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Abstract

For modular Lie superalgebras, new notions are intro-
duced: Divided power homology and divided power cohomol-
ogy. For illustration, we explicitly give presentations (in terms
of analogs of Chevalley generators) of finite dimensional Lie
(super)algebras with indecomposable Cartan matrix in charac-
teristic 2 (and — in the arXiv version of the paper — in other
characteristics for completeness of the picture). In the modu-
lar and super cases, we define notions of Chevalley generators
and Cartan matrix, and an auxiliary notion of the Dynkin dia-
gram. The relations of simple Lie algebras of the A, D, E types
are not only Serre ones. These non-Serre relations are same for
Lie superalgebras with the same Cartan matrix and any dis-
tribution of parities of the generators. Presentations of simple
orthogonal Lie algebras having no Cartan matrix (indigenous
for characteristic 2) are also given.

To D.B. Fuchs on the occasion of his 70th birthday

1. Introduction

In what follows K is a field of characteristic p > 0, algebraically closed unless
otherwise stated. The Lie (super)algebras considered are of finite dimension.

We recall, for clarity, several not well-known facts related to our new results on
classification of non-degenerate bilinear forms and Lie (super)algebras preserving
them: Lecturing on these results during the past several years we have encountered
incredulity of the listeners based on several false premises intermixed with correct
statements: “The question sounds classical and so had been solved by classics with-
out doubt (the solution just has to be dug out from paper diluvium)”, “this is known
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for quadratic forms (don’t you know about Arf invariant?!)”, “There are two non-
isomorphic types of simple finite orthogonal groups acting on 2n-dimensional space,
so what’s new?”, and so on.

The problem of describing preserved bilinear forms has two levels: we can consider
linear transformations (Linear Algebra) and arbitrary coordinate changes (Differen-
tial Geometry). In the literature, both levels are completely investigated, except for
the case where p = 2. More precisely, the fact that the non-split and split forms of
the Lie algebras that preserve the symmetric bilinear forms are not always isomor-
phic was never mentioned. Although known for the Chevalley groups preserving these
forms, cf. [St], these facts do not follow from each other since there is no analog of Lie
theorem on the correspondence between Lie groups and Lie algebras. Here we con-
sider the Linear Algebra aspect, for the Differential Geometry related to the objects
studied here, see [Le2].

1.1. Divided power (co)homology

Over K, the notion of Lie superalgebra (co)homology obtains one more dimension
— the shearing parameter N. Indeed, since the (co)chains, with trivial coefficients
and differential forgotten, form a supercommutative superalgebra — an analog of
the polynomial superalgebra (with values in a module for non-trivial coefficients),
and the polynomial algebra has divided power analogs in the modular case, so does
Lie superalgebra (co)homology. For Lie algebras, this phenomenon does not exists
since the supercommutative superalgebra of polynomials is generated by purely odd
elements only.

This being the main idea, the only thing to do is to define the differentials. The
appropriate definitions are given in the text and even implemented in the package
SuperlLie, see [Gr].

For an illustration, we consider defining relations (here), deformations of (finite
dimensional) Lie superalgebras with indecomposable Cartan matrix and of queer
series (in [BGL2]); in the sequels (in preparation) we consider deformations of their
representations. In these problems, the effect of divided power (co)homology is
only visible for p = 2. For completeness, however, the arXiv version of the paper
(arXiv:0911.0243) contains presentations of all new (previously not covered in the
literature) cases of presentations of finite dimensional Lie superalgebras with inde-
composable Cartan matrix for p > 2.

1.2. Presentations of simple Lie (super)algebras: Overview

e Over C, the most studied type of simple Lie algebras are finite dimensional ones
and the Z-graded of polynomial growth. The latter type splits into (twisted) loop
algebras, vectorial Lie algebras (with polynomial coefficients) and Witt algebra (the
vectorial Lie algebra with Laurent polynomials as coefficients).

The finite dimensional and (twisted) loop algebras can be defined by means of their
Cartan matrix and Chevalley generators (we recall these notions in what follows).
The explicit presentation was first published by Serre and certain relations, whose
sufficiency was most difficult to prove, are referred to as Serre relations.

For simple vectorial Lie algebras, it was not even clear (until implicitly by V. Uf-
narovsky in late 1970s for some cases) if they were finitely presented; for the explicit
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presentations eventually obtained, and references, see [GLP], where the Lie superal-
gebras are also considered. The relations are passable for a computer, but rather ugly
for humans; the only message we can deduce from their description at the moment is
that, in addition to the relations in the linear part of the vectorial Lie algebra, there
are only finitely many relations (less than 10 for any type of the algebras).

In the super case, in addition to the Lie superalgebras of vectorial type and those
with Cartan matrix, there are also the queer series whose presentation is clear in
principle, but whose explicit form is even less appealing than that of vectorial Lie
(super)algebras, see [LSe].

e Over K, the vectorial Lie (super)algebras acquire one more parameter (a shearing
vector IV, see (13)) and even the description of generators becomes too complicated,
to say nothing of relations. For the restricted case and sufficiently large characteristic
and dimension of the space on which the vectorial Lie algebra is realized, the answer
is identical to that obtained in [GLP].

The Lie (super)algebra with more roots of one sign (say, positive than negative) is
said to be skew-symmetric and symmetric otherwise.! For vectorial Lie
(super)algebras, as well as for queer Lie superalgebras, the general picture of their pre-
sentations is clear and as long as the explicit answer is not really needed (as in [LSg],
where somewhat awful relations found in [GL1] are used), we see no point in deriving
it. In every particular case, it is easy by means of SuperLie [Gr] to anybody capable
to use Mathematica.

For p = 2, several more types of simple Lie (super)algebras appear: Symmetric but
without Cartan matrix (such as oy(n) and q(os(n)), see [LeD]), various deforms of
the above-listed types. So, we arrive at the last cases left:

1. Lie (super)algebras with Cartan matrix;
2. Lie (super)algebras without Cartan matrix but not of vectorial type.

In this paper, we consider case 1 (and a series of examples of case 2: The Lie algebras?

051) (2n)). The first thing to do is to define the basic notions sufficiently clear: Unlike
humans, computers can not work otherwise whereas we can not write this text without
computer’s assistance.

1.3. Lie superalgebras with Cartan matrix

The classification of finite dimensional modular Lie algebras with indecomposable
Cartan matrix over K was obtained in [WK] with a gap corrected in [Br3, Sk1] (not
even mentioned in [KWK]). Although in [WK] some notions used in the description
of the classification were left undefined, the strategy was impeccable. In [BGL], we
clarified the notions left somewhat vague during the time elapsed since publication
of [WK] (Cartan matrix, restrictedness, Dynkin diagram) and superized them, as well
as the key notion — that of Lie superalgebra — for the case where p = 2. Following
ideas of Weisfeiler and Kac [WK], and with the help of SuperLie package [Gr]|, we

For p =2, there are simple skew-symmetric Lie (super)algebras distinct from vectorial Lie
(super)algebras.

2The derived of g(A) (or any other algebra with a commentary in parentheses like (A) after a
“family name” g) should be denoted g(A)m but it is usually more convenient to denote it g<i)(A)
(and similarly treat other commentaries).
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classified finite dimensional modular Lie superalgebras with indecomposable Cartan
matrix, see [BGL].

If a given indecomposable Cartan matrix A is invertible, the Lie (super)algebra
g(A) is simple, otherwise g(?(A4)/c — the quotient of its first (for i = 1) or second
(for i = 2) derived algebra modulo the center ¢ — is simple if size(A) > 1 (we say
that the size of an n x n matrix is equal to n).

The simple Lie algebra g(?(A)/c — in what follows in such situation 4 is equal to
1 or 2 (meaning that the derived series of algebras stabilizes) — does not possess any
Cartan matrix although the conventional sloppy practice is to refer to the simple Lie
(super)algebra g()(A)/c as “possessing a Cartan matrix”.

Elduque interpreted about a dozen of exceptional (when the fact that they are
exceptional was only conjectured; now it is proved) simple Lie superalgebras in
characteristic 3 [CE2] in terms of super analogs of division algebras and collected
them into a Supermagic Square (an analog of Freudenthal’s Magic Square); the
rest of the exceptional examples for p =3 and p = 5, not entering the Elduque?
Supermagic Square (the ones described for the first time in arXiv:math/0611391,
math/0611392 and [BGL]) are, nevertheless, somehow affiliated to the Elduque
Supermagic Square [El3].

Very interesting, we think, is the situation in characteristic 2. A posteriori we
see that the list of Lie superalgebras in characteristic 2 of the form g(A) with an
indecomposable matrix A is as follows:

In characteristic 2, take any finite dimensional simple Lie algebra of the form g(A)
with indecomposable Cartan matrix A ([WK]) and declare some of the Chevalley
generators of g(A) odd (the corresponding diagonal elements of A should be changed
accordingly 0 to 0 and 1 to 1, see subsect. 4.5). Do this for each of the inequiva-
lent Cartan matrices of g(A) and for any distribution of parities I of the Chevalley
generators. Construct the Lie superalgebra s(g)(A,I) from these generators by the
rules (25) explicitly described in this paper. For the Lie superalgebra s(g)(A,I), list
all its inequivalent Cartan matrices.

Such superization may turn a given orthogonal Lie algebra into ortho-orthogonal
or periplectic Lie superalgebra; the three exceptional Lie algebras of ¢ type turn into
seven non-isomorphic Lie superalgebras of ¢ type, whereas the ot type Lie algebras
turn into bgl type Lie superalgebras.

The Lie superalgebra s(g)(A4,I) is simple if A is invertible, otherwise pass to
5(g)(A, 1) /¢, where i can be equal to 1 or 2. We normalize the Cartan matrix
so as to make the parameter I redundant and do not mention it in what follows.

In [BGL], we also listed all inequivalent Cartan matrices A for each given Lie
(super)algebra g(A). Although the number of inequivalent Cartan matrices grows
with the size of A, it is easy to describe all possibilities for serial Lie (super)algebras.
Certain exceptional Lie superalgebras have dozens of inequivalent Cartan matrices;
nevertheless, there are several reasons to list all of them: To classify all Z-gradings
of a given g(A) (in particular, inequivalent Cartan matrices) is a very natural prob-
lem. Besides, sometimes the knowledge of the best, for the occasion, Z-grading is

3Although the first, as far as we know, superization of Freudenthal’s Square was performed by
Martinez [Mz] (for p = 0), Elduque went much further. It is instructive, however, to compare the
two squares.
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important, cf. [RU] (all simple roots non-isotropic), [LSS] (all simple roots odd); for
computations “by hand” the cases where only one simple root is odd are useful. In
particular, the defining relations between the natural (Chevalley) generators of g(A)
are of completely different form for inequivalent Z-gradings and this is used in [RU].

1.4. More on motivations

We illustrate our definition of divided power (co)homology with a final result of
independent interest — presentations of simple modular Lie superalgebras with Car-
tan matrix as well as presentations of simple modular Lie algebras with Cartan matrix
in the cases neglected so far: for p =5, 3, and 2.

