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ALGEBRAIC COBORDISM AND GROTHENDIECK GROUPS
OVER SINGULAR SCHEMES

SHOUXIN DAI

(communicated by J. F. Jardine)

Abstract
A theorem of Levine-Morel states that algebraic cobordism

groups are isomorphic to (multiplicative) Grothendieck groups
over smooth schemes. We extend this theorem to singular
schemes. As a consequence, we provide a new proof of the sin-
gular Riemann-Roch theorem of Baum-Fulton-MacPherson and
a new type of Riemann-Roch theorem with respect to pullbacks
of locally complete morphisms.

1. Introduction

Let k be a field. Let us denote by Schk the category of separated k-schemes of finite
type and by qSchk (resp. Smk) its full subcategory of quasi-projective (resp. smooth)
k-schemes. By a smooth morphism in Schk, we will always mean a smooth and quasi-
projective morphism. In particular, a smooth k-scheme will always be assumed to be
quasi-projective over k.

We recall that an oriented cohomology theory A∗ on Smk is a contravariant functor
X 7→ A∗(X) sending X ∈ Smk to the category of graded commutative rings equipped
with functorial push-forwards for projective morphisms, satisfying certain properties
such as the projective bundle formula and homotopy. Please refer to [6, Def. 1.1.2]
for full details.

An important feature of oriented cohomology theories is that they have a formal
group law structure that describes how the first Chern classes behave with respect to
the tensor product of line bundles. An oriented cohomology theory is called additive,
multiplicative, and periodic if its formal group law is additive, multiplicative, and
periodic respectively.

In [6], Levine and Morel construct a universal oriented cohomology theory on Smk,
called algebraic cobordism and written as Ω∗, which is the algebro-geometric version of
Quillen’s complex cobordism. They show that Ω∗ has the universal formal group law.
That is to say, given a formal group law (FR, R), there is a unique homomorphism
Ω∗(k) → R sending FΩ to FR, which allows one to construct the universal theory
with formal group law (FR, R) as Ω∗F (X) := Ω(X)⊗Ω(k) R. It is of particular interest
when R = Z[β, β−1]. Let us use Ω∗× to denote Ω∗ ⊗Ω(k) Z[β, β−1]. It turns out that
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Ω∗× is the universal multiplicative periodic theory on Smk. The homological notation
for Ω∗× will be denoted by Ω×∗ .

Remark 1.1. For the construction of Ω∗ (or equivalently, Ω∗), please refer to [6, §2.4].
However, for the purpose of this paper it suffices to know that Ω∗(X) (and Ω×∗ (X)
resp.) is essentially generated by [f : Y → X] (and [f : Y → X]βn resp.), called cobor-
dism cycles, with Y being a smooth scheme and the morphism f being projective.

We recall the following universal property of K-theory from [7]:

Theorem 1.2 (Levine-Morel). Let A∗ be a multiplicative periodic oriented cohomol-
ogy theory on Smk. Then there exists one, and only one, morphism of oriented coho-
mology theories chA : K0[β, β−1] → A∗, where K0[β, β−1] = K0 ⊗Z Z[β, β−1].

By the universality of Ω∗× on Smk, this yields:

Corollary 1.3 (Levine-Morel). Suppose that k has characteristic zero. Then the
canonical transformation Ω∗ → K0[β, β−1] descends to an isomorphism of multiplica-
tive oriented cohomology theories Ω∗× → K0[β, β−1] on Smk.

It is natural to ask if this natural isomorphism over Smk can be extended to one
over Schk. For this purpose, it is necessary to replace oriented cohomology theories
on Smk by oriented Borel-Moore homology theories on Schk.

An oriented Borel-Moore homology theory A∗ on Schk is a functor X 7→ A∗(X)
sending X in Schk to the category of graded abelian groups with functorial push-
forward for projective morphisms, and pullback maps for locally complete intersection
(l.c.i.) morphisms, satisfying some natural axioms. See Definition 5.1.3 of [6] for
details.

Note that on Schk, K-theory shall be replaced by G-theory. Let us abbreviate the
phrase Oriented Borel-Moore to OBM.

Remark 1.4. From Theorem 7.1.3 and Remark 4.1.12 of [6], Ω∗ (and Ω×∗ resp.) is the
universal OBM homology theory (and the universal multiplicative OBM homology
theory resp.) on Schk.

We are able to prove the following main result of this paper:

Theorem 1.5. Let k be a field of characteristic zero. Then G0[β, β−1] is the universal
multiplicative OBM homology theory on Schk. That is to say, for any multiplicative
OBM homology theory A∗ on Schk, there is a unique natural transformation of OBM
homology theories τ : G0[β, β−1] → A∗.

