^{3d} + ...).

where s and t denote the generator of $H^d(S^d)$ and $H^1(\mathbb{R}P^n)$ respectively. Hence, we see that $j^*W(\alpha) \neq 1$ if $n \geq d$. We thus conclude that $W(\alpha) \neq 1$, so that $\Sigma^d \mathbb{R}P^n$ is not W-trivial if $n \geq d$.

Before we consider the second case, we prepare a few lemmas.

Lemma 3.2. If $\Sigma^k \mathbb{R} P^{2^m-k}$ is W-trivial, then $\Sigma^k \mathbb{R} P^n$ is W-trivial for any integer n with $2^m - k < n < 2^{m+1} - k$.

Proof. Let $i: \Sigma^k \mathbb{R} P^{2^m - k} \to \Sigma^k \mathbb{R} P^n$ be the inclusion map. If $2^m < n + k < 2^{m+1}$, then $i^*: H^{2^r}(\Sigma^k \mathbb{R} P^n) \to H^{2^r}(\Sigma^k \mathbb{R} P^{2^m - k})$ is monomorphic for all $r \ge 0$ for dimensional reasons. Therefore, the lemma follows from Lemma 1.8.

Lemma 3.3. Let α be a vector bundle over a complex *B*. Let *r* be an integer with $r \ge 2$ and suppose that $w_i(\alpha) = 0$ for $0 < i < 2^r$. Then we have $\operatorname{Sq}^j w_{2^r}(\alpha) = 0$ for $0 < j < 2^{r-1}$.

Proof. We put $2^{r-1} = m$ and consider the inclusion $i: B^{(3m)} \hookrightarrow B$, where $B^{(3m)}$ is the 3*m*-skeleton of *B*. For dimensional reasons, the induced bundle $i^*\alpha$ is stably equivalent to some 3*m*-dimensional vector bundle β . Then we clearly have $W(i^*\alpha) = W(\beta)$. We denote by $P(\beta)$ the associated projective bundle of β , and by *e* the \mathbb{Z}_2 -Euler class of the line bundle $\beta \to P(\beta)$. The cohomology $H^*(P(\beta))$ is a free $H^*(B^{(3m)})$ -module generated by $1, e, e^2, \ldots, e^{3m-1}$, in which we have the relation $e^{3m} = \sum_{i=0}^{3m-1} w_{3m-i}(\beta) \cdot e^i$. Since we have $w_i(\beta) = i^* w_i(\alpha) = 0$ for 0 < i < 2m by the assumption, we can write this relation as $e^{3m} = w_{3m} + w_{3m-1} \cdot e + \cdots + w_{2m}$ $\cdot e^m$, where we have abbreviated $w_i(\beta)$ as w_i . We apply the total squaring operation $\operatorname{Sq} = \sum_{i \ge 0} \operatorname{Sq}^i$ to this relation. Since $\operatorname{Sq}(e^i) = (\operatorname{Sq} e)^i = (e + e^2)^i = e^i(1 + e)^i$, we obtain the following equation:

$$e^{3m}(1+e)^{3m} = \operatorname{Sq} w_{3m} + \operatorname{Sq} w_{3m-1} \cdot e(1+e) + \dots + \operatorname{Sq} w_{2m} \cdot e^m(1+e)^m. \quad (***)$$

In this equation, we like to compare the coefficients of e^{j} 's. To do this, we must rewrite the left-hand side of (***) so that all summands have exponents of e less than 3m. We calculate using the previous relation as follows:

$$e^{3m}(1+e)^{3m} = e^{3m}(1+e^m+e^{2m}+e^{3m})$$

= $e^{3m}(1+e^m) + (e^{3m} - w_{2m} \cdot e^m)e^{2m} + w_{2m} \cdot e^{3m} + (e^{3m})^2$
= $(w_{3m} + w_{3m-1} \cdot e + \dots + w_{2m} \cdot e^m)(1+e^m)$
+ $(w_{3m} + w_{3m-1} \cdot e + \dots + w_{2m+1} \cdot e^{m-1})e^{2m}$
+ $w_{2m}(w_{3m} + w_{3m-1} \cdot e + \dots + w_{2m} \cdot e^m)$
+ $(w_{3m} + w_{3m-1} \cdot e + \dots + w_{2m} \cdot e^m)^2.$

