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HOMOTOPY THEORY OF DG CATEGORIES VIA
LOCALIZING PAIRS AND DRINFELD’S DG QUOTIENT

GONÇALO TABUADA

(communicated by Johannes Huebschmann)

Abstract
Using localizing pairs and Drinfeld’s dg quotient we con-

struct a new Quillen model for the homotopy theory of dg cate-
gories. We prove that, in contrast with the original model, this
new Quillen model carries a natural closed symmetric monoidal
structure. As an application, we obtain a simple construction
of the internal Hom-objects and a conceptual characterization
of Toën’s previous work. Making use of this new Quillen model,
Lowen has recently developed a derived deformation theory.

1. Introduction

A differential graded (=dg) category is a category enriched in the category of com-
plexes of modules over some commutative base ring k. Dg categories enhance triangu-
lated categories and are nowadays an important working tool in algebraic geometry,
non-commutative geometry, representation theory, mathematical physics, and other
areas [1, 3, 4, 10, 11, 22]. This new philosophy of enhancing triangulated cate-
gories has motivated much foundational work as described in Keller’s ICM adress [8].
For example, Verdier’s triangulated quotient, one of the main tools in triangulated
categories, has recently been lifted to the world of dg categories by Drinfeld [3, §3.1].

Using Quillen’s homotopical algebra formalism, we have constructed in [20] the
homotopy theory of dg categories with respect to the Morita dg functors (i.e., the dg
functors F : A → B which induce an equivalence D(A) ∼→ D(B) between the derived
categories). This theory enabled several developments such as the first conceptual
characterization [19] of Quillen-Waldhausen’s K-theory [17, 23] and the creation by
Toën of a derived Morita theory [22]. One geometric application of Toën’s derived
Morita theory, described in [22, Theorem 8.9], is the solution of a conjecture due to
Orlov [15]: all dg functors between derived dg categories of algebraic varieties are
induced (using a Fourier-Mukai transform) by some object in the derived dg category
of their product.
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The main obstacle in the development of this derived Morita theory was the con-
struction of an internal Hom-functor in the homotopy category Ho(dgcat) of dg cat-
egories. The difficulty is that the Quillen model structure [20, Théorème 5.3] (see
also [21]) on dgcat is not compatible with the tensor product. Quoting Toën [22]:

The model category dgcat together with the symmetric monoidal struc-
ture −⊗− is not a symmetric monoidal category, as the tensor product
of two cofibrant objects in dgcat is not cofibrant in general. A direct con-
sequence of this fact is that the internal Hom object between cofibrant-
fibrant objects in dgcat can not be invariant by quasi-equivalences, and
thus does not provide internal Hom’s for the homotopy category Ho(dgcat).
This is the main difficulty in computing the mapping spaces in dgcat, as
the naive approach simply does not work.

In this article we solve this problem, using localizing pairs and Drinfeld’s explicit
dg quotient construction. We start by constructing in Theorem 4.18 a new Quillen
model Lp for the Morita homotopy category of dg categories. Its objects are the local-
ization pairs, i.e., the inclusions A0 ⊂ A1 of full dg subcategories, and a morphism
A → A′ is a weak equivalence if and only if it induces a Morita dg functor
A1/A0 → A′1/A′0 in Drinfeld’s dg quotient. We show in Proposition 5.4 that Lp car-
ries a natural closed symmetric monoidal structure (Lp,−⊗−, Hom(−,−)). Our first
main theorem asserts that, in contrast with the case of dgcat, the internal Hom-functor
of Lp admits a right derived functor:

Theorem 1.1 (see Theorem 6.4). The internal Hom-functor

Hom(−,−) : Lpop × Lp→ Lp,

admits a right derived functor

RHom(−,−) : Ho(Lpop × Lp)→ Ho(Lp).

We then relate the new Quillen model Lp with the Morita homotopy theory of dg
categories via the Quillen equivalence (see Proposition 7.1)

Lp

Ev1

²²
dgcat,

L

OO

where Ev1 associates to a localization pair (A0 ⊂ A1) the dg category A1 and L
associates to a dg category A the localization pair (∅ ⊂ A). Finally, we prove our
second main theorem, which asserts that our derived functor RHom(−,−) agrees
with Toën’s adhoc construction repdg(−,−) (see Remark 5.1):

Theorem 1.2 (see Theorem 7.2). The derived functors − L⊗− and RHom(−,−) in
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Ho(Lp) agree, under the equivalence

Ho(Lp)

REv1

²²
Ho(dgcat),

L

OO

with the functors − L⊗− and repdg(−,−) in Ho(dgcat) constructed previously by Toën.

In conclusion, the new Quillen model Lp provides a simple way to construct the
internal Hom-objects in Ho(dgcat). In contrast with Toën’s approach, requiring an
involved dg category of “right quasi-representable” bimodules (see Remark 5.1), when
using the model Lp it is enough to derive its natural internal Hom-functor (see Defini-
tion 5.2) which only makes use of dg categories of dg functors. We remind the reader
that the construction of the internal Hom-objects in Hmo was the main difficulty in
the development of Toën’s derived Morita theory [22, §7].

The new Quillen model Lp provides also a conceptual characterization of Toën’s
adhoc construction as a total derived functor. Intuitively, when we pass from dg
categories to localization pairs, we gain an “extra degree of freedom” which allows us
to perform derived constructions.

It is expected that, due to its “flexibility”, the Quillen model Lp will be used
in different contexts. For example, making use of it Lowen has recently developed
a derived deformation theory [12] analogous to the deformation theory for abelian
categories [13]

In the appendix we state a weaker form of the Bousfield-Friedlander localization
theorem, which is of independent interest (see Theorem A.4).
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2. Background on dg categories

In what follows, k will denote a field. The tensor product ⊗ will denote the tensor
product over k. Let Ch(k) denote the category of Z-graded complexes of k-modules.
We consider co-homological notation, i.e., the differential increases the degree. If M
is a complex, we will denote by M [1] its shift by one. Recall from [5, Theorem 2.3.11]
that Ch(k) carries a projective model structure, whose weak equivalences are the
quasi-isomorphisms and whose fibrations are the degreewise surjective maps. We now
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recall the notions concerning dg categories which will be used throughout the article.
For a survey article on dg categories consult Keller’s ICM adress [8].

Definition 2.1. [8, §2.2] A differential graded (=dg) category A consists of the fol-
lowing data:

- a class of objects obj(A) (usually denoted by A itself);

- for each ordered pair of objects (X, Y ) in A, a complex of k-modules
HomA(X, Y );

- for each ordered triple of objects (X, Y, Z) in A, a composition morphism in
Ch(k)

HomA(Y,Z)⊗ HomA(X,Y )→ HomA(X, Z),

satisfying the usual associativity condition;

- for any object X in A, a morphism k → HomA(X,X) in Ch(k), i.e., a unit
cocycle 1X of degree 0 in the complex HomA(X, X), satisfying the usual unit
condition with respect to the above composition.

Remark 2.2. If obj(A) is a set we say that A is a small dg category.

Definition 2.3. [8, §2.3] A dg functor F : A → B consists of the following data:

- a map obj(A)→ obj(B);

- for each ordered pair of objects (X, Y ) in A, a morphism in Ch(k)

F (X, Y ) : HomA(X,Y ) −→ HomB(FX, FY ),

satisfying the usual unit and associativity conditions.

Notation 2.4. We denote by dgcat the category of small dg categories.

Let A be a small dg category.

- The opposite dg category Aop of A has the same objects as A and complexes of
morphisms

HomAop(X, Y ) := HomA(Y,X),

where the composition of f ∈ HomAop(X,Y )p with g ∈ HomAop(Y,Z)q is given
by (−1)pqfg.

- The category Z0(A) has the same objects as A and morphisms given by

HomZ0(A)(X,Y ) := Z0(Hom(X,Y )),

where Z0 is the kernel of d : HomA(X,Y )0 → HomA(X, Y )1.

- The homotopy category H0(A) has the same objects as A and morphisms given
by

HomH0(A)(X, Y ) := H0(Hom(X, Y )),

where H0 is the 0-th cohomology of the complex HomA(X,Y ).
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Notation 2.5. We say that a morphism f : X → Y in Z0(A) is a homotopy equivalence
if it becomes invertible in H0(A). Two objects X and Y in A are homotopy equivalent
if there exists a homotopy equivalence between the two.

An object X in a dg category A is called contractible if the dg algebra HomA(X,X)
is acyclic. Notice that X is contractible if and only if the unit cocycle 1X is a cobound-
ary in the complex HomA(X,X).

Definition 2.6. [8, §3.1] A right dg A-module M consists of the following data:
- for each object X in A, a complex of k-modules M(X);
- morphisms of complexes

M(Y )⊗ HomA(X, Y ) −→M(X) X,Y ∈ A,

compatible with compositions and units.

Remark 2.7. A left dg A-module is by definition a right dg Aop-module.

Notation 2.8. [8, §3.1] We denote by Cdg(A) the dg category of right dg A-modules
and by

:̂ A → Cdg(A)
X 7→ X̂ := HomA(?, X)

the Yoneda dg functor, which associates to X its representable dg A-module X̂.

