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GRÖBNER BASES OF ORIENTED GRASSMANN MANIFOLDS
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(communicated by Gunnar Carlsson)

Abstract
For n = 2m+1 − 4, m > 2, we determine the cup-length of

H∗(G̃n,3;Z/2) by finding a Gröbner basis associated with a
certain subring, where G̃n,3 is the oriented Grassmann mani-
fold SO(n + 3)/SO(n)× SO(3). As an application, we provide
not only a lower but also an upper bound for the LS-category
of G̃n,3. We also study the immersion problem of G̃n,3.

1. Introduction

Let R be a commutative ring. The cup-length of R is defined to be the greatest
number n such that there exist x1, . . . , xn ∈ R \R× with x1 · · ·xn 6= 0. We denote the
cup-length of R by cup(R). In particular, for a space X and a commutative ring A,
the cup-length of X with coefficients in A is defined to be cup(H̃∗(X; A)). We denote
it by cupA(X). It is well-known that cupA(X) is a lower bound for the LS-category
of X.

The aim of this paper is to study cupZ/2(G̃n,3), where G̃n,k is the oriented
Grassmann manifold SO(n + k)/SO(n)× SO(k). Note that G̃n,k is (nk)-dimensional.
While the cohomology of G̃n,2 is well-known, that of G̃n,3 is vague. However,
Korbaš [8] gave rough estimates for cupZ/2(G̃n,3) by considering the height of w2 ∈
H∗(G̃n,3;Z/2), where w2 is the second Stiefel-Whitney class.

Remark 1.1. The notation of the oriented Grassmann manifold in this paper is dif-
ferent from that of [8]. Here G̃n,k consists of oriented k-dimensional subspaces in
Euclidean (n + k)-space Rn+k.

The author studies H∗(G̃n,3;Z/2) by considering Gröbner bases associated with a
certain subring of H∗(G̃n,3;Z/2). It seems that, in principle, the method of Gröbner
bases works better in such complicated calculations than that of usual algebraic topol-
ogy. The author employs a computer and carries a huge amount of calculations for
finding the above Gröbner bases and then he dares to conjecture:
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Conjecture 1.2.

cupZ/2(G̃n,3) =





2m+1 − 3 when 2m+1 − 4 6 n 6 2m+1 + 2m − 6,

2m+1 − 3 + k when n = 2m+1 + 2m − 5 + k, 0 6 k 6 2,

2m+1 + 2m + · · · when n = 2m+1 + 2m + · · ·+ 2j − 2 + k,

+2j+1 + 2j−1 + k 0 6 k 6 2j−1 − 1.

When n = 2m+1 − 4 (m > 2), our method works very well and we obtain:

Theorem 1.3. cupZ/2(G̃n,3) = n + 1 when n = 2m+1 − 4 (m > 2).

For dimensional reasons, we have

cat(X) 6 3
2
n, (1)

where cat(X) denotes the LS-category of a space X normalized as cat(∗) = 0.
Theorem 1.3 gives not only lower bounds for cat(G̃n,3), but also refines the inequality
(1). Actually we obtain:

Corollary 1.4. n + 1 6 cat(G̃n,3) < 3
2n when n = 2m+1 − 4 (m > 2). In particular,

we have cat(G̃4,3) = 5.

We will give applications of Theorem 1.3 for the immersion problem of G̃n,3. By
the classical result of Whitney [12], we know that G̃n,3 immerses into R6n−1. We will
show:

Theorem 1.5. The oriented Grassmann manifold G̃n,3 immerses into R6n−3 but not
into R3n+8 when n = 2m+1 − 4 (m > 3) and G̃4,3 immerses into R21 but not into R17.

Remark 1.6. Walgenbach [11] obtained better results on the non-immersion of G̃n,3:
G̃n,3 does not immerse into R4n−2m+3. On the other hand, due to R. Cohen [2], G̃n,3

is known to be immersed into R6n−m+1. Then Theorem 1.5 gives a better estimate
when m = 2, 3.

The organization of this paper is as follows. In Section 2, we consider the double
covering map pn : G̃n,3 → Gn,3, where Gn,3 is the unoriented Grassmann manifold
O(n + 3)/O(n)×O(3). We identify the subring Im p∗n of H∗(G̃n,3;Z/2) with a cer-
tain algebra Z/2[w̄2, w̄3]/Jn, where generators of Jn are given. In Section 3, setting
n = 2m+1 − 4 (m > 2), we will give an explicit description of generators of the ideal
Jn by using the binary expansion. In Section 4, we compute a Gröbner basis of Jn and
obtain cup(Im p∗n). In Section 5, we show that cup(Im p∗n) determines cupZ/2(G̃n,3)
and compute it. As an application, we give an estimate for cat(G̃n,3) and study the
immersion problem of G̃n,3.