In fact, the canonical natural transformation θG : Ω∗ → G0[β, β−1] descends to a
natural transformation of OBM homology theories on Schk,

θ×G : Ω×∗ → G0[β, β−1], (1)

where for a scheme X the map θ×G is defined by the following:

[f : Y → X]βn 7→ f∗[OY ]βn+dimk Y .
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Remark 1.6. The transformation θG is natural by the universality of Ω∗. As being
natural only concerns commutativity with push-forwards but not the factor βn, θ×G
is thus natural. On the other hand, the universality of Ω×∗ implies that θ×G is actually
the unique natural transformation between the two theories, which is compatible
with l. c. i. pullbacks and the first Chern class operators (i.e., a morphism of OBM
homology theories).

We prove directly that the map (1) is an isomorphism on Schk, which yields The-
orem 1.5 via the universality of Ω×∗ .

We apply the main theorem to two situations. The first (Corollary 1.7) gives a
new version of singular Riemann-Roch with respect to pullbacks by locally com-
plete morphisms, and the second (Corollary 1.8) provides a new proof of the singular
Riemann-Roch theorem of Baum-Fulton-MacPherson.

Corollary 1.7 (l. c. i. Riemann-Roch). Let f : Y → X ∈ qSchk be an l. c. i. morphsim
of relative degree d. Then we have the following commutative diagram:

G0(X)
f∗ //

τ0

²²

G0(Y )

τ0

²²
CH(X)Q

t̃d(Tf )◦f∗ // CH(Y )Q,

where, for a vector bundle E → Y over Y , t̃d(E) : CH∗(Y )Q → CH∗(Y )Q sending
a 7→ td(E) ∩ a by the cap-product map CH∗(Y )Q ⊗ CH∗(Y )Q

∩→ CH∗(Y )Q defined
in [3].

Corollary 1.8 (Singular Riemann-Roch). Let f : X → Y be a projective morphism
in qSchk. Then the following diagram is commutative:

G0(X)
f∗ //

τ0

²²

G0(Y )

τ0

²²
CH(X)Q

f∗
// CH(Y )Q,

where τ0 is the restriction to degree zero of the natural transformation

τ : G0[β, β−1] → CH⊗Q[β, β−1](td).

Moreover, τ0 coincides with the local Chern class morphism in [1].
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2. Several lemmas

This section provides several preliminary results needed for the proof of the main
theorem.

Let us recall the following two localization theorems.

Theorem 2.1 (Quillen [8]). Let X be a noetherian scheme, i : Z → X a closed im-
mersion, and j : U → X the open complement of Z. Then there is a natural long exact
sequence

. . .→ Gn(Z) i∗−→ Gn(X)
j∗−→ Gn(U)
δ−→ Gn−1(Z) → . . .→ G1(U)

δ−→ G0(Z) i∗−→ G0(X)
j∗−→ G0(U) → 0.

Theorem 2.2 (Levine-Morel [6]). Let X be in Schk. Let i : Z → X be a closed im-
mersion and j : U → X the open complement. Then the sequence

Ω∗(Z) i∗−→ Ω∗(X)
j∗−→ Ω∗(U) → 0

is exact.

As the tensor product is right exact, we have:

Corollary 2.3. Let X be in Schk, i : Z → X a closed immersion and j : U → X the

open complement. Then the sequence Ω×∗ (Z) i∗−→ Ω×∗ (X)
j∗−→ Ω×∗ (U) → 0 is exact.

Throughout this section we assume that k admits resolution of singularities, and
we abbreviate G0(X)[β, β−1] to G0(X)β .

Lemma 2.4. Take X in Schk. Let i : Xred → X be the reduction of X. Then the
maps

i∗ : Ω×∗ (Xred) → Ω×∗ (X),
i∗ : G0(Xred)β → G0(X)β

are isomorphisms.

Proof. The result for G0 follows from Theorem 2.1 applied to i : Xred → X, since the
complement is empty.

For Ω×∗ , this follows from the same result for Ω∗, which then follows directly from
the definition.

Lemma 2.5. For X ∈ Schk, the map θ×G(X) : Ω×∗ (X) → G0(X)β is surjective.

Proof. If X is in Smk, then we may use Theorem 1.2 and the fact that K0[β, β−1] =
G0[β, β−1] on Smk.
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In general, we may assume that X is reduced. Then X admits a filtration by
reduced closed subschemes with Ul := Xl \Xl−1 in Smk. In particular, X0 is in Smk

and the result is thus proven for X0.
We have the commutative diagram

Ω×∗ (Xl−1)
i∗ //

θ

²²

Ω×∗ (Xl)
j∗ //

θ

²²

Ω×∗ (Ul) //

θ

²²

0

G0(Xl−1)β
i∗

// G0(Xl)β
j∗

// G0(Ul)β // 0.