RYUICHI TANAKA

With this expression of the left-hand side of (***), we can compare the coefficients of e^{j} 's for j < 3m. Comparing the coefficients of e^{2m} , we obtain $\operatorname{Sq} w_{2m} = w_{2m}$ $+ w_{3m} + w_{2m}^2$. Hence we have $\operatorname{Sq}^j w_{2m} = 0$ for 0 < j < m and $\operatorname{Sq}^m w_{2m} = w_{3m}$. We here recall that $w_i = i^* w_i(\alpha)$. Since $i^* \colon H^i(B) \to H^i(B^{(3m)})$ is monomorphic for $i \leq 3m$, we conclude that $\operatorname{Sq}^j w_{2m}(\alpha) = 0$ for 0 < j < m and $\operatorname{Sq}^m w_{2m}(\alpha) = w_{3m}(\alpha)$. Thus the lemma follows.

Remark. When $w_i = 0$ for $0 < i < 2^r$, Wu's formula [10] turns out to be $\operatorname{Sq}^j w_{2^r} = \binom{2^r-1}{j} w_{2^r+j} = w_{2^r+j}$ ($0 < j < 2^r$). Lemma 3.3 implies that this is zero for $0 < j < 2^{r-1}$. We also remark that there is a vector bundle over $\Sigma^4 \mathbb{H}P^2$ such that $w_8 \neq 0$ and $w_{12} \neq 0$ (see [8, Theorem 4.5]). Thus our result is best possible at least for r = 3.

Now, we consider the second case: k = 3, 5 or 7. The result is as follows.

Proposition 3.4. Let k = 3, 5 or 7. Then $\Sigma^k \mathbb{R}P^n$ is not W-trivial if and only if n + k = 4 or 8.

Proof. We consider the cofibration $\Sigma^k \mathbb{R}P^{n-1} \xrightarrow{i} \Sigma^k \mathbb{R}P^n \xrightarrow{j} S^{n+k}$. First, let n+k = 8. Since S^8 is not W-trivial and $j^* \colon H^8(S^8) \to H^8(\Sigma^k \mathbb{R}P^n)$ is monomorphic, it follows from Lemma 1.8 that $\Sigma^k \mathbb{R}P^n$ is not W-trivial. Similarly $\Sigma^k \mathbb{R}P^n$ is not W-trivial when n+k=4. Thus the "if" part of the proposition follows. Next, we suppose $n+k \neq 4,8$ and show that $\Sigma^k \mathbb{R}P^n$ is W-trivial. Our proof is divided into two cases.

Case 1: $n + k \ge 16$.

First we consider the case when $n + k = 2^r$ with $r \ge 4$. In this case, we have $\widetilde{KO}(\Sigma^k \mathbb{R}P^{n-1}) = 0$ by [3, Theorem 1] since k = 3, 5, 7 and $n + k - 1 \equiv 7 \pmod{8}$. Hence $j^* \colon \widetilde{KO}(S^{2^r}) \to \widetilde{KO}(\Sigma^k \mathbb{R}P^n)$ is epimorphic. Since S^{2^r} is W-trivial for $r \ge 4$, it follows from Lemma 1.7 that $\Sigma^k \mathbb{R}P^n$ is W-trivial, that is, $\Sigma^k \mathbb{R}P^{2^r-k}$ is W-trivial for all $r \ge 4$. Hence, by Lemma 3.2, we see that $\Sigma^k \mathbb{R}P^n$ is W-trivial for all $n \ge 16 - k$. Case 2: $k + 1 \le n + k < 16 (n + k \ne 4, 8)$.