Definition 2.9. A dg category A is stable under cones if the following condition
holds:

- for each morphism f : A→ B of Z0(A), there is an object cone(f) of A and an
isomorphism of right dg A-modules

̂cone(f) ∼−→ cone(f̂),

where cone(f̂) denotes the cone of f̂ in Cdg(A).

Remark 2.10. Notice that a morphism f : X → Y in Z0(A) is a homotopy equivalence
if and only if cone(f̂) is contractible in Cdg(A).

Recall from [1] or [3, §2.4] the construction of the functorial pre-triangulated envelope
pre-tr(A) of a dg category A. The idea of the construction is to formally add to
A all cones, cones of morphisms between cones, . . . . The objects of pre-tr(A) are
formal expressions C = (

⊕n
i=0 Ci[ri], q), where Ci ∈ A, ri ∈ Z, n > 0, q = (qij), qij ∈

Hom1
A(Cj , Ci)[ri − rj ], qij = 0 for i > j, and dq + q2 = 0. The complex of morphisms

Hompre-tr(A)(C, C ′) is the space of matrices f = (fij), fij ∈ Hom(Cj , C
′
i)[r

′
i − rj ], and

the composition map is given by matrix multiplication. As is shown in [1], one has
a canonical fully-faithful dg functor pre-tr(A)→ Cdg(A). In what follows we identify
the dg category pre-tr(A) with its image in Cdg(A).

2.1. Quasi-equivalences
It is proven in [21, Théorème 2.1] and in [18, Proposition 1.13] that the category

dgcat admits a cofibrantly generated Quillen model structure whose weak equivalences
and fibrations are as follows:
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Definition 2.11. A dg functor F : A → B is a quasi-equivalence if:

- the morphism of complexes

F (X,Y ) : HomA(X, Y )→ HomB(FX, FY )

is a quasi-isomorphism for all objects X, Y ∈ A and

- the induced functor H0(F ) : H0(A)→ H0(B) is essentially surjective.

Definition 2.12. A dg functor F : A → B is a fibration if:

(F1) for all objects X,Y ∈ A, the induced morphism of complexes

F (X, Y ) : HomA(X, Y )→ HomB(FX, FY )

is a degreewise surjection and

(F2) given an object X in A and a homotopy equivalence v : F (X)→ Y in B (see
Notation 2.5), there exists a homotopy equivalence u : X → X ′ in A, such that
F (X ′) = Y and F (u) = v.

Remark 2.13. Since the terminal object in dgcat is the zero category 0 (one object
and trivial dg algebra of endomorphisms), Definition 2.12 implies that every object
in dgcat is fibrant.

The cofibrations are defined by left lifting property with respect to the class of
trivial fibrations. An explicit set I = {Q,S(n)} of generating cofibrations is given as
follows (see [21, §2]):

Definition 2.14 (Generating cofibrations). (i) Let k be the dg category with one
object 3, such that Homk(3, 3) := k (in degree zero) and Q : ∅ → k the unique dg
functor (where the empty dg category ∅ is the initial object in dgcat).

(ii) For n ∈ Z, let Sn be the complex k[n] (with k concentrated in degree n) and let
Dn be the mapping cone on the identity of Sn−1. We denote by C(n) the dg category
with two objects 4 and 5 such that

HomC(n)(4, 4) = HomC(n)(5, 5) = k, HomC(n)(5, 4) = 0, HomC(n)(4, 5) = Sn,

and with composition given by multiplication. We denote by P(n) the dg category
with two objects 6 and 7 such that

HomP(n)(6, 6) = HomP(n)(7, 7) = k, HomP(n)(7, 6) = 0, HomP(n)(6, 7) = Dn,

and with composition given by multiplication. Finally, let S(n) : C(n− 1)→ P(n) be
the dg functor that sends 4 to 6, 5 to 7 and Sn−1 to Dn by the identity on k in degree
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n− 1:

C(n− 1)
S(n) // P(n)

1

k

¦¦

Sn−1

²²

Â // 3

k

¦¦

Dn

²²

incl //

2

k

EE
Â // 4

k

EE

where

Sn−1 incl // Dn

0 //

²²
0
²²

0 //

²²
k

id²²
k

id //

²²
k

²²

(degree n−1)

0 // 0

Recall from [22, Proposition 2.3] that if A is a cofibrant dg category then for
all objects X, Y ∈ A, the complex HomA(X, Y ) is cofibrant in the projective model
structure on Ch(k).

2.2. Morita dg functors
We have also constructed in [20, Théorème 5.3] a cofibrantly generated Morita

model structure on dgcat whose weak equivalences are the Morita dg functors, i.e., the
dg functors F : A → B which induce an equivalence D(A) ∼→ D(B) between derived
categories. Notice that a quasi-equivalence is a particular case of a Morita dg functor.

Notation 2.15. We will denote by Hmo the Morita homotopy category of dg categories
obtained.

The Morita model structure has the same cofibrations and fewer fibrations than
the model structure of subsection 2.1. In particular, its set of generating cofibrations
is the one of Definition 2.14. Its set

J = {F (n), R(n), In(k0, . . . , kn), Lhn(k0, . . . , kn), C}
of generating trivial cofibrations is given as follows (see [18, §2]):

Definition 2.16 (Generating trivial cofibrations). (i) Let B be the dg category with
two objects 8 and 9 such that

HomB(8, 8) = HomB(9, 9) = k, HomB(8, 9) = HomB(9, 8) = 0,

and with composition given by multiplication. For n ∈ Z, we denote by
R(n) : B → P(n) the dg functor that sends 8 to 6 and 9 to 7.

(ii) For n ∈ Z, let K(n) be the dg category with two objects 1 and 2, and complexes
of morphisms generated by the morphisms f ∈ HomK(n)(1, 2)n, g ∈ HomK(n)(2, 1)−n,
r1 ∈ HomK(n)(2, 2)−1, r2 ∈ HomK(n)(2, 2)−1 and r12 ∈ HomK(n)(1, 2)n−1

1r1 ::

f
((

r12

¹¹
2 r2dd

g

hh

subject to the relations d(f) = d(g) = 0, d(r1) = g ◦ f − 11, d(r2) = f ◦ g − 12 and
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d(r12) = f ◦ r1 − r2 ◦ f . We denote by F (n) : k → K(n) the dg functor that sends
3 to 1. When n = 0, K(0) is denoted by K and F (0) by F .

(iii) For n > 0 and k0, . . . , kn ∈ Z, letMn(k0, . . . , kn) be the dg category with n + 1
objects 0, . . . , n and complexes of morphisms generated by the morphisms qi,j , 0 6
j < i 6 n, (from j to i of degree ki − kj + 1) subject to the relations

d(Q) + Q2 = 0,

where Q is the lower triangular matrix with coefficients qi,j . We denote by
conen(k0, . . . , kn) the full dg subcategory of right dgMn(k0, . . . , kn)-modules whose
objects are l̂, 0 6 l 6 n (see Notation 2.8) and the iterated cone Xn, i.e., the graded
module

X =
n⊕

l=0

l̂[kl]

with differential dX + Q̂. Let L : k → conen(k0, . . . , kn) be the dg functor that sends
3 to Xn. Consider the following pushout

k

F

²²

L //

y

conen(k0, . . . , kn)

²²

K // conen(k0, . . . , kn)q
k
K.

We define conehn(k0, . . . , kn) as the full dg subcategory of the pushout, whose objects
are the images of the objects l̂, 0 6 l 6 n, in conen(k0, . . . , kn) and of the object 2
in K. Finally, we denote by In(k0, . . . , kn) the dg functor from Mn(k0, . . . , kn) to
conehn(k0, . . . , kn).

(iv) For n > 0 and k0, . . . , kn, let idemn(k0, . . . , kn) be the dg category obtained
fromMn(k0, . . . , kn) by adding new generators and new relations: we add morphism
ei,j , 0 6 i, j 6 n (from j to i of degree ki − kj) subject to the relations

d(E) = 0 and E2 = E,

where E is the matrix with coefficients ei,j . We denote by factn(k0, . . . , kn) the full
dg subcategory of right dg idemn(k0, . . . , kn)-modules whose objects are l̂, 0 6 l 6 n,
and the direct factor associated to the idempotent Ê if the iterated cone Xn. Let
Ln(k0, . . . , kn) be the natural dg functor from idemn(k0, . . . , kn) to factn(k0, . . . , kn).
We consider Ln(k0, . . . , kn) as an object in the category of morphisms in dgcat,
endowed with the canonical model structure (weak equivalences are quasi-equivalences
in each component). Finally, we choose a cofibrant replacement

Lhn(k0, . . . , kn) : idemhn(k0, . . . , kn) −→ facthn(k0, . . . , kn)

of that object.
(v) Let B0 be the dg category with one object 10, and complexes of morphisms

generated by the morphism h ∈ HomB0(10, 10)−1 subject to the relation d(h) = 110.
We denote by C : ∅ → B0 the unique dg functor.
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Finally, recall that the Morita fibrant dg categories admit the following simple
characterization.