The rows are exact by Theorem 2.1 and Corollary 2.3. The result follows by induction
on l and a diagram chase.

Lemma 2.6. Let p : V → X be a vector bundle of rank n+ 1 in Schk, and q : P =
P (V ) → X the associated projective bundle. Then q∗ : Ω∗(P ) → Ω∗(X) is surjective.

Proof of the special case. Let us first prove the case where V = X ×k An+1; thus P =
X ×k Pn. There is a closed immersion i : X → X ×k Pn such that q ◦ i = idX . The
composition of the induced morphisms

q∗ ◦ i∗ : Ω∗(X) → Ω∗(X ×k Pn) → Ω∗(X)

is the identity on Ω∗(X). It follows that q∗ is surjective. The lemma holds for this
case.

Proof of the general case. Now let V → X be a general vector bundle of rank n+ 1.
Let Z be a proper closed subscheme of X such that the restriction of P to U := X \ Z,
the complement of Z in X, is U ×k Pn. We denote by P

′
the restriction of P to Z.

We have the following commutative diagram of morphisms of localization sequences:

Ω∗(P
′
) //

²²

Ω∗(P ) //

q∗

²²

Ω∗(U ×k Pn) //

²²

0

Ω∗(Z) // Ω∗(X) // Ω∗(U) // 0.

The vertical map on the left is surjective by induction on dimension of X, and the
vertical map on the right is surjective as shown in the special case; we thus conclude
that the map q∗ is surjective by the 5-lemma.

Lemma 2.7. Let M be in Smk and Z ⊂M a reduced closed subscheme.
Consider the following commutative diagram:

D
Â Ä //

²²

M ′

p

²²
Z

Â Ä // M,

where p is a sequence of blowups along smooth centers lying over Z, D = p−1(Z);
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then both vertical maps in the following commutative diagram are surjective:

Ω×∗ (D) // //

p∗
²²

G0(D)β

p∗
²²

Ω×∗ (Z) // // Go(Z)β .

Proof. Since p is a sequence of blowups along smooth centers lying over Z, it suffices
to show that the lemma holds for the case where M ′ is the blowup of M along some
smooth subscheme F of Z, as displayed in the following diagram:

E
Â Ä //

p

²²

D
Â Ä //

p

²²

MF

p

²²
F

Â Ä // Z
Â Ä // M.

Let U denote the complement of F in Z, which is the same as the complement of
E in D. We then have the following commutative diagram, with the rows being the
respective exact localization sequences:

Ω∗(E) //

p∗
²²²²

Ω∗(D) //

p∗
²²Â
Â
Â

Ω∗(U) //

id

²²

0

Ω∗(F ) // Ω∗(Z) // Ω∗(U) // 0.

The map p∗ on the left is surjective by Lemma 2.6 as p : E → F is a projective bundle
over F . The surjectivity of the dashed map p∗ then follows by the 5-lemma.

The surjectivity of G0(D)β → G0(Z)β follows from the commutativity of the dia-
gram.

Lemma 2.8. Let D be a reduced finite type k-scheme, D2 an irreducible component of
D, and D1 the union of the remaining irreducible components of D, so D = D1 ∪D2.
Let D12 = D1 ∩D2 with inclusions ij : D12 → Dj, φj : Dj → D for j = 1, 2. If we
write i−∗ = (i1∗,−i2∗) and φ = φ1∗ + φ2∗, we have:

1. The sequence

G0(D12)β
i−∗−→ G0(D1)β ⊕G0(D2)β

φ−→ G0(D)β → 0

is exact.

2. The map φ : Ω×∗ (D1)⊕ Ω×∗ (D2) → Ω×∗ (D) is surjective.

Proof of (1). Consider the morphism p : D1 qD2 → D1 ∪D2 induced by closed em-
beddings Dj → D1 ∪D2 for j = 1, 2. Let Uj := Dj \D12 with open immersions
σj : Uj → Dj for j = 1, 2, and let i : D12 → D be the inclusion. We denote by σ

′
j

the open immersions Uj → D for j = 1, 2. Let σ∗ := σ1∗ ⊕ σ2∗ and σ
′
∗ := (σ

′
1∗, σ

′
2∗).
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Since

D1 qD2 \D12 qD12 = D \D12 = U1 q U2,

we have the following morphism of localization sequences:

G1(U1)⊕G1(U2)
id //

∂1⊕∂2
²²

G1(U1)⊕G1(U2)

∂1+∂2

²²
G0(D12)⊕G0(D12)

i1∗⊕i2∗
²²

Σ // G0(D12)

i∗
²²

G0(D1)⊕G0(D2)
p∗ //

σ∗

²²

G0(D)

σ
′∗

²²
G0(U1)⊕G0(U2)

id //

²²

G0(U1)⊕G0(U2)

²²
0 0,

(2)

where Σ is the sum map.
We note that

ker(p∗) ⊂ ker(σ′∗ ◦ p∗) = ker(σ∗) = im(i1∗ ⊕ i2∗).