Acknowledgements

We would like to thank Daisuke Kishimoto and Shizuo Kaji who read the manu-
script carefully and gave us useful comments. In particular, it was Don Davis who
pointed out an error in the argument of the immersion in our manuscript and gave
us useful advice.
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2. Cohomology of G̃n,3

We consider the double covering

pn : G̃n,3 → Gn,3. (2)

It will be shown that cupZ/2(G̃n,3) can be determined by cup(Im p∗n). Then we shall
investigate cup(Im p∗n). The arguments in this section are based on the work of
Korbaš [8].

The mod 2 cohomology of BO(3) is given by

H∗(BO(3);Z/2) = Z/2[w1, w2, w3],

where wi is the i-th universal Stiefel-Whitney class. Borel [1] showed that the canon-
ical map i : Gn,3 → BO(3) induces an epimorphism

i∗ : H∗(BO(3);Z/2) → H∗(Gn,3;Z/2).

Hereafter we denote i∗(wi) by the same symbol wi ambiguously.
One can easily see that the above double covering (2) induces the Wang sequence

as:

· · · −→ Hq−1(Gn,3;Z/2) ·w1−→ Hq(Gn,3;Z/2)
p∗n−→ Hq(G̃n,3;Z/2) −→ · · · .

Then we have

Im p∗n ∼= Z/2[w1, w2, w3]
/
(w1,Ker i∗).

Let π : Z/2[w1, w2, w3] → Z/2[w2, w3] be the abstract ring homomorphism defined
by π(w1) = 0, π(w2) = w2 and π(w3) = w3. Then it induces the isomorphism

Im p∗n ∼= Z/2[w̄2, w̄3]
/
Jn,

where π(Ker i∗) = Jn and we denote wi in H∗(G̃n,3;Z/2) by w̄i. Note that the com-
mutative diagram

G̃n,3

ı̃

²²

pn

// Gn,3

i

²²
BSO(3)

p∞
// BO(3)

yields that ı̃∗(wi) = w̄i for i = 2, 3 and p∗∞ : H∗(BO(3);Z/2) → H∗(BSO(3);Z/2) is
expressed by π : Z/2[w1, w2, w3] → Z/2[w2, w3].

Let us give explicit generators of Jn. Borel [1] also showed that Ker i∗ is generated
by the homogeneous components of degrees n + 1, n + 2 and n + 3 in

1
1 + w1 + w2 + w3

.

Then it follows that Jn is generated by the homogeneous components of degrees n + 1,
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n + 2 and n + 3 in
1

1 + w̄2 + w̄3
.

Let N be the unique integer which satisfies 2N < n 6 2N+1. Since

dim G̃n,3 < 4n 6 2N+3,

we have
(1 + w̄2 + w̄3)2

N+3
= 1

in H∗(G̃n,3;Z/2). Then it follows that

1
1 + w̄2 + w̄3

= (1 + w̄2 + w̄3)2
N+3−1;

hence Jn is generated by

gr =
∑

r
3 6s6 r

2

(
s

3s− r

)
w̄3s−r

2 w̄r−2s
3 (3)

for r = n + 1, n + 2, n + 3.

3. Investigating generators of Jn

In this section, we investigate generators gn+1, gn+2 and gn+3 of Jn by exploiting
the binary expansion.

Let us prepare notation for the binary expansion. To a non-negative integer x with
0 6 x < 2k, we assign a sequence

εk(x) = (xk−1, . . . , x0) ∈ {0, 1}k

such that

x =
k−1∑

i=0

xi2i. (4)

Equation (4) is, of course, the binary expansion of x. We denote 1− a by a with
a ∈ {0, 1}. For example, we have

εk(2k − 1) = (1, . . . , 1)

and

εk(2k − 1− x) = (xk−1, . . . , x0)

for ε(x) = (xk−1, . . . , x0). We often denote (xk, . . . , x0) ∈ {0, 1}k by xk.
To calculate

(
s

3s−r

)
modulo 2, we use the following well-known result from elemen-

tary number theory.

