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3-TYPES OF SIMPLICIAL GROUPS AND BRAIDED REGULAR
CROSSED MODULES
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Abstract
In this work, we explain the relations among braided reg-

ular crossed modules, simplicial groups, 2-crossed modules,
quadratic modules and crossed squares, and the role of hyper-
crossed complex pairings in these structures.

Introduction

As an algebraic model of connected (weak homotopy) 3-types, the notion of 2-
crossed module was introduced by Conduché in [16], and these 2-crossed modules
are equivalent to simplicial groups with Moore complex of length 2. Crossed squares
and quadratic modules are other algebraic models of connected 3-types defined
by Loday and Guin-Walery [26] and Baues [6] respectively. In [5], we explored
the relations among 2-crossed modules, quadratic modules, crossed squares and
simplicial groups, and the homotopy equivalences between these structures.

Brown and Gilbert in [9] introduced the notion of braided, regular crossed module
as an alternative algebraic model of homotopy 3-types. They then showed that this
structure is closely related to simplicial groups; they proved that the category of
braided, regular crossed modules is equivalent to that of simplicial groups with
Moore complex of length 2. They have also proved that braided, regular crossed
modules are equivalent to Conduché’s 2-crossed modules.

Related ideas of Conduché have been used by Carrasco and Cegarra [14] to
study braided categorical groups (see also Garzon and Miranda [20]). Carrasco and
Cegarra [13] defined the notion of n-hypercrossed complex as an algebraic model of
connected (n + 1)-types. The article [4] is one of a series in which the first author and
Porter studied the higher dimensional Peiffer elements, called hypercrossed complex
pairings Fα,β , by using ideas of Conduché (cf. [16]) and techniques developed by
Carrasco and Cegarra (cf. [13]), and they applied their results in various homological
settings and then gave a reformulation of Conduché’s result in terms of hypercrossed
complex pairings for commutative algebras. Mutlu and Porter [24] have also adapted
their method to simplicial groups. Castiglioni and Ladra [15] generalized the results
proved in [1], [4] and [24].
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In the present article, we explain the relations among braided regular crossed
modules and algebraic models of connected (weak homotopy) 3-types mentioned
above.

Thus, the main points of this paper are:

(i) to give the relation between braided regular crossed modules and simplicial
groups in terms of hypercrossed complex pairings Fα,β defined in [24],

(ii) to give the connection between crossed squares and braided regular crossed
modules by using the relation between 2-crossed modules and crossed squares
as described in [5, Section 4] in terms of bisimplicial nerve of the crossed
square,

(iii) to give a construction of a quadratic module from a braided regular crossed
module, by using the construction of a quadratic module from a 2-crossed
module as given in [5, Section 5].

Therefore, the results of this paper can be summarized in the following diagram

BRCM

wwoooooooooooo

²² && **
X2Mod 33

77oooooooooooo
// SimpGrp62

oo //

Fα,β

OO

Crs2oo

ff

// QM

where the diagram is commutative, linking the broken arrows given below and the
unbroken arrows given in [5].

1. Preliminaries

Simplicial groups
Denoting the usual category of finite ordinals by ∆, we obtain for each k > 0 a

subcategory ∆6k determined by the objects [j] of ∆ with j 6 k. A simplicial group is
a (contravariant) functor from the opposite category ∆op to the category of groups
Grp. A reduced simplicial group is a simplicial group whose first component is
trivial. A k-truncated simplicial group is a functor from ∆op

6k to Grp. We will denote
the category of simplicial groups by SimpGrp and the category of k-truncated
simplicial groups by TrkSimpGrp. By a k-truncation of a simplicial group, we
mean a k-truncated simplicial group trkG obtained by forgetting dimensions of
order > k in a simplicial group G. This gives a truncation functor trk : SimpGrp →
TrkSimpGrp which admits a right adjoint coskk : TrkSimpGrp → SimpGrp
called the k-coskeleton functor, and a left adjoint skk : TrkSimpGrp → SimpGrp,
called the k-skeleton functor. For explicit constructions of these, see [18].

Given a simplicial group G, the Moore complex (NG, ∂) of G is the normal chain
complex defined by

(NG)n =
n−1⋂

i=0

ker dn
i

with ∂n : NGn → NGn−1 induced from dn
n by restriction.
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The nth homotopy group πn(G) of G is the nth homology of the Moore complex
of G, i.e.