Thus, if y = y1 ⊕ y2 is in ker(p∗), then there are elements xi ∈ G0(D12) with
y1 = i1∗(x1), y2 = i2∗(x2). Since p∗(i1∗(x1)⊕ i2∗(x2)) = 0, we have i∗(x1 + x2) = 0;
hence there are elements αi ∈ G1(Ui) with ∂1(α1) + ∂2(α2) = x1 + x2. Replacing xi
with xi − ∂i(αi), we may assume that x1 = −x2 in G0(D12); i.e., there is an
x ∈ G0(D12) with

y1 = i1∗(x), y2 = −i2∗(x)
which proves the exactness of our sequence (1) at G0(D1)β ⊕G0(D2)β . The surjec-
tivity of φ in (1) follows from diagram (2) and the 5-lemma, noting that the maps Σ
and id are surjective.

Proof of (2). Using the right exact localization sequence of Ω×∗ , the same argument
as for the surjectivity in (1) applies to prove the surjectivity of φ.

Lemma 2.9. Let D be a strict normal crossing divisor on a scheme M ∈ Smk. Then
Ω×∗ (D) ∼→ G0(D)β.

Proof. We may assume that D is reduced.
Let us write D = D1 ∪D2, where D2 is an irreducible component of D. We proceed

by induction on the number of irreducible components ofD as well as on the dimension
of D. As in the previous Lemma 2.8, we write D12 = D1 ∩D2, and use ij : D12 → Dj

and φj : Dj → D for j = 1, 2 to denote the inclusions.
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We have the following commutative diagram:

Ω×∗ (D12)
i−∗ //

∼
²²

Ω×∗ (D1)⊕ Ω×∗ (D2)
φ //

∼
²²

Ω×∗ (D) //

²²²²

0

G0(D12)β
i−∗

// G0(D1)β ⊕G0(D2)β
φ

// G0(D)β // 0,

where i−∗ = (i1∗,−i2∗) and φ = φ1∗ + φ2∗. The first two of the three vertical maps are
isomorphisms by induction, while the third one is surjective. Clearly the top row is a
complex; in addition, the bottom row is exact by Lemma 2.8(1) and the top map φ
is surjective by Lemma 2.8(2).

We fill K := coker(i∗) into the following diagram:

Ω×∗ (D12)
i−∗ //

∼

²²

Ω×∗ (D1)⊕ Ω×∗ (D2)
φ //

'' ''OOOOOOOOOOOOO

∼

²²

Ω×∗ (D) //

²²²²

0

K

;; ;;wwwwwwwww

ψ

##GG
GG

GG
GG

G

G0(D12)β
i−∗

// G0(D1)β ⊕G0(D2)β // G0(D)β // 0

with the sequence

Ω×∗ (D12) → Ω×∗ (D1)⊕ Ω×∗ (D2) → K → 0

being exact. Since φ ◦ i∗ = 0, we have a surjective map K → Ω×∗ (D). By the 5-lemma
ψ : K → G0(D)β is an isomorphism; hence the surjection Ω×∗ (D) → G0(D)β is an
isomorphism.

Lemma 2.10. Let M be in Smk and let Z ⊂M a reduced closed subscheme. Let
F ⊂M be a smooth closed subscheme contained in Z. We denote by MF the blowup
of M along F with the canonical projective morphism p : MF →M . Then the sequence

0 → ker(p∗) → Gn(MF )
p∗→ Gn(M) → 0

is split exact.

Proof. It suffices to show that p∗ ◦ p∗ = id on Gn(M) = Kn(M). We have the pro-
jection formula

p∗(a · p∗(b)) = p∗(a) · b
for all a ∈ K0(MF ) and b ∈ Gn(M). Thus, for any x ∈ Gn(M), we have

p∗(p∗(x)) = p∗([OMF
] · p∗(x)) = p∗([OMF

]) · x.
However, Rqp∗(OMF

) = 0 for q > 0, and p∗(OMF
) = OM ; so p∗([OMF

]) = [OM ], and
p∗(p∗(x)) = [OM ] · x = x.
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Lemma 2.11. Borrowing notation from the preceding Lemma 2.10, we denote by D
the exceptional divisor p−1(F ).

Let K be the kernel of

p∗ : G0(MF ) → G0(M)

and K ′ be the kernel of

p∗ : G0(D) → G0(Z).

Then the inclusion i : D →MF induces an isomorphism K ′ ' K.