Lemma 3.1. Let n and k be non-negative integers such that k 6 n 6 2l − 1 and
εl(n) = (nl−1, . . . , n0), εl(k) = (kl−1, . . . , k0). Then we have

(
n
k

) ≡ 1 (mod 2) if and
only if ki = 1 implies ni = 1 for each i.
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In the rest of this paper, we assume that

n = 2m+1 − 4 (m > 2)

Applying Lemma 3.1 to the coefficients of gn+1, we have:

Proposition 3.2.
(

s
3s−(n+1)

)
is even for all integers s with n+1

3 6 s 6 n+1
2 ; that is,

gn+1 = 0.

Proof. Let εm(s) = (sm−1, . . . , s0) for n+1
3 6 s 6 n+1

2 and let εm+1(n + 1− 2s) =
(tm, . . . , t0). Since s 6 2m − 2, there exists an integer i such that si = 0. Let i be
the least integer satisfying si = 0; that is, εm(s) = (sm−1, . . . , si+1, 0, 1, . . . , 1). Then
it is easy to show that ti = 1. Hence it follows from Lemma 3.1 that

(
s

3s− (n + 1)

)
=

(
s

n + 1− 2s

)
≡ 0 (mod 2).

Next we investigate gn+2. Coefficients of gn+2 are well understood by considering
their binary expansion as in the above case of gn+1. Let

Sk =
{

s ∈ Z | n(k)+2
3 6 s 6 n(k)+2

2 and εk(s) = (sk−1, . . . , s0) is such that

if sj = 0, then sj+1 = 1
}

;

here n(k) = 2k+1 − 4. Note that n(k)+2
3 6 s 6 n(k)+2

2 implies that sk−1 is always equal
to 1 for each s ∈ Sk with εk(s) = (sk−1, . . . , s0). There is a one-to-one correspondence
between non-zero coefficients of gn+2 and Sm as:

Lemma 3.3.
(

s

3s− (n + 2)

)
≡ 1 (mod 2) if and only if s ∈ Sm.

Proof. Let εm(s) = (sm−1, . . . , s0) for n(m)+2
3 6 s 6 n(m)+2

2 . Then we have

εm+1(n + 2− 2s) = (sm−1, . . . , s0, 0);

hence Lemma 3.3 follows from Lemma 3.1.

It is convenient for calculations in Section 4 to index coefficients of gn+2 by expo-
nents of w̄2 in (3); that is, 3s− (n + 2), not by s ∈ Sm. Then we define a set Pk

by

Pk = {p ∈ Z | p = 3s− (n(k) + 2), s ∈ Sk} .

Pm is expressed by the binary expansion as:

Proposition 3.4. Let

∆k =
{

(pk−1, . . . , p0) ∈ {0, 1}k | if pl−1 = 1 and pl = pl+1 = · · · = pl+2t = 0;

then pl+2t+1 = 0
}

.

Here we assume that p−1 = 1. Then we have

Pm = {p ∈ Z | εm(p) ∈ ∆m} .
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We list some properties of ∆k which will be useful in the following discussion. The
proof is straightforward.

Proposition 3.5. The set ∆k has the following properties:

(a) pk ∈ ∆k implies (1,pk) ∈ ∆k+1.

(b) pk ∈ ∆k implies (pk, 1) ∈ ∆k+1.

(c) ∆m = {(1,pm−1) ∈ {0, 1}m | pm−1 ∈ ∆m−1}
t {(0, 0,pm−2) ∈ {0, 1}m | pm−2 ∈ ∆m−2}.

Proof of Proposition 3.4. Let s ∈ Sm with εm(s) = (sm−1, . . . , s0). If sm−2 = 0, then
one has sm−1 = 1 and sm−3 = 1 by definition of Sm. Then one can easily see that
s− 2m−1 ∈ Sm−2 where εm−1(s− 2m−1) = (sm−2, . . . , s0). If sm−2 = 1, then one can
see that s− 2m−1 ∈ Sm−1 as well. Hence one has obtained

Sm =
{
s + 2m−1 | s ∈ Sm−1

} t {
s + 2m−1 | s ∈ Sm−2

}
. (5)

We will show Proposition 3.4 by induction. We suppose that it is true for m− 1
and m− 2. Let s ∈ Sm−1 and p = 3(s + 2m−1)− (n + 2). By the hypothesis of the
induction, εm−1(3s− (n′ + 2)) = pm−1 ∈ ∆m−1, where n′ = 2m − 4. Since

p = 3(s + 2m−1)− (n + 2) = 3s− 2m + 2 + 2m−1 = 3s− (n′ + 2) + 2m−1,

we have

εm(p) = (1,pm−1) ∈ ∆m.