πn(G) ∼= Hn(NG, ∂) =
n⋂

i=0

ker dn
i /dn+1

n+1(
n⋂

i=0

ker dn+1
i ).

We say that the Moore complex NG of a simplicial group G is of length k if
NGn = 1 for all n > k + 1, so that a Moore complex of length k is also of length l
for l > k. We denote the category of simplicial groups with Moore complex of length
k by SimpGrp6k.

The following lemma is due to Conduché [16].

Lemma 1.1. Let G be a simplicial group. The Moore complex of its k-coskeleton
Coskk(trk(G)) is of length k + 1, i.e.,

N(Coskk(trk(G)))i = 1 for i > k + 1,

and is identical to the Moore complex of G in dimension less than k + 1. Moreover

N(Coskk(trk(G)))k+1 = ker(∂k : NGk → NGk−1)

and the morphism ∂k+1 : N(Coskk(trk(G)))k+1 → N(Coskk(trk(G)))k = NGk is
injective.

The poset of surjective maps
The following notation and terminology is derived from [12] and published ver-

sion [13].
For the ordered set [n] = {0 < 1 < · · · < n}, let αn

i : [n + 1] → [n] be the increas-
ing surjective map given by;

αn
i (j) =

{
j if j 6 i,
j − 1 if j > i.

Let S(n, n− r) be the set of all monotone increasing surjective maps from [n] to
[n− r]. This can be generated from the various αn

i by composition. The composition
of these generating maps is subject to the following rule: αjαi = αi−1αj , j < i. This
implies that every element α ∈ S(n, n− r) has a unique expression as α = αi1 ◦ αi2 ◦
· · · ◦ αir with 0 6 i1 < i2 < · · · < ir 6 n− 1, where the indices ik are the elements
of [n] such that {i1, . . . , ir} = {i : α(i) = α(i + 1)}. We thus can identify S(n, n− r)
with the set {(ir, . . . , i1) : 0 6 i1 < i2 < · · · < ir 6 n− 1}. In particular, the single
element of S(n, n), defined by the identity map on [n], corresponds to the empty 0-
tuple () denoted by ∅n. Similarly the only element of S(n, 0) is (n− 1, n− 2, . . . , 0).
For all n > 0, let

S(n) =
⋃

06r6n

S(n, n− r).

We say that α = (ir, . . . , i1) < β = (js, . . . , j1) in S(n) if i1 = j1, . . . , ik = jk but
ik+1 > jk+1, (k > 0) or if i1 = j1, . . . , ir = jr and r < s. This makes S(n) an ordered
set.
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Hypercrossed Complex Pairings
In the following we recall from [24] hypercrossed complex pairings. The funda-

mental idea behind these can be found in Carrasco and Ceggarra (cf. [12, 13]).
The construction depends on a variety of sources, mainly Conduché [16], Mutlu
and Porter [24]. Define a set P (n) consisting of pairs of elements (α, β) from S(n)
with α ∩ β = ∅ and β < α, with respect to lexicographic ordering in S(n) where
α = (ir, . . . , i1), β = (js, . . . , j1) ∈ S(n). The pairings that we will need,

{Fα,β : NGn−]α ×NGn−]β → NGn : (α, β) ∈ P (n), n > 0},
are given as composites by the diagram

NGn−]α ×NGn−]β

sα×sβ

²²

Fα,β // NGn

Gn ×Gn µ
// Gn

p

OO

where sα = sir , . . . , si1 : NGn−]α → Gn, sβ = sjs , . . . , sj1 : NGn−]β → Gn p : Gn →
NGn is defined by composite projections p(x) = pn−1 . . . p0(x), where pj(z) =
zsjdj(z)−1 with j = 0, 1, . . . , n− 1. µ : Gn ×Gn → Gn is given by commutator map
and ]α is the number of the elements in the set of α, similarly for ]β. Thus

Fα,β(xα, yβ) = p[sα(xα), sβ(xβ)].

Definition 1.2. ([24]) Let Nn, or more exactly NG
n , be the normal subgroup of

Gn generated by elements of the form Fα,β(xα, yβ) where xα ∈ NGn−]α and yβ ∈
NGn−]β .

This normal subgroup NG
n depends functorially on G, but we will usually abbre-

viate NG
n to Nn when no change of group is involved.

Mutlu and Porter in [24] illustrate this normal subgroup for n = 2, 3, 4, but we
consider only n = 3.

