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Abstract
We define a version of Hochschild homology and coho-

mology suitable for a class of algebras admitting compatible
actions of bialgebras, called module algebras. We show that
this (co)homology, called Hopf-Hochschild (co)homology, can
also be defined as a derived functor on the category of repre-
sentations of an equivariant analogue of the enveloping algebra
of a crossed product algebra. We investigate the relationship of
our theory with Hopf cyclic cohomology and also prove Morita
invariance of the Hopf-Hochschild (co)homology.

1. Introduction

Our goal in this paper is to define a version of Hochschild homology and coho-
mology suitable for a class of algebras admitting compatible actions of bialgebras,
called “module algebras” (Definition 2.1). Our motivation lies in the following prob-
lem: for an algebra A which admits a module structure over an arbitrary bialgebra B
compatible with its product structure, the Hochschild or the cyclic bicomplexes asso-
ciated with this algebra need not be differential graded B-modules. The obstruction
which prevents these complexes from being B-linear is trivial whenever the bial-
gebra B is cocommutative, as in the case of group rings and universal enveloping
algebras. Yet the same obstruction is far from being trivial if the underlying bial-
gebra is non-cocommutative. In this article, we will investigate how much of the
Hochschild homology is retained after dividing this obstruction out. To this end, we
will construct a new differential graded B-module QCH∗(A,B, V ) (Proposition 2.12
and Definition 2.13) for a B-module algebra A and a B-equivariant A-bimodule V

(Definition 2.2). We will define HHHopf
∗ (A,B, V ), the Hopf-Hochschild homology

of A with coefficients in V , as the homology of the complex k ⊗
B

QCH∗(A, B, V ).

We would like to point out that the same strategy worked remarkably well in the
case of cyclic cohomology of module coalgebras. In [13] we show that if we start
with the cocyclic bicomplex of a module coalgebra twisted by a stable anti-Yetter-
Drinfeld module, then dividing the analogous obstruction results in the Hopf cyclic
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complex of [10], which was an extension of the Hopf cyclic cohomology of Connes
and Moscovici [7].

In the context of cyclic (co)homology and K-theory, one of the most commonly
used tools dealing with module algebras has been crossed product algebras. There
is a large body of work dealing with algebras admitting actions of discrete groups
and compact Lie groups, e.g. [9, 11, 2, 5, 12, 8, 4] and references therein, which
utilizes this tool to its fullest extent. Also, there have been successful attempts in
defining equivariant cyclic (co)homology and K-theory for module algebras over
Hopf algebras [3, 1, 18] again by using crossed product algebras. Crossed product
algebras enter in our picture in Corollary 4.4 where we show that Hopf-Hochschild
homology can also be defined as a derived functor on the category of representations
of an equivariant analogue of the enveloping algebra of a crossed product algebra
(Definition 3.1).

The last result we prove is the Morita invariance of the Hopf-Hochschild homol-
ogy and cohomology (Theorems 7.9 and 8.4). Our proof utilizes some additional
tools from functor homology [17, 19]. In doing so, we observe that the category of
representations of a crossed product algebra is rather small for computing equiv-
ariant invariants. However, the shortcomings of this category can be overcome by
using “B-categories” (Definition 6.1). We refer the reader to Remark 6.9 for a more
detailed analysis on this subject.

Here is the plan of this paper: In Section 2 we give the basic definition of Hopf-
Hochschild complex of module algebras with coefficients in equivariant bimodules.
We also point out the connections between Hopf-Hochschild homology and Hopf
cyclic cohomology (Remark 2.15). In Section 3 we define Hopf-Hochschild coho-
mology of a B-module algebra and calculate it for lower dimensions. We also give
a derived functor interpretation of the Hopf-Hochschild cohomology in terms of
crossed product algebras. In Section 4 we extend the derived functor interpreta-
tion to Hopf-Hochschild homology. Sections 5 and 6 contain technical results needed
toward proving Morita invariance of Hopf-Hochschild (co)homology in Section 7 in
its full generality. In Section 8 we develop a generalized twisting method for coeffi-
cient bifunctors or bimodules by using Yetter-Drinfeld modules similar to the method
of twisting developed in [10]. In this last section, we also prove Morita invariance
for twisted Hopf-Hochschild (co)homology.

Throughout this paper, we assume k is an arbitrary field and B is an associa-
tive/coassociative unital/counital bialgebra, or a Hopf algebra with an invertible
antipode whenever it is necessary. All tensor products are taken over k unless it is
stated otherwise explicitly.
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2. Hopf-Hochschild homology

Definition 2.1. An algebra A is called a left B-module algebra if A is a B-module
and

b(a1a2) = b(1)(a1)b(2)(a2)

for any b ∈ B and a1, a2 ∈ A. If A is unital, then we also assume b(1A) = ε(b)1A

where ε is the counit of B.

Recall that an A-bimodule is a left and right A-module which satisfies a . (v /
a′) = (a . v) / a′ for any a, a′ ∈ A and v ∈ V . Here we use / and . to denote the
right and left actions of A on V respectively.

Definition 2.2. Let A be a B-module algebra. An A-module V is called a B-
equivariant A-bimodule if V is both an A-bimodule and B-module and one also
has

b(a′ . v / a) = (b(1)a
′) . (b(2)v) / (b(3)a)

for any a, a′ ∈ A and b ∈ B.

Example 2.3. Let B = k[G] be the group algebra of a discrete group G. Then an
algebra A is a k[G]-module algebra if and only if A admits an action of G by algebra
automorphisms.

Example 2.4. Let B = U(g) be the universal enveloping algebra of Lie algebra g.
Then an algebra A is a U(g)-module algebra if and only if A admits an action of g
by derivations.

Example 2.5. Let B be an arbitrary Hopf algebra and A be an algebra in the cate-
gory of B-bimodules, and let V be a left A-module in the category of left B-modules,
where in both cases we use tensor product over B as our monoidal product. These
conditions require that we have

(ba)a′ = b(aa′), a(a′b) = (aa′)b, (ab)a′ = a(ba′),
(ba)v = b . (av), (ab)v = a(b . v)

for any a, a′ ∈ A, b ∈ B and v ∈ V . If A is a unital algebra, then A necessarily
admits a morphism of algebras γ : B → A defined by γ(b) := b(1A). Then we have
bab′ := γ(b)aγ(b′) and b . v := γ(b)v for any b, b′ ∈ B, a ∈ A and v ∈ V . In this setup,
there is a natural action of B on A called the adjoint action which makes A into
a B-module algebra and V into a B-equivariant A-module. The adjoint action is
defined as

adb(a) = b(1)aS(b(2))

for any b ∈ B and a ∈ A. One can easily see that

adb(a1a2) = b(1)(a1a2)S(b(2)) = b(1)a1S(b(2))b(3)a2S(b(4)) = adb(1)(a1)adb(2)(a2)

for any b ∈ B and a1, a2 ∈ A. Similarly,

b(a . v) = b(1)aS(b(2)) . b(3)v = adb(1)(a) . (b(2)v)

for any a ∈ A, b ∈ B and v ∈ V .
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Example 2.6. Consider the Hopf algebra O generated (as an algebra) by symbols
Dn, α and α−1 where n ∈ Z, and we have the relations

αDnα−1 = Dn+1 for any n ∈ Z.

We also let

∆(α`) = α` ⊗ α` for ` ∈ Z and ∆(Dn) = (α⊗Dn) + (Dn ⊗ 1) for n ∈ Z.

This data is enough to define a Hopf algebra structure on O. One can easily observe
that an algebra A is an O-module algebra if and only if A admits an algebra auto-
morphism α and an α-derivation δ.