Let α be a vector bundle over $\Sigma^k \mathbb{R}P^n$ and let r be the smallest integer such that $w_{2^r}(\alpha)$ is (possibly) non-zero. Then we obviously have r = 2 or 3 when k = 3, and r = 3 when k = 5, 7. Also, note that $2^r < n + k$ from our assumption $n + k \neq 4, 8$. From Lemma 3.3, we must have $\operatorname{Sq}^1 w_{2^r}(\alpha) = 0$. On the other hand, since k is odd and $2^r < n + k$, $\operatorname{Sq}^1 \colon H^{2^r}(\Sigma^k \mathbb{R}P^n) \to H^{2^r+1}(\Sigma^k \mathbb{R}P^n)$ is non-trivial. Therefore, we have $w_{2^r}(\alpha) = 0$. We thus obtain $W(\alpha) = 1$ and conclude that $\Sigma^k \mathbb{R}P^n$ is W-trivial if n + k < 16 $(n + k \neq 4, 8)$. This completes the proof of the proposition.

Finally, we consider the third case: k = 6. The result is as follows.

Proposition 3.5. $\Sigma^6 \mathbb{R} P^n$ is not W-trivial if and only if n = 2 or 3.

Proof. The proof is very similar to that of the preceding proposition. Considering the cofibration $S^7 \xrightarrow{i} \Sigma^6 \mathbb{R}P^2 \xrightarrow{j} S^8$, we see that $\Sigma^6 \mathbb{R}P^2$ is not W-trivial in exactly the same way as before. Let us consider the cofibration $\Sigma^6 \mathbb{R}P^2 \xrightarrow{i} \Sigma^6 \mathbb{R}P^3 \xrightarrow{j} S^9$. Since $\widetilde{KO}(\Sigma^6 \mathbb{R}P^2)$ is a finite group (precisely, \mathbb{Z}_2), we see from the exact sequence that $i^* \colon \widetilde{KO}(\Sigma^6 \mathbb{R}P^3) \to \widetilde{KO}(\Sigma^6 \mathbb{R}P^2)$ is epimorphic. Since $\Sigma^6 \mathbb{R}P^2$ is not W-trivial, as shown above, it follows from Lemma 1.7 that $\Sigma^6 \mathbb{R}P^3$ is not W-trivial either. Thus the "if" part of the proposition follows. Next, we show that $\Sigma^6 \mathbb{R}P^n$ is W-trivial for $n \neq 2, 3$.

Case 1: $n \ge 10$.

By [3, Theorem 1], we have $\widetilde{KO}(\Sigma^6 \mathbb{R}P^{n-1}) = 0$ when $n + 6 = 2^r$ $(r \ge 4)$. Hence $j^* \colon \widetilde{KO}(S^{2^r}) \to \widetilde{KO}(\Sigma^6 \mathbb{R}P^n)$ is epimorphic, from which we see by Lemma 1.7 that $\Sigma^6 \mathbb{R}P^n$ is W-trivial when $n + 6 = 2^r$ $(r \ge 4)$. Therefore, it follows from Lemma 3.2 that $\Sigma^6 \mathbb{R}P^n$ is W-trivial for all $n \ge 10$.

Case 2: $1 \le n < 10 \ (n \ne 2, 3)$.

Obviously $\Sigma^6 \mathbb{R} P^n$ is W-trivial when n = 1. So we suppose that $n \ge 4$. For a vector bundle α over $\Sigma^6 \mathbb{R} P^n$, the smallest integer such that $w_{2^r}(\alpha)$ is (possibly) nonzero is 8. Hence, from Lemma 3.3, we have $\operatorname{Sq}^j w_8(\alpha) = 0$ for 0 < j < 4. Since Sq^1 acts trivially on $H^8(\Sigma^6 \mathbb{R} P^n)$, we use Sq^2 in place of Sq^1 . Indeed, $\operatorname{Sq}^2: H^8(\Sigma^6 \mathbb{R} P^n)$ $\rightarrow H^{10}(\Sigma^6 \mathbb{R} P^n)$ is non-trivial since $n \ge 4$. Therefore, we have $w_8(\alpha) = 0$, so that we obtain $W(\alpha) = 1$. Thus $\Sigma^6 \mathbb{R} P^n$ is W-trivial when $4 \le n < 10$. This completes the proof of the proposition.

The proof of Theorem 1.4 is completed by Propositions 3.1, 3.4 and 3.5.