Proof. Let us look at the following diagram:

0

²²

0

²²
K ′

²²

i∗
//_____ K

²²
G1(MF )

p∗
²²

// G1(U)

=

²²

// G0(D)

²²

// G0(MF )

²²

// G0(U)

=

²²

// 0

G1(M)

²²

// G1(U) // G0(Z)

²²

// G0(M)

²²

// G0(U) // 0,

0 0 0

where i∗ is the natural map induced by i : D →MF and the rows are the respective
localization sequences.

Surjectivity of i∗: To see this, we pick an element a in K. It goes to 0 in G0(M)
and thus goes to 0 in G0(U) as well by the commutativity of the diagram. Exactness
implies that there is an element of b of G0(D) whose image in G0(MF ) is a. Let c be
the image of b in G0(Z). Then c goes to 0 in G0(M), so it comes from an element d
in G1(U). Let e be the image of d in G0(D). Then b− e belongs to K ′ and its image
in K is a.

Injectivity of i∗: Let x be such an element that i∗(x) = 0. Then it is the image of
some element y in G1(U), which goes to 0 in G0(Z) by commutativity. Therefore, y
is the image of some element z in G1(M). Since p∗ is split surjective by Lemma 2.10,
we can lift z to an element z̃ in G1(MF ), whose image in G1(U) is y. Therefore, x is
the image of z̃ in G0(D), which is then 0. We conclude that i∗ is injective.
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Remark 2.12. Let us consider the following localization commutative diagrams:

Ω×∗ (D)

²²

// Ω×∗ (MF )

∼=
²²

// Ω×∗ (U)

∼=
²²

// 0

G0(D)β // G0(MF )β // G0(U)β // 0,

Ω×∗ (Z)

²²

// Ω×∗ (M)

∼=
²²

// Ω×∗ (U)

∼=
²²

// 0

G0(Z)β // G0(M)β // G0(U)β // 0.

From Lemma 2.11 it is easy to deduce that

ker(Ω×∗ (D) → Ω×∗ (Z)) → ker(Ω×∗ (MF ) → Ω×∗ (M))

is surjective. This is because Lemma 2.11 still holds if we replace Z by F , and D by
E := p−1(F ); i.e., the map

ker(G0(E)β → G0(F )β) → ker(G0(MF )β → G0(M)β)

is an isomorphism. We can replace the G0[β, β−1] by K0[β, β−1] since everything is
smooth; similarly, K0[β, β−1] is isomorphic to theory Ω×∗ by Corollary 1.3. Thus

ker(Ω×∗ (E) → Ω×∗ (F )) → ker(Ω×∗ (MF ) → Ω×∗ (M))

is an isomorphism. Since the map

ker(Ω×∗ (E) → Ω×∗ (F )) → ker(Ω×∗ (MF ) → Ω×∗ (M))

factors through
ker(Ω×∗ (D) → Ω×∗ (Z)),

the surjectivity of

ker(Ω×∗ (D) → Ω×∗ (Z)) → ker(Ω×∗ (MF ) → Ω×∗ (M))

follows.

3. Main theorem

Let Z be a k-scheme which admits an embedding into some smooth k-scheme M .
By Hironaka [4], there is a sequence of blowups of M , p : M

′ →M , along smooth
centers lying over Z such that D := p−1(Z) is a strict normal crossing divisor of M

′
.

To be more precise, we have the following diagram of blowups:

M
′
=

D =

Mr
pr // · · · // M1

p1 // M0
p0 // M

Dr

OO

// · · · // D1

OO

// D0

OO

// Z,

OO
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where

• pi+1 : Mi+1 →Mi is the blowup of Mi along some smooth Fi ⊂ Di for
i = 0, . . . , r − 1,

• Di+1 = p−1
i+1(Di) for i = 0, . . . , r − 1,

• p = p0 ◦ . . . ◦ pr.
Lemma 3.1. In the commutative diagram of short exact sequences,

0 // K
′′
i

// Ω×∗ (Mi) // Ω×∗ (M) // 0

0 // K
′
i

OO

// Ω×∗ (Di)

OO

// Ω×∗ (Z)

OO

// 0,

the map K
′
i → K

′′
i is surjective for all i = 0, . . . , r.

In particular, K
′
r → K

′′
r is surjective.

Proof. We proceed by induction.
For i = 0, p0 is only a single blowup, and the claim follows from Remark 2.12. Let

us assume the claim for i > 0. We must show that the claim holds for i+ 1.
Note that K

′
i+1 → K

′
i is surjective by Lemma 2.7 applied to pi+1, and K

′′
i+1 → K

′′
i

is surjective since pi+1∗ : G0(Mi+1) → G0(Mi) is (split) surjective and G0(Mj)β =
Ω×∗ (Mj) as Mj is smooth. Letting

N ′ := ker(Ω×∗ (Di+1) → Ω×∗ (Di)) and M ′ := ker(Ω×∗ (Mi+1) → Ω×∗ (Mi)),

then we have the natural morphism of short exact sequences as follows:

0 // N ′ //

f ′

²²

K
′
i+1

pi+1∗ //

f

²²

K
′
i

//

f
′′

²²

0

0 // M ′ // K
′′
i+1 pi+1∗

// K
′′
i

// 0.