Example 2.7. Let H1 be the Hopf algebra generated by the symbols X, Y and δn,
where n > 1 is an integer. We impose the following relations

[Y,X] = X, [Y, δ1] = δ1, [X, δn] = δn+1, [δn+1, δn] = 0,

for all possible n > 1, where we use [a, b] := ab− ba for arbitrary elements a, b ∈ H1.
We also let

∆(Y ) = (Y ⊗ 1) + (1⊗ Y ),
∆(δ1) = (δ1 ⊗ 1) + (1⊗ δ1),
∆(X) = (X ⊗ 1) + (1⊗X) + (δ1 ⊗ Y ).

One can define ∆(δn) recursively by using the relation δn+1 = [X, δn] and the fact
that ∆ is a morphism of algebras. This data is enough to define a Hopf algebra
structure on H1. Although our presentation is slightly different, the Hopf algebra
H1 is the the same as Connes-Moscovici Hopf algebra defined in [7].

One can define an H1-module algebra structures on the algebra of meromorphic
functions on C by letting

δ1(f(z)) := f ′(z)δ1(z),
Y (f(z)) := f ′(z)Y (z),

X(f(z)) :=
1
2
δ1(z)Y (z)f ′′(z) + X(z)f ′(z),

where we use δ1(z), Y (z) and X(z) to denote the action of each generator on the
function f(z) = z. By using the relations in H1, one can show that the choices of
Y (z) and X(z) depend on the choice of δ1(z) as

Y (z) = −δ1(z)
∫

1
δ1(z)

dz and X(z) =
1
2

Y (z)
d

dz
δ1(z) + c δ1(z),

where c is an arbitrary constant, provided Y (z) is meromorphic. If we choose δ1(z)
in the algebra of polynomials C[z] and if Y (z) happens to be a polynomial too,
then the same data determines an H1-module algebra structure on C[z] as well. For
example, if we let δ1(z) = z2, then Y (z) = az2 + z and X(z) = az3 + bz2 for some
constants a, b ∈ C, and we obtain an H1-module algebra structure on the algebra of
polynomials C[z].
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Definition 2.8. Given an algebra A and a A-bimodule V , we will use the notation
CH∗(A, V ) to denote graded module

⊕
n>0 V ⊗A⊗n with structure morphisms

∂j(v ⊗ a1 ⊗ · · · ⊗ an), =





(v / a1 ⊗ a2 ⊗ · · · ⊗ an), if j = 0;
(v ⊗ · · · ⊗ ajaj+1 ⊗ · · · ), if 1 6 j < n− 1;
(an . v ⊗ a1 ⊗ · · · ⊗ an−1), if j = n,

which makes CH∗(A, V ) into a pre-simplicial module. The differential graded module
with the differentials

dCH
n =

n∑

j=0

(−1)j∂j

corresponding to this pre-simplicial module is also denoted by CH∗(A, V ), and is
called the Hochschild complex of A with coefficients in the A-bimodule V .

From this point on, we will assume A is a B-module algebra and V is a B-
equivariant A-bimodule unless it is stated otherwise explicitly.

Remark 2.9. B as an algebra acts on CH∗(A, V ) diagonally as

Lb(v ⊗ a1 ⊗ · · · ⊗ an) = b(1)(v)⊗ b(2)(a1)⊗ · · · ⊗ b(n+1)(an),

which makes CH∗(A, V ) into a graded B-module but NOT a differential graded
B-module since, in general,

∂nLb(v ⊗ a1 ⊗ · · · ⊗ an) = b(n+1)(an) . b(1)(v)⊗ b(2)(a1)⊗ · · · ⊗ b(n)(an−1)

need not be the same as

Lb∂n(v ⊗ a1 ⊗ · · · ⊗ an) = b(1)(an) . b(2)(v)⊗ b(3)(a1)⊗ · · · ⊗ b(n+1)(an−1)

for any n > 0, a1 ⊗ · · · ⊗ an ⊗ v ∈ CHn(A, V ) and b ∈ B. One interesting case when
∂nLb = Lb∂n is when B is cocommutative, i.e. b(1) ⊗ b(2) = b(2) ⊗ b(1) for any b ∈ B.
The best-known examples of cocommutative bialgebras are group rings of discrete
groups and universal enveloping algebras of Lie algebras. This means that the graded
B-module structure on the ordinary Hochschild complex CH∗(A, V ) extends to a
differential graded B-module structure on CH∗(A, V ) when B is cocommutative.
The obstruction which prevents CH∗(A, V ) from being a differential graded B-
module is the subcomplex generated by images of the the commutators [Lb, d

CH
∗ ] =

(−1)n[Lb, ∂n] where Lb is the k-linear endomorphism of CH∗(A, V ) coming from the
diagonal action of b ∈ B on CH∗(A, V ). Now one can ask the following question:
what happens if we force these differential graded k-modules to become differential
graded B-modules by dividing out this obstruction? This is what we are going to
do with Definition 2.11 and Proposition 2.12 for the ordinary Hochschild complex,
and then we will investigate homological consequences of this operation.

Let (C∗, dC∗) be a differential graded k-module and let n ∈ N. Then we define
C∗[+n],the n-fold suspension of C∗, as the differential graded k-module Cm[+n] =
Cm+n with differentials dCm[+n] = dCm+n for any m ∈ Z. One can similarly define
C∗[−n] for any n ∈ N. Note that Hm±n(C∗[±n]) = Hm(C∗).
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Lemma 2.10. For any b ∈ B, there is a morphism of differential graded k-modules
of the form

CH∗(A, V )[+1]
[Lb,∂∗+1]−−−−−−→ CH∗(A, V ).

Moreover, [Lb, ∂∗+1] is null-homotopic for any b ∈ B.

Proof. For any b ∈ B and v ⊗ a ∈ CHn(A, V )[+1], we consider

∂j [Lb, ∂n+1](v ⊗ a) = −[Lb, ∂j ]∂n+1(v ⊗ a), +[Lb, ∂j∂n+1](v ⊗ a),

=

{
[Lb, ∂n∂j ](v ⊗ a), if 0 6 j 6 n− 1;
−[Lb, ∂n]∂n+1(v ⊗ a) + [Lb, ∂n∂n](v ⊗ a), if = n;

=

{
[Lb, ∂n]∂j(v ⊗ a), if 0 6 j 6 n− 1;
−[Lb, ∂n]∂n+1(v ⊗ a) + [Lb, ∂n]∂n(v ⊗ a), if j = n,

by using the fact that [Lb, ∂j ](v ⊗ a) = 0 for any n > 0 and 0 6 j 6 n− 1. This
immediately implies

dCH
n [Lb, ∂n+1] =

n−1∑

j=0

[Lb, ∂n]∂j + (−1)n[Lb, ∂n]∂n + (−1)n+1[Lb, ∂n]∂n+1

= [Lb, ∂n]dCH
n+1 = [Lb, ∂n]dCH[+1]

n .

The null-homotopy CHn(A, V )[+1] sn−→ CHn(A, V )[+1] is given by sn = (−1)nLb for
any n > 0.

Definition 2.11. We define a graded B-submodule of CH∗(A, V ) as

J∗(A,B, V ) =
∑

b∈B

im([Lb, ∂∗+1]).

Proposition 2.12. We define a new graded B-module QCH∗(A,B, V ) as the quo-
tient graded B-module

QCH∗(A,B, V ) := CH∗(A, V )/J∗(A,B, V ).

Then QCH∗(A,B, V ) is also a differential graded B-module.