4. Proof of Theorem 1.6

In this section, we investigate whether or not $\Sigma^k FP^n$ is W-trivial for $F = \mathbb{H}$. Because of Corollary 1.2, we have only to consider the case when $0 < k \leq 8$. Then, unless k = 4 or 8, $\Sigma^k \mathbb{H}P^n$ has no cells of dimension a power of 2, so that we have $H^{2^r}(\Sigma^k \mathbb{H}P^n) = 0$ for all $r \ge 0$. Thus, from Lemma 1.8, the possibility for $\Sigma^k \mathbb{H}P^n$ not to be W-trivial is only when k = 4 or 8. Therefore, Theorem 1.6 follows if we prove the following proposition.

Proposition 4.1.

- (1) $\Sigma^4 \mathbb{H}P^n$ is not W-trivial for all n > 1.
- (2) $\Sigma^8 \mathbb{H} P^n$ is W-trivial for all n > 1.

Proof. First, let us consider the cofibration $S^8 \xrightarrow{i} \Sigma^4 \mathbb{H}P^n \xrightarrow{j} \Sigma^4 (\mathbb{H}P^n/S^4)$. Since $\Sigma^3(\mathbb{H}P^n/S^4)$ has cells only of dimension 3 or 7 modulo 8, we have $\widetilde{KO}(\Sigma^3(\mathbb{H}P^n/S^4)) = 0$ from the Atiyah-Hirzebruch spectral sequence [2]. Hence, $i^* : \widetilde{KO}(\Sigma^4 \mathbb{H}P^n) \rightarrow \widetilde{KO}(S^8)$ is epimorphic. Since S^8 is not W-trivial, it follows from Lemma 1.7 that $\Sigma^4 \mathbb{H}P^n$ is not W-trivial. This proves (1).

Next we prove (2). Let us consider the cofibration

$$\Sigma^8 \mathbb{H} P^{n-1} \xrightarrow{i} \Sigma^8 \mathbb{H} P^n \xrightarrow{j} S^{4n+8}$$

Since $\widetilde{KO}(S^{4n+7}) = 0$, $i^*: \widetilde{KO}(\Sigma^8 \mathbb{H} P^n) \to \widetilde{KO}(\Sigma^8 \mathbb{H} P^{n-1})$ is epimorphic. Hence, we see that if $\Sigma^8 \mathbb{H} P^n$ is W-trivial, then $\Sigma^8 \mathbb{H} P^{n-1}$ is also W-trivial. Thus, it suffices to prove that $\Sigma^8 \mathbb{H} P^{2^m}$ is W-trivial for all $m \ge 3$. Now, let α be a vector bundle over $\Sigma^8 \mathbb{H} P^{2^m}$. Abusing notation, let *i* denote the inclusion $\Sigma^8 \mathbb{H} P^2 \hookrightarrow \Sigma^8 \mathbb{H} P^{2^m}$. From [7, Theorem 4.3], $\Sigma^8 \mathbb{H} P^2$ is W-trivial. Since $i^*: H^{16}(\Sigma^8 \mathbb{H} P^{2^m}) \to H^{16}(\Sigma^8 \mathbb{H} P^2)$ is monomorphic, we obtain $w_{16}(\alpha) = 0$. Let *r* be the smallest integer such that $w_{2^r}(\alpha)$ is (possibly) non-zero. Then, we have $r \ge 5$ from the above argument. Also note

that $r \leq m+2$ since $2^r \leq 8+4 \cdot 2^m$ and $r \geq 5$. Now let us consider the operation $\operatorname{Sq}^8: H^{2^r}(\Sigma^8 \mathbb{H}P^{2^m}) \to H^{2^r+8}(\Sigma^8 \mathbb{H}P^{2^m})$. Since $\binom{2^{r-2}-2}{2} \equiv 1 \pmod{2}$ and $r \leq m+2$, this operation is non-trivial. On the other hand, by Lemma 3.3, we have $\operatorname{Sq}^8 w_{2^r}(\alpha) = 0$ since $r \geq 5$. Therefore, we obtain $w_{2^r}(\alpha) = 0$ and conclude that $W(\alpha) = 1$. This completes the proof.