Proposition 2.17. [18, Proposition 2.34] The Morita fibrant dg categories are the
non-empty dg categories whose essential image of the embedding :̂ H0(A) ↪→ D(A) is
stable under (co)suspensions, cones and direct factors.

3. Homotopy of dg functors

In this chapter we consider always the model structure on dgcat whose weak equiv-
alences are the quasi-equivalences (Definition 2.11). Let B be a small dg category.

Definition 3.1. Let P (B) be the dg category defined as follows: its objects are the
degree zero morphisms in B

X
f−→ Y

which become invertible in H0(B). The complexes of morphisms are defined (as Z-
graded k-vector spaces)

HomP (B)(X
f→ Y,W

g→ Z) := HomB(X,W )⊕ HomB(Y, Z)⊕ HomB(X,Z)[1].

Notice that a homogenous element of degree r of the above Z-graded k-vector space,
can be represented by a matrix [

m1 0
h m2

]
,

where m1 ∈ HomB(X, W )r,m2 ∈ HomB(Y, Z)r and h ∈ HomB(X, Z)r−1. With this
notation, the differential is defined as

d(
[
m1 0
h m2

]
) :=

[
d(m1) 0

d(h) + g ◦m1 − (−1)r(m2 ◦ f) d(m2)

]
.

Composition in P (B) corresponds to matrix multiplication and the units to the iden-
tity matrices.

Remark 3.2. Notice that the complex of morphisms

HomP (B)(X
f→ Y, W

g→ Z)

corresponds to the homotopy pull-back, in Ch(k), of the diagram

HomB(Y, Z)

f∗

²²
HomB(X,W )

g∗
// HomB(X,Z).

Moreover we have an inclusion dg functor

i : B −→ P (B)

which maps an object X ∈ B to (X = X) and a projection dg functor

p0 × p1 : P (B) −→ B × B
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which maps an object (X
f→ Y ) to (X,Y ). In conclusion, we have the following com-

mutative diagram in dgcat

B ∆ //

i !!CC
CC

CC
CC

B × B

P (B)
p0×p1

::vvvvvvvvv
.

Proposition 3.3. The dg category P (B) is a path object for B (i.e., i is a weak
equivalence and p0 × p1 a fibration).

Proof. We prove first that the dg functor i is a quasi-equivalence (Definition 2.11).
Notice that the dg functor i induces a quasi-isomorphism in Ch(k)

HomB(X, Y ) ∼−→ HomP (B)(i(X), i(Y )),

for all objects X, Y ∈ B. We now show that the functor H0(i) is also essentially

surjective. In fact, let X
f→ Y be an object of P (B). Consider the following morphism

in P (B) from i(X) to X
f→ Y ,

X
Id //

h=0

X

f

²²
X

f
// Y.

Notice that this morphism in P (B) becomes an isomorphism in H0(P (B)) since f
becomes invertible in H0(B). This shows that the dg functor i is a quasi-equivalence.
We now prove that the dg functor p0 × p1 is a fibration (Definition 2.12). Notice first,
that by definition of P (B), the dg functor p0 × p1 induces a degreewise surjective
morphism in Ch(k)

HomP (B)(X
f→ Y, W

g→ Z)
p0×p1 // // HomB(X, W )× HomB(Y,Z),

for all objects X
f→ Y and W

g→ Z in P (B). This shows condition (F1).

We now show that contractions lift along the dg functor P (B)
p0×p1−→ B × B. Let

X
f→ Y be an object of P (B). Notice that a contraction of X

f→ Y in P (B) corresponds
exactly to the following morphisms in B: cX ∈ Hom−1

B (X,X), cY ∈ Hom−1
B (Y, Y ) and

h ∈ Hom−2
B (X,Y ) subject to the relations d(cX) = 1X , d(cY ) = 1Y and

d(h) = cY ◦ f + f ◦ cX . Suppose that we have a contraction (c1, c2) of (X, Y ) in
B × B. Notice that we can lift it by considering cX = c1, cY = c2 and h = c2 ◦ f ◦ c1.
Moreover, since we have the following equivalence of dg categories

pre-tr(P (B)) ∼−→ P (pre-tr(B)),

contractions lift also along the dg functor pre-tr(p0 × p1). This allows us to prove

condition (F2) as follows: let X
f→ Y be an object in P (B) and M a degree zero

morphism in B × B from (p0 × p1)(f) to (W,Z) which becomes invertible in
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H0(B × B). Since p0 × p1 satisfies condition (F1), there exists an object W
g→ Z in

P (B) and a morphism M in HomP (B)(X
f→ Y, W

g→ Z) such that (p0 × p1)(M) = M .
Notice that the cone of M̂ is sent to the cone of M̂ by the dg functor pre-tr(p0 × p1).
Finally, since contractions lift along pre-tr(p0 × p1) and the cone of M̂ is contractible,
Remark 2.10 allows us to conclude that M is a homotopy equivalence. This finishes
the proof.

Let A be a cofibrant dg category and F,G : A → B dg functors. Since every dg
category is fibrant the dg functors F and G are homotopic (see [6, Definition 7.3.2])
if and only if there exists a dg functor H : A → P (B) that makes the following diagram
commute

B

A H //

F

==zzzzzzzzz

G !!DD
DD

DD
DD

D P (B)

P0

OO

P1

²²
B.

Remark 3.4. Note that a dg functor H as above corresponds exactly to:

- a morphism ηA : F (A)→ G(A) of Z0(B) which becomes invertible in H0(B) for
all A ∈ A (but which will not be functorial in A, in general) and

- a morphism of graded k-vector spaces, homogeneous of degree −1

h = h(A, B) : HomA(A,B)→ HomB(F (A), G(B)),

for all A,B ∈ A such that we have

(ηB)(F (f))− (G(f)(ηA) = d(h(f)) + h(d(f))

and

h(fg) = h(f)(F (g)) + (−1)n(G(f))h(g)

for all composable morphisms f, g of A, where f is of degree n.

It is shown in [9, §3.3] that if we have a dg functor H as above and the dg category
B is stable under cones (Definition 2.9), we can construct a sequence of dg functors

F → I → G[1],

where I(A) is a contractible object (Notation 2.5) of B, for all A ∈ B.

4. The new Quillen model

In this chapter we construct the new Quillen model Lp (see Theorem 4.18) and
characterize its fibrant objects (see Proposition 4.23).

Definition 4.1. A localization pair A is given by a small dg category A1 and a full
dg subcategory A0 ⊂ A1. A morphism F : A → B of localization pairs is given by a
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commutative square
A0

F0

²²

Â Ä // A1

F1

²²
B0

Â Ä // B1

of dg functors.

Notation 4.2. We denote by Lp the category of localization pairs.

Notation 4.3. Let A be a localization pair. We denote by A1/A0 its Drinfeld’s dg
quotient of A, see [3, §3.1]. Recall that it consists of the dg category obtained from
A1 by introducing a new morphism εU of degree −1 for every object U in A0 and
by imposing the relation d(hU ) = 1U . The dg category A1/A0 has the same objects
as A1 and for objects X, Y ∈ A1, we have an isomorphism of graded k-vector spaces
(but not an isomorphism of complexes)

∞⊕
n=0

Homn
A1/A0

(X,Y ) ∼−→ HomA1/A0(X, Y ),

where Homn
A1/A0

(X, Y ) is the direct sum of tensor products

HomA1(X, U1)⊗ k[1]⊗ HomA1(U1, U2)⊗ · · · ⊗ k[1]⊗ HomA1(Un, Y )︸ ︷︷ ︸
n factors k[1]

,

with Ui ∈ A0 for 1 6 i 6 n. If we denote by ε the canonical generator of k[1], the
differential of an element

f1 ⊗ ε⊗ f2 ⊗ · · · ⊗ ε⊗ fn+1︸ ︷︷ ︸
n factors ε

is equal to

d(f1)⊗ ε⊗ f2 ⊗ · · · ⊗ ε⊗ fn+1 + (−1)|f1|f1 ⊗ 1U1 ⊗ · · · ⊗ ε⊗ fn+1︸ ︷︷ ︸
(n−1) factors ε

+ · · · .

This implies that, for every j > 0, the sum
j⊕

n>0

Homn
A1/A0

(X, Y ) ↪→ HomA1/A0(X,Y )

is a subcomplex and so we obtain an exhaustive filtration of HomA1/A0(X, Y ).

4.1. Morita model structure
Let L be the category with two objects 0 and 1 and with a unique non identity

morphism 0→ 1.

Remark 4.4. An immediate application of [6, Theorem 11.6.1] implies that the cate-
gory dgcatL, i.e., the category of morphisms in dgcat, admits a structure of cofibrantly
generated model category whose weak equivalences W are the levelwise Morita dg
functors.
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Recall from Definitions 2.14 and 2.16, the sets of generating (trivial) cofibrations
for the Morita model structure. Following [6, Theorem 11.6.1] we denote by FL

I , resp.
by FL

J , the generating cofibrations, resp. generating trivial cofibrations in dgcatL.
The functor Fi

?, i = 0, 1, from dgcat to dgcatL is by definition the left adjoint of
the evaluation functor Evi, i = 0, 1, from dgcatL to dgcat. More precisely, if A is a
dg category then F0

A = (A = A) and F1
A = (∅ → A), where ∅ denotes the empty dg

category. Notice that we have FL
I = F0

I ∪ F1
I and FL

J = F0
J ∪ F1

J .
The inclusion functor U : Lp→ dgcatL admits a left adjoint S which sends an

object G : B0 → B1 to the localization pair formed by B1 and its full dg subcategory
ImG, whose objects are those in the image of G.