Recently we observe a rise of interest in presentations (by means of generators and
defining relations) of simple (and close to simple) Lie (super)algebras occasioned by
various applications of this technical result, see [GL1, Sa, Di, iPR] and references
therein, where presentations in terms of various other types of generators (Jacobson,
Silvester-t’Hooft, extremal, etc.) are given. Sometimes these other types of generators
can be used as an alternative to Chevalley generators; it is desirable, however, to
know the situations in which some of them are better (use less time to construct the
basis of the algebra they generate) than the others or unavoidable as seems to be
the case for Lie algebras of “matrices of complex size” ([GL1]). Kornyak compared
time needed to present a given simple finite dimensional Lie algebra (over C) in
terms of Chevalley generators and Serre relations with same in terms of Jacobson
generators and Grozman-Leites relations, see [GL1]; the usefulness (in the above
sense) of extremal generators [Di, iPR] is not yet compared with other presentations,
which is a pity: presentation in terms of them is rather cumbersome.

For p = 2, non-Serre relations appear even between the Chevalley generators of
simple Lie algebras. This is a new result.

Representations of quantum groups — the deforms U, (g) of the enveloping algebras
— at ¢ equal to a root of unity resemble, even over C, representations of Lie algebras
in positive characteristic and this is one more application that brings the modular
Lie (super)algebras and an explicit form of their presentations to the limelight.

1.5. Disclaimer

Although presentation — description in terms of generators and relations — is one
of the accepted ways to represent a given algebra, it seems that an explicit form of
the presentation is worth the trouble to obtain only if this presentation is often in
need, or (which is usually the same) is sufficiently neat. The Chevalley generators of
simple finite dimensional Lie algebras over C satisfy simple and neat relations (“Serre
relations”) and are often needed for various calculations and theoretical discussions.
Relations between their analogs in the super case, although not so neat (certain
“non-Serre relations” appear), are still tolerable, at least, for most Cartan matrices.

The defining relations expressed in terms of other generators, different from Cheval-
ley ones, are a bit too complicated to be used by humans and were of academic
interest until recently Grozman’s package SuperLie ([Gr]) made the task of finding
the explicit expression of the defining relations for many types of Lie algebras and
superalgebras a routine exercise for anybody capable to use Mathematica.



242 SOFIANE BOUARROUDJ, PAVEL GROZMAN, ALEXEI LEBEDEV and DIMITRY LEITES

What we usually need to know about defining relations is that there are finitely
many of them; hence the fact that some simple loop superalgebras with Cartan
matrix are not finitely presentable in terms of Chevalley generators was unexpected
(although obvious as an afterthought). The explicit form of defining relations for the
dozens or hundreds of systems of simple roots for the Lie superalgebras of e type (for
p = 2) can be easily obtained using SuperLie, whereas for the exceptional simple Lie
superalgebras for p > 2, it seems natural to list the relations explicitly.

1.6. Main results

The definitions of new and clarification of classical* notions, especially, the defini-
tion of divided power (co)homology.

We also define Chevalley generators and describe presentations of finite dimen-
sional modular Lie (super)algebras of the form g(A) and g(A)® /¢ with indecompos-
able Cartan matrix A in terms of these generators.

If p = 2, the non-Serre defining relations for each Lie superalgebra with indecom-
posable Cartan matrix are the same as for the Lie algebra with the same (assum-
ing 0=0 and 1 =1 on the main diagonal) Cartan matrix. (This is proved for the
exceptional cases and sl series; for the other series this is a conjecture backed up by
numerous examples.)
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2. What a Lie superalgebra in characteristic 2 is

Let us give a naive definition of a Lie superalgebra for p = 2. (For a scientific one,
as a Lie algebra in the category of supervarieties, needed, for example, for a rigorous
study and interpretation of odd parameters of deformations, see [LSh].) We define
a Lie superalgebra as a superspace g = g5 @ g7 such that the even part gg is a Lie
algebra, the odd part g7 is a gg-module (made into the two-sided one by symmetry;
more exactly, by anti-symmetry, but if p = 2, it is the same) and on gy a squaring
(roughly speaking, the halved bracket) is defined as a map

x— 2?2 such that (ax)? = a?z? for any z € g7 and a € K, and

(v +1y)? — 2% — y? is a bilinear form on g7 with values in gg.

(1)

(We use a minus sign, so the definition also works for p # 2.) The origin of this
operation is as follows: If char K = 2, then for any Lie superalgebra g and any odd

4The reader might be interested in related problems, especially those posed by Deligne, see [LL].
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element z € gi, the Lie superalgebra g contains the element 22 which is equal to the
even element %[Jc, x] € gg. It is desirable to keep this operation for the case of p = 2,
but, since it can not be defined in the same way, we define it separately, and then
define the bracket of odd elements to be (this equation is valid for p # 2 as well):

[2,y] == (x +y)* —a® -y (2)
We also assume, as usual, that

o if x,y € gg, then [z,y] is the bracket on the Lie algebra;

e if x € g5 and y € g3, then [z,y] := 1, (y) = —[y, 2] = —r2(y), where [ and r are
the left and right gg-actions on gi, respectively.

The Jacobi identity involving odd elements now takes the following form:
[2%,y] = [z, [z,y]] for any x € g1,y € g. (3)
If K # Z /27, we can replace the condition (3) on two odd elements by a simpler one:
[z,2°] =0 for any = € gj. (4)

Because of the squaring, the definition of derived algebras should be modified. For
any Lie superalgebra g, set () := g and

g = [g,0] + Span{g® | g € g1}, gV = [6@,gD] + Span{g® | g € g} (5)

An even linear map r: g — gl(V) is said to be a representation of the Lie super-
algebra g (and the superspace V is said to be a g-module) if

r([z,y]) = [r(x),r(y)] for any x,y € g;
r(x ):( (z))? for any x € gy. (6)

2.1. Examples: Lie superalgebras preserving non-degenerate (anti-)sym-
metric forms

We say that two bilinear forms B and B’ on a superspace V are equivalent if there
is an even invertible linear map M : V — V such that

B'(x,y) = B(Mxz,My) for any z,y € V. (7)

We fix some basis in V and identify a given bilinear form with its Gram matrix in
this basis; we also identify any linear operator on V with its supermatrix in a fixed
basis.

Then two bilinear forms (rather supermatrices) are equivalent if and only if there
is an even invertible matrix M such that

B' = MBM?, where T is for transposition. (8)

A bilinear form B on V is said to be symmetric if B(v,w) = B(w,v) for any
v,w € V; a bilinear form is said to be anti-symmetric if B(v,v) =0 for any v € V.
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A homogeneous® linear map F is said to preserve a bilinear form B, if®
B(Fz,y) + (—1)P@PE)B(x Fy) =0 for any z,y € V.

All linear maps preserving a given bilinear form constitute a Lie sub(super)algebra
autp (V) of gl(V') denoted autp(n) C gl(n) in matrix realization and consisting of the
supermatrices X such that

BX + (—1)PX X5t B =0,

where the supertransposition st acts as follows (in the standard format):
o (A B) . <At —Ct>
“\C D Bt Dt )

Consider the case of purely even space V of dimension n over a field of charac-
teristic p # 2. Every non-zero form B can be uniquely represented as the sum of a
symmetric and an anti-symmetric form and it is possible to consider automorphisms
and equivalence classes of each summand separately.

If the ground field K of characteristic p > 2 satisfies” K? = K, then there is just
one equivalence class of non-degenerate symmetric even forms, and the corresponding
Lie algebra autp(V') is called orthogonal and denoted op(n) (or just o(n)). Non-
degenerate anti-symmetric forms over V exist only if n is even; in this case, there
is also just one equivalence class of non-degenerate antisymmetric even forms; the
corresponding Lie algebra autg(n) is called symplectic and denoted sp g (2k) (or just
sp(2k)). Both algebras o(n) and sp(2k) are simple.

If p =2, the space of anti-symmetric bilinear forms is a subspace of symmetric
bilinear forms. Also, instead of a unique representation of a given form as a sum of
an anti-symmetric and symmetric form, we have a subspace of symmetric forms and
the quotient space of non-symmetric forms; it is not immediately clear what to take
for a representative of a given non-symmetric form. For an answer and classification,
see Lebedev’s thesis [LeD]| and [Lel]. There are no new simple Lie superalgebras
associated with non-symmetric forms, so we confine ourselves to symmetric ones.

Instead of orthogonal and symplectic Lie algebras we have two different types of
orthogonal Lie algebras (see Theorem 2.2). Either the derived algebras of these alge-
bras or their quotient modulo center are simple if n is large enough, so the canonical
expressions of the forms B are needed as a step towards classification of simple Lie
algebras in characteristic 2 which is an open problem, and as a step towards a version
of this problem for Lie superalgebras, even less investigated.

In [Lel], Lebedev showed that, with respect to the above natural equivalence of
forms (8), every even symmetric non-degenerate form on a superspace of dimension

5Hereafter, as always in Linear Algebra in superspaces, all formulas of linear algebra defined on
homogeneous elements only are supposed to be extended to arbitrary ones by linearity.

6Hereaufter, p denotes both parity defining a superstructure and the characteristic of the ground
field; the context is, however, always clear.

7 Aside: We thought that one should require perfectness of K, i.e., K” = K but the referee suggested
a simple counterexample for K = Z/3 with 2 non-equivalent types of non-degenerate symmetric
forms. In this paper K is algebraically closed; over fields algebraically non-closed, there are more
types of symmetric forms.
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ng|ng over a perfect (i.e., such that every element of K has a square root®) field of
characteristic 2 is equivalent to a form of the shape (here: i = 0 or 1 and each n; may
equal to 0),

= 1,. if n; is odd,
B = By 0 , Wwhere B;=4¢ ?n?so
0 B either 1,, or II,,, if n; is even,

and where

1
0 k) if n = 2k,

1 0

II, = 0 0 1
0 1 0 if n =2k +1.
I 0 0

(In other words, the bilinear forms with matrices 1,, and II,, are equivalent if n is odd
and non-equivalent if n is even.) The Lie superalgebra preserving B — by analogy
with the orthosymplectic Lie superalgebras osp in characteristic 0 we call it ortho-
orthogonal and denote oop(nglny) — is spanned by the supermatrices which in the
standard format are of the form

A B(-)CTB{I where Ag € 0p;(ng), A1 € 0p;(n7), and
C Az ’ C is arbitrary ny X ng matrix.

Since, as is easy to see,
oor (ng|ni) ~ oorm(ni|ng),

we do not have to consider the Lie superalgebra ooy;(ng|ni) separately unless we
study Cartan prolongations where the difference between these two incarnations of
one algebra is vital: For the one, the prolong is finite dimensional (the automorphism
algebra of the p = 2 analog of the Riemann geometry), for the other one it is infinite
dimensional (an analog of the Lie superalgebra of Hamiltonian vector fields).

For an odd symmetric form B on a superspace of dimension (ng|ni) over a field
of characteristic 2 to be non-degenerate, we need ng = ni, and every such form B is
equivalent to I, where k = ng = ny, and which is same as Ilyy, if the superstructure
is forgotten. This form is preserved by linear transformations with supermatrices in
the standard format of the shape

(é AC;), where A € gl(k), C and D are symmetric k x k matrices.  (9)

As over C or R, the Lie superalgebra of linear maps preserving B will be referred
to as periplectic, as A. Weil suggested, and denoted peg(k) or just pe(k). Note that
even the superdimensions of the characteristic 2 versions of the Lie (super)algebras
autp (k) differ from their analogs in other characteristics for both even and odd forms
B.