5. Proof of Theorem 1.5

Finally, in this section, we investigate whether $\Sigma^k \mathbb{C}P^n$ is W-trivial or not. If k is odd, then $\Sigma^k \mathbb{C}P^n$ has no cells of dimension a power of 2. Thus, from Lemma 1.8 and Corollary 1.2, the possibility of $\Sigma^k \mathbb{C}P^n$ being not W-trivial is only when k = 2, 4, 6 or 8. For k = 2 or 4, we have the following result.

Proposition 5.1. $\Sigma^2 \mathbb{C}P^n$ and $\Sigma^4 \mathbb{C}P^n$ are not W-trivial for all n > 1.

Proof. First we consider $\Sigma^2 \mathbb{C}P^n$. Analogously to the proof of Proposition 3.1, we consider the exact sequence

$$0 \longleftarrow \widetilde{K}(S^2 \vee \mathbb{C}P^n) \xleftarrow{i^*} \widetilde{K}(S^2 \times \mathbb{C}P^n) \xleftarrow{j^*} \widetilde{K}(\Sigma^2 \mathbb{C}P^n) \longleftarrow 0$$

and the stable class of $(p_1^*\nu - 1) \otimes_{\mathbb{C}} (p_2^*\eta - 1)$. Here, ν is the Hopf vector bundle over S^2 considered as a complex (line) bundle, while η is the canonical complex line bundle over $\mathbb{C}P^n$. Then, we can take a complex vector bundle α over $\Sigma^2 \mathbb{C}P^n$ such that $j^*\alpha$ is stably equivalent to $(p_1^*\nu - 1) \otimes_{\mathbb{C}} (p_2^*\eta - 1)$. By Lemma 2.1, in $H^*(S^2 \times \mathbb{C}P^n; \mathbb{Z})$,

$$C(j^*\alpha) = C((p_1^*\nu - 1) \otimes_{\mathbb{C}} (p_2^*\eta - 1))$$

= 1 + c_1(\nu) \times ((1 + c_1(\eta))^{-1} - 1)
= 1 + s \times (-t + t^2 - t^3 + \dots),

where s and t are generators of $H^2(S^2; \mathbb{Z})$ and $H^2(\mathbb{C}P^n; \mathbb{Z})$, respectively. Hence we have $j^*c_2(\alpha) = -s \times t \not\equiv 0 \pmod{2}$ for $n \geq 1$. Therefore we have $w_4(\alpha) \neq 0$, so that $\Sigma^2 \mathbb{C}P^n$ is not W-trivial for $n \geq 1$.

Similarly for $\Sigma^4 \mathbb{C}P^n$, let us consider the exact sequence

$$0 \longleftarrow \widetilde{K}(S^4 \vee \mathbb{C}P^n) \xleftarrow{i^*} \widetilde{K}(S^4 \times \mathbb{C}P^n) \xleftarrow{j^*} \widetilde{K}(\Sigma^4 \mathbb{C}P^n) \longleftarrow 0.$$

Let ν_2 be a complex vector bundle whose stable class is a generator of $\widetilde{K}(S^4)$. We can take ν_2 as $\dim_{\mathbb{C}} \nu_2 = 2$. From the previous argument, considering S^4 as $\Sigma^2 \mathbb{C}P^1$, we see that $c_2(\nu_2) = -s_2$, where s_2 is the generator of $H^4(S^4;\mathbb{Z})$ corresponding to $s \times t$. Now we take a complex vector bundle α over $\Sigma^4 \mathbb{C}P^n$ such that $j^*\alpha$ is stably equivalent to $(p_1^*\nu_2 - 2) \otimes_{\mathbb{C}} (p_2^*\eta - 1)$. By Lemma 2.1, in $H^*(S^4 \times \mathbb{C}P^n;\mathbb{Z})$ we have

$$C(j^*\alpha) = C((p_1^*\nu_2 - 2) \otimes_{\mathbb{C}} (p_2^*\eta - 1))$$

= 1 + c_2(\nu_2) \times ((1 + c_1(\eta))^{-2} - 1)
= 1 - s_2 \times (-2t + 3t^2 - 4t^3 + \dots).