Similarly, let s ∈ Sm−2 and p = 3(s + 2m−1)− (n + 2). By the hypothesis of the
induction, εm−2(3s− (n′′ + 2)) = pm−2 ∈ ∆m−2, where n′′ = 2m−1 − 4. Since

p = 3(s + 2m−1)− (n + 2) = 3s− 2m−1 + 2 = 3s− (n′′ + 2),

we have

εm(p) = (0, 0,pm−2) ∈ ∆m.

Thus, by (5), we obtain

Pm =
{
p + 2m−1 | p ∈ Pm−1

} t Pm−2

and, by (3.5) of Proposition 3.5, we have established Proposition 3.4.

For the rest of this section, we investigate gn+3. Coefficients of gn+3 can be well
understood by using the binary expansion as well as above. Let

S ′k =
{

s′ ∈ Z | n(k)+3
3 6 s′ 6 n(k)+3

2 and εk(s′) = (sk−1, . . . , s1, 1) is such that

if sj = 0, then sj+1 = 1
}

.

Quite similarly to Lemma 3.3, we can see:

Lemma 3.6.
(

s′

3s′ − (n + 3)

)
≡ 1 (mod 2) if and only if s′ ∈ S ′m.
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We give an explicit description of the set

P ′k = {p′ ∈ Z | p′ = 3s′ − (n(k) + 3), s′ ∈ S ′k}
as well. Define a map

ι : Sm−1 → S ′m
by ι(s) = 2s + 1. Then, obviously, it is bijective. Note that, for s′ = ι(s),

3s′ − (n + 3) = 3ι(s)− 2m+1 + 1 = 6s− 2m+1 + 4 = 2(3s− (n′ + 2)),

where n′ = 2m − 4. Then we have p ∈ Pm−1 if and only if p′ ∈ P ′m such that
εm(p′) = (pm−1, 0) for εm−1(p) = pm−1. Hence we have obtained:

Proposition 3.7. P ′m = {p ∈ Z | εm(p) = (pm−1, 0), pm−1 ∈ ∆m−1} .

4. Gröbner basis and cup-length

In this section, by using the result of the previous section, we search for a Gröbner
basis of Jn in order to determine cup(Im p∗n).

4.1. Gröbner bases
We first recall the definition and some facts of Gröbner bases by restricting to

our specific case. In order to clarify our discussion and to simplify notation, we shall
make a convention of identifying a two variable polynomial ring with a certain set
as follows. Let X = {(p, q) ∈ Z2 | p > 0, q > 0} and let P [X ] denote the set of finite
subsets of X . By assigning F ∈ P [X ] to

∑
(p,q)∈F w̄p

2w̄q
3, we can identify P [X ] with

a polynomial ring Z/2[w̄2, w̄3], and we shall make this identification throughout this
section. This identification translates the operations in Z/2[w̄2, w̄3] into P [X ] as:
For F, G ∈ P [X ],

F + G = F ∪G \ F ∩G,

F ·G =
∑

(p,q)∈F, (r,s)∈G

(p + r, q + s).

This translation of operations enables us to handle the following polynomial calcula-
tions easily.

The order of X is given by the usual lexicographic order. Namely, for
(p, q), (r, s) ∈ X ,

(p, q) > (r, s) if and only if p > r or p = r, q > s.

By employing this order, we search for a Gröbner basis of the ideal Jn ⊂ P [X ].
In order to define Gröbner bases, we prepare some notation and terminology. The

leading term of a polynomial F ∈ P [X ] is the monomial

LT(F ) = max{(p, q) ∈ F}.
If there is a monomial (p, q) ∈ X such that (p, q) · LT(G) ∈ F , then the polynomial
F − (p, q) · LT(G) is called the remainder of F on division by G. We denote the
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remainder R = F − (p, q) · LT(G) of F on division by G, by

F
G∗−−→ R.

Choose F1, . . . , Fs ∈ P [X ] and give them an arbitrary order. Then it is known that
there is an algorithm to provide the decomposition of F ∈ P [X ] as

F = A1F1 + · · ·+ AsFs + R

such that A1, . . . , As ∈ P [X ] and R is a linear combination of monomials, none of
which is divisible by each LT(F1), . . . , LT(Fs). The above R is called the remainder
of F on division by {F1, . . . , Fs} as well. However, this decomposition depends on the
choice of an order of F1, . . . , Fs, and F ∈ (F1, . . . , Fs) does not imply the remainder
R = 0. We can overcome this difficulty of remainders by choosing a Gröbner basis
defined as:

Definition 4.1. Let I be an ideal of P [X ]. A finite subset G = {G1, . . . , Gs} is a
Gröbner basis of I if

({LT(F ) | F ∈ I}) = (LT(G1), . . . , LT(Gs)).