8Since a® — b? = (a — b)? if p = 2, it follows that no element can have two distinct square roots.
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Now observe that

The fact that two bilinear forms are inequivalent does
not, generally, imply that the Lie (super)algebras that (10)
preserve them are not isomorphic.

In [Lel], Lebedev proved that for the non-degenerate symmetric forms, the impli-
cation spoken about in (10) is, however, true (bar a few exceptions), and therefore
we have several types of non-isomorphic Lie (super) algebras (except for occasional
isomorphisms intermixing the types, e.g., ooyp ~ ooy and 0081)1(6\2) ~ pe)(4)).
2.1.1. Known facts: The case p =2

1) With any symmetric bilinear form B the quadratic form Q(x):= B(z,z) is
associated. Arf has discovered the Arf invariant — an important invariant of non-
degenerate quadratic forms in characteristic 2; for an exposition, see [Dye]. Two such
forms are equivalent if and only if their Arf invariants are equal.

The other way round, given a quadratic form @, we define a symmetric bilinear
form, called the polar form of @, by setting

Bg(z,y) = Q(z +y) — Q(z) — Q(y).

The Arf invariant can not, however, be used for classification of symmetric bilin-
ear forms because one symmetric bilinear form can serve as the polar form for

two non-equivalent (and having different Arf invariants) quadratic forms. Moreover,
e not every symmetric bilinear form can be represented as a polar form.

o If p = 2, the correspondence ) «— Bg is not one-to-one.

2) Recall that the space of anti-symmetric forms (their matrices are zero-diagonal
ones) is a subspace in the space of symmetric forms. Albert [A] classified symmetric
bilinear forms over a field of characteristic 2 and proved that (we have in mind
symmetric forms only)

(1) two anti-symmetric forms of equal ranks are equivalent;

(2) every non-anti-symmetric form has a matrix which is equivalent to a diagonal
matrix;

(3) if K is perfect, then every two non-anti-symmetric forms of equal ranks are
equivalent.

Remarks 2.1. 1) Over a field K of characteristic 2, Albert also obtained certain results
on the classification of quadratic forms (considered as elements of the quotient space
of all bilinear forms modulo the space of anti-symmetric forms). In particular, he
showed that if K is algebraically closed, then every quadratic form is equivalent to
exactly one of the forms

2
T1Tpq1 + 0+ TpTap OF T1Typgq + - + Tplop + T3, 1, (11)

where 2r is the rank of the form. Lebedev [Lel] used this result in the study of Lie
algebras preserving the contact structure.

2) Lebedev [Lel] also suggested canonical forms (or rather of their classes modulo
the subspace of symmetric forms) of non-symmetric bilinear forms and classified them.
This result is also related to a result of Albert and — rather unexpectedly — with
contact structures on superspaces.
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Theorem 2.2 ([Lel]). Let K be a perfect field of characteristic 2. Let V' be an n-di-
mensional space over K.

1) For n odd, there is only one equivalence class of non-degenerate symmetric
bilinear forms on V.

2) Forn even, there are two equivalence classes of non-degenerate symmetric bilin-
ear forms, one — with at least one non-zero element on the main diagonal — con-

tains 1, and the other one — all its Gram matrices are zero-diagonal — contains
Sy := antidiag(1,...,1) and II,.

In view of (10) the statement of the next Lemma (proved in [Lel, BGL]) is
non-trivial.

Lemma 2.3. 1) The Lie algebras 01 (2k) and o1 (2k) are not isomorphic (though are
of the same dimension); the same applies to their derived algebras:

2) 051)(2]6) % o(Hl)(2k), though dim 0(11)(2]9) = dim 0(Hl)(2k:);
3) °§2)(2k) £ 0(Hz)(2k) unless k = 1.

Based on these results, Lebedev described all the (four) possible analogs of the
Poisson bracket, and (there exists just one) contact bracket. Similar results for the
odd bilinear form yield a description of the anti-bracket (a.k.a. Buttin bracket), and
the (peri)contact bracket, compare [Le2] with [LSh]. The quotients of the Poisson and
Buttin Lie (super)algebras modulo center — analogs of Lie algebras of Hamiltonian
vector fields, and their divergence-free subalgebras — are also described in [Le2].

3. Analogs of functions and vector fields for p > 0

3.1. Divided powers

Let us consider the supercommutative superalgebra C[z] of polynomials in a inde-
terminates x = (x1,...,x,), for convenience ordered in a “standard format”, i.e., so
that the first m indeterminates are even and the rest n ones are odd (m +n = a).
Among the integer bases of C[z] (i.e., the bases, in which the structure constants are
integers), there are two canonical ones, — the monomial one (it is more conventional)
and the basis of divided powers, which is constructed in the following way.

For any multi-index r = (r1,...,r,), where 71,..., 7, are non-negative integers,
and 7p41,...,7, are 0 or 1, we set

W)= T apd W@ = Huz(-ri).
' i=1
These u(®) form an integer basis of C[z]. Clearly, their multiplication relations are
n ) Z IPED ts
u® u® = [T min(1,2 —r; —s;) - (=1)m<isise © (TR lote)
1=m+1 - (12)
where (I‘F) = (”:‘51)

In what follows, for clarity, we will write exponents of divided powers in parentheses,
as above, especially if the usual exponents might be encountered as well.

3

i=1
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Now, for an arbitrary field K of characteristic p > 0, we may consider the super-
commutative superalgebra K[u] spanned by elements u®) with multiplication rela-
tions (12). For any m-tuple N = (Ny,..., Ny,), where N; are either positive integers
or infinity, denote (we assume that p> = o0)

Ni >
O(m; N) := K[u; N] := Spang (W E {< pr o foris m) L (13)
=0orl fori>m
As is clear from (12), Klu; N] is a subalgebra of K[u]. The algebra K[u] and its
subalgebras K[u; N| are called the algebras of divided powers; they can be considered
as analogs of the polynomial algebra.
Only one of these numerous algebras of divided powers O(n; N) are indeed gener-

ated by the indeterminates declared: If N; = 1 for all . Otherwise, in addition to the

u;, we have to add ul(-pkl) for all i < m and all k; such that 1 < k; < N; to the list of
generators. Since any derivation D of a given algebra is determined by the values of D
on the generators, we see that der(O[m; N]) has more than m functional parameters
(coefficients of the analogs of partial derivatives) if N; # 1 for at least one . Define
distinguished partial derivatives by setting

8i(u§k)) = éijugk_l) for any k < p™i.

The simple vectorial Lie algebras over C have only one parameter: the number of
indeterminates. If char K = p > 0, the vectorial Lie algebras acquire one more param-
eter: N. For Lie superalgebras, /N only concerns the even indeterminates.

The Lie (super)algebra of all derivations der(O[m; N]) turns out to be not so
interesting as its Lie subsuperalgebra of distinguished derivations: Let

vect(m; N|n) ak.a W(m;N|n) ak.a

Ni for i <
<p or i <m, 1<k<n> (14)

derg;sK[u; N] = Spang | uDy, | r;
aistK[u; N] panyg e | —Oorl fori>m:

be the general vectorial Lie algebra of distinguished derivations. The next notions are
analogs of the polynomial algebra of the dual space.

3.2. Symmetric differential forms and exterior differential forms

In what follows, as is customary in modern geometry, we use the antisymmetric
A product for the analogs of the exterior differential forms, and the symmetric o
product for the symmetric differential forms, e.g., analogs of the metrics. We can
also consider the divided power versions of the exterior and symmetric forms because
both types of forms generate (in the divided sense) supercommutative superalgebras
depending not only on the u;, as above, but also on du;, such that p(du;) = p(u;) in
the symmetric case and p(du;) = p(u;) + 1 in the exterior case. Usually we suppress
the A or o signs, since all is clear from the context, unless both multiplications are
needed simultaneously. We have, however, to distinguish the non-divided A or o from

c e o d . . ..
their divided counterparts A and o. This is important since both non-divided and
divided products are often needed simultaneously. Fortunately, in this paper, we only
need divided products, so for simplicity of notations, having in mind more appropriate

d
notation N, we use A.
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Considering exterior differential forms, we use divided powers dwEAk) with multi-
plication relations (12), where the indeterminates are now the dx; of parity p(z;) + 1,
and the Lie derivative along the vector field X is given by the formula
(Ak—1)

Lx(dz™) = (Lxdx;) A da!
Note that if we consider divided power differential forms in characteristic 2, then, for
x; odd, we have dr; A dr; = 2(dxz(-/\2)) = 0. (If z; is even, then dz; A dz; = 0, anyway.)

Considering divided powers of chains and cochains of Lie superalgebras affects the
formula for the (co)chain differentials. For cochains of a given Lie superalgebra g,
this only means that a divided power of an odd element must be differentiated as a
whole:

(")) = dp A e E=D) for any ¢ € (g7)1. (15)

For chains, the modification is a little more involved: Let g1,...,g, be a basis of g.
Then for chains of g with coefficients in a right module M, and m € M, we have

‘ <m® A g“m) = Y me Ag"IAGAG AN g+
=1 p(gK)=1, 7, >2 i<k >k
> rip(g;) )
(—1)r<i<t T me /\ gz(/\n)/\

1<k<I<n, 7rg,r 21

i<k
s gt A g TN N g NG N gl
(00) (k)<i<l >0
: rip(g;
S Y W

(1) (mgr) ® é\k 9i

re>1 i>k

(16)
Denote the divided power cohomology by DPH®*Y(g; M) and divided power homol-
ogy by DPH,; n(g; M). Note that if g is a Lie superalgebra and p = 2, we can not
interpret its generating relations in terms of the 2nd homology Ha(g), as we do for
p # 2: Instead, we must use divided powers homology DPHs n(g) := DPHs n(g;K)
(with NV such that N; > 2 for all i) since otherwise we won’t be able to take into

account the relations of the form z2 = 0 for z odd.

Problem 3.1. To define the divided power (co)homology as the derived functor, we
have to completely modify the representation theory and, in particular, the notion of
the universal enveloping algebra. We do not know a precise definition of the “divided
power universal enveloping algebra” but conjecture that is can be found along the
way hinted at in [LL].

3.2.1. A useful Lemma

We computed cohomology wusing Grozman’s Mathematica-based package
SuperLie. The formula of the following lemma was helpful in the computations. For
any finite dimensional Lie (super)algebra g, all cochains with non-trivial coefficients
in a g-module M can be expressed as sums of tensor products of the form m ® w,
where m € M and w € /\"(g*). We are working with a fixed basis of M and the dual
basis of g*. For simplicity, the following Lemma is formulated for Lie algebras, its
superization is routine, by means of the Sign Rule.
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Lemma 3.2. For any ¢ =m ® w, where m € M and w € N\"(g*), let dc denote the
coboundary of ¢ in the complex with coefficients in M, while dw denotes the cobound-
ary in the complex with trivial coefficients and dm denotes the coboundary of m € M
considered as a 0-cochain in the complex with coefficients in M. If c = m ® w, then
dc=m®dw+dmAw.