Proposition 4.5. The category Lp admits a structure of cofibrantly generated Quillen
model category whose weak equivalences W are the levelwise Morita dg functors and
with generating cofibrations FL

I and generating trivial cofibrations FL
J .

Proof. The proof will consist on verifying the conditions of Theorem A.1 using the
adjunction (S, U). We show first that Lp is complete and cocomplete. Let {Xi}i∈I be
a diagram in Lp. Notice that the object S(colim

i∈I
U(Xi)) in dgcatL has the universal

property which characterizes the colimit of the diagram {Xi}i∈I in Lp. This shows us
that the category Lp is cocomplete. It is also complete, since it is stable under products
and equalizers as a full subcategory of dgcatL. We now prove that conditions (1) and
(2) of Theorem A.1 are satisfied:

(1) Since S(FL
I ) = FL

I and S(FL
J ) = FL

J condition (1) is verified.

(2) Since the functor U commutes with filtered colimits, it is enough to prove the
following: Let Y

G→ Z be an element of the set FL
J , X an object in Lp and

Y → X a morphism in Lp. Consider the following pushout in Lp:

Y //

G

²²
y

X

G∗
²²

Z // Z
∐
Y

X

We prove that U(G∗) is a weak equivalence in dgcatL. We consider two situa-
tions:

- if G belongs to the set F0
J ⊂ FL

J , then U(G∗) is a weak equivalence simply
because the class J-cell consists of Morita dg functors, see [18, Lemma 2.33].

- if G belongs to the set F1
J ⊂ FL

J , then Ev1(U(G∗)) is a Morita dg functor.
In particular it induces a quasi-isomorphism in the Hom-spaces. Since the
0-component of G∗ is the identity map on objects, the functor Ev0(U(G∗))
is also a Morita dg functor. This implies that U(G∗) is a weak equivalence
in Lp and so condition (2) is proven.

We will now slightly modify the previous Quillen model structure on Lp. This will
furnish us convenient fibrant objects, see Lemma 4.11. Recall from Definition 2.16(ii)
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the construction of the dg category K:

1r1 ::

f
((

r12

¹¹
2 r2dd

g

hh

Proposition 4.6. [18, Proposition 1.7] Let B be a dg category. There is a natural
bijection

F : K −→ B 7→
(

s = F (f), h =

[
F̂ (r2) F̂ (r12)
F̂ (g) F̂ (r1)

])

between the set of dg functors from K to B and the set of couples (s, h), where s
belongs to Z0(B) and h is a contraction of cone(ŝ) in Cdg(B).

Remark 4.7. Let B be a dg category and f : X → Y a morphism in Z0(B). Recall
from Remark 2.10 that f is a homotopy equivalence (Notation 2.5) if and only if
cone(f̂) is contractible in Cdg(B). Therefore, if f is a homotopy equivalence, choosing
a contraction of cone(f̂) provides us with a dg functor from K to B.

Now, let σ be the morphism of localization pairs:

(EndK(1) Â Ä //

inc

²²

K)

(K K),

where EndK(1) is the dg algebra of endomorphisms of the object 1 in K and inc is
the inclusion dg functor. Since the objects 1 and 2 are homotopy equivalent in K, the
morphism σ is a levelwise Morita dg functor. We write F̃L

I , resp. F̃L
J , for the union

of {σ} with FL
I , resp. with FL

J .

Proposition 4.8. The category Lp admits a structure of cofibrantly generated Quillen
model category whose weak equivalences W are the levelwise Morita dg functors and
with generating cofibrations F̃L

I and generating trivial cofibrations F̃L
J .

Proof. The proof will consist on verifying the conditions (1)− (6) of the recogni-
tion Theorem A.2. Clearly the class W has the two out of three property and is
closed under retracts. This shows condition (1). Notice that the localization pair
(EndK(1) ⊂ K) is small in Lp, i.e., the functor HomLp((EndK(1) ⊂ K),−) commutes
with filtered colimits. This implies that the domains of F̃L

I , resp. of F̃L
J , are small

relative to F̃L
I -cell, resp. to F̃L

J -cell, and so conditions (2) and (3) are also satisfied.
We have

FL
I -inj = FL

J -inj ∩W

and so by construction
F̃L

I -inj = F̃L
J -inj ∩W.

This shows conditions (5) and (6). We now prove that F̃L
J -cell ⊂W . Since FL

J -cell ⊂
W and the class W is stable under transfinite compositions (see [6, Definition 10.2.2])
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it is enough to prove that pushouts with respect to σ belong to W . Let A be a
localization pair and

T : (EndK(1) ⊂ K)→ (A0 ⊂ A1)

a morphism in Lp. Consider the following pushout in Lp:

(EndK(1) ⊂ K) T //

σ

²²
y

(A0 ⊂ A1)

R

²²
(K = K) // (U0 ⊂ U1).

Notice that by Proposition 4.6 and Remark 4.7, the morphism T corresponds to
specifying a homotopy equivalence f in A1 from an object X, belonging to A0, to
an object Y and a contraction of cone(f̂) in Cdg(A1). Observe that U1 = A1 and
that U0 identifies with the full dg subcategory of U1 whose objects consist of Y and
those of A0. Since X and Y are homotopy equivalent, the dg functor R0 : A0 ↪→ U0

is a quasi-equivalence (Definition 2.11). This proves condition (4) and so the proof is
finished.

From now on and until the end of this subsection, by Quillen model structure on
Lp we mean that of Proposition 4.8.

Remark 4.9. In this new Quillen model structure on Lp we have more cofibrations
and fewer fibrations than the Quillen model structure of Proposition 4.5 since the
weak equivalences are the same.

We now give an example showing that our Quillen model structure on Lp is not
right proper [6, Definition 13.1.1]. This was the main reason for considering a weaker
form of Bousfield localization theorem, see Theorem A.4.

Example 4.10. We start by showing that the Morita model structure on dgcat is not
right proper: let A be any Morita fibrant dg category whose derived category D(A)
is not trivial. In particular the dg functor P : A → 0, where 0 denotes the terminal
object in dgcat is a fibration. Let k be the dg category of Definition 2.14(i). Consider
the following diagram:

A
i0◦P²²²²

k
jk

// 0
∐

k.

Notice that jk is a Morita dg functor and that the dg functor i0 ◦ P is a fibration,
since it has the R.L.P. with respect to the set J of generating trivial cofibrations (see
subsection 2.2). This implies that in the fiber product

∅

²²

//

p

A
i0◦P

²²²²
k

jk

// 0
∐

k,
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the dg functor ∅ → A is not a Morita dg functor and so the Morita model structure
on dgcat is not right proper.

As a consequence, the Quillen model structure on Lp is also not right proper: by
applying the functor F0

? from dgcat to Lp, we obtain the following fiber product:

∅ = F0
∅

p

//

²²

F0
A

F0
i0◦P²²²²

F0
k

F0
jk

// F0
0
‘

k.

The morphism F0
jk

is a weak equivalence in Lp. Notice that the morphism F0
i0◦P

belongs to σ-inj ∩ FL
J -inj and so it is a fibration in Lp. Since the morphism ∅ → F0

A
is not a levelwise Morita dg functor we conclude that the Quillen model structure on
Lp is not right proper.

Lemma 4.11. A localization pair (A0 ⊂ A1) is fibrant in Lp if and only if A0 and A1

are Morita fibrant dg categories (Proposition 2.17) and A0 is stable under homotopy
equivalences (Notation 2.5) in A1.

Proof. A localization pair (A0 ⊂ A1) is fibrant in Lp if and only if for every morphism
F in F̃L

J , the following extension problem in Lp is solvable:

X //

F

²²

(A0 ⊂ A1)

Y

::t
t

t
t

t
.

If F belongs to FL
J this means that A0 and A1 are Morita fibrant dg categories. If

F = σ, Remark 4.7 shows us that this corresponds exactly to the statement that A0

is stable under homotopy equivalences in A1.

Lemma 4.12. If the localization pair A is cofibrant in Lp then A1 is cofibrant in
dgcat.

Proof. We need to construct a lift to the following problem:

C
P∼

²²²²
A1

// B,

where P is a trivial fibration in dgcat and A1 → B is a dg functor. Consider the
following diagram in Lp:

F0
C

∼ F0
P²²²²

A //

??

F0
B.

where A → F0
B is the natural morphism of localization pairs. Notice that F0

P belongs
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to σ-inj ∩ FL
I − inj and so it is a trivial fibration in Lp. Since A is cofibrant in Lp we

have a lifting A → F0
C , whose restriction to the 1-component, gives us the desired lift

A1 → C. This proves the lemma.