Proof. Since each im([Lb, ∂∗+1]) is a differential graded k-submodule of CH∗(A, V ),
the submodule J∗(A,B, V ) is also a differential graded k-submodule of CH∗(A, V ).
This fact implies that QCH∗(A,B, V ) is also a differential graded k-module. More-
over, J∗(A,B, V ) is a graded B-submodule of CH∗(A, V ) since

Lx[Lb, ∂n+1](v ⊗ a) = −[Lx, ∂n+1]Lb(v ⊗ a) + [Lxb, ∂n+1](v ⊗ a)

for any x, b ∈ B, n > 0 and (v ⊗ a) in CHn(A, V )[+1]. For QCH∗(A,B, V ) to be a
differential graded B-module, we must show that [Lb, d

CH
∗ ] ≡ 0 on QCH∗(A,B, V )

for any b ∈ B. This is equivalent to saying that

[Lb, d
CH
n ](v ⊗ a) = (−1)n[Lb, ∂n](v ⊗ a)

must be in Jn−1(B, B, V ) for any (v ⊗ a) in CHn(A, V ) and for any b ∈ B is in
Jn−1(A,B, V ), which is true by definition.
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Definition 2.13. Assume B is a bialgebra. For a B-module algebra A and a B-
equivariant A-module V , we define Hopf-Hochschild homology of A with coefficients
in V as the homology of the differential graded k-module BQCH∗(A,B, V ) which is
defined as k ⊗

B
QCH∗(A,B, V ). In other words,

HHHopf
n (A, V ) := Hn(BQCH∗(A,B, V ))

for any n > 0.

Remark 2.14. Observe that if B is cocommutative, then the differential graded k-
module QCH∗(A,B, V ) is equal to the ordinary Hochschild complex CH∗(A, V ). In
the case when B is both cocommutative and semi-simple (such as B = k[G] where
G is a finite group and char(k) does not divide |G|), then one has an isomorphism of
the form HHHopf

∗ (A, V ) ∼= k ⊗
B

HH∗(A, V ). For example, if B = k, then the Hopf-

Hochschild homology is the same as the ordinary Hochschild homology.

Remark 2.15. Assume A is an associative, but not necessarily unital k-algebra.
Apart from the ordinary Hochschild complex of A, there are several other differ-
ent differential graded k-modules one can associate with A:

1. Connes’ complex CCλ
∗(A) which is defined as the cyclic coinvariants of the

ordinary Hochschild complex,

2. the positive, negative and periodic cyclic bicomplexes CC∗(A), CN∗(A) and
CCper

∗ (A),

3. the mixed complex CM∗(A), which is also referred as “the (b,B)-complex”
which also has two other variations: the negative mixed complex CM−

∗ (A) and
the periodic mixed complex CMper

∗ (A).

As before, the cyclic bicomplexes and the mixed complexes are graded B-modules
but are not necessarily differential graded B-modules. The obstruction to extending
the graded B-module structure to a differential graded B-module structure stems
from the fact that the cyclic permutations and the diagonal B-action on the tensor
powers of A do not necessarily commute. We will investigate the consequences of
the operation of dividing out this obstruction on the cyclic complexes we mentioned
above in a different paper [14] in a more general set-up where the complexes are
twisted by some coefficient module. We would like to point out that the obstruc-
tion which prevents the cyclic bicomplex from being a differential graded B-module
is a larger differential graded submodule in the sense that the “Hochschild sub-
complex” or the “b-subcomplex” of the Hopf cyclic bicomplex is a quotient of the
Hopf-Hochschild complex we define here.

3. Hopf-Hochschild cohomology

In this section, we assume A is an associative, not necessarily commutative, unital
B-module algebra unless otherwise explicitly stated.
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Definition 3.1. We define Ae oB as A⊗A⊗B with the multiplication

(a1 ⊗ a′1 ⊗ b)(a2 ⊗ a′2 ⊗ b′) = ab(1)(a2)⊗ b(3)(a′2)a
′
1 ⊗ b(2)b

′

for any (a1 ⊗ a′1 ⊗ b) and (a2 ⊗ a′2 ⊗ b′) in Ae oB.

Lemma 3.2. Ae oB is an unital associative algebra.

Proof. For associativity, one must consider

((a1 ⊗ a′1 ⊗ b)(a2 ⊗ a′2 ⊗ b′))(a3 ⊗ a′3 ⊗ b′′)
= (a1b(1)(a2)⊗ b(3)(a′2)a

′
1 ⊗ b(2)b

′)(a3 ⊗ a′3 ⊗ b′′)
= a1b(1)(a2)b(2)b

′
(1)(a3)⊗ b(4)b

′
(3)(a

′
3)b(5)(a′2)a

′
1 ⊗ b(3)b

′
(2)b

′′

= a1b(1)(a2b
′
(1)(a3))⊗ b(3)(b′(3)(a

′
3)a

′
2)a

′
1 ⊗ b(2)b

′
(2)b

′′

= (a1 ⊗ a′1 ⊗ b)((a2 ⊗ a′2 ⊗ b′)(a3 ⊗ a′3 ⊗ b′′))

for any ai, a
′
i ∈ A for i = 1, 2, 3 and b, b′, b′′ ∈ B.

Lemma 3.3. B-equivariant A-bimodule structures on V are in bijective correspon-
dence with Ae oB-module structures on V .

Proof. V is a B-equivariant A-bimodule if and only if one has

(a1 ⊗ a2 ⊗ b)((a′1 ⊗ a′2 ⊗ b′)v) = a1 . b(a′1 . b′v / a′2) / a2

= a1(b(1)a
′
1) . (b(2)b

′v) / (b(3)a
′
2)a2

= ((a1 ⊗ a2 ⊗ b)(a′1 ⊗ a′2 ⊗ b′))v

for any (a1 ⊗ a2 ⊗ b) and (a′1 ⊗ a′2 ⊗ b′) in Ae oB and v ∈ V ; i.e., V is a Ae oB-
module.

Definition 3.4. Define a differential graded k-module CB∗(A) by letting CBn(A) =
A⊗n+2 for any n > 0. Then we define pre-simplicial structure morphisms

∂j(a0 ⊗ · · · ⊗ an+1) = (a0 ⊗ · · · ⊗ ajaj+1 ⊗ · · · ⊗ an+1)

for any n > 1 and 0 6 j 6 n and then define the differentials as dCB
n =

∑n
j=0(−1)j∂j

for any n > 1. One can see that CB∗(A) is a graded A-bimodule where A-actions
are defined as

a(a0 ⊗ · · · ⊗ an+1) = aa0 ⊗ · · · ⊗ an+1, (a0 ⊗ · · · ⊗ an+1)a = a0 ⊗ · · · ⊗ an+1a

for any a ∈ A and (a0 ⊗ · · · ⊗ an+1) in CBn(A). There is also a left graded B-module
structure defined for b ∈ B and (a0 ⊗ · · · ⊗ an+1) in CBn(A) as

b(a0 ⊗ · · · ⊗ an+1) = b(1)a0 ⊗ · · · ⊗ b(n+2)an+1.

This makes CB∗(A) into a left Ae oB-module since one has

b(a⊗ a′)(a0 ⊗ · · · ⊗ an+1) = b(1)(aa0)⊗ b(2)a1 ⊗ · · · ⊗ b(n+1)an ⊗ b(n+2)(an+1a
′)

= b(1)(a)b(2)(a0)⊗ b(3)a1 ⊗ · · · ⊗ b(n+3)(an+1)b(n+4)(a′)
= (b(1)(a)⊗ b(3)(a′))(b(2)(a0 ⊗ · · · ⊗ an+1)),

b ∈ B, (a⊗ a′) in Ae and (a0 ⊗ · · · ⊗ an+1) in CBn(A).
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The proof of the following lemma is routine.