We see that f ′ is surjective because pi+1 is a single blowup, and that f
′′

is surjective
by induction. The lemma thus follows by the 5-lemma.

Lemma 3.2. In the commutative diagram of short exact sequences,

0 // Li // G0(Mi)β // G0(M)β // 0

0 // Ki

OO

// G0(Di)β

OO

// G0(Z)β

OO

// 0,

the map Ki → Li is an isomorphism for all i = 0, . . . , r.
In particular Kr → Lr is an isomorphism.

Proof. The same argument applies as in the preceding lemma using the isomorphism
of Lemma 2.11 instead of the surjection of Remark 2.12.
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Theorem 3.3. θ×G(Z) : Ω×∗ (Z) → G0(Z)β is an isomorphism.

Proof. We have the following commutative diagram:

0 // K ′
r

//

²²

Ω×∗ (D) //

∼=
²²

Ω×∗ (Z) //

²²²²

0

0 // Kr
// G0(D)β // G0(Z)β // 0,

where the middle map is an isomorphism by Lemma 2.9. It follows that K ′
r → Kr is

injective.
By Claims 3.1 and 3.2, we have the isomorphism Kr ' Lr and the epimorphism

K ′
r ³ K

′′
r . Moreover, K

′′
r ' Lr because M and M ′ are both smooth.

We conclude that K ′
r → Kr is surjective in view of the following commutative

diagram:

K ′
r

// //

²²

K
′′
r

'
²²

Kr
' // Lr.

Therefore, K ′
r ' Kr which implies that Ω×∗ (Z) ' G0(Z)β . This completes the proof

that the natural transformation (1) is an isomorphism. As we have already remarked,
this proves Theorem 1.5.

Remark 3.4. From the proof of the theorem, it is easy to see that the isomorphism
Ω×∗ (Z) ' G0(Z)β does not depend on the choice of embeddings Z ↪→M , nor does
it depend on the choice of the resolution blowup sequences. This is because what
we have proved is actually only the injectivity of the canonical surjective map
Ω×∗ (Z) ³ G0(Z)β .

4. Applications: Riemann-Roch

4.1. l.c.i. R.R.
Let A∗ be an OBM homology theory. We recall briefly how to twist A∗ into a new

OBM theory. Please refer to §8.2 of [5] and §10.5 of [7] for details.
Let τ = (τi) ∈

∏∞
i=0Ai(k), with τ0 = 1. Following Levine and Morel, one can twist

A∗ by τ as follows:
The groups and push-forward maps are unchanged:

A
(τ)
∗ (X) := A∗(X), f (τ)

∗ = f∗.

To define the twisting of the pullback for an l. c. i. morphism f : X → Y , let
us choose a factorization of f as f = qi, with i : Y → P a regular embedding and
q : P → X a smooth morphism. We have the relative tangent bundle Tq → P , defined
as the vector bundle whose dual has sheaf of sections the relative differentials Ω1

Y/X .
Letting I be the ideal sheaf of Y in P , we let Ni → Y be the bundle whose dual has
sheaf of sections I/I2. We let [Nf ] ∈ K0(Y ) be the class [Ni]− [i∗Tq]. We call [Nf ]
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the virtual normal bundle of f : Y → X. It is easy to see that [Nf ] is independent of
the choice of the factorization of f .

We define
f∗(τ) := c̃τ (Nf ) ◦ f∗,

and for any line bundle L over X, we set

c̃
(τ)
1 (L) := c̃τ (L) ◦ c̃1(L),

where for a vector bundle E → X, the construction c̃τ (E) is given by Lemma 8.1
of [5].

Remark 4.1. This does define a new oriented Borel-Moore homology theory on Schk,
denoted by A(τ)

∗ . The definition of c̃(τ)1 (L) can be rewritten as c̃(τ)1 (L) = λ(τ)(c̃1(L)),
where λ(τ)(u) =

∑
i>0 τi · ui+1 ∈ A∗(k)[[u]]. It is then clear that to give a twisting is

equivalent to giving a formal series λ(τ)(u) with leading term u.

Example 4.2. The Chow theory CH∗ has the structure of OBM homology theory on
Schk. We give CH∗⊗Q[β, β−1] the structure of OBM homology theory on Schk by
taking the Q[β, β−1]-linear extension; i.e.,

f∗CH∗⊗Q[β,β−1] := f∗CH ⊗ id

and similarly for all other structures.
We can produce a new theory on Schk, denoted by CH∗⊗Q[β, β−1](td), by applying

our twisting for the family τ given by

τ = λ(τ)(u) = (1− e−βu)/β.