Hence we have $j^*c_4(\alpha) = -3 s_2 \times t^2 \not\equiv 0 \pmod{2}$ for $n \geq 2$. Therefore we have $w_8(\alpha) \neq 0$, so that $\Sigma^4 \mathbb{C} P^n$ is not W-trivial for $n \geq 2$.

Here, before we proceed to consider $\Sigma^k \mathbb{C}P^n$ for k = 6 or 8, we need to prepare a lemma concerning Steenrod operations. For a non-negative integer m, let $\alpha(m)$ denote the number of ones in the dyadic expansion of m. It is easy to see that if m and ℓ are positive integers such that $\binom{m}{\ell} \equiv 1 \pmod{2}$, then $\alpha(m + \ell) \leq \alpha(m)$. Also, we clearly have $\alpha(2^{\ell+1}-k) = \alpha(2^{\ell}-k) + 1$ for any integer k with $0 < k \leq 2^{\ell}$, whence we have $\alpha(2^{r-1}-k) > \alpha(2^{j-1}-k)$ for positive integers j and r with j < r. Thus, we obtain the following lemma.

Lemma 5.2. If k > 0, any Steenrod operation $\varphi \colon H^{2^j}(\Sigma^{2k}\mathbb{C}P^n) \to H^{2^r}(\Sigma^{2k}\mathbb{C}P^n)$ is trivial for j < r.

Now, we are ready to consider $\Sigma^k \mathbb{C}P^n$ for k = 6 or 8. We have the following result.

Proposition 5.3. $\Sigma^6 \mathbb{C}P^n$ and $\Sigma^8 \mathbb{C}P^n$ are W-trivial for all n > 1.

Proof. Let α be a vector bundle over $\Sigma^k \mathbb{C}P^n$, where k = 6 or 8, and let r be the smallest integer such that $w_{2^r}(\alpha)$ is (possibly) non-zero. Clearly we have $r \ge 3$ when k = 6, and $r \ge 4$ when k = 8. Since $\operatorname{Sq}^2 w_8(\alpha) = 0$ by Lemma 3.3 and also $\operatorname{Sq}^2 \colon H^8(\Sigma^6 \mathbb{C}P^n) \to H^{10}(\Sigma^6 \mathbb{C}P^n)$ is non-trivial, we have $w_8(\alpha) = 0$. So we may suppose that $r \ge 4$ also when k = 6. To prove $w_{2^r}(\alpha) = 0$ for $r \ge 4$, the above method fails depending on the value of n + k. So we use secondary operations. Let $T(\alpha)$ be the Thom space of α and denote the Thom class by U; $U \in H^m(D(\alpha), S(\alpha)) = \widetilde{H}^m(T(\alpha))$, where $m = \dim \alpha$. Since $\operatorname{Sq}^\ell U = w_\ell(\alpha)U$ ($\ell > 0$), we have $\operatorname{Sq}^\ell U = 0$ for $\ell < 2^r$. Since $r \ge 4$, secondary operations on U are defined. Indeed, for integers i, j with $0 \le i \le j < r$ ($i \ne j - 1$), $\Phi_{i,j}(U) \in H^{m+d(i,j)}(T(\alpha))$ is defined with an indeterminacy $Q^{m+d(i,j)}(T(\alpha); i, j)$, where $d(i, j) = 2^i + 2^j - 1$, and the following formula holds:

$$[\operatorname{Sq}^{2^{r}}U] = \sum_{\substack{0 \leq i \leq j < r\\i \neq j-1}} a_{i,j} \Phi_{i,j}(U) \quad \text{modulo} \quad \sum_{\substack{0 \leq i \leq j < r\\i \neq j-1}} a_{i,j} Q^{m+d(i,j)}(T(\alpha); i, j),$$

where each $a_{i,j}$ is a certain Steenrod operation (see [1, Theorem 4.6.1]). Now let us investigate each summand in this decomposition of $\operatorname{Sq}^{2^r} U$. We divide into two cases depending on whether *i* is zero or not.

Case 1: $i \neq 0$.