Lemma 3.5. CB∗(A) is a differential graded Ae oB-module.

Definition 3.6. Let A be a B-module algebra and let V be an B-equivariant A-
bimodule. Define the Hopf-Hochschild cochain complex of A with coefficients in V
as

CH∗Hopf(A, V ) := HomAeoB(CB∗(A), V ).

HH∗
Hopf(A, V ), the Hopf-Hochschild cohomology of A with coefficients in V , is

defined to be the cohomology of this cochain complex.

Definition 3.7. Let A be a non-unital associative algebra and let Ω(A) be the kernel
of the multiplication map µ : A⊗2 → A. We define the shifted brutal truncation
CB∗(A)>0 as the differential graded k-module given by CBn(A)>0 := CBn+1(A) for
n > 0 with the shifted differentials dCB

∗+1. A non-unital k-algebra A is called H-unital
if the homology of CB∗(A)>0 is concentrated at degree 0 and H0(CB∗(A)>0) ∼=
Ω(A).

Remark 3.8. The classical definition of an H-unital algebra A by Wodzicki [20] is
that the standard Bar resolution of A is acyclic. However, one can easily show that
the definition we gave above is equivalent to Wodzicki’s definition.

Theorem 3.9. Let A be an H-unital projective B-module algebra and assume V is
an arbitrary B-equivariant A-bimodule. Then one has isomorphisms of the form

HHn+1
Hopf(A, V ) ∼= Extn

AeoB(Ω(A), V )

for any n > 1.

Proof. We have a short exact sequence of Ae oB-modules of the form

0 −→ Ω(A) −→ Ae µA−−→ A −→ 0

where µA denotes the multiplication morphism. If A is a free B-module, then A⊗n

is also a free B-module for any n > 1 provided B is a Hopf algebra. This means if A
is B-projective, then so are A⊗n for n > 1. This, in turn, implies A⊗n is a projective
Ae oB-module for n > 3. Now, since A is B-projective and H-unital, the shifted
brutal truncation CB∗(A)>0 is a Ae oB-projective resolution of Ω(A) the kernel of
the multiplication map. The result follows.

Definition 3.10. Assume A is a B-module algebra and V is a B-equivariant A-
module. A morphism of k-modules A

D−→ V is called a V -valued derivation on A if
and only if

D(aa′) = D(a)a′ + aD(a′)

for any a, a′ ∈ A. The same derivation is called a V -valued B-equivariant derivation
if

D(ba) = bD(a)

for any a ∈ A and b ∈ B. The k-module of V -valued and V -valued B-equivariant
derivations on A are denoted by Der(A, V ) and DerB(A, V ) respectively.
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Let v ∈ V be fixed and consider the k-module morphism A
[v,·]−−→ V defined by

[v, a] = v / a− a . v for any a ∈ A. Then

[v, aa′] =v / aa′ − aa′ . v = [v, a] / a′ + a . [v, a′]

for any a, a′ ∈ A and b ∈ B. This means that the elements of the form [v, ·] in
Homk(A, V ) are V -valued derivations on A. However if we were to require [v, ·] to
be a B-equivariant derivation, then we need to have

[v, b(a)] =v / (ba)− (ba) . v = (b(1)v) / (b(2)a)− (b(1)a) . (b(2)v) = b[v, a]

for any a ∈ A, b ∈ B. In case V is a trivial B-module via the counit, i.e. b(v) = ε(b)v,
then the condition above is satisfied.

For a left Ae oB-module V , we let BV := {v ∈ V | b(v) = ε(b)v, b ∈ B} of V and
V Lie(A) := {v ∈ V | a . v − v / a = 0, for any a ∈ A}.

Proposition 3.11. Let A be an B-module algebra and V be an B-equivariant A-
module as before. Then one has

HH0
Hopf(A, V ) ∼= (BV )Lie(A) and HH1

Hopf(A, V ) ∼= DerB(A, V )/[A, BV ].

Proof. If we consider f ∈ HomAeoB(CBn(A), V ), we see that

f(a0 ⊗ · · · ⊗ an+1) = a0f(1⊗ a1 ⊗ · · · ⊗ an ⊗ 1)an+1.

Since b(1A) = ε(b)1A for all b ∈ B, we see that CH0
Hopf(A, V ) ∼= HomB(k, V ) ∼= BV .

The proof that CH1
∗(A, V ) ∼= HomB(A, V ) is similar. Then v ∈ HH0

Hopf(A, V ) if and
only if

d0
CH(v)(1⊗ a⊗ 1) = v(a⊗ 1)− v(1⊗ a) = a . v − v / a = 0, (3.1)

i.e. [a, v] = 0 for any a ∈ A, which is the same as the invariants of the adjoint action
of Lie(A) on BV ; i.e. (BV )Lie(A). Similarly, f ∈ ker(d1

CH) if and only if

(d1
CHf)(1⊗ a⊗ a′ ⊗ 1) = f(a⊗ a′ ⊗ 1)− f(1⊗ aa′ ⊗ 1) + f(1⊗ a⊗ a′)

= af(1⊗ a′ ⊗ 1)− f(1⊗ aa′ ⊗ 1) + f(1⊗ a⊗ 1)a′ = 0

for any (1⊗ a⊗ a′ ⊗ 1) in CB2(A). In other words, f ∈ ker(d1
CH) if and only if

Df (a) := f(1⊗ a⊗ 1) is a derivation. Moreover, since f is B-equivariant, so is Df .
Equation 3.1 tells us that the image of d0

CH consists of the elements of the form [a, v]
where v ∈ BV and a ∈ A. In other words, HH1

Hopf(A, V ) ∼= DerB(A, V )/[A, BV ].

4. Hopf-Hochschild homology revisited

Definition 4.1. Assume B is a Hopf algebra with an invertible antipode and let
U be a left Ae oB-module. Then one can think of U as a right Ae oB-module
(denoted by Uop) via the action

uop(a⊗ a′ ⊗ 1B) := (a′ . u / a)op and uop(1A ⊗ 1A ⊗ b) := (S−1(b)u)op
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for any uop ∈ Uop, a, a′ ∈ A and b ∈ B. In order this definition to yield a right
Ae oB-module structure, one must have

(uop(1A ⊗ 1A ⊗ b))(a⊗ a′ ⊗ 1B)

= (a′ . (S−1(b)u) / a)op

=
(
S(b(2)(3))b(3)(a′) . S−1(b(2)(2))u / S−1(b(2)(1))b(1)(a)

)op

= uop(b(1)(a)⊗ b(3)(a′)⊗ b(2))

which follows from the identity

(a⊗ a′ ⊗ b) = (1⊗ 1⊗ b(2))(S−1(b(1))(a)⊗ S(b(3))(a′)⊗ 1B)

for any a, a′ ∈ A and b ∈ B.

Theorem 4.2. Assume B is a Hopf algebra with an invertible antipode. Let A be
a B-module algebra and V be a left Ae oB-module. Then BQCH∗(A,B, V ) and
V op ⊗

AeoB
CB∗(A) are isomorphic as differential graded k-modules.