In effect, the presence of the exponential term e−βu converts the additive OBM
homology theory CH∗⊗Q[β, β−1] into a multiplicative one CH∗⊗Q[β, β−1](td) on
Schk with the multiplicative formal group law

F
(td)
CH = u+ v − βuv.

Corollary 4.3. Suppose that k admits resolution of singularities. Then there is a
unique natural transformation of OBM homology theories on Schk

τ : G0[β, β−1] → CH∗⊗Q[β, β−1](td).

Proof. By Theorem 1.5 G0[β, β−1] is the universal periodic multiplicative OBM
homology theory on Schk. Thus, for any oriented OBM homology theory A∗ on Schk
with periodic multiplicative formal group law, there exists a unique natural transfor-
mation τ : G0[β, β−1] → A∗.

By construction, CH∗⊗Q[β, β−1](td) is an OBM theory on Schk with multiplicative
periodic formal group law.

Thus we have a unique natural transformation of OBM homology theories

τ : G0[β, β−1] → CH∗⊗Q[β, β−1](td).

Remark 4.4. For a vector bundle E on X, we have the degree 0 endomorphism
c̃(td)−1(E) on CH∗(X)[β, β−1]. We can identify CH∗(X) with the degree 0 part
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of CH∗(X)[β, β−1] by sending x ∈ CHp(X) to xβ−p. We denote the restriction of
c̃(td)−1(E) to CH∗(X) by t̃dE. It follows that t̃d(E) agrees with the classical Todd
class automorphism of CH∗(X) as defined in [2].

Corollary 4.5 (l. c. i. Riemann-Roch). Let f : Y → X ∈ qSchk be an l. c. i. morphsim
of relative degree d. Then we have the following commutative diagram:

G0(X)
f∗ //

τ0

²²

G0(Y )

τ0

²²
CH(X)Q

t̃d(Tf )◦f∗ // CH(Y )Q,

where, for a vector bundle E → Y over Y , t̃d(E) : CH∗(Y )Q → CH∗(Y )Q sending
a 7→ td(E) ∩ a by cap-product map CH∗(Y )Q ⊗ CH∗(Y )Q

∩→ CH∗(Y )Q defined in [3].

Proof. By Corollary 4.3, there is a natural transformation of OBM homology theories

τ : G0[β, β−1] → CH∗⊗Q[β, β−1](td).

By restricting τ to degree zero, denoted by τ0, the naturality of τ gives us the following
commutative diagram for an l. c. i. morphism f : Y → X ∈ qSchk:

G0(X)
f∗ //

τ0

²²

G0(Y )

τ0

²²
CH(X)Q

f∗(td)

// CH(Y )Q.

To finish the proof, it remains to verify that

f∗(td) = t̃d(Tf ) ◦ f∗.

By definition,

f∗(td) := c̃td(Nf ) ◦ f∗.

Since Nf = −Tf in K0(Y ), and since t̃d(Tf ) is the restriction of c̃(td)−1(Tf ) to the
degree zero portion, it suffices to show that

c̃(td)(−Tf ) = c̃(td)−1(Tf ).

But by definition of (τ)−1 and the multiplicative properties of c̃τ , we have

c̃(τ)−1(E) = c̃τ (E)−1

for all τ and E. Since c̃τ (E) is multiplicative in E, we thus have

c̃(τ)−1(E) = c̃τ (E)−1 = c̃τ (−E).
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4.2. Singular R.R.
Corollary 4.6 (Singular R.R.). Let f : X → Y be a projective morphism in qSchk.
Then the following diagram is commutative:

G0(X)
f∗ //

τ0

²²

G0(Y )

τ0

²²
CH(X)Q

f∗
// CH(Y )Q,

where τ0 is the restriction to degree zero of the natural transformation

τ : G0[β, β−1] → CH⊗Q[β, β−1](td).

Moreover, τ0 coincides with the local Chern class morphism in [1].

Proof. The commutativity of the diagram is clear by restricting the natural transfor-
mation τ to degree zero, noting that τ is a transformation of OBM homology theories,
and that the twisting construction does not alter the pushforward maps.

We claim that if P is a projective space Pn, the term of degree n in τ0([Op]) is the
fundamental class in CHn(P ), [P ]. For this, we have canonical natural transformations

Ω∗
θ×−−→ Ω×∗

θ×G−−→ G0[β, β−1] τ−→ CH∗[β, β−1](td).