Theorem 4.2. Let I be an ideal of P [X ] and let {G1, . . . , Gs} be a Gröbner basis
of I. Then the remainder of F ∈ I on division by {G1, . . . , Gs} is zero.

Buchberger [3] gave a criterion for a set of polynomials being a Gröbner basis of
the ideal generated by it as follows. For F, G ∈ P [X ], the least common multiple of
F and G is the monomial

LCM(F, G) = (max{p, r}, max{q, s}),
where LT(F ) = (p, q) and LT(G) = (r, s). The S-polynomial of F and G ∈ P [X ] is

S(F,G) =
LCM(F, G)

LT(F )
F +

LCM(F, G)
LT(G)

G.

Theorem 4.3 ([3]). The set of polynomials {G1, . . . , Gs} ⊂ P [X ] is a Gröbner basis
of the ideal (G1, . . . , Gs) if and only if the remainder of S(Gi, Gj) on division by
{G1, . . . , Gs} is zero for each i 6= j.

4.2. Search for a Gröbner basis of Jn

The author found the following polynomials experimentally by a computer cal-
culation. For non-negative integers i, t with t− 2(2m − 2i) ≡ 0 (mod 3), we define a
polynomial P (t, i) by

P (t, i) =
{(

p, t−2p
3

) ∈ X | εm(p) = (pm−i,

i︷ ︸︸ ︷
0, . . . , 0), pm−i ∈ ∆m−i

}
,

Pi = P (2i + n + 1, i).

We shall prove that {P0, . . . , Pm} is a Gröbner basis of Jn.
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In order to investigate Pi, we define the following sets which will be useful for
expression. Let ∆(i, j, l) and ∆̄(i, l) be

∆(i, j, l) =


(pm−j ,pj−i−l,

lz }| {
1, . . . , 1,

iz }| {
0, . . . , 0) ∈ {0, 1}m | (pm−j ,pj−i−l)

∈ ∆m−i−l, pj−i−l 6= (1, . . . , 1)

ff
,

∆̄(i, l) =


(pm−i−l−2, 0, 0,

lz }| {
1, . . . , 1,

iz }| {
0, . . . , 0) ∈ {0, 1}m | pm−i−l−2 ∈ ∆m−i−l

ff
.

It is easy to check:

Lemma 4.4. ∆(i, j, l) = ∆̄(i, l) t∆(i, j, l + 1).

Let us begin investigating Pi. It is easy to verify that

LT(Pi) = (2m − 2i, 2i − 1). (6)

Proposition 4.5. We have P0, . . . , Pm ∈ Jn. In particular P0 = gn+2, P1 = gn+3.

Proof. By Propositions 3.4 and 3.7, one has P0 = gn+2 and P1 = gn+3. For i < j, it
follows from (6) that

S(Pi, Pj) = (0, 2j − 2i) · Pi + (2j − 2i, 0) · Pj

=
{

(p, qi,j) ∈ X | εm(p) = (pm−j ,pj−i,

i︷ ︸︸ ︷
0, . . . , 0), (pm−j ,pj−i) ∈ ∆m−i

}

+
{

(p, qi,j) ∈ X | εm(p) = (pm−j ,

j−i︷ ︸︸ ︷
1, . . . , 1,

i︷ ︸︸ ︷
0, . . . , 0), pm−j ∈ ∆m−j

}

= {(p, qi,j(p)) ∈ X | εm(p) ∈ ∆(i, j, 0)} ,

where

qi,j(p) =
3 · 2j − 2 · 2i + n + 1− 2p

3
.

By the definition of ∆k, one can easily see that ∆(i, 0, i + 1) = ∆m−i−2. Then it
follows that S(Pi, Pi+1) = Pi+2; hence we have established Proposition 4.5.

We calculate the remainders of S(Pi, Pj) on division by {P0, . . . , Pm}.

Lemma 4.6. The remainder of Qi,j,l = {(p, qi,j(p)) ∈ X | εm(p) ∈ ∆(i, j, l)} on divi-
sion by Pi+l+2 is Qi,j,l+1.

Proof. Let p(i, l) be εm(p(i, l)) = (

m−i−l−2︷ ︸︸ ︷
1, . . . , 1 , 0, 0,

l︷ ︸︸ ︷
1, . . . , 1,

i︷ ︸︸ ︷
0, . . . , 0). Then it is easy to
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see

LT(Q(i, j, l)) = (p(i, l), qi,j(p(i, l)))

and it follows from (6) that

LT(Pi+l+2) = (p(i + l, 0), qi+j+2,i+j+2(p(i + l, 0))) .