Proof. For any x1,...,x,4+1 € g, we have:
dC(xl,...,$T+1): Z (—1)i+j—1m®w([xi,xj],x1,...,m}-,...7fj,...,xr+1)—|—
I<i<jsr+1
+ Z (=1)'zi(m) @ W(T1, . s iy ey Tpy1) =
1<i<r+1

=(mdw)(z1,...,Trq1) + (dmAW)(T1,.. ., Tri1).
O

3.2.1.1. In characteristic 2 The following definition of Lie algebra cohomology
in char = 2 is implemented in SuperLie. The wedge product of vector spaces is defined
without a normalization factor:

aNb=aRb+b®a.

For 1-cochains with trivial coefficients, the codifferential is defined as an operation
dual to the Lie bracket:

d:g" —g"Ng".
For g-cochains with trivial coefficients, d is defined via the Leibniz rule. For cochains
with coefficients in a module M, we set

d(m) := Z gi(m) ® g7,

1<i<dim M
dm@w) :==d(m) Aw+m ® d(w)

for any m € M, any r-cochain w, where r > 0, and any basis g; of M, cf. Lemma 3.2.

4. What g(A) is

4.1. Warning: psl has no Cartan matrix. The relatives of sl and psl that
have Cartan matrices

For the most reasonable definition of Lie algebra with Cartan matrix over C,
see [K]. The same definition applies, practically literally, to Lie superalgebras and to
modular Lie algebras and to modular Lie superalgebras. However, the usual sloppy
practice is to attribute Cartan matrices to (usually simple) Lie (super)algebras none
of which, strictly speaking, has a Cartan matrix!

Although it may look strange for those with non-super experience over C, neither
the simple modular Lie algebra psl(pk), nor the simple modular Lie superalgebra
psl(a|pk + a), nor — in characteristic 0 — the simple Lie superalgebra psl(a|a) pos-
sesses a Cartan matrix. Their central extensions (sl(pk), the modular Lie superalgebra
sl(a|pk + a), and — in characteristic 0 — the Lie superalgebra sl(ala)) do not have
Cartan matrix, either.
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Their relatives possessing a Cartan matrix are, respectively, gl(pk), gl(a|pk + a),
and gl(ala), and for the grading operator we take the matrix unit Ej ;.

Since all the Lie (super)algebras involved (the simple one, its central extension, the
derivation algebras thereof) are often needed simultaneously (and only representatives
of one of these types of Lie (super)algebras are of the form g(A)), it is important to
have (preferably short and easy to remember) notation for each of them. For example,
in addition to psl, sl, pgl and gl, we have:

for p = 3: ¢(6) is of dimension 79, then dim ¢(6)(*) = 78, whereas the “simple core”
is ¢(6)(Y) /¢ of dimension 77;

9(2) is not simple, its “simple core” is isomorphic to psl(3);

for p = 2: ¢(7) is of dimension 134, then dime¢(7)(") = 133, whereas the “simple
core” is ¢(7)(!) /¢ of dimension 132;

g(2) is not simple, its “simple core” is isomorphic to psl(4);

the orthogonal Lie algebras and their super analogs are considered in detail later.

In our main examples, sdim g(A)(!) /¢ = d|B whereas the notation D/d|B means
that sdim g(A) = D|B. The general formula is

d = D — 2(size(A) — tk(A)) (17)

4.2. Generalities
Let A = (A;;) be an n x n-matrix with elements in K with rk A = n — [. Complete

A to an (n + 1) X n-matrix (é

Let the elements e;t,hi, where i = 1,...,n, and dj, where kK =1,...,l, generate
a Lie superalgebra denoted g(A, I), where I = (p1,...p,) € (Z/2)™ is a collection of
parities (p(eii) = p;, the parities of the dj’s being 0), free except for the relations

) of rank n. (Thus, B is an [ X n-matrix.)

[6?_, 6]_} = 5”hl, [hl,e;t] = ZEAUE;E, [d}w e;t] = :I:Bkje;t; (18)
[hi7 h]] = [hi7 dk] = [dk7 dm] =0 for any i7j> kam'
The Lie superalgebra g(A, I) is Z"-graded with
degetr = (0,...,0,4+1,0,...,0
ge; = ( ) (19)

degh; = degdy = (0,...,0) for any i, k.

Let b denote the linear span of the h;’s and di’s. Let g(A,I)* denote the Lie
subsuperalgebras in g(A, I) generated by eli7 ...,er. Then

A =8A ) @hoa(A )",

where the homogeneous component of degree (0,...,0) is just b.
The Lie subsuperalgebras g(A, I)* are homogeneous in this Z"-grading, and there
is a

maximal homogeneous (in this Z"-grading) ideal ¢ such that tNh = 0. (20)

The ideal ¢ is just the sum of homogeneous ideals whose homogeneous components
of degree (0,...,0) are trivial.
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As rk A = n — [, there exists an [ x n-matrix T'= (T;;) of rank [ such that
TA=0. (21)
Let
n
C; :ZTijhj, where ¢ = 1,...,l. (22)
j=1
Then, from the properties of the matrix T', we deduce that

a) the elements ¢; are linearly independent; let ¢ be the space they span;
b) the elements ¢; are central, because

= 21
[ei,e5] =+ <Z TikAkj) e = £(TA);er Wy,
k=1

(23)

Observe that ¢ does not depend on T'.

The Lie (super)algebra g(A, I) is defined as the quotient g(A, I)/v and is called the
Lie (super)algebra with Cartan matriz A (and parities I). Note that this coincides
with the definition in [CE] of the contragredient Lie superalgebras, although written
in a slightly different way. Condition (20) modified as

maximal homogeneous (in this Z"-grading) ideal s such that sNh =c (24)

leads to what in [CE] is called the centerless contragredient Lie superalgebra, cf. [Bi].

By abuse of notation we denote by eii,hi,dk and ¢ their images in g(A,I) and
g(A, D).

The Lie superalgebra g(A, I) inherits, clearly, the Z"-grading of g(A, I). The non-
zero elements a € Z™ C R™ such that the homogeneous component g(A,T), is non-
zero are called roots. The set R of all roots is called the root system of g. Clearly, the
subspaces g, are purely even or purely odd, and the corresponding roots are said to
be even or odd.

The additional to (18) relations that turn g(A, I)* into g(A,I)* are of the form
R; = 0 whose left sides are implicitly described as follows:

the R; that generate the maximal ideal t. (25)

The explicit description of these additional relations forms the main bulk of this
paper.

4.3. Roots and weights

In this subsection, g denotes one of the algebras g(A4,I) or g(A,I).

The elements of h* are called weights. For a given weight «, the weight subspace
of a given g-module V is defined as

Vo = {z € V| an integer N > 0 exists such that (a(h) — ady)Nx = 0 for any h € b}.

Any non-zero element z € V' is said to be of weight «. For the roots, which are
particular cases of weights if p = 0, the above definition is inconvenient: In the mod-
ular analog of the following useful statement summation should be over roots defined
in the previous subsection.
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Statement 4.1 ([K]). Over C, the space g can be represented as a direct sum of

subspaces
g= @ Ja-

ach*

Note that h C go over K, e.g., all weights of the form pa over C become 0.

4.4. Systems of simple and positive roots

In this subsection, g = g(A4,I), and R is the root system of g.

For any subset B = {01,...,0m} C R, we set (we denote by Z, the set of non-
negative integers):

R :{a€R|a:iZnioi, n;, € Z4}.

The set B is called a system of simple roots of R (or g) if 01, ..., 0., are linearly
independent and R = R}, U R5. Note that R contains basis coordinate vectors, and
therefore spans R"™; thus, any system of simple roots contains exactly n elements.

Let (-, ) be the standard Euclidean inner product in R™. A subset R C R is called
a system of positive roots of R (or g) if there exists x € R™ such that

(o, ) € R\{O}for any o € R,

R ={a € R| (a,7) > 0}. (26)

Since R is a finite (or, at least, countable if dim g(A) = oo) set, so the set
{y € R™ | there exists a € R such that (a,y) =0}

is a finite/countable union of (n — 1)-dimensional subspaces in R™, so it has zero
measure. So for almost every z, condition (26) holds.

By construction, any system B of simple roots is contained in exactly one system
of positive roots, which is precisely RE.

Statement 4.2. Any finite system RT of positive roots of g contains exactly one
system of simple roots. This system consists of all the positive roots (i.e., elements of
R™) that can not be represented as a sum of two positive roots.

We can not give an a priori proof of the fact that each set of all positive roots
each of which is not a sum of two other positive roots consists of linearly independent
elements. This is, however, true for finite dimensional Lie algebras and superalgebras

9(A, 1) if p # 2.

4.5. Normalization convention
Clearly,

the rescaling e — /A\el, sends A to A" := diag(A1, ..., \n) - A. (27)

Two pairs (A, I) and (A’,I") are said to be equivalent (and we write (A, I) ~ (A’,I"))
if (A, I') is obtained from (A, I) by a composition of a permutation of parities and
a rescaling A’ = diag(A1,...,An) - A, where A\ ...\, # 0. Clearly, equivalent pairs
determine isomorphic Lie superalgebras.
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The rescaling affects only the matrix Ag, not the set of parities Ig. The Cartan
matrix A is said to be normalized if

A;j; =0 orl,or2, (28)

where we let A;; = 2 only if p; = 0; in order to distinguish between the cases where
p; =0 and p; = 1, we write A;; =0 or 1, instead of 0 or 1, if p; = 0.

We will only consider normalized Cartan matrices; for them, we do not have to
describe I.

The row with a 0 or 0 on the main diagonal can be multiplied by any nonzero factor;
usually (not only in this paper) we multiply the rows so as to make Ap symmetric,
if possible.

A posteriori, for each finite dimensional Lie (super)algebra of the form g(A)
with indecomposable Cartan matrix A, the matrix A is symmetrizable (i.e., it can
be made symmetric by operation (27)) for any p. For affine and almost affine Lie
(super)algebra of the form g(A) this is not so, cf. [CCLL)]

4.6. Equivalent systems of simple roots
Let B ={a1,...,a,} be a system of simple roots. Choose non-zero elements eii in
the 1-dimensional (by definition) superspaces gia,; set h; = [e],e; ], let Ap = (4;;),

where the entries A;; are recovered from relations (18), and let

IB = {p(el)a e 7p(€n)}'

Lemma 6.3 claims that all the pairs (Ap, Ig) are equivalent to each other.

Two systems of simple roots By and By are said to be equivalent if the pairs
(A, Ip,) ~ (A, IBy).

For the role of the “best” (first among equals) order of indices we propose the one
that minimizes the value

max li — j| (29)
1,j€{1,...,n} such that (Ap);;7#0

(i.e., gather the non-zero entries of A as close to the main diagonal as possible).

4.6.1. Chevalley generators and Chevalley bases

We often denote the set of generators corresponding to a normalized matrix by
Xli, ..., XT instead of eli, ...,el; and call them, together with the elements H; :=
[X;r ,X;], and the derivatives d; added for convenience for all i and j, the Chevalley
generators.

For p = 0 and normalized Cartan matrices of simple finite dimensional Lie algebras,
there exists only one (up to signs) basis containing Xii and H; in which A;; = 2 for all
i and all structure constants are integer, cf. [St]. Such a basis is called the Chevalley
basis.