4.2. Q-model structure
Definition 4.13. Let Q : Lp→ Lp be the functor that sends a localization pair
A = (A0 ⊂ A1) to the localization pair

A0 ↪→ A1/A0,

where A0 is the full dg subcategory of A1/A0 (Notation 4.3) whose objects are those
of A0.

Remark 4.14. Notice that we have a natural morphism

ηA : (A0 ⊂ A1)→ (A0 ⊂ A1/A0) A ∈ Lp.

Definition 4.15. A morphism of localization pairs F : A → B is a Q-weak equivalence
if the induced morphism Q(F ) is a weak equivalence in the Quillen model structure
of Proposition 4.8.

Remark 4.16. Observe, that since the objects of A0 and B0 are all contractible (Nota-
tion 2.5), the dg functor A0 → B0 is a Morita dg functor and so the morphism F is a
Q-weak equivalence if and only if the induced dg functor A1/A0 → B1/B0 is a Morita
dg functor.

Definition 4.17. A morphism in Lp is a cofibration if it is one for the Quillen model
structure of Proposition 4.8 and it is a Q-fibration if it has the right lifting property
with respect to all cofibrations of Lp which are Q-weak equivalences.

Theorem 4.18. The category Lp admits a Quillen model category structure, whose
weak equivalences are the Q-weak equivalences, whose cofibrations are those of Lp and
whose fibrations are the Q-fibrations.

Notation 4.19. We denote by Ho(Lp) the homotopy category obtained.

Proof. The proof will consist on verifying the conditions (A0)-(A3) of Theorem A.4.

(A0) Let A be a localization pair such that the morphism

ηA : A ∼−→ Q(A)

is a weak equivalence in Lp and F : W → Q(A) a fibration in Lp. We now show
that the morphism

η∗A : A ×
Q(A)

W ∼−→W

is a weak equivalence in Lp.
We start by observing that each component of the morphism ηA induces the
identity map on objects. Since fiber products in Lp are calculated levelwise, we
conclude that each component of the morphism η∗A induces the identity map on
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objects. Let X and Y be arbitrary objects of W1. We have the following fiber
product in Ch(k):

HomW1 ×
A1/A0

A1(X, Y ) //

η∗(F1X,F1Y )

²²
p

HomA1(F1X, F1Y )

∼ η(F1X,F1Y )

²²
HomW1(X,Y )

F1(X,Y )
// // HomA1/A0(F1X, F1Y ).

Since F is a fibration in Lp, F1(X, Y ) is a fibration in the projective model
structure on Ch(k) and since this model structure is right proper, η∗(F1X, F1Y )
is a quasi-isomorphism. The same argument can be done for objects X and Y
in W0 instead of W1. This proves condition (A0).

(A1) Since k is a field, every complex in Ch(k) is k-flat and so by [3, Theorem 3.4]
the functor Q preserves weak equivalences.

(A2) The morphisms of localization pairs:

Q(A)
ηQ(A) //
Q(ηA)

// QQ(A)

are weak equivalences in Lp. This follows automatically from the following two
facts: in both cases we are introducing contractions to objects that are already
contractible and the functor Q induces the identity map on objects.

(A3) Let A be a localization pair and F : Z → Q(A) a Q-fibration in Lp. We now
show that the induced morphism

η∗A : A ×
Q(A)

Z −→ Z

is a Q-weak equivalence in Lp. We need to prove that Q(η∗A) is a weak equivalence
in Lp. The proof is divided in two parts:
(1) We start by proving that the induced morphism:

Q(ηA)∗ : Q(A) ×
QQ(A)

Q(Z) −→ Q(Z)

is a weak equivalence in Lp. Notice that since F is a Q-fibration, it is also a
fibration in Lp and so the dg functors F0 and F1 are fibrations in the Morita
model structure. In particular, F0 and F1 have the right lifting property with
respect to the dg functors R(n), n ∈ Z, (see Definition 2.16(i)) and so they are
degreewise surjective at the level of Hom-spaces. We now show that the dg
functor F0 : Z0 → A0 induces a surjective map on objects. Since every object X
in A0 is contractible (Notation 2.5) and the dg functor F0 has the right lifting
property with respect to the dg functor C (see Definition 2.16(v)), there exists
an object Y in Z0 such that F0(Y ) = X. This implies that each component of
the morphism

Q(F ) : Q(Z) −→ QQ(A)

is a degreewise surjective dg functor at the level of Hom-spaces. By condition
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(A2), the morphism
(QηA) : Q(A) −→ QQ(A)

is a weak equivalence and so an argument analogous to the one of the proof of
condition (A0) (we have just proved that F1(X, Y ) is a fibration in the projective
model structure on Ch(k)), implies condition (1).
(2) We now prove that the induced morphism:

Q(Z ×
Q(A)

A) −→ Q(Z) ×
QQ(A)

Q(A)

is an isomorphism in Lp. By construction, the functor Q induces the identity
map on objects and so both components of the above morphism induce also
the identity map on objects. We now consider the 1-component of the above
morphism. Let X and Y be objects of Z1/Z0. We have the following fiber
product in Ch(k):

HomZ1/Z0 ×
(A1/A0)/A0

A1/A0(X, Y ) //

²²
p

HomA1/A0(F1(X), F1(Y ))

QηA

²²
HomZ1/Z0(X, Y )

QF1

// // Hom(A1/A0)/A0
(F1(X), F1(Y )).

Notice that the functor Q(ηA), resp. QF1, sends the contractions in A1/A0,
resp. in Z1/Z0, associated with the objects of A0, resp. of Z0, to the new
contractions in (A1/A0)/A0 associated with the objects of A0. Recall that we
have the following fiber product in Ch(k):

HomZ1 ×
A1/A0

A1(X,Y ) //

²²
p

HomA1(F1X, F1Y )

η

²²
HomZ1(X,Y )

F1

// // HomA1/A0(F1X, F1Y ).

The previous arguments and the above fiber product shows us that the induced
morphism

Hom(Z1 ×
A1/A0

A1)/(Z0 ×
A0

A0)(X, Y ) ∼−→ HomZ1/Z0 ×
(A1/A0)/A0

A1/A0(X, Y )

is an isomorphism in Ch(k). The same argument applies to the 0-component of
the above morphism. This proves condition (2). Now, conditions (1) and (2)
imply that the morphism

Q(η∗A) : Q(Z ×
Q(A)

A) −→ Q(Z)

is a weak equivalence in Lp, and so condition (A3) is proven.

4.3. Q-fibrant objects
Let A be a localization pair.
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Lemma 4.20. If A is fibrant, in the Quillen model structure of Proposition 4.8, and
the morphism ηA : A → Q(A) is a weak equivalence in Lp then A is Q-fibrant.

Proof. We need to show that the morphism A P→ 0 is a Q-fibration, where 0 denotes
the terminal object in Lp. Consider the following diagram:

A
P

²²

ηA // Q(A)

Q(P )

²²
0 η

// Q(0).

Factorize the morphism Q(P ) as

Q(A) i //

Q(P ) ##GG
GG

GG
GG

G Z
q

²²
Q(0),

where i is a trivial cofibration and q a fibration in Lp. Since ηZ : Z → Q(Z) is a weak
equivalence, Lemma A.5 implies that q is a Q-fibration. The morphism 0→ Q(0) is a
weak equivalence and so by condition (A0) the induced morphism 0 ×

Q(0)
Z → Z is a

weak equivalence. By hypothesis, the morphism ηA is a weak equivalence and so the
induced morphism

θ : A → 0 ×
Q(0)
Z

is also a weak equivalence. Factorize the morphism θ as

A j //

θ ""EEEEEEEE W
π

²²
0 ×

Q(0)
Z,

where π is a trivial fibration of Lp and j is a trivial cofibration. Then q∗ ◦ π is a
Q-fibration and so a lifting exists in the diagram:

A
j

²²

A
P

²²
W

>>

q∗◦π
// 0.

Thus P is a retract of a Q-fibration, and is therefore a Q-fibration itself. This proves
the lemma.

Lemma 4.21. If A is Q-fibrant, then A is fibrant in Lp and the morphism

ηA : A → Q(A)

is a weak equivalence.
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Proof. Since the Q-model structure on Lp has fewer fibrations than the Quillen model
structure of Proposition 4.8, the localization pair A is fibrant in Lp. Consider now
the following diagram:

A ηA //

P

²²

Q(A)

Q(P )

²²
0 η

// Q(0).

Factorize Q(P ) = q ◦ i as in the previous lemma. We have the following diagram:

A θ //

p

²²

0 ×
Q(0)
Z

q∗
||yy

yy
yy

yy
y

0 .

Since p and q∗ are Q-fibrations, A and Z are Q-fibrant objects in Lp and θ is a Q-weak
equivalence in Lp. By application of [6, Lemma 7.7.1 b)] to θ we conclude that θ is a
weak equivalence. Since i is also a weak equivalence, ηA is a weak equivalence and so
the proof is finished.