Hence we have

(2i+l − 2i, 2j − 2i+l+1) · LT(Pi+l+2) = Q(i, j, l).

On the other hand, one can easily check that

(2i+l − 2i, 2j − 2i+l+1) · Pi+l+2 =
{
(p, qi,j(p)) ∈ X | εm(p) ∈ ∆̄(i, l)

}

and then it follows from Lemma 4.4 that

Q(i, j, l)
Pi+l+2∗−−−−−→ Q(i, j, l) + (2i+l − 2i, 2j − 2i+l+1) · Pi+l+2 = Q(i, j, l + 1).

Theorem 4.7. The set {P0, . . . , Pm} is a Gröbner basis of Jn.

Proof. By Proposition 4.5, we have Jn = (P0, . . . , Pm). As in the proof of Proposi-
tion 4.5, we have S(Pi, Pj) = Q(i, j, 0), and then it follows from Lemma 4.6 that, for
i < j,

S(Pi, Pj) = Q(i, j, 0)
Pi+2∗−−−−→ Q(i, j, 1)

Pi+3∗−−−−→ · · · Pj∗−−→ Q(i, j, j − i− 1)
Pj+1∗−−−−→ 0.

4.3. Cup-length of Im p∗n
In order to determine cup(Im p∗n), let us introduce new polynomials. For non-

negative integers i, j, s with s− 2m+1 + 2i+1 ≡ 0 (mod 3), we define a polynomial
P̂ (s, i, j) by

P̂ (s, i, j) =
{(

p, s−2p
3

) ∈ X | ε(p) ∈ ∆̄(i, j)
}

.

Then we have

LT(Pi) = P (2i + n + 1, i) + P (2i + n + 1, i + 2)

+
∑

16j6m−i−2

P̂ (2i + n + 1, i, j). (7)

In order to investigate cup(Im p∗n), we shall calculate min{p | (p, 0) · LT(Pi) ∈ Jn}
for each i as follows.

Lemma 4.8. Let αi = min{α | (α, 0) · P (t, i) ∈ Jn} for non-negative integers i, t with

2i−2 + n + 1 6 t < 2i−1 + n + 1, t− 2(2m − 2i) ≡ 0 (mod 3).

Then we have αi = 2m − 2i−1. In particular, αi is independent from t as above.
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Proof. Note that

(2i−1, 0) · P (t, i)

=


(p, t+2i−2p

3
) ∈ X | εm(p) = (pm−i, 1, 0, . . . , 0) ∈ {0, 1}m, (pm−i, 1) ∈ ∆m−i+1

ff

and “
0, t+2i−1−n−1

3

”
· Pi−1

=

“
p, t+2i−2p

3

”
∈ X | εm(p) = (pm−i+1, 0, . . . , 0) ∈ {0, 1}m,pm−i+1 ∈ ∆m−i+1

ff
.

By Proposition 3.5, we have

(2i−1, 0) · P (t, i) +
(
0, t+2i−1−n−1

3

)
· Pi−1 = P (t + 2i, i + 1),

and hence

(2i−1, 0) · P (t, i)
Pi−1∗−−−−→ P (t + 2i, i + 1).

Then we obtain

(2i−1, 0) · P (t, i)
Pi−1∗−−−−→ P (t + 2i, i + 1),

(2i, 0) · P (t + 2i, i + 1)
Pi∗−−→ P (t + 2i + 2i+1, i + 2),
...

(2m−1, 0) · P (t + 2i + · · ·+ 2m−1,m)
Pm−1∗−−−−→ 0.

We show that (2m−1 − 1, 0) · P (t + 2i + · · ·+ 2m−1,m) does not lie in Jn. The fol-
lowing arguments are due to Korbaš. This polynomial corresponds to w̄2m−1−1

2 w̄λ
3 in

H∗(G̃n,3;Z/2) where λ = 1
3{t + 2m − 2i}. Suppose w̄2m−1−1

2 w̄λ
3 = 0 in H∗(G̃n,3;Z/2).

Then w2m−1−1
2 wλ

3 lies in an ideal of H∗(Gn,3;Z/2) generated by w1 (see the exact
sequence in Section 2). This contradicts the following facts on the multiplicative
structure of H∗(Gn,3;Z/2) by Stong [10]:

w2m+1−1
1 w2m−1−1

2 wn−2m+1
3 6= 0

w2m+1

1 = 0.