Observe that, having normalized the Cartan matrix of o(2n + 1) so that A;; =2
for all i # n but A,,, = 1, we get another basis with integer structure constants. We
think that this basis also qualifies to be called Chevalley basis; for the Lie superalge-
bras, the basis normalized as in (28) is even more appropriate.
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Conjecture 4.3. If p > 2, then for finite dimensional Lie (super)algebras with inde-
composable Cartan matrices normalized as in (28), there also exists only one (up to
signs) analog of the Chevalley basis.

We had no idea how to describe analogs of Chevalley bases for p = 2 until appear-
ance of the recent paper [CR]; clearly, its methods should solve the problem.

5. Ortho-orthogonal and periplectic Lie superalgebras

In this section, p = 2 and K is perfect. We also assume that ng,ny > 0.

5.1. Non-degenerate even supersymmetric bilinear forms and ortho—or-
thogonal Lie superalgebras
For p =2, there are, in general, four equivalence classes of inequivalent non-
degenerate even supersymmetric bilinear forms on a given superspace. Any such form
B on a superspace V of superdimension ng|nj can be decomposed as follows:

B:B()@Bi,

where By, By are symmetric non-degenerate forms on Vg and Vi, respectively. For
i =0,1, the form B; is equivalent to 1,, if n; is odd, and equivalent to 1,, or II,,
if n; is even. So every non-degenerate even symmetric bilinear form is equivalent to
one of the following forms (some of them are defined not for all dimensions):

Brr = 1n; ® 1y B = 1,; ® 1I,; if ng is even;
Bnr =1l,, @ 1, if ng is even; Bpn = Il,; ® 11, if ng, ng are even.

We denote the Lie superalgebras that preserve the respective forms by ooy (ng|ni),
oormr(nglng), oomr(ng|ni), oonm(ng|ni), respectively. Now let us describe these alge-
bras.

5.1.1. oo0;;(ng|ng)

If n > 3, then the Lie superalgebra oogll) (ng|ni) is simple. This Lie superalgebra
has no Cartan matrix.

5.1.2. 00[1-[(77,()|TL1) (ni = 2/61)

The Lie superalgebra oo%(n(ﬂni) is simple, it has Cartan matrix if and only if ng

is odd; this matrix has the following form (up to a format; all possible formats —
corresponding to * = 0 or * = 0 — are described in the table on page 266 below):

* 1 0 (30)
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5.1.3. UOHH(TL()|7’L1) (n() = 2/{()7111 = Qki)

If n =ng+ni > 6, then
if kg + k1 is odd, then the Lie superalgebra 001('[212[ (ng|n1) is simple; (31)
if kg + ki is even, then the Lie superalgebra oogﬂ(ndni)/Klnﬁmi is simple.

Each of these simple Lie superalgebras is also close to a Lie superalgebra with
Cartan matrix. To describe this Cartan matrix Lie superalgebra in most simple terms,
we will choose a slightly different realization of oom(2kg|2ki): Let us consider it as
the algebra of linear transformations that preserve the bilinear form II(2kg + 2k7) in

the format kg|ki|kg|ki. Then the algebra oog£(2k5|2ki) is spanned by supermatrices
of format kglki|kglki and of the form

{g[(k0|k1) if i <1,
sl(kglky) ifi > 2,
(A CT> where (holky) if & . o (32)
D A O D are symmetric matrices if 1 =0;
’ symmetric zero-diagonal matrices if i > 1.

If i > 1, these derived algebras have a non-trivial central extension given by the
following cocycle:

A C A ,
F <(D AT) ) (D’ A/T)> = Z (CiiDij + Ci;Dij) (33)
1<i<j<ks+k1

(note that this expression resembles 3 tr(C'D’' + C'D)). We will denote this central
extension of oogh(ng\Qki) by ooc(i, 2kg|2k1).
Let
Ty = diag(1pg kg s Okg ks )- (34)
Then the corresponding Cartan matrix Lie superalgebra is’

0oc(2, 2kg|2k1) x Kly  if kg + k7 is odd;

. . (35)
ooc(1, 2kg|2k1) x KIy  if kg + k7 is even.

The corresponding Cartan matrix has the following form (up to a format; all
possible formats — corresponding to * = 0 or * = 0 — are described in the table on
page 266 below):

* 1 0 0
(36)
1 * 1 1
0 1 00
0 1 00

9Hereafter the simbol A X B denotes the semidirect sum of the two algebras, in which A is an ideal.
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5.2. The non-degenerate odd supersymmetric bilinear forms. Periplectic
Lie superalgebras

In this subsect., m > 3.

If m is odd, then the Lie superalgebra peg) (m) is simple; (37)
If m is even, then the Lie superalgebra peg) (m) /K1), is simple.

If we choose the form B to be I1,,),,, then the algebras peg) (m) consist of matrices
of the form (32); the only difference from oog%—[ is the format which in this case is
m|m.

Each of these simple Lie superalgebras has a 2-structure. Note that if p £ 2, then
the Lie superalgebra peg(m) and its derived algebras are not close to Cartan matrix
Lie superalgebras (because, for example, their root system is not symmetric). If p = 2
and m > 3, then they are close to Cartan matrix Lie superalgebras; here we describe
them.

The algebras peg) (m), where 7 > 0, have non-trivial central extensions with cocy-
cles (33); we denote these central extensions by pec(i, m). Let us introduce another
matrix

Iy := diag(1,,,0.,). (38)
Then the Cartan matrix Lie superalgebras are

pec(2,m) x Kl if m is odd;

39
pec(1,m) x Kl if m is even. (39)

The corresponding Cartan matrix has the form (36); the only condition on its
format is that the last two simple roots must have distinct parities. The corresponding
Dynkin diagram is shown in the table on page 266; all its nodes, except for the “horns”,
may be both ® or ©, see (42).

5.3. Superdimensions

The following expressions (with a + sign) are the superdimensions of the relatives of
the ortho-orthogonal and periplectic Lie superalgebras that possess Cartan matrices.
To get the superdimensions of the simple relatives, one should replace +2 and +1 by
—2 and —1, respectively, in the two first lines and the four last ones:

dim oc(1;2k) x Kl =2k —k+2 if k is even;
dim oc(2;2k) x Kl =2k —k+1 if k is odd;
dim o™ (2k + 1) =2k2+k

sdim oo™ (2kq + 1|2k;) = 2k2 + kg + 2k2 + ki | 2k1(2kg + 1)

sdim ooc(1; 2kg|2k7) X KIy = 2kZ — kg + 2/€% — ki £ 2| dkgk; if kg + k1 is even;

sdim ooc(2; 2kg(2k7) x KIp = Qk% — kg + Qk% — ki £ 1| 4kgk; if kg + k1 is odd;
sdim pec(1;m) x Kl =m?+£2|m?-m if m is even;
sdim pec(2; m) x Kl =m?2+1|m?—-m if m is odd

(40)
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5.3.1. Summary: The types of Lie superalgebras preserving non-degene-
rate symmetric forms
In addition to the isomorphisms oo (alb) ~ oorrr(bla), there is the only “occa-
sional” isomorphism intermixing the types of Lie superalgebras preserving non-
degenerate symmetric forms: 00%1)1(6|2) ~ pe)(4).
Let g:=gxKIy. We have the following types of non-isomorphic Lie
(super)algebras:

no relative has Cartan matrix with Cartan matrix
0077(2n + 1)2m + 1), 0077(2n +112m) | oc(i:2n), oD (2n+1); pec(izk) | (41)
0077(2n|2m), oo (2n]2m); or(2n); | ooc(i;2n2m), ool (2n + 1|2m)

6. Dynkin diagrams

A usual way to represent simple Lie algebras over C with integer Cartan matrices
is via graphs called, in the finite dimensional case, Dynkin diagrams. The Cartan
matrices of certain interesting infinite dimensional simple Lie superalgebras g (even
over C) can be non-symmetrizable or (for any p in the super case and for p > 0 in the
non-super case) have entries belonging to the ground field K. Still, it is always possible
to assign an analog of the Dynkin diagram to each (modular) Lie (super)algebra
with Cartan matrix, of course) provided the edges and nodes of the graph (Dynkin
diagram) are rigged with an extra information. Although these analogs of the Dynkin
graphs are not uniquely recovered from the Cartan matrix (and the other way round),
they give a graphic presentation of the Cartan matrices and help to observe some
hidden symmetries.

Namely, the Dynkin diagram of a normalized n x n Cartan matrix A is a set of
n nodes connected by multiple edges, perhaps endowed with an arrow, according to
the usual rules ([K]) or their modification, most naturally formulated by Serganova:
compare [Se, FLS| with [FSS]. In what follows, we recall these rules, and further
improve them to fit the modular case.

6.1. Nodes
To every simple root there corresponds
anodeo if p(a;) =0 and Ay = 2,
anode* if p(a;) =0 and A;; = 1;
anodee if p(a;) =1 and A;; = 1; (42)
anode ® if p(a;) =1 and A;; =0,

anode ® if p(a;) =0 and A;; = 0.

The Lie algebras s((2) and 0(3)") with Cartan matrices (2) and (1), respectively,
and the Lie superalgebra osp(1]2) with Cartan matrix (1) are simple.

The Lie algebra gl(2) with Cartan matrix (0) and the Lie superalgebra gl(2|2) with
Cartan matrix (0) are solvable of dim 4 and sdim 2|2, respectively. Their derived alge-
bras are the Heisenberg algebra hei(2) := hei(2|0) ~ s[(2) and the Heisenberg superal-

gebra hei(0|2) ~ sl(1|1) of (super)dimension 3 and 1|2, respectively.
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Remark 6.1. A posteriori (from the classification of simple Lie superalgebras with
Cartan matrix and of polynomial growth) we find out that for p =0, the simple
root ® can only occur if g(A, I) grows faster than polynomially. Thanks to classifica-
tion again, if dim g < oo, the simple root ® can not occur if p > 3; whereas for p = 3,
the Brown Lie algebras are examples of g(A4) with a simple root of type ®@; for p = 2,
such roots are routine.

6.2. Edges

If p=2 and dimg(A) < oo, the Cartan matrices considered are symmetric. If
A;j = a, where a # 0 or 1, then we rig the edge connecting the ith and jth nodes by
a label a.

If p > 2 and dim g(A4) < oo, then A is symmetrizable, so let us symmetrize it, i.e.,
consider DA for an invertible diagonal matrix D. Then, if (DA);; = a, where a # 0
or —1, we rig the edge connecting the ith and jth nodes by a label a.

If all off-diagonal entries of A belong to Z/p and their representatives are selected to
be non-positive integers, we can draw the Dynkin diagram as for p = 0, i.e., connect
the ith node with the jth one by max(|A;;|,|A;i|) edges rigged with an arrow >
pointing from the ith node to the jth if |A;;| > |A;;| or in the opposite direction if
[Aij| < [Ajil-

6.3. Reflections

Let R be a system of positive roots of Lie superalgebra g, and let B = {0, ...,0,}
be the corresponding system of simple roots with some corresponding pair
(A= Ap,I =Ig). Then the set (RT\{ox})[[{—0ok} is a system of positive roots

for any k € {1,...,n}. This operation is called the reflection in oy; it changes the
system of simple roots by the formulas
—0; if k=7,
o (o) =9 . . (43)
o; + Bij'k if k #],
where
2Ax; 2Ay;
— 2K i App £ 0 and — 28 e 7/,
Agk 214 3
p—1  if A #£0and — = g 7/p7,
B Ak
By =41 ifpr =1, Ape =0, Ag; #0, (44)
0 ifpr =1, App = A =0,
p—1 if pp =0, App =0, Ay #0,
0 ifkaG, Akk:(j, Ak]’:O,

where we consider Z/pZ as a subfield of K.