Remark 4.22. By Lemmas 4.20 and 4.21 a localization pair A is Q-fibrant if and only
if it is fibrant in Lp and the morphism

ηA : A −→ Q(A)

is a weak equivalence.

We now describe explicitly the Q-fibrant objects in Lp.

Proposition 4.23. A localization pair (A0 ⊂ A1) is Q-fibrant if and only if A1 is
a Morita fibrant dg category (Proposition 2.17), and A0 is the full dg subcategory of
contractible objects (Notation 2.5) in A1.

Proof. Suppose first that (A0 ⊂ A1) is Q-fibrant. Since it is also fibrant in Lp the dg
category A1 is fibrant in dgcat. The morphism

ηA : (A0 ⊂ A1) −→ (A0 ⊂ A1/A0)

is a weak equivalence and so all the objects of A0 are contractible. Moreover since A
is fibrant in Lp, Lemma 4.11 implies that A0 is stable under homotopy equivalences in
A1 and so A0 is in fact the full dg subcategory of contractible objects of A1. Consider
now a localization pair (A0 ⊂ A1) as in the statement of the proposition. Since A1 is
a Morita fibrant dg category so is A0. Notice that (A0 ⊂ A1) satisfies the extension
condition with regard to σ and that the morphism

η : (A0 ⊂ A1) −→ (A0 ⊂ A1/A0)

is a weak equivalence in Lp. This proves the proposition.
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5. Closed monoidal structure

In this chapter we construct a natural closed symmetric monoidal structure on our
new Quillen model Lp. Recall from [8, §2.3] that dgcat is a closed symmetric monoidal
category. For A and B small dg categories, we have:

- A tensor product category A⊗ B. Its set of objects is obj(A)× obj(B) and its
morphisms spaces are given by

HomA⊗B((X, Y ), (X ′, Y ′)) := HomA(X,X ′)⊗ HomB(Y, Y ′).

The composition and the units are induced from those of A and B.
- A dg category of dg functors Fundg(A,B). For two dg functors F,G : A → B, the

complex of graded morphisms HomFundg(A,B)(F,G) has as its nth component the
module formed by the families of morphisms

φX ∈ Homn
B(FX,GX)

such that (Gf)(φX) = (φY )(Ff) for all f ∈ HomA(X,Y ), X, Y ∈ A. The differ-
ential is induced by that of HomB(FX, GX).

Remark 5.1. As it is shown in [20, Remarque 5.11], the tensor product −⊗− on
dgcat can be naturally derived into a bi-functor

− L⊗− : Hmo× Hmo −→ Hmo.

However, as explained in the introduction, the bi-functor Fundg(−,−) can not be
naturally derived. By an adhoc procedure requiring an involved dg category of “right
quasi-representable” bimodules, Toën constructed in [22, Theorem 6.1] the internal
Hom-functor for the homotopy category Hmo. We will denoted it by repdg(−,−)
(notice that Toën used the misleading notation RHom(−,−)). Roughly, if A and B
are dg categories, repdg(A,B) is the full dg category of dg Ac ⊗ Bf -modules (where
Ac is a cofibrant resolution of A and Bf a fibrant resolution of B) whose objects are
the Ac-Bf -bimodules X such that, for every object A in Ac, the Bf -module X(?, A)
is isomorphic in the derived category D(Bf ) of Bf to a representable Bf -module
(Notation 2.8).

Definition 5.2. The internal Hom-functor in Lp

Hom(−,−) : Lpop × Lp −→ Lp,

associates to the localization pairs (A0 ⊂ A1), (B0 ⊂ B1) the localization pair:

(Fundg(A1,B0) ⊂ Fundg(A0,B0) ×
Fundg(A0,B1)

Fundg(A1,B1)).

Definition 5.3. The tensor product functor in Lp

−⊗− : Lp× Lp −→ Lp

associates to the localization pairs (A0 ⊂ A1), (B0 ⊂ B1) the localization pair:

(A0 ⊗ B1 ∪ A1 ⊗ B0 ⊂ A1 ⊗ B1),

where A0 ⊗ B1 ∪ A1 ⊗ B0 is the full dg subcategory of A1 ⊗ B1 consisting of those
objects a⊗ b of A1 ⊗ B1, such that a belongs to A0 or b belongs to B0.
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Let A = (A0 ⊂ A1), B = (B0 ⊂ B1) and C = (C0 ⊂ C1) be localization pairs.

Proposition 5.4. The category Lp endowed with the functors Hom(−,−) and −⊗−
is a closed symmetric monoidal category. In particular we have a canonical isomor-
phism in Lp:

HomLp(A⊗ B, C) ∼−→ HomLp(A, Hom(B, C)).
Proof. Consider the following commutative square in dgcat:

A0

²²

// Fundg(B1, C0)

²²

A1
// Fundg(B0, C0) ×

Fundg(B0,C1)
Fundg(B1, C1),

which corresponds exactly to an element of HomLp(A, Hom(B, C)). The category dgcat
endowed with the functors −⊗− and Fundg(−,−) is a closed symmetric monoidal
category and so by adjunction the above commutative square corresponds to the
following commutative square in dgcat:

A0 ⊗ B1 ×
A0⊗B0

A1 ⊗ B0

²²

// C0

²²
A1 ⊗ B1

// C1.
This commutative square can be seen simply, as a morphism in dgcatL from

A0 ⊗ B1 ×
A0⊗B0

A1 ⊗ B0 −→ A1 ⊗ B1

to the localization pair (C0 ⊂ C1). Notice that the dg functor

A0 ⊗ B1 ×
A0⊗B0

A1 ⊗ B0 → A1 ⊗ B1

induces an injective map on objects and that its image consists of those objects a⊗ b
of A1 ⊗ B1, such that a belongs to A0 or b belongs to B0. This implies that

Im(A0 ⊗ B1 ×
A0⊗B0

A1 ⊗ B0 → A1 ⊗ B1) = A⊗ B,

and by the adjunction (S, U) from subsection 4.1, this last commutative square in
dgcat corresponds exactly to an element of HomLp(A⊗ B, C). This finishes the proof.

Remark 5.5. Note that the unit object in Lp is the localization pair (∅ ⊂ k), where k
is the dg category with one object and whose dg algebra of endomorphisms is k.

6. Derived internal Hom-functor

In this chapter we prove our first main theorem (Theorem 6.4 below). Let A be a
cofibrant dg category and λ an infinite cardinal whose size is greater than or equal
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to the cardinality of the set of isomorphism classes of objects in the category H0(A).
Let B be a Morita fibrant dg category (Proposition 2.17). Recall that we denote by
:̂ B → Cdg(B) the Yoneda dg functor.

Definition 6.1. Let Bλ be the full dg subcategory of Cdg(B), whose objects are:

- the right dg B-modules M such that M ⊕D is representable for a contractible
right dg B-module D and

- the right dg B-modules of the form B̂ ⊕ C, where B is an object of B and the
right dg B-module C is a direct factor of

⊕
i∈S

cone(1cBi
), with Bi an object of B

and S a set of cardinality bounded by λ.

Let repdg(A,B) be the dg category as in Remark 5.1.

Remark 6.2. Notice that the Yoneda dg functor :̂ B → Bλ (Notation 2.8) is a quasi-
equivalence and that the objects of Bλ are cofibrant and quasi-representable as right
dg B-modules, see [22, Definition 4.1]. This implies that we have a dg functor:

Fundg(A,Bλ) := Fundg(A,Bλ)/Fundg(A, (Bλ)contr)
Φ−→ repdg(A,B),

where (Bλ)contr denotes the full dg subcategory of contractible objects.

Theorem 6.3. For a cofibrant dg category A, a Morita fibrant dg category B and an
infinite cardinal λ as above, the induced dg functor:

Fundg(A,Bλ)/Fundg(A, (Bλ)contr)
Φ−→ repdg(A,B),

is a quasi-equivalence (Definition 2.11).

Proof. We prove first that H0(Φ) is essentially surjective. We have the following
composition of dg functors

Fundg(A,B) I−→ Fundg(A,Bλ) Φ−→ repdg(A,B).

Since A is a cofibrant dg category, [22, Lemma 4.3] and [22, sub-Lemma 4.4] imply
that H0(Φ ◦ I) is essentially surjective and so we conclude that so is H0(Φ).