Proof. Define a morphism of graded modules ϕ∗ : CH∗(A, V )→ V op ⊗
AeoB

CB∗(A)

by letting

ϕn(v ⊗ a1 ⊗ · · · ⊗ an) := vop ⊗
AeoB

(1⊗ a1 ⊗ · · · ⊗ an ⊗ 1)

for any (v ⊗ a1 ⊗ · · · ⊗ an) ∈ CHn(A, V ). One can easily check that ϕ∗ is a morphism
of pre-simplicial k-modules, and therefore also a morphism of differential graded k-
modules. Notice that we have

ϕnLb(v ⊗ a1 ⊗ · · · ⊗ an) = vopS(b(1)) ⊗
AeoB

(1⊗ Lb(2)(a1 ⊗ · · · ⊗ an)⊗ 1)

= vopS(b(1)) ⊗
AeoB

Lb(2)(1⊗ a1 ⊗ · · · ⊗ an ⊗ 1)

= ε(b)v ⊗
AeoB

(1⊗ a1 ⊗ · · · ⊗ an ⊗ 1)

= ε(b)ϕn(v ⊗ a1 ⊗ · · · ⊗ an)

by observing b(1A) = ε(b)1A for any b ∈ B. This means ϕ∗ is a morphism of graded
B-modules where we think of the codomain as a graded B-module via the trivial
action. Moreover, for any b ∈ B we also have

ϕn[Lb, ∂n+1] = ϕnLb∂n+1 − ϕn∂n+1Lb = ϕn∂n+1(ε(b)− Lb).

Together with the fact that ϕ∗ is a morphism of pre-simplicial k-modules we see

ϕn[Lb, ∂n+1] = (idV ⊗
AeoB

∂n+1)ϕn+1(ε(b)− Lb) = 0

for any b ∈ B. Recall that QCH∗(A,B, V ) is obtained from CH∗(A, V ) by dividing
out the graded B-submodule and the pre-simplicial k-submodule J∗(A,B, V ) gener-
ated by elements of the form [Lb, ∂n+1]Ψ, where b ∈ B, Ψ ∈ CHn(A, V ) and n > 0.
Since ϕ∗ annihilates the submodule J∗(A,B, V ) we divide out, we get an exten-
sion ϕ′∗ : QCH∗(B, A, V )→ V op ⊗

AeoB
CB∗(A) which is a morphism of pre-simplicial
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and differential graded B-modules. However, the codomain is a trivial B-module.
Therefore we get a commutative diagram of the form

CH∗(A, V )
ϕ∗−−−−→ V op ⊗

AeoB
CB∗(A)

q∗

y
xϕ′′∗

QCH∗(A,B, V ) −−−−→
q′∗

BQCH∗(A, B, V ).

Since ϕ∗ is a morphism of differential graded k-modules so is ϕ′′∗ because both q∗
and q′∗ are epimorphisms of differential graded k-modules. Now define a morphism
of graded k-modules

V op ⊗
AeoB

CB∗(A) s∗−→ BQCH∗(A, B, V ),

by letting

sn

(
vop ⊗

AeoB
(1⊗ a1 ⊗ · · · ⊗ an ⊗ 1)

)
= [v ⊗ a1 ⊗ · · · ⊗ an]

for any vop ⊗
AeoB

(1⊗ a1 ⊗ · · · ⊗ an ⊗ 1) in V op ⊗
AeoB

CB∗(A). Here we use the nota-

tion [Ψ] to denote the class of an element Ψ ∈ CH∗(A, V ) in BQCH∗(A, V ). The
morphism s∗ is well-defined since

sn

(
vop ⊗

AeoB
(a⊗ a′ ⊗ 1B)(1⊗ a1 ⊗ · · · ⊗ an ⊗ 1)

)

= [a′ . v / a⊗ a1 ⊗ · · · ⊗ an]

= sn

(
vop(a⊗ a′ ⊗ 1B) ⊗

AeoB
(1⊗ a1 ⊗ · · · ⊗ an ⊗ 1)

)
,

and

sn

(
vop ⊗

AeoB
(1A ⊗ 1A ⊗ b)(1⊗ a1 ⊗ · · · ⊗ an ⊗ 1)

)

= [v ⊗ b(1)(a1)⊗ · · · ⊗ b(n)(an)]

= [b(2)S
−1(b(1))v ⊗ b(3)(a1)⊗ · · · ⊗ b(n+2)(an)]

= [S−1(b)v ⊗ a1 ⊗ · · · ⊗ an]

= sn

(
vop(1A ⊗ 1A ⊗ b) ⊗

AeoB
(1⊗ a1 ⊗ · · · ⊗ an ⊗ 1)

)

for any a, a′ ∈ A, b ∈ B and vop ⊗
AeoB

(1⊗ a1 ⊗ · · · ⊗ an ⊗ 1) in V op ⊗
AeoB

CB∗(A).

One can easily check that s∗ϕ′′∗ = id∗ = ϕ′′∗s∗. The result follows.

Corollary 4.3. Let B be a Hopf algebra with an invertible antipode. Assume A is
a B-module algebra and V is a left B-equivariant A-bimodule. Then

HHHopf
0 (A, V op) ∼= BV/[A, BV ],

where BV := k ⊗
B

V ∼= Ae ⊗
AeoB

V .
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Corollary 4.4. Let B be a Hopf algebra with an invertible antipode. Assume A is an
H-unital projective B-module algebra and V is a B-equivariant A-bimodule. Then
one has isomorphisms of the form

HHHopf
n+1 (A, V ) ∼= TorAeoB

n (Ω(A), V op)

for any n > 1.

Proof. Consider the short exact sequence of Ae oB-modules

0 −→ Ω(A) −→ Ae µA−−→ A −→ 0,

where µA is the multiplication on A. If A is H-unital and A is B-projective then the
shifted brutal truncation CB∗(A)>0 of CB∗(A) is a Ae oB-projective resolution of
Ω(A). The rest of the proof is similar to that of Theorem 3.9.

Remark 4.5. After Theorem 4.2 and Corollary 4.4, one can see that there is another
possible definition of the Hopf-Hochschild complex of a B-module algebra A.
Namely, one can use the differential graded k-module V ⊗

AeoB
CB∗(A) to define the

Hopf-Hochschild homology of A for a right B-equivariant A-bimodule V .

5. Categorical algebra and cofinality

Definition 5.1. A small category C is called k-linear if for each X, Y ∈ Ob(C), the
Hom object HomC(X,Y ) is a k-module and the composition maps

HomC(Y, Z)×HomC(X, Y ) −→ HomC(X, Z)

are k-bilinear for any X, Y, Z ∈ Ob(C). A functor C F−→ C′ between two k-linear cat-
egories is called a k-linear functor if the map

HomC(X, Y )
FX,Y−−−→ HomC′(X, Y )

is a morphism of k-modules for any X, Y in Ob(C).
Definition 5.2. A k-linear bifunctor on C with values in another k-linear category
C′ is just a k-linear functor of the form C × Cop H−→ C′.
Definition 5.3. Let C be a k-linear small category and let H be a bifunctor on C
with values in k-Mod. Define CH∗(C,H), the Hochschild complex of C with coeffi-
cients in the bifunctor H, as the differential graded k-module given by

CHn(C,H) :=
⊕

X0,...,Xn

H(X0, Xn)⊗HomC(X1, X0)⊗ · · · ⊗HomC(Xn, Xn−1)

with a pre-simplicial structure

∂j(h⊗X0
u1←− · · · un←−− Xn)

=





H(u1, idXn)(h)⊗X1
u2←− · · · un←−− Xn, if j = 0

h⊗ · · · ui−1←−−− Xi−1
uiui+1←−−−− Xi+1

ui+2←−−− · · · , if 0 < j < n− 1
H(idX0 , un)(h)⊗X0

u1←− · · · un−1←−−− Xn−1, if j = n
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defined for any n > 1 and (h⊗X0
u1←− · · · un←−− Xn) in CHn(C,H). In the case H =

HomC , we denote CH∗(C,HomC) simply by CH∗(C).
Assume A∗ and B∗ are two pre-simplicial k-modules and let f, g : A∗ → B∗ be

two morphisms of pre-simplicial modules. Now, recall from [16] that a pre-simplicial
homotopy h∗ between f∗ and g∗ is a set of k-module morphisms hi : An → Bn+1

defined for 0 6 i 6 n satisfying

hi∂j = ∂jhi+1, if j 6 i, hi∂j = ∂j+1hi, if j > i + 1, ∂ihi = ∂ihi−1,

where f∗ = ∂0h0 and g∗ = ∂∗+1h∗.