In this case, d(i, j) is odd, so that we have $H^{d(i,j)}(\Sigma^k \mathbb{C}P^n) = 0$ (k = 6, 8). Hence, by the Thom isomorphism, we have $H^{m+d(i,j)}(T(\alpha)) = 0$, so that $\Phi_{i,j}(U) = 0$ and $Q^{m+d(i,j)}(T(\alpha); i, j) = 0$.

Case 2: i = 0.

In this case, $d(i, j) = 2^j$. Therefore, it follows that $a_{i,j}$ is an operation $H^{m+2^j}(T(\alpha)) \to H^{m+2^r}(T(\alpha))$. We claim that the following diagram commutes, where the vertical maps are the Thom isomorphisms.

$$\begin{array}{ccc} H^{m+2^{j}}(T(\alpha)) & \stackrel{a_{i,j}}{\longrightarrow} & H^{m+2^{r}}(T(\alpha)) \\ \cong & \uparrow & \cong & \uparrow \\ H^{2^{j}}(\Sigma^{k}\mathbb{C}P^{n}) & \stackrel{a_{i,j}}{\longrightarrow} & H^{2^{r}}(\Sigma^{k}\mathbb{C}P^{n}). \end{array}$$

In fact, for $x \in H^*(\Sigma^k \mathbb{C}P^n)$ and $h \leq 2^r - 2^j$, we have $\operatorname{Sq}^h(xU) = \operatorname{Sq}^h x \cdot U$ by the

Cartan formula since $\operatorname{Sq}^{\ell} U = w_{\ell}(\alpha)U = 0$ for $0 < \ell < 2^{r}$. Thus we have $a_{i,j}(xU) = a_{i,j}x \cdot U$ for $x \in H^{2^{j}}(\Sigma^{k}\mathbb{C}P^{n})$, so that the diagram commutes. Now, in the above diagram, the lower $a_{i,j}$ is trivial by Lemma 5.2. Therefore, we see that the upper $a_{i,j}$ is also trivial.

Therefore, from the arguments in Cases 1 and 2, we obtain $[\operatorname{Sq}^{2^r} U] = 0$ modulo 0, that is, $\operatorname{Sq}^{2^r} U = 0$. Since $\operatorname{Sq}^{2^r} U = w_{2^r}(\alpha)U$, we conclude that $w_{2^r}(\alpha) = 0$. This completes the proof of the proposition.

The proof of Theorem 1.5 is completed by Propositions 5.1 and 5.3.

References

- J.F. Adams, On the non-existence of elements of Hopf invariant one, Ann. of Math. 72 (1960), no. 1, 20–104.
- [2] M.F. Atiyah and F. Hirzebruch, Vector bundles and homogeneous spaces, Proc. Sympos. Pure Math. III, Differential Geometry (1961), 7–38.
- [3] M. Fujii, K_O -groups of projective spaces, Osaka J. Math. 4 (1967), no. 1, 141–149.
- [4] F. Hirzebruch, Neue topologische Methoden in der algebraischen Geometrie, Springer-Verlag, New York, 1956.
- [5] J. Milnor, Some consequences of a theorem of Bott, Ann. of Math. 68 (1958), no. 2, 444–449.
- [6] R. Tanaka, On the index and co-index of sphere bundles, Kyushu J. Math. 57 (2003), no. 2, 371–382.
- [7] R. Tanaka, A fiberwise analogue of the Borsuk-Ulam theorem for sphere bundles over a 2-cell complex II, *Topology Appl.* 154 (2007), no. 15, 2849–2855.
- [8] R. Tanaka, On trivialities of Stiefel-Whitney classes of vector bundles over highly connected complexes, *Topology Appl.* **155** (2008), no. 15, 1687–1693.
- [9] R. Tanaka, A Borsuk-Ulam type theorem for sphere bundles over stunted projective spaces, *Topology Appl.* 156 (2009), no. 5, 932–938.
- [10] W.-t. Wu, Les *i*-carrés dans une variété grassmannienne, C.R. Acad. Sci. Paris 230 (1950), 918–920.

Ryuichi Tanaka tanaka_ryuichi@ma.noda.tus.ac.jp

Department of Mathematics, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan

366