We now prove also that the functor H0(I) is essentially surjective. Let F : A → Bλ

be a dg functor. Since A is a cofibrant dg category and h is a quasi-equivalence, there
exists a dg functor F ′ : A → B such that F and h ◦ F ′ are homotopic in the Quillen
model structure on dgcat whose weak equivalences are the quasi-equivalences. Notice
that since B is a Morita fibrant dg category so is Bλ. In particular Bλ is stable under
cones up to homotopy (Proposition 2.17). Since a cone can be obtained from a cone
up to homotopy, by adding or factoring out contractible modules, we conclude that
by definition, Bλ is also stable under cones (Definition 2.9). By Remark 3.4, we have
a sequence of dg functors

F −→ I −→ h ◦ F ′[1],

such that I belongs to Fundg(A, (Bλ)contr). This implies that F and h ◦ F ′ become
isomorphic in H0(Fundg(A,Bλ)) and so the functor H0(I) is essentially surjective.
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Let us now prove that the functor H0(Φ) is fully-faithful. Let F be an object of
Fundg(A,Bλ). Since H0(I) is essentially surjective, we can consider F as belonging to
Fundg(A,B). We will construct a morphism of dg functors

F ′
µ−→ F,

where µ becomes invertible in H0(Fundg(A,Bλ)) and F ′ belongs to the left-orthogonal
of the category H0(Fundg(A, (Bλ)contr)), i.e.,

HomH0(Fundg(A,(Bλ)))(F ′, G) = 0,

for every G ∈ H0(Fundg(A, (Bλ)contr)). We denote by XF the A-B-bimodule naturally
associated to F . Consider XF as a left A-module and let PXF be the bar resolution
of XF . The left A-module PXF is also naturally a right B-module and is moreover
cofibrant in the projective model structure on the category of A-B-bimodules, see [22,
Definition 3.1]. Let A be an object of A. Since the dg category A is cofibrant in dgcat,
(PXF )(?, A) is cofibrant as a B-module. Observe that we have the following homotopy
equivalence

(PXF )(?, A) ∼
µA // // XF (?, A),

since both B-modules are cofibrant. This implies that the B-module (PXF )(?, A) is
isomorphic to a direct sum XF (?, A)⊕ C, where C is a contractible and cofibrant
B-module. The B-module C is isomorphic to a direct factor of a B-module

⊕

i∈S

(cone(1cBi
))[ni],

where S is a set whose cardinality is bounded by λ, Bi, i ∈ I is an object of B and
ni, i ∈ S is an integer. This implies, by definition of Bλ, that the B-module

XF (?, A)⊕ C

belongs to Bλ and so the A-B-bimodule PXF is in fact isomorphic to XF ′ for a dg
functor F ′ : A → Bλ. Notice that the previous construction is functorial in A and so
we have a morphism of dg functors

F ′
µ−→ F.

Since for each A in A, the morphism µA : F ′A→ FA is a retraction with contractible
kernel, the morphism µ becomes invertible in

H0(Fundg(A,Bλ)).

Now, let G be an object in Fundg(A, (Bλ)contr). We remark that

HomH0(Fundg(A,Bλ))(F ′, G) ∼−→ HomH(Aop⊗B)(PXF , XG),

where H(Aop ⊗ B) denotes the homotopy category of A-B-bimodules. Since PXF

is a cofibrant A-B-bimodule and XG(?, A) is a contractible B-module, for every
object A in A, the right hand side vanishes and F ′ belongs to the left-orthogonal
of H0(Fundg(A, (Bλ)contr)). This implies that the induced functor

H0(Fundg(A,Bλ)/Fundg(A, (Bλ)contr))→ H0(repdg(A,B))

is fully-faithful and so the proof is finished.
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Theorem 6.4. The internal Hom functor

Hom(−,−) : Lpop × Lp→ Lp,

admits a total right derived functor

RHom(−,−) : Ho(Lpop × Lp)→ Ho(Lp)

as in [6, Definition 8.4.7].

Proof. Let A and B be localization pairs. We are now going to define RHom(A,B)
and the morphism ε as in [6, Definition 8.4.7]. We denote by Ac

P→ A a functorial
cofibrant resolution of A in Lp and by B I→ Bf a functorial Q-fibrant resolution of B
in Lp. Remember, that by Proposition 4.23, Bf is of the form

Bf = ((Bf )contr ⊂ Bf ),

where Bf is a Morita fibrant dg category. Let λ be an infinite cardinal whose size is
greater or equal to the cardinality of the set of isomorphism classes in the category
H0((Ac)1). Consider now the following localization pair

(Bf )λ := (((Bf )λ)contr ⊂ (Bf )λ),

where (Bf )λ is as in Definition 6.1. Remark that we have a canonical weak equivalence
in Lp

Bf
F−→ (Bf )λ.

Now define
RHom(A,B) := Hom(Ac, (Bf )λ)

and consider for morphism ε the image in H0(Lp) of the following Q-equivalence in
Lp

η : (A,B)
(P,I)−→ (Ac,Bf )

(Id,F )−→ (Ac, (Bf )λ),

under the functor Hom(−,−).
We now show that the dg category associated with the localization pair

RHom(A,B) is canonically Morita equivalent to

repdg((Ac)1/(Ac)0,Bf ).

Notice that since Ac is a cofibrant object in Lp, Lemma 4.12 implies that (Ac)1 is
cofibrant in dgcat and so we have an exact sequence [8, Theorem 4.11]

(Ac)0 ↪→ (Ac)1 → (Ac)1/(Ac)0

in the Morita homotopy category of dg categories Hmo. Since the dg category (Bf )
is Morita fibrant, the application of the functor repdg(−,Bf ) to the previous exact
sequence induces a new exact sequence in Hmo

repdg((Ac)0,Bf )← repdg((Ac)1,Bf )← repdg((Ac)1/(Ac)0,Bf ).

Remember that:

Hom(Ac, (Bf )λ)1 = Fundg((Ac)0, ((Bf )λ)contr) ×
Fundg((Ac)0,(Bf )λ)

Fundg((Ac)1, (Bf )λ).
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Now, since the dg categories (Ac)1 and (Bf )λ satisfy the conditions of Theorem 6.3,
we have an inclusion of dg categories

Hom(Ac, (Bf )λ)1/Fundg((Ac)1, ((Bf )λ)contr) −→ repdg((Ac)1,Bf ).

Notice that this inclusion induces the following Morita equivalence

Hom(Ac, (Bf )λ)1/Fundg((Ac)1, ((Bf )λ)contr)
∼−→ repdg((Ac)1/(Ac)0,Bf ).

We now show that the functor RHom(−,−) preserves Q-weak equivalences in
Lpop × Lp. Consider a Q-weak equivalence

(A,B)→ (Ã, B̃),

in Lpop × Lp. By construction it will induce a Morita dg functor

(Ãc)1/(Ãc)0
∼−→ (Ac)1/(Ac)0

and also a Morita dg functor

Bf
∼−→ B̃f .

This implies that the induced dg functor

repdg((Ac)1/(Ac)0,Bf ) ∼−→ repdg((Ãc)1/(Ãc)0, B̃f )

is a Morita dg functor. Now observe that we have the following zig-zag of Q-weak
equivalences in Lp:

(Fundg((Ac)1, ((Bf )λ)contr) ⊂ Hom(Ac, (Bf )λ)1
↓

(Fundg((Ac)1, ((Bf )λ)contr) ⊂ Hom(Ac, (Bf )λ)1/Fundg((Ac)1, ((Bf )λ)contr))
↑

(∅ ⊂ Hom(Ac, (Bf )λ)1/Fundg((Ac)1, ((Bf )λ)contr)) .

This allows us to conclude that the functor RHom(−,−) preserves Q-weak equiva-
lences in Lpop × Lp. The proof is finished.

Proposition 6.5. Let A be a cofibrant object in Lp. The induced internal tensor
product (Definition 5.3) functor

A⊗− : Lp −→ Lp,

preserves Q-weak equivalences.

Proof. Let F : B → C be a Q-weak equivalence in Lp between cofibrant objects. We
prove that the induced morphism in Lp

A⊗ B F∗−→ A⊗ C,
is a Q-weak equivalence. By Lemma 4.12, A1, B1 and C1 are cofibrant dg categories
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in dgcat and so we have a morphism of exact sequences in Hmo:

B0

²²

Â Ä // B1

²²

// B1/B0

∼
²²

C0 Â Ä // C1 // C1/C0,

where the last column is a Morita dg functor. Since A1 is cofibrant in dgcat, [3,
Proposition 1.6.3] implies that by applying the functorA⊗− to the previous diagram,
we obtain the following morphism of exact sequences in Hmo:

A1 ⊗ B0

²²

// A1 ⊗ B1

²²

// A1 ⊗ (B1/B0)

∼
²²

A1 ⊗ C0 // A1 ⊗ C1 // A1 ⊗ (C1/C0).

In conclusion we have the following Morita dg functor:

(A1 ⊗ B1)/(A1 ⊗ B0)
∼−→ (A1 ⊗ C1)/(A1 ⊗ C0).

Now let H be the full dg subcategory of (A1 ⊗ B1)/(A1 ⊗ B0), whose objects are a⊗ b
with a belonging to A0, and P the full dg subcategory of (A1 ⊗ C1)/(A1 ⊗ C0) whose
objects are a⊗ c with a belonging to A0. We have the following diagram:

H
∼

²²

Â Ä // (A1 ⊗ B1)/(A1 ⊗ B0)

∼
²²

P Â Ä // (A1 ⊗ C1)/(A1 ⊗ C0).

The dg category A⊗ B, resp. A⊗ C, is Morita equivalent to
((A1 ⊗ B1)/(A1 ⊗ B0))/H, resp. to ((A1 ⊗ C1)/(A1 ⊗ C0))/P, and so we have the fol-
lowing commutative square:

((A1 ⊗ B1)/(A1 ⊗ B0))/H
∼

²²

A⊗ B∼oo

F∗

²²
((A1 ⊗ C1)/(A1 ⊗ C0))/P A⊗ C.∼oo

Finally, by the two out of three property, F ∗ is a Q-weak equivalence and so the proof
is finished.