Remark 6.2. The description of the numbers B;j is empirical and based on classifi-
cation [BGL]: For infinite-dimensional Lie (super)algebras these numbers might be
different. In principle, in the second, fourth and penultimate cases, the matrix (44)
can be equal to kp — 1 for any k € N, and in the last case any element of K may
occur. For dim g < oo, this does do not happen (and it is of interest to investigate at
least the simplest infinite dimensional case — the modular analog of [CCLLI).
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2A; A
The values — 2 and — %9 are elements of K, while the roots are elements of a
vector space over R. Therefore

These expressions in the first and third cases in (44) should be understood as

2Ay; ;
“the minimal non-negative integer congruent to — " Moor fA—kj, respectively”. (If
kk kk
dim g < 0o, these expressions are always congruent to integers. There is known just
Aji

one exception: If p = 2 and Ay = Aji, then — should be understood as 2, not

0.)

kk

The name “reflection” is used because in the case of (semi)simple finite-dimensional
Lie algebras this action extended on the whole R by linearity is a map from R to
R, and it does not depend on R™, only on 0. This map is usually denoted by r,,
or just 7. The map r,, extended to the R-span of R is reflection in the hyperplane
orthogonal to o; relative the bilinear form dual to the Killing form.

The reflections in the even (odd) roots are said to be even (odd). A simple root
is called isotropic, if the corresponding row of the Cartan matrix has zero on the
diagonal, and non-isotropic otherwise. The reflections that correspond to isotropic or
non-isotropic roots will be referred to accordingly.

If there are isotropic simple roots, the reflections 7, do not, as a rule, generate a
version of the Weyl group because the product of two reflections in nodes not con-
nected by one (perhaps, multiple) edge is not defined. These reflections just connect
pair of “neighboring” systems of simple roots and there is no reason to expect that
we can multiply two distinct such reflections. In the general case (of Lie superalge-
bras and p > 0), the action of a given isotropic reflections (43) can not, generally, be
extended to a linear map R — R. For Lie superalgebras over C, one can extend the
action of reflections by linearity to the root lattice but this extension preserves the
root system only for s{(m|n) and osp(2m + 1|2n), cf. [Sel].

If o; is an odd isotropic root, then the corresponding reflection sends one set of
Chevalley generators into a new one:

(X7, X if Ay #0,0,

45
in otherwise. (4)

XF = X7, xji:{

6.3.1. On neighboring root systems

Serganova [Se] proved (for p = 0) that there is always a chain of reflections con-
necting B; with some system of simple roots BY, equivalent to By in the sense of defini-
tion 4.6. Here is the modular version of Serganova’s Lemma. Observe that Serganova’s
statement is not weaker: Serganova used only odd reflections.

Lemma 6.3 ([LCh]). For any two systems of simple roots By and By of any simple
finite dimensional Lie superalgebra with Cartan matriz, there is always a chain of
reflections connecting By with Bs.
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7. Presentations of g(A)

7.1. Serre relations, see [GL2]

Let A be an n X n matrix. We find the defining relations by induction on n with
the help of the Hochschild—Serre spectral sequence (for its description for Lie super-
algebras, which has certain subtleties, see [Po]). For the basis of induction consider
the following cases of Dynkin diagrams with one vertex and no edges:

o or e mo relations, i.e., g% are free Lie superalgebras if p # 3;
. ad%+ (X*) =0 if p = 3; (46)
® X+, XF] =0.

Set degXijE =0for 1 <i<n—1anddegXF==+1.Let g* = @gii and g = Pg; be
the corresponding Z-gradings. Set g+ = g*/ ggt. From the Hochschild—Serre spectral
sequence for the pair ga[ C gF we get (for more detail, see [LCh]):

Ha(g+) C Ha(g3) © Hi(ay; Hi(g+)) © Holgy; Hal(g))- (47)
It is clear that
_ ~E _ A2(.E +
Hy(g+) =97, Ha(g+) = A"(g7)/903 - (48)
So, the second summand in (47) provides us with relations of the form:

(adX%r)k"i (XF) =0 if the n-th simple root is not ®

[Xn, Xn] =0 if the n-th simple root is ®. (49)

while the third summand in (47) is spanned by the gg—lowest vectors in
N (e7)/ (85 + 9" A2 (g7))- (50)

Let the matrix B = (B;;) be as in formula (44). The following proposition, whose
proof is straightforward, illustrates the usefulness of our normalization of Cartan
matrices as compared with other options:

Proposition 7.1. The numbers ki, and kyn; in (49) are expressed in terms of (B;;)
as follows:

(adXii)1+Bu~ (in) =0 fori#j
(X X5 =0 if Aiy =0 and p # 2 (51)
(Xz'i>2:0 if Ay =0 and p = 2.

Usually, only the relations of the first line in (51) are said to be Serre relations
for the Lie superalgebra g(A), but it is convenient to incorporate (and we propose to
do so) the relations (18) and (51) to the set of Serre relations.

If p = 3, then the relation
(XE [XE, XE)]=0 for X odd and Ay = 1 (52)

is not a consequence of the Jacobi identity; for simplicity, however, we will include it
in the set of Serre relations.



262 SOFIANE BOUARROUDJ, PAVEL GROZMAN, ALEXEI LEBEDEV and DIMITRY LEITES

7.2. Non-Serre relations
These are relations that correspond to the third summand in (47). Let us consider
the simplest case: sl(m|n) in the realization with the system of simple roots

O—:+:++—0—®—0—++-—0 (53)

Then Hz(g+) from the third summand in (47) is just A%(g+). For simplicity, we
confine ourselves to the positive roots. Let X1,..., X,,_1 and Y7,..., Y,,_1 be the root
vectors corresponding to even roots separated by the root vector Z corresponding to
the root ®.

If n =1 or m =1, then A?(g) is an irreducible gg-module and there are no non-
Serre relations. If n # 1 and m # 1, then A?(g) splits into 2 irreducible gg-modules.
The lowest component of one of them corresponds to the relation [Z, Z] = 0, the other
one corresponds to the non-Serre-type relation

[[Xm—h Z]’ [Yh ZH =0. (54)

If, instead of sl(m|n), we would have considered the Lie algebra sl(m + n), the
same argument would have led us to the two relations, both of Serre type:

ad%(X,_1) =0,  adz(Y;)=0.

In what follows we give an explicit description of the defining relations in terms of
the Chevalley generators of the Lie (super)algebras of the form g(A) or their simple
subquotients g(M (A) /c.

8. The Lie (super)algebras of the form g(A) or their simple
subquotients gM(4)/c

8.1. Over C

Kaplansky was the first (see his newsletters in [Kapp]) to discover the exceptional
algebras ag(2) and ab(3) (he dubbed them I's and I's, respectively) and a paramet-
ric family osp(4]2; @) (he dubbed it T'(A, B, C))); our notation reflect the fact that
ag(2)g = sl(2) ® g(2) and ab(3)5 = sl(2) @ o(7) (o(7) is Bs in Cartan’s nomenclature).
Kaplansky’s description (irrelevant to us at the moment except for the fact that
A, B and C are on equal footing and A + B + C = 0) of what we now identify as
0sp(4|2; ), a parametric family of deforms of 0sp(4]2), made an S3-symmetry of the
parameter manifest (to A. A. Kirillov, and he informed us, in 1976). Indeed, since
A+ B+ C =0, and a € CU oo is the ratio of the two remaining parameters, we get
an Sz-action on the plane A+ B + C = 0 which in terms of « is generated by the

transformations:

1
ar— —1—a, ar— —. (55)
a

This symmetry should have immediately sprang to mind since osp(4]2; @) is strikingly
similar to w#(3;a) found 5 years earlier, cf. (58), and since S3 ~ SL(2;Z/2).
Figure 8.1 depicts the fundamental domains of the S3-action. The other transfor-
mations generated by (55) are
1+a 1 o
—

)

o @ a+1’ o a+1’

o — —
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N

\
\ \‘
l//’/’ Rea = —1/2

N

N

Ima=0

%V/ Rea =0

Figure 1:

8.1.1. Notation: On matrices with a “-” sign and other notation in the
lists of inequivalent Cartan matrices

The rectangular matrix at the beginning of each list of inequivalent Cartan matrices
for each Lie superalgebra shows the result of odd reflections (the number of the row
is the number of the Cartan matrix in the list below, the number of the column is
the number of the root (given by small boxed number) in which the reflection is
made; the cells contain the results of reflections (the number of the Cartan matrix
obtained) or a “-” if the reflection is not appropriate because A;; # 0. Some of the
Cartan matrices thus obtained are equivalent, as indicated.

The number of the matrix A such that g(A) has only one odd simple root is
, that with all simple roots odd is underlined. The nodes are numbered by
small boxed numbers; the curly lines with arrows depict odd reflections.

8.1.2. Cartan matrices
Recall that ag(2) of sdim = 17|14 has the following Cartan matrices

—
| oo |
~
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0 -1 0 0 -1 0 0 -3 1 2 -1 0
(-1 2 —3) 2) <—1 0 3> 3) (—3 0 2) 4) (—3 0 2)
0 -1 2 0 -1 2 -1 -2 2 0 -1 1

(56)
Recall that ab(3) of sdim = 24|16 has the following Cartan matrices
_ 9 _ _
3 1 4 -
9 - _ _
- - 2 5
6 4
_ 5 — _ 5)
6)
2 -1 0 0 0o -3 1 0 2 -1 0 0
-3 0 1 0 -3 0 2 0 -1 2 -1 0
o -1 2 =2 2) 1 2 0 -2 o -2 0 3
0 0o -1 2 0 0o -1 2 0 0o -1 2
2 -1 0 0 0 1 0 0 2 -1 0 0
-2 0 2 -1 -1 0 2 0 -1 2 -1 0
4) 0 2 0 -1 5) o -1 2 -1 0o -2 2 -1
0 1 -1 2 0 0o -1 2 0 0 -1 0
(57)

8.2. Modular Lie algebras and Lie superalgebras
8.2.1. p =2, Lie algebras

Weisfeiler and Kac [WK] discovered two new parametric families that we denote
we(3;a) and rt(4;a) (Weisfeiler and Kac algebras).

we(3;a), where a # 0, —1, of dim 18 is a non-super version of 0sp(4|2;a) (although
no o0sp exists for p = 2); the dimension of its simple subquotient ro¢(3; )" /¢ is equal
to 16; the inequivalent Cartan matrices are:

0 1

0 a 0O +a a
) fa 0 1],2) |1+a 0 1
0 1 0 a 1 0
wt(4; a), where a # 0, —1, of dim = 34; the inequivalent Cartan matrices are:

0 a 00 0 1 14+a 0 0 a 0 0
a 01 0 1 0 a 0 a 0 a+1 0
1> 010 1 x) a+1 a 0 a ’3> 0 a+1 0 1
0010 0 0 a 0 0 0 1 0
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Weisfeiler and Kac investigated also which of these algebras are isomorphic and
the answer is as follows:

we(3;a) ~ wE(3;d') <= a s , where € SL(2;Z/2)

,_oatf a B
2 v 4 (58)

wt(4;a) ~ wt(4;d) <= d = o

8.2.2. p =2, Lie superalgebras

The same Cartan matrices as for € algebras but with arbitrary distribution of
0’s on the main diagonal correspond to Lie superalgebras bgl(3;a) and bgl(4;a) dis-
covered in [BGL]. The conditions when they are isomorphic are the same as in (58),
they have the same inequivalent Cartan matrices, and are considered also only if
a # 0,1 (since otherwise they are not simple). We have sdim bgl(3;a) = 10/8|8 and
sdim bgl(4; a) = 18|16.