Thus the composition

τ ◦ θ×G ◦ θ× : Ω∗ → CH∗[β, β−1](td)

is the canonical natural transformation θCH(td) given by the universality of Ω∗. Simi-
larly, the composition

θ×G ◦ θ× : Ω∗ → G0[β, β−1]

is the canonical natural transformation θG : Ω∗ → G0[β, β−1].
If A∗ is a OBM homology theory on Schk , then for a cobordism cycle [f : Y → X],

the canonical natural transformation θA : Ω∗ → A∗ has

θA([f : Y → X]) = fA∗ (1AY ).

Here 1AY = p∗Y (1), where p : Y → Spec(k) is the structure morphism and 1 ∈ A0(k) is
the unit (note that by definition of a cobordism cycle, Y is irreducible and in Smk,
and f is projective). We use the notation fA∗ to indicate the pushforward for the
theory A.

For A = G0[β, β−1], this gives 1Y = [OY ]βdimk Y and

θG([id : P → P ]) = id∗(1P ) = [OP ]βn.

For A = CH∗[β, β−1](td) we have

1Y = (pY )∗(td)(1k) = c̃td(NpY
)(p∗Y (1k)) = ctd(NpY

) = ctd(−TY );

hence

θCH(td)([id : P → P ]) = ctd(−TP )
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and thus

τ([OP ]) = ctd(−TP )β−n = ctd(−TP ) (see Remark 4.4).

In degree 0, this is just the classical total Todd class of TP , which written in
CH∗(P ) is:

τ0([OP ]) = td(TP ) = td(OP (1))n+1 =
[

H

1− e−H

]n+1

= (1 +
1
2
H + · · · )n+1,

where H ∈ CH1(P ) is the class of a hyperplane, and 1 ∈ CH0(P ) is the usual funda-
mental class.

We conclude that τ0 coincides with the localized Chern class map of [1] by the
following uniqueness theorem of Baum-Fulton-MacPherson.

Theorem 4.7 (Baum-Fulton-MacPherson). There is only one additive natural trans-
formation φ : G0 → CH .⊗Q with the property that if P is a projective space, the top
dimensional cycle in φ(OP ) is [P ].

Remark 4.8. The transformation φ in the above theorem being natural means it com-
mutes with push-forwards. That is, for a projective morphism f : X → Y , the follow-
ing diagram:

G0(X)
f∗ //

φ0

²²

G0(Y )

φ0

²²
CH(X).⊗Q

f∗
// CH(Y ).⊗Q

commutes.

The proof is complete.

Corollary 4.9 (Module). Let X be in Schk. Then for any a ∈ K0(X) and b ∈ G0(X),
we have

τ0(a · b) = c̃h(a)(τ0(b)).

Proof. By linearity, it suffices to prove it for the case where a = [E] and b = [F ] for
E → X a vector bundle and F a coherent sheaf on X. By the splitting principle, it
is further reduced to the case where E is a line bundle L, with projection p : L→ X.
Let L denote the associated sheaf of sections of L.

We have the first Chern class operator map

c̃1(L) : G0(X)β → G0(X)β

defined as

c̃1(L)(x) := s∗s∗(x)β−1,

where s : X → L is the zero section.
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We resolve Os(X), regarded as an OL-module, as follows

0 → p∗(L∨) → OL → Os(X) → 0.

Using the fact that the pullback map p∗ is flat we get the exact sequence

0 → p∗(L∨ ⊗F) → p∗(F) → s∗(F) → 0.

Since s is a closed immersion, the higher direct images of s∗ vanish. Thus in G0(L),
we have

s∗([F ]) = [s∗F ] = [p∗(F)]− [p∗(L∨ ⊗F)].

Since p is flat and s∗p∗ = id,

s∗([p∗(F)]) = [F ]; s∗([p∗(L∨ ⊗F)]) = [L∨ ⊗F ],

and we then have

c̃1(L)([F ]) = s∗s∗([F ])β−1 = ([F ]− [L∨ ⊗F ])β−1.

The naturality of the canonical transformation

τ : G0(X)β → CH∗(X)[β, β−1](td)
Q ,

gives us

τ(c̃1(L)([F ]) = c̃
(td)
1 (L)(τ([F ])).

Thus,

τ([F ]β−1 − [L∨][F ]β−1) = (β−1 − β−1e−βc̃1(L))τ([F ]).

We easily deduce that, at degree 0,

τ0([L∨][F ]) = e−βc̃1(L)τ0([F ]) = ch(L∨) ∩ τ0([F ]).

One should notice that the presence of β in ch(L∨) is due to the introduction of β
in the twisting of CH∗-theory. Under the identification of sending x ∈ CHp(X) to
x · β−p, ch(L∨) becomes the classical Chern character of L∨, ec̃1(L

∨), which is equal
to e−c̃1(L).

The proof is then completed by replacing L∨ (resp. L∨) by L (resp. L).
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