Definition 5.4. Let C be a k-linear category and let D be a k-linear subcategory
of C. Then D is called a cofinal subcategory of C if for every object C of C, there
exists an object D in D and a retract D

r−→ C in C.
Theorem 5.5. Let C be a small k-linear category and H be a bifunctor on C with
values in k-Mod. Assume D is a cofinal subcategory of C. Then the natural inclusion
CH∗(D,H) i∗−→ CH∗(C,H) is a homotopy equivalence.

Proof. For every object C in C fix a choice of object δ(C) and a retract δ(C)
r(C)−−−→ C

such that for each object D in D, the choice is D
idD−−→ D. Denote the left inverse

of r(C) by s(C) for every C in C. Now define a morphism of differential graded
k-modules CH∗(C,H) M∗−−→ CH∗(D,H) by letting

M∗(h⊗X0
u1←− · · · un←−− Xn) = H(sn, r0)(h)⊗ δ(X0)

s0u1r1←−−−− · · · sn−1unrn←−−−−−− δ(Xn)

for any (h⊗X0
u1←− · · · un←−− Xn) in CHn(C,H) where we use ri = r(Xi) and si =

s(Xi) for any 0 6 i 6 n. It is easy to see that M∗ is a morphism of pre-simplicial
modules since risi = idi. Note that the composition M∗i∗ is identity on CH∗(D,H).
We are going to show i∗M∗ is homotopic to the identity on CH∗(C,H). We define a
pre-simplicial homotopy by letting

hi(h⊗X0
u1←− · · · un←−− Xn)

= H(sn, idX0)(h)⊗X0
u1←− · · · ui←− Xi

ri←− δ(Xi)
siui+1ri+1←−−−−−−− · · · sn−1unrn←−−−−−− δ(Xn)

for any 0 6 i 6 n and for any (h⊗X0
u1←− · · · un←−− Xn) in CH∗(C,H). Note that

∂0h0 = i∗M∗ and ∂n+1hn = id∗. We leave the verification of pre-simplicial homotopy
identities to the reader.

Corollary 5.6. If C′ F−→ C is a k-linear functor, then one has a morphism of differ-
ential graded k-modules of the form

CH∗(C′,HF ) F∗−−→ CH∗(C,H)

for any bifunctor H on C with values in k-Mod. Moreover, if F is an equivalence
of categories then F∗ is a homotopy equivalence.

Proof. First, let us explain what CH∗(C′,HF ) is: CHn(C′,HF ) generated by homo-
geneous tensors of the form (h⊗X0

u1←− · · · un←−− Xn), where h ∈ H(F (Xn), F (X0))
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for any n > 0. The “action” of u1 and un on h is defined through F . The morphism
F∗ of pre-simplicial k-modules is defined as

Fn(h⊗X0
u1←− · · · un←−− Xn) = h⊗ F (X0)

F (u1)←−−−− · · · F (un)←−−−− F (Xn)

for any n > 0 and (h⊗X0
u1←− · · · un←−− Xn) in CHn(C′,HF ). Now assume F is an

equivalence with a quasi-inverse G and with the isomorphism idC′
ϕ−→ GF . Note that

we have the composition

CH∗(C′,HFGF ) G∗F∗−−−→ CH∗(C′,HF )

and the image of the functor C′ GF−−→ C′ is a cofinal subcategory of C′ since GF ' idC′ .
Thus G∗F∗ ' id∗. The same argument works also for C FG−−→ C and we see that
F∗G∗ ' id∗. The result follows.

Definition 5.7. Let C be a k-linear category which has finite coproducts and let D
and E be two full k-linear subcategories. D is said to generate E if for every object
E of E there is a natural number n > 1 and a set of objects D1, . . . , Dn of D such
that E ∼= ∐n

i=1 Di.

Theorem 5.8. Let C, D and E be as in Definition 5.7. Then the natural inclusion
CH∗(D,H) i∗−→ CH∗(E ,H) is a homotopy equivalence for any bifunctor H on C with
values in k-Mod.

Proof. Take an object E from E and consider “D-components” {D1, . . . , Dn} of E.
Since E ∼= ∐n

i=1 Di and

HomC(E, E) ∼=
⊕

i,j

HomC(Di, Dj),

there are morphisms E
vi←− Di and Dj

uj←− E such that
∑

i viui = idE . Now take h⊗
E0

f1←− · · · fn←− En in CHn(E ,H) and let Di
j be the D-components of Ei, and Ei

vi
j←−

Di
j

ui
j←− Ei be the corresponding splitting of idEi for 0 6 i 6 n. Define a morphism

of pre-simplicial modules CH∗(E ,H) M∗−−→ CH∗(D,H) by letting

Mn(h⊗ E0
f1←− · · · fn←− En)

=
∑

i0,...,in

H(un
in

, v0
i0)(h)⊗D0

i0

u0
i0

f1v1
i1←−−−−− · · ·

un−1
in−1

fnvn
in←−−−−−−− Dn

in
.

Notice that M∗i∗ is the identity on CH∗(D,H). Observe also that the identity∑
j vi

ju
i
j = idEi implies M∗ is a morphism of pre-simplicial modules. Although i∗M∗

is not identity, we will furnish a pre-simplicial homotopy between id∗ and i∗M∗ on
CH∗(E ,H). We let

hs(h⊗ E0
f1←− · · · fn←− En)

= H(idEn , v0
i0)(h)⊗D0

i0

u0
i0

f1v1
i1←−−−−− · · ·

us−1
is−1

fsvs
is←−−−−−−− Ds

is

us
is←−− Es

fs+1←−−− · · · fn←− En
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for n > 0, 0 6 s 6 n and h⊗ E0
f1←− · · · fn←− En in CHn(E ,H). We leave the verifi-

cation of the pre-simplicial homotopy identities to the reader.

6. B-categories and equivariant bifunctors

Definition 6.1. A k-linear category C is called a B-category if each HomC(X, Y ) is
a left B-module and the composition

HomC(Y, Z)×HomC(X, Y ) −→ HomC(X, Z)

is a B-module morphism via the diagonal action of B for any X, Y, Z taken from
Ob(C). In other words, one has b(gf) = b(1)(g)b(2)(f) for any b ∈ B, f ∈ HomC(X, Y )

and g ∈ HomC(Y, Z). A functor C F−→ C′ between two B-categories is called B-equi-
variant if the structure morphisms

HomC(X, Y )
FX,Y−−−→ HomC′(F (X), F (Y ))

are B-module morphisms for any X, Y ∈ Ob(C).
Remark 6.2. It came to our attention that Cibils and Solotar defined the same notion
in [6] but they called the same object a B-module category. Their primary example
of the underlying bialgebra is a group ring which is cocommutative. The bialgebras,
or in general Hopf algebras, we consider are not necessarily cocommutative.