8.3. Systems of simple roots of the e-type Lie superalgebras

Observe that if p = 2 and the Cartan matrix has no parameters, the reflections do
not change the shape of the Dynkin diagram. Therefore, for the e-superalgebras, it
suffices to list distributions of parities of the nodes in order to describe the Dynkin
diagrams. Since there are tens and even hundreds of diagrams in these cases, this
possibility saves a lot of space, see the lists of all inequivalent Cartan matrices of the
e-type Lie superalgebras. For the lists of the inequivalent systems of simple roots of
the e-type Lie superalgebras, see the arXiv version of the paper (arXiv:0911.0243).

9. Defining relations in characteristic 2

To save space, in what follows we omit indicating the Serre relations; their fulfill-
ment is assumed. Additionally there appear relations of a new type (non-Serre rela-
tions). Here we describe them. We have proved them analytically only for Lie (super)-
algebras of sl type and their relatives. Relations for the rest of the (super)algebras
are results of computations with SuperLie. For serial Lie (super)algebras (like o, oo,
osp, spe), the relations are conjectural.

9.1. Results

Here we consider the classical Lie algebras and superalgebras as preserving the vol-
ume element or a non-degenerate bilinear form. We usually interpret the exceptional
Lie (super)algebras as preserving a non-integrable distribution, cf. [Shch] but here
we just construct them from their Cartan matrices.

For subalgebras of gl, we set x; = E; 11,y = Eit14,h = Ei iy — Fiq1,i41; the Lie
sub(super)algebra n consists of upper-triangular (super)matrices.

Theorem 9.1. For g =sl(n+ 1) or sl(alb), where a +b=mn+ 1: In characteristic
> 2, the Serre relations (51) define n; in characteristic 2, the following additional
relations are required:

[[zi_l,:ci], [:ci,xi_,_l]] =0 fOT 1<i<n. (59)



p = 2, Lie superalgebras. Dynkin diagrams for p = 2

Diagrams g v ev od png ng < min(x , )
- kg — 2 ki 0 2kg — 4,2k
T 00¢(2; 2ko|2k1) x Kl ’ZE ) Z(:) -2 (}) ;Zo ;ki% ijx -1
1) if k5 + k1 is odd; . = 0 v 0, 4RFT —
ooc(1; 2kg|2k1) x Ko 0Tk | kg ki —2 1 2kg —1,2k; —3
if ko + k1 is even. ko —1 ki—1 2kg — 2,2k; — 1
2) k1 —1 kg —1 2kg — 1,2k — 2
kg —1 ki 0 2kg — 2,2k
1) ki kg —1 1 2kg — 1,2k — 1
3) [ — Y ooIH(2k6+1|2ki) k(j+ki ki—l k() 0 2k(),2k‘1 —5
kg ki —1 1 2k — 1,2k7 — 1
® pec(2;m) x Kl
-—. for m odd; m
pec(l;m) x Kl
5) ® for m even.
Notation

The Dynkin diagrams in the table correspond to Cartan matrix Lie superalgebras close to ortho-orthogonal and periplectic
Lie superalgebras. Each thin black dot may be ® or ©®; the last five columns show conditions on the diagrams; in the last four
columns, it suffices to satisfy conditions in any one row. Horizontal lines in the last four columns separate the cases corresponding
to different Dynkin diagrams. The notation are: v is the total number of nodes in the diagram; ng is the number of “grey” nodes
®’s among the thin black dots; png is the parity of this number; ev and od are the number of thin black dots such that the
number of ®’s to the left from them is even and odd, respectively.

SHLIAT AMLINIA PUe AHAAIHT IAXATY ‘NVINZOUD THAVd ‘rANOYYVNOd ANVIIOS 992
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Remark 9.2. In characteristic p > 0, the Lie algebra s[(pk) is not simple, since it con-
tains the center ¢ = {A- 1, | A € K}. The corresponding simple Lie algebra sl(pk)/c
is denoted by psl(pk). Since the reduction from sl(pk) to psl(pk) does not affect the
structure of n, its presentation is the same for gl(pk), sl(pk), and psl(pk). Same applies
to any other Lie (super)algebra with non-invertible Cartan matrix.

Theorem 9.3. Let the nodes of the Dynkin diagram of ¢(8) be numbered as usual:
1 2 3 45 6 7
8
Forg =e(n) org=e(n;i): In characteristic 2, in the case of g = ¢(8), the following
list of relations must be added to the Serre relations:

Hxlvxﬂa ["T%xfi]] - 0’
([22, 23], [x3, 24]] = 0;
([73, 24], [T4, w5]] = 0;
([z4, 25, [75, w6]] = 0;
fo)axG]a [x67$7“ = 0;
Hxélv xs), FEE), QESH = 8;
5, T6), [x5, xs]] = 0;
([z4, [25, T6]], [74, [75, 238]]] = 0; (60)
H'r4’ [335, xﬁ]]’ [l‘g, [1557956]]] =0;
([x4, (x5, 25]], [78, [T5, 26]]] = O;
(23, [z4, [25, 26]]], [23, [24, [75, 28]]]] = O;
Hx47 [{,C5, [x67 $7]]]7 [:Cg, [1‘57 [x67 557]]]] =0;
[[22, [23, [T4, [x5, T6]]]], [2, [T3, [24, [75, 25]]]]] = O;
[[z1, [22, [73, [T4, [25, 26]]]); [21, [22, [23, [24, [25, 28]]]]]] = O.

To obtain the corresponding lists of relations for ¢(6) or e(7), one should delete the
relations containing the “extra” x; and renumber the rest of the x;, i.e:

1) delete the relations containing x1 for e(7), x1 and x2 for e(6);

2) decrease all indices of the x; by 1 for ¢(7), by 2 for ¢(6).

Proof: Direct computer calculations.

Remark 9.4. Here is a shorter way to describe these relations. Let a chain of nodes
for a Dynkin diagram with n nodes be a sequence i1, ..., 1, where k > 2 and
ijel,nforall j=1,... k;
2) iy # iy for j # 7'
3) nodes with numbers i; and ¢, are connected for all j =1,...,k — 1.
The above non-Serre relations (both for sl(n + 1) and e(n) can be represented in
the form
[ [581'1, [ ) [xik—l7xik} o ]]7 [xiu [ ) [‘Tik—l’x’i;c] . H } =0,
where i1,...,9k_1,% and 41, ...,ix_1,%), are two chains of nodes (61)
that differ only in the last element.

All the relations that can be represented in the form (61) are necessary.

In what follows we only consider the Lie algebras g(A); the non-Serre relations
of Lie superalgebras s(g(A)) from which g(A) can be obtained by means of forgetful
functor are the same as those of g(A).
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Theoretically, there could be redundant ones among them, we can only conjecture
(by analogy with sl and e types) that no redundancies occur.

9.1.1. g=o0p(2n)

The orthogonal algebra is, by definition, the Lie algebra of linear transformations
preserving a given non-degenerate symmetric bilinear form B. The bilinear form is
usually taken with the Gram matrix 1s, or Ils,. In characteristic > 2, these two
forms are equivalent over any perfect field. The corresponding Lie algebra has the
same defining relations as in characteristic 0, so in this subsection we only consider
p=2.

It turns out ([Lel]) that these two forms are not equivalent over any ground field
K of characteristic 2. If K is perfect, then any non-degenerate symmetric bilinear form
is equivalent to one of these two forms: It is equivalent to II,, if it is zero-diagonal;
otherwise, it is equivalent to 1,,.

The orthogonal Lie algebras corresponding to these two forms (we denote them
o7(n) and orr(n), respectively) are not isomorphic and have different properties.

In particular, only orr(2n) for n > 3 is close to an algebra with a Cartan matriz
(same as in characteristic 0). The corresponding algebra gM)(A) is oc(2;2n) (i.e., the

central extension of o(H2 )(Qn), given by the formula (33)).

9.1.2. o0c(2;2n)
The algebra og )(211) (whose central extension is 0c¢(2;2n)) consists of matrices of
the following form (where ZD(n) denotes the space (Lie algebra if p = 2) of symmetric

zero-diagonal n X nm-matrices):

A B where A € sl(n);
C AT ) B,C € ZD(n).

The Chevalley generators of oc¢(2;2n) are:

i = Eiipr1+ Enqigings for1<i<n—1;

Tp = En71,2n + En,2n71;

yi=al for1<i<m

hi=FEi; + Eiy1i41 + Enginyi + Bnyivinyitr for1<i<n—1;
hn = hn—l + 2,

where z is central element.

Theorem 9.5. In characteristic 2, for 0¢(2;2n), where n > 4, the defining relations
for n are Serre relations plus the following ones:

[[Ti1, 2], [Ti, xiga]] =0 for2<i<n—2;
([Tn—3; Tn—2]; [Tn_2,2n]] = 0;

([Tn—2,Tn1]; [Tn_2,2n]] = 0;

Hxn—37 [xn—Za xn—l”y [xru [mn—ly xn—Q]] =0;
Hxn—37 [xn—Qa xn“, [:En; [xn—la xn—Q“ = 0;

and, for1 <i<n—3,

[[ﬂfn,l, [il'i, [$i+1, ey [l’n,:_),, l’n,Q] e }H, [i[n, [(Ei, [1[,'7;+1, ceey [Cﬂnfg, ZL’n,Q] e HH = 0
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(We don’t consider the case of n = 3 in the theorem because o¢(2; 6) is isomorphic
to sl(4).)

9.1.3. g=o'"(2n)

As shown above, if n > 2, then 07(2n) 2 0 1)(Zn) ~ 0(2)(2n) (and if n = 1, then the
algebra o0y(2n) is nllpotent) So any set of generators of 07(2n) contains “extra” (as
compared with generators of ogl) (2n)) generators ay, . . . , as,. The relations containing
these generators say nothing new about the structure of the simple (and, thus, more
interesting) algebra ogl)(Qn). Because of this and because we want to make the set of
generators we use as small as possible, we consider the algebra 0&1)(2n). It consists
of symmetric zero-diagonal 2n x 2n-matrices. We can choose the following generators
(for the whole algebra since in this case there is no apparent analog of the maximal
nilpotent subalgebra n):

Xi=Ei i1 +E1, for1 <i<2n—1.

Theorem 9.6. The following are the defining relations for 0(11)(271), n>=2:

[Xz,X]:O fO’I”l\ SQTL—I,|Z—]|>2
{§1+[1X[XX}HﬁilZ } for 1 <i<2n—2;
[Xio1, Xi], [Xi, Xig1]] =0 for2<i<2n—2.