Example 1.3. For all x1 ∈ NG1, y2 ∈ NG2, the corresponding generators of N3 are:

F(1,0)(2)(x1, y2) = [s1s0x1, s2y2][s2y2, s2s0x1],
F(2,0)(1)(x1, y2) = [s2s0x1, s1y2][s1y2, s2s1x1][s2s1x1, s2y2][s2y2, s2s0x1]

and for all x2 ∈ NG2, y1 ∈ NG1,

F(0)(2,1)(x2, y1) = [s0x2, s2s1y1][s2s1y1, s1x2][s2x2, s2s1y1]

whilst for all x2, y2 ∈ NG2,

F(0)(1)(x2, y2) = [s0x2, s1y2][s1y2, s1x2][s2x2, s2y2],
F(0)(2)(x2, y2) = [s0x2, s2y2],
F(1)(2)(x2, y2) = [s1x2, s2y2][s2y2, s2x2].
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As a corollary, there is an equality

∂n(NGn ∩Dn) = ∂n(NG
n ∩Dn).

The first author and Porter [4] have shown that if E is a simplicial commuta-
tive algebra with Moore complex NE, and for n > 0 the ideal generated by the
degenerate elements in dimension n is En, then

∂n(NEn) ⊇
∑

I,J

KIKJ .

This sum runs over those ∅ 6= I, J ⊂ [n− 1] = {0, . . . , n− 1} with I ∪ J = [n− 1],
and KI =

⋂
i∈I ker di. A similar result for simplicial Lie algebras was obtained by

Akça and Arvasi in [1].
Mutlu and Porter [24] have adapted Arvasi’s method to the case of simplicial

groups. They gave the following result.

Proposition 1.4. ([24]) Let G be a simplicial group. Then for n > 2 and I, J ⊆
[n− 1] with I ∩ J = [n− 1],

[
⋂

i∈I

ker di,
⋂

j∈J

ker dj ] ⊆ ∂n(NGn ∩Dn).

Castiglioni and Ladra [15] gave a general proof for the inclusions partially proved
by Arvasi and Porter in [4], Arvasi and Akça in [1] and Mutlu and Porter in [24].
Their approach to the problem is different from that of the cited works. They have
succeeded with a proof, for the case of algebras, over an operad by introducing a
different description of the adjoint inverse of the normalization functor N : Ab∆op →
Ch>0, and for the case of groups, they then adapted the construction for the adjoint
inverse used for algebras to get a simplicial group G £ Λ from the Moore complex
of a simplicial group G.

The following is a result of Conduché [16].

Proposition 1.5. Let G′ be (n− 1)-truncated simplicial group. Then there is a
simplicial group G with trkG ∼= G′ if and only if G′ satisfies the following property:
For all nonempty sets of indices (I 6= J), I, J ⊂ [n− 1] with I ∪ J = [n− 1],

[
⋂

i∈I

ker di,
⋂

j∈J

ker dj ] = 1.

Proof. Since ∂n(NG ′
n) = 1, this follows from Proposition 1.4.

2-Crossed modules
Crossed modules were introduced by Whitehead in [27]. A crossed module is a

group homomorphism ∂ : M → P together with an action of P on M , written pm
for p ∈ P and m ∈ M , satisfying the conditions ∂(pm) = p∂(m)p−1 and ∂mm′ =
mm′m−1 for all m,m′ ∈ M, p ∈ P . The last condition is called the ‘Peiffer identity’.

The following definition of 2-crossed module is equivalent to that given by Con-
duché [16].
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A 2-crossed module of groups consists of a complex of groups

L
∂2 // M

∂1 // N

together with (a) actions of N on M and L so that ∂2, ∂1 are morphisms of N -
groups, and (b) an N -equivariant function

{ , } : M ×M −→ L

called a Peiffer lifting. This data must satisfy the following axioms:

2CM1: ∂2{m,m′} =
(
∂1mm′)mm′−1m−1

2CM2: {∂2l, ∂2l
′} = [l′, l]

2CM3: (i) {mm′,m′′} = ∂1m{m′,m′′}{m, m′m′′m′−1}
(ii) {m, m′m′′} = {m,m′}mm′m−1{m, m′′}

2CM4: {m,∂2l}{∂2l, m} = ∂1mll−1

2CM5: n{m,m′} = {nm,n m′}
for all l, l′ ∈ L, m,m′,m′′ ∈ M and n ∈ N .