Example 6.3. Assume that B is a Hopf algebra and A is a B-module algebra.
Consider the category modB-A of left B-equivariant right A-modules and all A-
linear morphisms. Note that we do consider all A-module morphisms, not just B-
equivariant A-module morphisms. Define a left B action of HommodB-A(X, Y ) by
letting

(bf)(x) = b(1)f(S(b(2))x)

for any f ∈ HommodB-A(X,Y ) and x ∈ X. However, one needs to show that bf is still
a right A-module morphism for any f ∈ HommodB-A(X,Y ) and b ∈ B. Therefore we
check

(bf)(xa) = b(1)f(S(b(2))(xa)) = b(1)f(S(b(3))(x)S(b(2))(a))
= b(1)f(S(b(4))(x))b(2)S(b(3))(a) = (bf)(x)a

for any a ∈ A, b ∈ B, x ∈ X and f ∈ HommodB-A(X, Y ). Now notice that for any
g ∈ HommodB-A(Y, Z) one has

b(gf)(x) = b(1)gf(S(b(2))x) = b(1)g(S(b(2))b(3)f(S(b(4))x)) = (b(1)g)(b(2)f)(x)

for any x ∈ X. In other words, modB-A is a B-category.

Example 6.4. Assume B is a Hopf algebra and A is a B-module algebra. Consider
the category ∗AB which consists of one single object A considered as a right A-module
via the right regular representation. Then ∗AB is a B-category.

Example 6.5. Assume B is a Hopf algebra and A is a B-module algebra. Let freeB-A
be the subcategory of modB-A generated by arbitrary finite direct sums of ∗AB by
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itself. Then we define projB-A as the full subcategory of modB-A consisting of
Ae oB-module direct summands of objects in freeB-A. Then both freeB-A and
projB-A are B-categories.

Definition 6.6. A bifunctor H on a B-category C with values in B-Mod is called
a B-equivariant bifunctor if the structure morphisms

H(X, Y )⊗HomC(Y, Z) −→ H(X,Z), HomC(W,X)⊗H(X, Y ) −→ H(W,Y ) (6.1)

are B-module morphisms where B acts diagonally on the left. In other words,

b(H(u, v)(h)) = H(b(1)(u), b(3)(v))(b(2)(h))

for any u ∈ HomC(W,X), v ∈ HomC(Y, Z) and h ∈ H(X, Y ), and b ∈ B.

Example 6.7. For a B-category C, the bifunctor H = HomC(·, ·) is a B-equivariant
bifunctor on C with values in B-Mod.

Definition 6.8. For a B-category C, let BC denote the subcategory of morphisms
of C which are B-invariant; i.e., X

f−→ Y belongs to BC if and only if b(f) = ε(b)f
for any b ∈ B.

Remark 6.9. Assume B is a Hopf algebra and modB-A be the B-category defined in
Example 6.3. Then one can see that BmodB-A, the subcategory of B-invariant mor-
phisms, is the category of left B-equivariant right A-modules and their B-equivariant
A-module morphisms since bf = ε(b)f if and only if f is B-equivariant. We would like
to note that for the B-equivariant homotopical invariants of modB-A the subcate-
gory BmodB-A is rather small. The situation is very similar to topological spaces
admitting an action of a fixed group G. The G-equivariant homotopical invariants of
a G-space X are computed via B(G,X) := EG ∧

G
X rather than X/G ' ∗ ∧

G
X. Sim-

ilarly, BmodB-A should be considered as the lowest order equivariant invariant of
modB-A. Thus we propose that for higher order equivariant homotopical invariants
of a B-module algebra A, such as equivariant K-theoretical, Hochschild and cyclic
homological invariants, one should use the B-category modB-A of B-equivariant
modules and their A-linear morphisms, or its various B-subcategories, instead of
using simply BmodB-A the subcategory of B-equivariant A-module morphisms of
modB-A. Our justification lies in Section 7 where we prove Morita invariance in
Corollary 7.9.

7. Morita invariance

Lemma 7.1. If C is a B-category and H is a bifunctor on C with values in B-Mod,
then CH∗(C,H) is a graded B-module. However, CH∗(C,H) is not a pre-simplicial
B-module.

Proof. The B-action of CH∗(C,H) is defined diagonally; i.e.,

Lb(h⊗X0
u1←− · · · un←−− Xn) := b(1)(h)⊗X0

b(2)u1←−−−− · · · b(n+1)un←−−−−−− Xn

for any b ∈ B, n > 0 and h⊗X0
u1←− · · · un←−− Xn in CHn(C,H). The fact that pre-

simplicial k-module CH∗(C,H) is NOT a pre-simplicial B-module is because of the
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last face morphism: one has

∂nLb(h⊗X0
u1←− · · · un←−− Xn)

= H(b(n+1)(fn), idX0)(b(1)h)⊗X0

b(2)u1←−−−− · · · b(n)un−1←−−−−−− Xn−1,

which need not be the same as

Lb∂n(h⊗X0
u1←− · · · un←−− Xn)

= H(b(1)(fn), idX0)(b(2)h)⊗X0

b(3)u1←−−−− · · · b(n+1)un−1←−−−−−−− Xn−1

for any n > 0, b ∈ B and h⊗X0
u1←− · · · un←−− Xn in CH∗(C,H).

Definition 7.2. Define a graded k-submodule J∗(C, B,H) of CH∗(C,H) generated
by elements of the form

[Lb, ∂n](h⊗X0
u1←− · · · un←−− Xn)

where n > 1, b ∈ B and h⊗X0
u1←− · · · un←−− Xn in CHn(C,H).

Lemma 7.3. J∗(C, B,H) is a differential graded k-submodule and a graded B-sub-
module of CH∗(C,H). Therefore, CH∗(C,H)/J∗(C, B,H) is a differential graded B-
module.

Proof. The proof is identical to that of Proposition 2.12.

Definition 7.4. Let QCH∗(C, B,H) be the quotient CH∗(C,H)/J∗(C, B,H).

Theorem 7.5. Let D be a cofinal B-subcategory of C such that for each C ∈ Ob(C)
there is a retract δ(C)

r(C)−−−→ C with δ(C) ∈ Ob(D) and r(C) is B-invariant; i.e.
b(r(C)) = ε(b)r(C) for any b ∈ B. Then for any B-equivariant bifunctor H on C
with values in B-Mod the natural inclusion

QCH∗(D, B,H) i∗−→ QCH∗(C, B,H)

is a homotopy equivalence.

Proof. The proof is almost verbatim to Theorem 5.5 after noticing J∗(C, B,H) is
stable under the pre-simplicial homotopy we furnished there.

Corollary 7.6. Let C and C′ be two B-categories and let C F−→ C′ be a functor of
B-categories. Then for any B-equivariant bifunctor H on C′ one has a morphism of
differential graded B-modules of the form

QCH∗(C, B,HF ) F∗−−→ QCH∗(C′, B,H).

Moreover, if F is an equivalence of B-categories, then F∗ is a homotopy equivalence.

Corollary 7.7. Assume A is a B-module algebra. Then freeB-A is a cofinal B-
subcategory of projB-A. Furthermore, the natural inclusion functor freeB-A −→
projB-A induces a homotopy equivalence of differential graded B-modules of the
form

QCH∗(freeB-A,B,H) i∗−→ QCH∗(projB-A,B,H)

for any B-equivariant bifunctor H on projB-A with values in B-Mod.
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Corollary 7.8. Assume A is a B-module algebra. The subcategory ∗AB freely gener-
ates the B-subcategory freeB-A of projB-A. Then the natural inclusion

QCH∗(∗AB , B,H) i∗−→ QCH∗(freeB-A,B,H)

is a homotopy equivalence of differential graded B-modules for any B-equivariant
bifunctor H defined on projB-A with values in B-Mod. Furthermore, the differen-
tial graded B-modules QCH∗(∗AB , B,H) and QCH∗(A,B,H(A,A)) are isomorphic.