Proof. (Sketch of.) The algebra ogl)(Qn) is filtered:
0=1LoC---CLay_1,

where Ly, consists of all symmetric zero-diagonal matrices M such that M;; = 0 for all
1,7 such that |i — j| > k. The associated graded algebra is isomorphic to the algebra
of upper-triangular matrices, i.e., a maximal nilpotent subalgebra of s[(2n). So we
can use Theorem 9.1. U

Remark 9.7. Presentations of the Lie algebra 0( )(2n + 1), where n > 1, are similar
in shape.

9.14. g=o0p(2n+1)

For this algebra, again, the case of characteristic > 2 does not differ from the case
of characteristic 0, so we only consider the case of characteristic 2. Then, if the ground
field is perfect, all the non-degenerate symmetric bilinear form over a linear space of
dimension 2n + 1 are equivalent. We choose the form Iy, 4.

9.1.4.1. g=og(2n+1) It is easy to see that

o (2n 4+ 1) 0(1)(2n+ 1) and og)(Qn—i— 1) ~ 0%2)(271—!— 1) forn > 1.
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So, as for o7(2n), we consider the first derived algebra o(Hl)(2n—|— 1). The algebra

og )(Zn + 1) consists of matrices of the following form:

};47« i)( XBT where A € gl(n); B,C € ZD(n);
C Yy AT " X,Y are n-vectors.

This algebra has a Cartan matrix. The Chevalley generators are:

T =FEii1+ Engigontirr for1<i<n—1;

Tn = En,n+2 + En+1,2n+1;

yi =l for 1 <i< n

hi =Eii + B0 + Bngivintit1 + EBnrigontive for 1 <i<in—1;
hn - En,n + E2n+1,2n+1~

Theorem 9.8. In characteristic 2, for g = og)(Qn + 1), the defining relations for n

are the Serre relations plus the following ones:

[[zic1, 2], [T, 2i11]] =0 for2<i<n—2.

9.1.5. g(2)

The Cartan matrix of g(2) reduced modulo 2 coincides with Cartan matrix of s[(3).
There is, however, another approach: Select the Chevalley basis in the Lie algebra
9(2) as explicitly described in [FH], p. 346. Reducing the integer structure constants
reduced modulo 2 we get a simple Lie algebra g(2)k (its basis is that of g(2)). This
Lie algebra is isomorphic to psl(4).

9.1.6. f(4)

There is no Z-form of f(4) such that the algebra f(4)x is still simple.

9.1.7. w¥(3;a) and bgl(3;a)
The non-Serre relations are:
For the first Cartan matrix: For the second Cartan matrix:

(21, 22], [23, [x1, 22]]] = 0 [22, [x1, 23] = alas, [x1, 23]
[[z2, 23], [3, [x1,22]]] = 0
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9.1.8. w¢k(4;a) and bgl(4;a)

The non-Serre relations are:

For the first Cartan matrix:
[[#2, 23], [v3, 4]] = 0
[[x1, 2], [23, [T1, 22]]] = 0
[[x2, 3], [23, [T1,22]]] = 0
H x3,74]]] = 0

e, o2, sl ll21, 22), [e

[21, 22], [22, 23], [[21, 72], [$4a (22, z3]]]] =

For the third Cartan matrix:
[[x1, 23], [23, [x1, 22]]] = 0
[[x2, x3], [x3, [21, 22]]] = O
[z2, 23], [4, [x2, 23]]] = 0
[23, 24], [v4, [X2, 23]]] = 0
[z3, [21, 22]], [24, [v2, 23]]] =

9.1.9. g=oo(n|m), p=2

271

For the second Cartan matrix:

[1‘2, [$1, 1‘3}] = (1 + G;)[Z‘g,, [1‘1,1‘2”
[[56‘2,1‘3], [173,£E4H =0
FxlvxS]a (€4, [21,23]]] =0

[23, 24], [24, [21, 23] = 0

(1 + a)[[zs, w4], [[71, 22], [22, 25]]]

Here we consider Cartan matrix Lie superalgebras close to some of the ortho-
orthogonal algebras. There are two kinds of such Cartan matrices:

1) The Cartan matrix

(€))

generates 00,7(2kg|2k1 + 1), kg + ki = n (parities of the rows of the matrix may be
different; the connection between these parities and kg, k1 is described in the table
on page 266). The corresponding non-Serre relations are as in Theorem 9.8.

2) The Cartan matrix

O =

0

*
1
1

o

O Ol =

1
0
0

generates an algebra close to oo (2kg|2k1), kg + k1 = n (parities of the rows of the
matrix may be different; the connection between these parities and kg, k1 is described
in the table on page 266; the exact description of the Cartan matrix Lie superalgebra
is in subsection 5.1.3 ). The corresponding non-Serre relations are as in Theorem 9.5.



272 SOFIANE BOUARROUDJ, PAVEL GROZMAN, ALEXEI LEBEDEV and DIMITRY LEITES

9.1.10. g=ag(2) and g = ab(3) in case p =2

The Cartan matrices (56) and (57) being reduced modulo 2 do not produce any-
thing “resembling” ag(2) or ab(3). (In particular, the Lie superalgebra that corre-
sponds to the Cartan matrices 1) and 2) in (56) is isomorphic to s[(1|3).)

We do not know an integer basis of ag(2) or ab(3) in which the corresponding
Lie superalgebra in characteristics p = 2 is simple. Cunha and Elduque suggested,
nevertheless, their p = 3 analogs, see [CE].

10. Proofs for p = 2: Lie algebras

10.1. g=sln+1), p=2
The elements E;;, where 1 < ¢ < j < n+ 1, form a basis of the algebra n. In par-
ticular, x; = E; ;4+1. Clearly, we have

[Eij, Ex) = 6ju By + 0 Ey;.

Let § be the algebra of diagonal matrices. The elements Ej;, where 1 <i < n+1,
form a basis of h. Let the w; be the dual basis elements.

We consider the weights of n with respect to . The weight of E;; is equal to
wi + wj.

Recall several facts about homology.

Lemma 10.1. Set

M. ={E; B

TmJIm

} for a basic chain ¢ = E; ;; A... N E;

11000 1J1 mJm
If for any E;; € M. and any k such that i < k < j, at least one of the elements Ey,
and Ey; lies in M., then c can not appear with non-zero coefficient in decomposition

of a boundary with respect to basic chains.

Proof. Clearly, it suffices to show that ¢ can not appear with non-zero coefficient in
the decomposition of the differential of a basic chain with respect to basic chains.
It follows from the formula for the differential d that any basic chains that appears
with non-zero coefficient in decomposition of the differential of a basic chain F' with
respect to basic chains, can be obtained from F' by replacing F;;, and Ey; by E;; for
some i, j, k. If ¢ satisfies the hypothesis of the Lemma, then ¢ can not be obtained in
such a way from any F. O

The elements of Cs(n; K) have weights of two types: w; + w; and w; + wj + wy, + wy.
Consider them:
I. A weight o = w; + wj, where 1 <i < j<n+1. The following chains form a
basis of Cy(n;K)q:
Eik/\Ekja 1< k< 7; d(Eik/\Ekj):Eij;
Eii N\ Ekj, 1<k< R d(EkZ A Ekj) =0;
Eik/\Ejk; I<k<n+1; d(Eik/\Ejk):O

Thus, the following cycles form a basis of Ca(n;K),:

Eg N Ekj =+ Ei,k—i—l A Ek+1,j7 1< k< i—1
E’Lk/\Ejka ]<k<n+1
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We consider them:

1) Eix N Eij + E; g1 A\ Ey1,j = d(Eij A Eg g1 A Ei41,5), so this is a boundary.

2) Ey; A\ Ey;, where 1 < k < 4; in this case, we consider three subcases:

a) j — 1> 1: In this case, F; A Ekj = d(Ekz AN Ek,j—l AN Ej—l,j)-

b) i — k > 1: In this case, Ex; A Ekj = d(Ek)i,1 AN Eifl’i A Ekj)

c) i—k=j—i=1, ie, i=k+1; j=k+2. In this case, according to
Lemma 10.1, the basic chain Ej; A Ey; can not appear with non-zero coeflicient in
decomposition of a boundary with respect to basic chains; so this is a non-trivial
cycle. It gives us the relation

[Ek,k+17Ek,k+2] =0, Le, [xk, [$k790k+1]] =0.

Here k € 1,n — 1.
3) This case is completely analogous to the previous one; it gives us the relation

[@k, [Te—1, 2] = 0,

where k € 2,n.
IL. A weight o = w; + wj +w; +wj, where 1 <7 < j <k <l <n+ 1. Clearly, the
space C2(n; K), has the following basis:

Ca1 = Eij N By, Ca2 = By N Ejy, Ca3 = By N Ejy.

All this three chains are cycles, i.e., Z3(n; K)o = C2(n;K),. Here we have three sub-

cases:
1) j—i> 1. Then

Ca1 = d(E; i+1 A Eiy1, A\ Egp);
Ca2 =d(E; i1 AN B0 N Ejp);
Ca3 =d(E;iit1 N Eiy1, N Ejp).

2) I — k > 1. Then, similarly to the previous case,

Can =d(Eij N Eg -1 N Ej_1,);
Ca2 =d(Eix NEji 1 NEi_1y);
Ca3 =d(Ejx NEij_1 NEj_1;).

3) j—i=1l—k=1,1ie, j=i+1;l=Fk+1. Then, from Lemma 10.1, ¢, is a
non-trivial cycle. It gives the relation

[Eiit1, Egrs1] =0, ie., [z, 2] = 0.

Here i,k € 1,n, and k —1i > 2.
For the other cycles, we need to consider the two subcases:
a) k—j > 1. Then

Ca2=Ad(E; k-1 NEx1 6 NEj1); casz=d(Eqg ANEjr_1 ANEg_11).

b)k—j=1ie,i=j—1; k=74 1;1 =1+ 2. It is easy to see (like in the proof
of Lemma 10.1) that the only two chains such that ¢, 2 or ¢, 3 appear with non-zero
coeflicients in the decomposition of their differentials with respect to basic chains are

E;1;NEjj+1 NEjjre and Ej_q 11 AEjjp A Ejiqjio.

The differentials of both these chains are equal to co 2 + o 3. So we can consider one



274 SOFIANE BOUARROUDJ, PAVEL GROZMAN, ALEXEI LEBEDEV and DIMITRY LEITES

of the chains ¢, 2 or ¢, 3 as a non-trivial cycle. The cycle c,,2 gives the relation
[Ej,l’jJrl,Ej’jJrg] = 07 i.e., H:Ej,l,.ﬁj], [.’L‘j, aﬁj+1H = 0,

and ¢, 3 gives an equivalent (taking other relations into account) relation
[Ej-14+2,Ej ] =0 ie., [[xj-1, [z, 2], 2;] = 0.

Here 5 € 2,n — 1.

10.2. Proofs: Lie superalgebras

In the exceptional cases, the relations are obtained by means of SuperLie. For the
sl series, the arguments of the non-super case are applicable. For the other series, the
answers are conjectural but we tested them by means of SuperLie for small values
of superdimensions, and hence are sure.
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