Remark 6.6. Since the internal tensor product −⊗− is symmetric, Proposition 6.5
implies that the total left derived functor −⊗−

− L⊗− : Ho(Lp)× Ho(Lp)→ Ho(Lp)

exists, as in [6, Definition 8.4.7].
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7. Agreement

In this chapter we prove our second main theorem (Theorem 7.2 below). We have
the following adjunction:

Lp

Ev1

²²
dgcat,

L

OO

where Ev1 associates to a localization pair (A0 ⊂ A1) the dg category A1 and L
associates to a dg category A the localization pair (∅ ⊂ A).

Proposition 7.1. If we consider on dgcat the Morita model structure and on Lp the
Q-model structure, the previous adjunction is a Quillen equivalence.

Proof. The functor L sends Morita dg functors to weak equivalences. Since the cofi-
brations (and so the trivial fibrations) of the Quillen model structures of Proposi-
tion 4.8 and Theorem 4.18 are the same the evaluation functor Ev1 preserves trivial
fibrations. This shows us that L is a left Quillen functor.

Let A be a cofibrant object in dgcat and (Bcontr ⊂ B) a Q-fibrant object in Lp.
For a dg functor A F→ B in dgcat we need to show that F is a Morita dg functor if
and only if the induced morphism of localization pairs (∅ ⊂ A)→ (Bcontr ⊂ B) is a
Q-weak equivalence. But, since the dg functor B → B/Bcontr is a Morita dg functor
this follows automatically.

Theorem 7.2. The total derived functors − L⊗− and RHom(−,−) in Ho(Lp) agree,
under the equivalence

Ho(Lp)

REv1

²²
Hmo,

L

OO

with the functors − L⊗− and repdg(−,−) (see Remark 5.1) in Hmo.

Proof. Let A and B be two small dg categories. Then A L⊗ B identifies with Ac ⊗ B,
where Ac is a cofibrant resolution of A in dgcat. Since L(Ac) is cofibrant in Lp,
Proposition 6.5, implies the following zig-zags:

L(A)
L⊗ L(B) ∼← L(Ac)⊗ L(B) ∼→ L(Ac ⊗ B) = L(A L⊗ B),

of weak equivalences in Lp. This proves that the total left derived tensor prod-
ucts on Ho(Lp) and Hmo are identified. Now, notice that repdg(A,B) identifies with
repdg(Ac,Bf ), where Bf is a fibrant resolution of B in dgcat. By definition

RHom(L(A), L(B)) = Hom((L(A)c, (L(B)f )λ),

where λ denotes an infinite cardinal whose size is greater or equal to the cardinality
of the set of isomorphism classes of objects in the category H0(Ac). We have the
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following Q-weakly equivalent objects in Lp:

RHom(L(A), L(B))
Hom((L(A)c, (L(B)f )λ)
Hom((∅ ⊂ Ac), ((Bf )λ)contr ⊂ (Bf )λ))
(Fundg(Ac, ((Bf )λ)contr) ⊂ Fundg(Ac, (Bf )λ))

Fundg(Ac, ((Bf )λ)contr) ⊂ Fundg(Ac, (Bf )λ))/Fundg(Ac, ((Bf )λ)contr)
(∅ ⊂ repdg(Ac,Bf ))
L(repdg(A,B)).

This proves that the total right derived functor RHom(−,−) in Ho(Lp) corresponds
to the internal Hom-functor repdg(−,−).

Remark 7.3. Notice that Theorem 7.2 provides us a conceptual characterization of
Toën’s adhoc construction as a total derived functor. Intuitively, when we pass from
dg categories to localization pairs, we gain an “extra degree of freedom” which allows
us to perform derived constructions.

Moreover, Theorems 6.4 and 7.2 provide us a simple way to construct the internal
Hom-objects in Hmo. In contrast with Toën’s approach, requiring an involved dg
category of “right quasi-representable” bimodules (see Remark 5.1), when using the
model Lp (see Theorem 4.18) it is enough to derive its natural internal Hom-functor
(see Definition 5.2) which only makes use of dg categories of dg functors. We remind
the reader that the construction of the internal Hom-objects in Hmo was the main
difficulty in the development of Toën’s derived Morita theory [22, §7].

Appendix A. Homotopical algebra tools

In this appendix we recall some classical results concerning the construction of
Quillen model structures. Let us start with Kan’s lifting theorem.

Theorem A.1. [6, Theorem 11.3.2] Let M be a cofibrantly generated model cate-
gory with generating cofibrations I and generating trivial cofibrations J . Let N be a
complete and cocomplete category, and let

N
U

²²
M

F

OO

be a pair of adjoint functors. If we let FI = {Fu|u ∈ I} and FJ = {Fu|u ∈ J} and
if
(1) both of the sets FI and FJ permit the small object argument and
(2) U takes relative FJ-cell complexes to weak equivalences,

then there is a cofibrantly generated model category structure on N , in which FI is
a set of generating cofibrations, FJ is a set of generating trivial cofibrations, and the
weak equivalences are the maps that U takes into a weak equivalence in M. Further-
more, with respect to this model structure, (F,U) is a Quillen pair.
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We now recall the following recognition theorem.

Theorem A.2. [5, Theorem 2.1.19] Let M be a complete and cocomplete category,
W a class of maps in M and I and J sets of maps in M such that:

1) The class W satisfies the two out of three axiom and is stable under retracts.
2) The domains of the elements of I are small relative to I-cell.
3) The domains of the elements of J are small relative to J-cell.
4) J-cell ⊆W ∩ I-cof.
5) I-inj ⊆W ∩ J-inj.
6) W ∩ I-cof ⊆ J-cof or W ∩ J-inj ⊆ I-inj.

Then there is a cofibrantly generated model category structure on M in which W is
the class of weak equivalences, I is a set of generating cofibrations, and J is a set of
generating trivial cofibrations.

We now state a weaker form of Bousfield-Friedlander localization [7, Theorem X-
4.1]. See [2] for the original article.

Definition A.3. Let M be a Quillen model category, Q : M→M a functor and
η : Id→ Q a natural transformation between the identity functor and Q. A morphism
f : A→ B in M is:

- a Q-weak equivalence if Q(f) is a weak equivalence in M.
- a cofibration if it is a cofibration in M.
- a Q-fibration if it has the R.L.P. with respect to all cofibrations which are Q-

weak equivalences.

An immediate analysis of the proof of [7, Theorem X-4.1] allows us to state the
following general Theorem A.4: notice that the proof of [7, Lemma X-4.4] only uses
a weaker form of right properness (this corresponds to the following condition (A0))
and the proof of [7, Lemma 4.6] only uses the following condition (A3).

Theorem A.4. Let M be a Quillen model structure such that:
(A0) Given a diagram

B

p

²²
A ηA

// Q(A),

with ηA a weak equivalence and P a fibration in M, the induced map

ηA∗ : A ×
Q(A)

B → B

is a weak equivalence in M.
Suppose thatM is endowed with a functor Q : M→M and a natural transformation
η : Id→ Q such that the following three conditions hold:
(A1) The functor Q preserves weak equivalences.
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(A2) The maps ηQ(A), Q(ηA) : Q(A)→ QQ(A) are weak equivalences in M.
(A3) Given a diagram

B

p

²²
A ηA

// Q(A)

with p a Q-fibration the induced map ηA∗ : A ×
Q(A)

B → B is a Q-weak equiva-

lence.

Then there is a Quillen model structure onM for which the weak equivalences are the
Q-weak equivalences, the cofibrations those of M and the fibrations the Q-fibrations.

The following Lemma corresponds to [7, Lemma X-4.4].

Lemma A.5. Suppose that F : A→ B is a fibration in M and that ηA and ηB are
weak equivalences of M. Then F is a Q-fibration.

References

[1] A. Bondal and M. Kapranov, Framed triangulated categories (Russian),
Mat. Sb. 181 (1990) no. 5, 669–683; translation in Math. USSR-Sb. 70 no. 1,
93–107.

[2] A.K. Bousfield and E.M. Friedlander, Homotopy theory of spaces, spectra, and
bisimplicial sets, Springer Lecture Notes in Mathematics 658 (1978), 80–150.

[3] V. Drinfeld, DG quotients of DG categories, J. Algebra 272 (2004), 643–691.
[4] V. Drinfeld, DG categories, University of Chicago Geometric Langlands Semi-

nar. Notes available at http://www.math.utexas.edu/users/benzvi/GRASP/
lectures/Langlands.html.

[5] M. Hovey, Model categories, Mathematical Surveys and Monographs 63, AMS,
Providence, 1999.

[6] P. Hirschhorn, Model categories and their Localizations, Mathematical Surveys
and Monographs 99, AMS, Providence, 2003.

[7] P. Goerss and J. Jardine, Simplicial homotopy theory, Progress in Mathematics
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des dg-catégories, C. R. Math. Acad. Sci. Paris 340 (2005) no. 1, 15–19.
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