This completes the proof of Lemma 4.8.

Lemma 4.9. Let αi be as in Lemma 4.8. Then we have (αi, 0) · P̂ (s, i, j) ∈ Jn.

Proof. Quite similarly to the proof of Lemma 4.8, one has

(2j+i + 2i, 0) · P̂ (s, i, j) +
(
0, s+2i+1+1

3

)
· Pj+i+1 = P (s + 2j+i+1 + 2i+1, j + i + 3).

By Lemma 4.8, we have 2j+i + 2i + αj+i+3 < αi, and then Lemma 4.9 is accom-
plished.

It follows from Lemmas 4.8 and 4.9 that:

Proposition 4.10. Let αi be as in Lemma 4.8. Then we have

αi+1 = min{α | (α, 0) · LT(Pi) ∈ Jn}.
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Corollary 4.11. Let χ1 be a fixed integer such that

2m+1 − 2i+1 − 2i+2 6 χ1 < 2m+1 − 2i − 2i+1

and let χ2 = max{z | (χ1, z) /∈ Jn}. Then we have χ2 = 2i+1 − 2.

Proof. Let (pi, qi) = LT(Pi). Then, by (6) and Lemma 4.8, we have

· · · > pi−1 + αi+1 > pi + αi+2 > pi+1 + αi+3 · · · ,

· · · < qi−1 < qi < qi+1 < · · · .

Hence, by Theorems 4.2 and 4.7, we have established that, for

pi+1 + αi+3 = 2m+1 − 2i+1 − 2i+2 6 χ1 < 2m+1 − 2i − 2i+1 = pi + αi+2,

one has χ2 = qi+1 − 1 = 2i+1 − 2.

From Corollary 4.11, χ1 + χ2 is maximized when (χ1, χ2) = (n, 0), and the max-
imum value is n. The maximum value is equal to cup(Im p∗n). Therefore we have
obtained:

Corollary 4.12. cup(Im p∗n) = n. In particular, w̄n
2 6= 0.

5. Cup-length of G̃n,3 and its applications

In this section, we determine cupZ/2(G̃n,3) and give its applications to immersion
of G̃n,3 into a Euclidean space.

Proof of Theorem 1.3. By Corollary 4.12, one has w̄n
2 6= 0. Then, by Poincaré

duality, there exists x ∈ Hn(G̃n,3;Z/2) such that w̄n
2 x 6= 0, and hence we have

cupZ/2(G̃n,3) > n + 1.

Note that the canonical map G̃n,3 → BSO(3) is an n-equivalence. Then it follows
that H∗(G̃n,3;Z/2) ∼= Im p∗n in dimensions less than n. Now suppose that there exist
x1, . . . , xn+2 ∈ H̃∗(G̃n,3;Z/2) such that x1 · · ·xn+2 6= 0. By a dimensional reason, one
has |xi| < n for each i, and then this contradicts to Corollary 4.12. Hence we have
obtained Theorem 1.3.

Proof of Corollary. From Theorem 1.3 and the inequality cupZ/2(G̃n,3) 6 cat(G̃n,3),
it follows that n + 1 6 cat(G̃n,3).

Note that w̄2 ∈ H2(G̃n,3;Z/2) is the fundamental class in the sense of James [7].
By Corollary 4.12, we have w̄n+1

2 = 0, and then it follows from Proposition 5.3 in [7]
that cat(G̃n,3) < 3

2n. Hence we have established the corollary.

Let us consider the immersion of G̃n,3 into a Euclidean space as applications of
Theorem 1.3. Of course, as mentioned in Section 1, we know, by the result of Whit-
ney [12], that G̃n,3 immerses into R6n−1. We shall give a slightly better estimate.
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We denote the canonical vector bundle over G̃n,3 by γ and a stable normal bundle
of G̃n,3 by ν. We abbreviate the classifying map G̃n,3 → BSO(∞) of ν by the same
symbol ν. It is well-known that TG̃n,3 = γ ⊗ γ⊥; then we have

TG̃n,3 ⊕ γ ⊗ γ = γ ⊗ γ⊥ ⊕ γ ⊗ γ

= γ ⊗ (γ⊥ ⊕ γ)
= (n + 3)γ. (8)

By Corollary 4.12, we have (1 + w̄2 + w̄3)n+4 = 1. Using the formula for the Stiefel-
Whitney class of a tensor product shows that w(γ ⊗ γ) = 1 + w̄2