Proof. The proof relies on the fact that HomprojB-A(A,A) ∼= A. The rest of the
proof is trivial.

Theorem 7.9 (Morita invariance for Hopf-Hochschild (co)homology). Let B be a
Hopf algebra and assume that A and A′ are two B-module algebras. If modB-A
and modB-A′ the category of finitely generated B-equivariant representations of A
and A′ respectively are B-equivariantly equivalent, then Hopf-Hochschild complex
BQCH∗(A,B, A) of A and Hopf-Hochschild complex BQCH∗(A′, B, A′) of A′ are
quasi-isomorphic.

Example 7.10. Assume char(k) = 0 and let B be the group ring k[G] for an arbitrary
discrete abelian group G. Note that since B is a cocommutative Hopf algebra, the
functors QCH∗ and CH∗ are the same. Consider a k[G]-module field A which is
algebraically closed. In other words, A is an algebraically closed field extension of
k such that G acts by field automorphisms on A and fixes the subfield k. We do
not require AG = k, but the reader may assume it for convenience. Let χ(G, A)
denote the group of A-valued characters of G and let repG

A be the category of
finite dimensional A-vector spaces which admit an action of G. Since every such
representation splits as a direct sum of irreducible representations and since every
irreducible representation of G is 1-dimensional over A, repG

A is generated by the
subcategory of 1-dimensional representations. This subcategory is equivalent to a
small category A whose set of objects is {Aδ| δ ∈ χ(G,A)} where we have Aδ = A
as an A-vector space, and Aδ is a G-module via the character δ. Any morphism of A-
vector spaces between Aδ and Aµ for δ, µ ∈ χ(G,A) is given by an element of A, i.e.
HomA(Aδ, Aµ) = A as A-vector spaces. The composition of two morphisms Aγ

a←−
Aµ

a′←− Aδ inA is defined to be the product aa′ in A. The G-action on HomA(Aδ, Aµ)
is defined by

(g · a)(x) := g(a(g−1(x))) = µ(g)δ(g−1)ax

for any g ∈ G, a ∈ HomA(Aδ, Aµ) and x ∈ Aδ. If we define δ−1(g) as the character
given by the formula δ(g−1) for any g ∈ G, then we see that HomA(Aδ, Aµ) ∼= Aµδ−1

as k[G]-modules. Hence

QCHn(A, k[G], HomA) ∼=
⊕

δ0,...,δn∈χ(G,A)

Aδ0δ−1
1
⊗ · · · ⊗Aδn−1δ−1

n
⊗Aδnδ−1

0

∼=
⊕

µ0···µn=ε

Aµ0 ⊗ · · · ⊗Aµn ,

where ε is the counit which is defined as ε(g) = 1 for any g ∈ G. Note that since
the product of all characters in each summand is the counit ε, the G-action on
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QCH∗(A, k[G],HomA) is trivial. For two simplicial k-modules X• and Y•, if we use
diag(X• ⊗ Y•) to denote the diagonal simplicial k-module structure on the product
bi-simplicial module X• ⊗ Y•, then we have

QCH•(rep
G
A) ' CH•(A[χ(G,A)])〈ε〉
∼= diag

(
CH•(A)⊗ CH•(k[χ(G,A)])〈ε〉

)

as simplicial k[G]-modules. Here we use CH•(k[χ(G,A)])〈ε〉 to denote the sim-
plicial submodule of the Hochschild complex CH•(k[χ(G,A)]) which is generated
by elements of the form (δ0 ⊗ · · · ⊗ δn) ∈ CHn(k[χ(G, A)]) with the property that
δ0 · · · δn = ε for n > 0. By using the Eilenberg-Zilber theorem and [15, Section 7.4],
we conclude

HHHopf
∗ (repG

A) ∼= HH∗(A|k)⊗H∗(χ(G,A))

as graded k-modules, where HH∗(A|k) denotes the Hochschild homology of A viewed
as a k-algebra and H∗(χ(G,A)) denotes the group homology of χ(G,A) with coef-
ficients in k.

8. Twisted equivariant bifunctors as coefficients

In this section we assume B is a Hopf algebra with an invertible antipode.

Definition 8.1. An arbitrary left-left B-module/comodule M is called a Yetter-
Drinfeld module if one has

(bm)(−1) ⊗ (bm)(0) = b(1)m(−1)S(b(3))⊗ b(2)m(0)

for any b ∈ B and m ∈M , where we use Sweedler’s notation for the coproduct on
H and for the H-coaction on M .

Definition 8.2. Assume M is a Yetter-Drinfeld module over B. Let C be an arbi-
trary B-category and H be an arbitrary B-equivariant bifunctor on C with val-
ues in B-Mod. We define a new bifunctor M nH by letting M nH(X, Y ) :=
M ⊗H(X, Y ) on the objects for any X, Y ∈ Ob(C). Now we let

b(m⊗ h) = b(1)(m)⊗ b(2)(h)

for any m⊗ h in H(X,Y ). We define the bifunctor M nH on morphisms as follows:
notice that such functors are defined by structure morphisms given in (6.1). Then
we let

(m⊗ h)(Y
β←− Z) := m⊗H(idX , β)(h)

and
(W α←− X)(m⊗ h) := m(0) ⊗H(S−1(m(−1))(α), idY )(h)

for any m⊗ h in M nH(X, Y ), α ∈ HomC(W,X) and β ∈ HomC(Y,Z). For simplic-
ity we will denote H(α, β)(h) by αhβ for any h ∈ H(X, Y ), α ∈ HomC(W,X) and
β ∈ HomC(Y, Z).

Lemma 8.3. Let B, M , C and H be as in Definition 8.2. Then M nH is also a
B-equivariant bifunctor on C with values in B-Mod.



Homology, Homotopy and Applications, vol. 9(2), 2007 471

Proof. For b ∈ B and m⊗ h in M nH(X, Y ), α ∈ HomC(W,X), and finally β ∈
HomC(Y,Z), we consider

b((m⊗ h)β) = b(m⊗ hβ)
= b(1)(m)⊗ b(2)(hβ)
= b(1)(m)⊗ b(2)(h)(b(3)β)
= b(1)(m⊗ h)(b(2)β)

and

b(α(m⊗ h)) = b(m(0) ⊗ (S−1(m(−1))α)(h))

= b(1)(m(0))⊗ (b(2)S
−1(m(−1))α)b(3)(h)

= b(2)(2)m(0) ⊗ (b(2)(3)S
−1(m(−1))S−1(b(2)(1))b(1)α)b(3)(h)

= (b(1)α)(b(2)m⊗ b(3)h)
= (b(1)α)b(2)(m⊗ h),

which implies M nH is a B-equivariant bifunctor on C with values in B-Mod
whenever H is a bifunctor on C with values in B-Mod and M is a Yetter-Drinfeld
module on B.

For a B-module algebra A and a Yetter-Drinfeld module M , we now define a new
differential graded B-module QCH∗(A,B;M) as QCH∗(∗AB , B,M nHomA(·, ·)) and
obtain twisted version of the Morita equivalence.

Theorem 8.4 (Morita invariance of twisted Hopf-Hochschild (co)homology). Let
B be a Hopf algebra and M be a Yetter-Drinfeld module over B. Assume also that
A and A′ are two B-module algebras. If the category of finitely generated B-equi-
variant representations of A and A′ are B-equivariantly equivalent, then the twisted
Hopf-Hochschild complexes BQCH∗(A,B;M) and BQCH∗(A′, B; M) are quasi-iso-
morphic.
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