Here we have used ml as a shorthand for {∂2l, m}l in condition 2CM3 (ii) where
l is {m,m′′} and m is mm′(m)−1. This gives a new action of M on L. Using this
notation, we can split 2CM4 into two pieces, the first of which is tautologous:

2CM4: (a) {∂2l, m} = ml(l)−1,
(b) {m, ∂2l} = (∂1ml)(ml−1).

The old action of M on L, via ∂1 and the N -action on L, is in general distinct from
this second action, with {m, ∂2l} measuring the difference (by 2CM4 (b)). An easy
argument using 2CM2 and 2CM4 (b) shows that with this action, ml, of M on L,
(L,M, ∂2) becomes a crossed module.

A morphism of 2-crossed modules can be defined in an obvious way. We thus
define the category of 2-crossed modules, denoting it by X2Mod.

The following theorem, in some sense, is known. We do not give the proof since
it exists in the literature, [16], [23] and [24, 25].

Theorem 1.6. The category of 2-crossed modules is equivalent to the category of
simplicial groups with Moore complex of length 2.

2. Braided, regular crossed modules and simplicial groups

Recall that a groupoid C is a small category in which every arrow is an isomor-
phism. We write a groupoid as (C1, C0), where C0 is the set of objects and C1

is the set of arrows, together with functions s, t : C1 → C0 and e : C0 → C1 such
that se = te = 1. The functions s and t are sometimes called the source and target
maps, respectively. If a, b ∈ C1 and t(a) = s(b), then a composite a ◦ b exists such
that s(a ◦ b) = s(a) and t(a ◦ b) = t(b). Further, this composition is associative; the
elements ep, p ∈ C0, act as identities; and each arrow a has an inverse a−1 with
s(a−1) = t(a), t(a−1) = s(a), a ◦ a−1 = es(a) and a−1 ◦ a = et(a).

For any groupoid C and p, q ∈ C0, the set of arrows a such that s(a) = p and
t(a) = q is written C1(p, q) and termed a hom-set. If C1(p, q) is empty whenever p
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and q are distinct (that is, if s = t) then C is called totally disconnected. We also
write C1(p, p) as C1(p). For a survey of applications of groupoids and an introduction
to their literature, see [8]. In any groupoid (C1, C0), for an element p ∈ C0, the hom-
set C1(p) is a group.

Now, we recall the notions of groupoid action and crossed module of groupoids
from [9].

In the following we refer to C1 and C2 as the groupoids, when we of course mean
(C1, C0) and (C2, C0).

Definition 2.1. Let C1 and C2 be groupoids over the same object set C0 and let C2

be totally disconnected. Then an action of C1 on C2 is given by a partially defined
function

C1 × C2 −→ C2

written (a, x) 7→ xa, which satisfies:
1. xa is defined if and only if t(x) = s(a), and then t(xa) = t(a),
2. (x ◦ y)a = xa ◦ ya and ep

a = eq,
3. xa◦b = (xa)b and xep = x,

for all x, y ∈ C2(p) and a ∈ C1(p, q), b ∈ C1(q, r).

Definition 2.2. A crossed module of groupoids consists of a pair of groupoids C1

and C2 over the same object set C0, with C2 totally disconnected, and an action of
C1 on C2, together with a functor δ : C2 → C1 which satisfies
CM1: δ(xa) = a ◦ (δx) ◦ a−1

CM2: xδy = y ◦ x ◦ y−1

for all x, y ∈ C2(p) and a ∈ C1(p, q).

A crossed module of groupoids is often written diagrammatically as

C : C2
δ // C1

s //
t

// C0

Note in particular that for each p ∈ C0, C2(p) → C1(p) is a crossed module of
groups.

Let U be a monoid. A biaction of U on the crossed module

C : C2
δ // C1

s //
t

// C0

consists of a pair of commuting left and right actions of U on the set C0 and on
the groupoids C1 and C2 compatible with all of the structure. Specifically, we have
functions U × Ci → Ci and Ci × U → Ci for i = 0, 1, 2, denoted by (u, c) 7→ u · c
and (c, u) 7→ c · u such that
BA1: each function U × Ci → Ci determines a left action of U and each function

Ci × U → Ci determines a right action of U and these actions commute;
BA2: each action of U preserves the groupoid structure of C1 over C0 and in par-

ticular the source and target maps s, t : C1 → C0 are U -equivariant relative
to each action;
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BA3: each action of U preserves the group operation in C2 and if x ∈ C2(p) and
u ∈ U then u · x ∈ C2(u · p) and x · u ∈ C2(p · u);

BA4: each action of U is compatible with the action of C1 on C2 so that if
x ∈ C2(p), a ∈ C1(p, q), and u ∈ U then

u · (xa) = (u · x)u·a ∈ C2(u · q),
(xa) · u = (x · u)a·u ∈ C2(q · u);

BA5: the boundary homomorphism δ : C2 → C1 is U -equivariant relative to each
action.