2 + w̄3
3. Since

ν ⊕ TG̃n,3 is trivial, we have

w(ν) =
w(γ ⊗ γ)

w((n + 3)γ)

=
1 + w̄2

2 + w̄2
3

(1 + w̄2 + w̄3)n+3

= (1 + w̄2
2 + w̄2

3)(1 + w̄2 + w̄3)

= 1 + w̄2 + w̄3 + w̄2
2 + w̄3

2 + w̄2
3 + w̄2

2w̄3 + w̄2w̄
2
3 + w̄3

3. (9)

Then it immediately follows that G̃n,3 does not immerse into R3n+8 for
n = 2m+1 − 4m > 3 and G̃4,3 does not immerse into R17.

Now let us consider the modified Postnikov tower of the fibration

BSO(3n− 3) → BSO(∞),

following Gitler and Mahowald [4]. We obtain the modified Postnikov tower of
BSO(3n− 3) → BSO(∞) in dimensions less than or equal to 3n as:

BSO(3n− 3)

²²
E2

²²

k3
// K(Z/2, 3n)

E1

²²

k2
1×k2

2 // K(Z/2, 3n− 1)× K(Z/2, 3n)

BSO(∞)
k1
1×k1

2 // K(Z/2, 3n− 2)×K(Z/2, 3n).

The k-invariants are as follows:

k1
1 = w3n−2, k1

2 = w3n

k2
1 : (Sq2 + w2)k1

1 = 0
k2
2 : (Sq2Sq1 + w2Sq1)k1

1 + Sq1k1
2 = 0

k3 : Sq1k2
2 + (Sq2 + w2)k2

1 = 0

It is our goal to lift the map ν : G̃n,3 → BSO(∞) up to BSO(3n− 3).
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It follows from (9) that w3n−2(ν) = w3n(ν) = 0. Therefore the k1-invariants of
ν are zero, and so ν : G̃n,3 → BSO(∞) lifts up to ν′ : G̃n,3 → E1. The k2-invariants
are k2

1(ν) ∈ H3n−1(G̃n,3;Z/2), k2
2(ν) ∈ H3n(G̃n,3;Z/2) and the k3-invariant is

k3(ν) ∈ H3n(G̃n,3;Z/2). By Poincaré duality, one has H3n−1(G̃n,3;Z/2) = 0, so
k2
1(ν) = 0. To prove that the map ν′ lifts to BSO(3n− 3), it is enough to show that

k2
2(ν) and k3(ν) are in the indeterminacy. This requires knowing the Steenrod opera-

tions Sq1 on H3n−3(G̃n,3;Z/2) and Sq2 on H3n−2(G̃n,3;Z/2). Let xi be a generator
of Hi(G̃n,3;Z/2) ∼= Z/2 for i = 3n− 3, 3n− 2.

Lemma 5.1. Sq1x3n−3 = x3n−2 and Sq2x3n−2 = 0.

Proof. Since G̃n,3 and BSO(3) are n-equivalent, H2(G̃n,3;Z) ∼= H2(BSO(3);Z) ∼=
π2(BSO(3)) = Z/2. By Poincaré duality, one has H3n−2(G̃n,3;Z) = Z/2, so the Bock-
stein homomorphism

β : H3n−3(G̃n,3;Z/2) → H3n−2(G̃n,3;Z/2)

must be an isomorphism. Therefore one has Sq1x3n−3 = βx3n−3 = x3n−2.
Consider the inclusion i : G̃n−1,2 ↪→ G̃n,3. Let x ∈ Hn(G̃n,3;Z/2) be as in the proof

of Theorem 1.3. Then x is indecomposable. By a result of Ishitoya [6], it follows that

i∗(Sq2x) = Sq2i∗(x) = et,

where e = i∗(x) ∈ Hn(G̃n−1,2; Z/2) and t = i∗(w̄2) ∈ H2(G̃n−1,2; Z/2). From the
proof of Theorem 1.3 and the Wu formula, we have Sq2x3n−2 = Sq2w̄n−1

2 x = 0.

By above lemma, the indeterminacy of k2
2 is H3n(G̃n,3;Z/2). Therefore, we may

choose ν′ such that ν′ lifts to ν′′ : G̃n,3 → E2. The indeterminacy of k3 is also
H3n(G̃n,3;Z/2) and so an appropriate choice of ν′′ lifts to ν̄ : G̃n,3 → BSO(3). Hence
we can see from a result of Hirsch [5] that G̃n,3 immerses into R6n−3. Thus one obtains
Theorem 1.5.
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