The crossed module

C : C2
δ // C1

s //
t

// C0

is semiregular if the object set C0 is a monoid and there is a biaction of C0 on C in
which C0 acts on itself in its left and right regular representations. A semiregular
crossed module in which C0 is a group is said to be regular. Note that every crossed
module of groups is regular.

We now recall the definition of braided regular crossed modules from [9].

Definition 2.3. A braided regular crossed module of groupoids

C : C2
δ // C1

s //
t

// C0

is a regular crossed module of groupoids with the map {−,−} : C1 × C1 → C2, called
the braiding map, satisfying the following axioms:
B1: {a, b} ∈ C2((ta)(tb)), {1e, b} = 1tb, {a, 1e} = 1ta where 1e ∈ C1(e) is the iden-

tity arrow and e is the identity element of the group C0;
B2: {a, b ◦ b′} = {a, b}ta·b′ ◦ {a, b′};
B3: {a ◦ a′, b} = {a′, b} ◦ {a, b}a′·tb;
B4: δ{a, b} = (ta · b)−1 ◦ (a−1 · sb) ◦ (sa · b) ◦ (a · tb);
B5: {a, δy} = (ta · y)−1 ◦ (sa · y)a·q if y ∈ C2(q);
B6: {δx, b} = ((x · sb)p·b)−1 ◦ (x · tb) if x ∈ C2(p);
B7: p · {a, b} = {p · a, b}, {a, b} · p = {a, b · p}, {a · p, b} = {a, p · b} for all a, a′,

b, b′ ∈ C1, x, y ∈ C2, and p, q ∈ C0.

Example 2.4. A braiding on a crossed module of groups

C2
δ // C1

is a function {−,−} : C1 × C1 → C2 satisfying the following axioms:
1. {a, bb′} = {a, b}b′{a, b′}
2. {aa′, b} = {a′, b}{a, b}a′

3. δ{a, b} = [b, a]
4. {a, δx} = x−1xa
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5. {δy, b} = (y−1)by, where a, a′, b, b′ ∈ C1 and x, y ∈ C2.

This example leads us to define a new category. This crossed module together
with the braiding map is called the braided crossed module. In fact this is a special
case of a braided regular crossed module and equivalent to Conduché’s reduced
2-crossed module. Brown and Gilbert (cf. [9]) have stated as a corollary that the
category of braided crossed modules of groups is equivalent to that of reduced
simplicial groups with Moore complex of length 2. We have proved this result by
using the Fα,β functions in [3].

In this section, we will extend this construction to regularity. That is ‘a descrip-
tion of the passage from a simplicial group to a braided regular crossed module’.
This is a reformulation of the Brown-Gilbert result [9]. Our aim is to show the role
of the Fα,β functions in the structure. We will use the Fα,β functions in calculations
of the axioms of braided regular crossed module.

Let G be a simplicial group with Moore complex NG. We will construct a braided
regular crossed module

C : C2
δ // C1

s //
t

// C0

from the simplicial group G.
Let C0 = NG0 and C1 = NG1 o s0NG0 together with source and target maps

given by s(g, s0p) = (d1g)p and t(g, s0p) = p respectively. The groupoid composition
in C1 is given by

(g1, s0p1) ◦ (g2, s0p2) = (g1g2, s0p2)

if p1 = (d1g2)p2. Thus we have a groupoid (C1, C0). Furthermore C0 acts on the left
and on the right of the groupoid (C1, C0) by

p · (g, s0q) = (s0pgs0p
−1, s0pq),

(g, s0q) · p = (g, s0qp)

for p ∈ C0 and (g, s0q) ∈ C1. This action gives a biaction of C0 on the groupoid
(C1, C0).

Now, we set C2(p) = NG2/∂3(NG3 ∩D3)o s1s0NG0 ⊆ G2 with the composition

(l1, s1s0p) ◦ (l2, s1s0p) = (l1l2, s1s0p)

and the source and target maps given by

s(l, s1s0p) = d1
1d

2
1(l)p = p = d1

0d
2
0(l)p = t(l, s1s0p).

Moreover, C0 acts on the left and right of the groupoid (C2, C0) by

p · (l, s1s0q) = ((s1s0p)l(s1s0p
−1), s1s0pq),

(l, s1s0q) · p = (l, s1s0qp)

for p ∈ C0 and (l, s1s0q) ∈ C2(q). Thus, we see that p · (l, s1s0q) ∈ C2(pq) and
(l, s1s0q) · p ∈ C2(qp). This action defines a biaction of C0 on the groupoid (C2, C0).
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The action of (g, s0q) ∈ C1 on (l, s1s0p) ∈ C2 can be given by

(l, s1s0p)(g,s0q) = ((s1g)l(s1g
−1), s1s0q)

if p = (d1g)q. Define the morphism δ : C2 → C1 by δ(l, s1s0p) = (d2l, s0p). Thus we
can give the following proposition.

Proposition 2.5. The diagram

C2
δ // C1

s //
t

// C0

is a braided regular crossed module, where the braiding map is defined as follows:

{ , } : C1 × C1 −→ C2

(a, b) 7−→ {a, b},
for a = (g1, s0p) and b = (g2, s0q),

{(g1, s0p), (g2, s0q)} =

(s1s0ps1g
−1
2 s1s0p−1s1g

−1
1 s0g1s1s0ps1g2s1s0p−1s0g

−1
1 s1g1, s1s0pq).

Here, on the right hand side the overline denotes a coset in NG2/∂3(NG3 ∩D3)
represented by an element in NG2.

Proof. We display the elements omitting the overlines in our calculation to save
complication. Firstly, we show that δ is a crossed module of groupoids by using the
Fα,β functions.
CM1:

δ((l, s1s0p)(g,s0q)) = δ((s1g)l(s1g
−1), s1s0q)

= (d2((s1g)l(s1g
−1)), s0q)

= (g(d2l)g−1, s0q),

and

(g, s0q) ◦ δ(l, s1s0p) ◦ (g−1, s0q) = (g, s0q) ◦ (d2l, s0p) ◦ (g−1, s0q)

= (g, s0q) ◦ ((d2l)g−1, s0q)

= (g(d2l)g−1, s0q).

Then we have

δ((l, s1s0p)(g,s0q)) = (g, s0q) ◦ δ(l, s1s0p) ◦ (g−1, s0q).

CM2:

(l, s1s0p)δ(l′,s1s0p) = (l, s1s0p)(d2l′,s0p)

= ((s1d2l
′)l(s1d2l

′−1), s1s0p)

≡ (l′l(l′)−1, s1s0p) mod ∂3(NG3 ∩D3)

= ((l′), s1s0p) ◦ (l, s1s0p) ◦ (l′−1, s1s0p).
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In the calculation of axiom CM2, we have used the Fα,β functions. Indeed,
from [24], for l, l′ ∈ NG2, we have

F(1)(2)(l′, l) = [s1l
′, s2l][s2l, s2l

′]

= s1l
′s2ls1l

′−1s2l
′s2l

−1s2l
′−1 ∈ NG3 ∩D3,

and from

∂3(F(1)(2)(l′, l)) = s1d2(l′)ls1d2(l′)−1(l′)l−1(l′)−1 ∈ ∂3(NG3 ∩D3)

we have

s1d2(l′)ls1d2(l′)−1 ≡ l′l(l′)−1 mod ∂3(NG3 ∩D3).

Therefore the morphism δ is a crossed module of groupoids. Thus we have a regular
crossed module of groupoids

C : C2
δ // C1

s //
t

// C0

together with the biaction of C0 on C as given above.

Now, we will show that all the axioms of a braided regular crossed module of
groupoids are verified. We again use the Fα,β functions in the following calculations.

B1: For a = (g1, s0p), b = (g2, s0q) and 1e = (1, s0e); {1e, b} = (s1g
−1
2 s1g2, s1s0q)

= (1, s1s0 q) = 1tb, {a, 1e} = (1, s1s0 p) = 1ta and clearly {a, b} ∈ C2(pq) =
C2((ta)(tb)).

B2: For a = (g, s0p), b = (h, s0q), b′ = (h′, s0q
′) it must be that

{a, b ◦ b′} = {a, b}ta·b′ ◦ {a, b′},

where s(b′) = d1h
′q′ = q = t(b). Then,

{a, b ◦ b′} = {(g, s0p), (hh′, s0q
′)}

= (s1s0ps1(h′)−1s1h
−1s1s0p

−1s1g
−1s0gs1s0ps1h︸ ︷︷ ︸

A

s1h
′s1s0p

−1s0g
−1s1g, s1s0(pq′))

= (A (s1s0p
−1s0g

−1s1gs1s0ps1h
′s1s0p

−1)︸ ︷︷ ︸
B

(s1s0ps1(h′)−1

s1s0p
−1s1g

−1s0gs1s0ps1h
′s1s0p

−1s0g
−1s1g, s1s0pq′)

= (AB, s1s0pq′) ◦ (s1s0ps1(h′)−1

s1s0p
−1s1g

−1s0gs1s0ps1h
′s1s0p

−1s0g
−1s1g, s1s0pq′)

= (AB, s1s0pq′) ◦ {a, b′},
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where

(AB, s1s0pq′) = (s1s0ps1(h′)−1s1h
−1s1s0p

−1s1g
−1s0gs1s0ps1hs1s0p

−1

s0g
−1s1gs1s0ps1h

′s1s0p
−1, s1s0pq′)

= (s1s0ps1(h′)−1s1s0p
−1s1s0ps1h

−1s1s0p
−1s1g

−1s0g

s1s0ps1hs1s0p
−1s0g

−1s1gs1s0ps1h
′s1s0p

−1, s1s0pq′)

= (s1(s0p(h′)−1s0p
−1)s1s0ps1h

−1s1s0p
−1s1g

−1s0g

s1s0ps1hs1s0p
−1s0g

−1s1gs1(s0ph′s0p
−1), s1s0pq′)

= (s1s0ps1h
−1s1s0p

−1s1g
−1s0gs1s0ps1hs1s0p

−1s0g
−1s1g,

s1s0pq)(s0ph′s0p−1,s0pq′)

= {a, b}ta·b′

and then we have
{a, b ◦ b′} = {a, b}ta·b′ ◦ {a, b′}.

B3: For a = (g, s0p), a′ = (h, s0q) and b = (k, s0r); (here sa′ = d1hq = p = ta)

{a ◦ a′, b} = {(gh, s0q), (k, s0r)}
= (s1s0qs1k

−1s1s0q
−1s1h

−1s1g
−1s0g

s0hs1s0qs1ks1s0q
−1s0h

−1s0g
−1s1gs1h, s1s0qr)

= (s1s0qs1k
−1s1s0q

−1s1h
−1s1g

−1s0gs1s0d1h

s1s0qs1ks1s0q
−1s1s0d1h

−1s0g
−1s1gs1h, s1s0qr)

= (s1s0qs1k
−1s1s0q

−1s1h
−1

︸ ︷︷ ︸
A

s1g
−1s0g

s1s0ps1ks1s0p
−1s0g

−1s1gs1h, s1s0qr)

= (A(s1s0ps1ks1s0p
−1s1h)︸ ︷︷ ︸

B

s1h
−1(s1s0ps1k

−1s1s0p
−1s1g

−1s0g

s1s0ps1ks1s0p
−1s0g

−1s1g)s1h, s1s0qr)

= (B, s1s0qr) ◦ {(g, s0p), (k, s0r)}(h,s0q)·r

= (B, s1s0qr) ◦ {a, b}a′·tb,

where

(B, s1s0qr) = (s1s0qs1k
−1s1s0q

−1s1h
−1s1s0ps1ks1s0p

−1s1h, s1s0qr)

= s1s0qs1k
−1s1s0q

−1s1h
−1s0hs1s0qs1ks1s0q

−1s0h
−1s1h, s1s0qr)

= {(h, s0q), (k, s0r)}
= {a′, b}

since s1s0p = s0hs1s0q. Thus we have

{a ◦ a′, b} = {a′, b} ◦ {a, b}a′·tb.
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B4:

δ{a, b} = δ{(g, s0p), (h, s0q)}
= (d2(s1s0ps1h

−1s1s0p
−1s1g

−1s0gs1s0ps1hs1s0p
−1s0g

−1s1g), s1s0pq)

= (s0ph−1s0p
−1g−1s0d1gs0phs0p

−1s0d1g
−1g, s0pq)

= (s0ph−1s0p
−1, s0pq) ◦ (g−1, s0pq) ◦

(s0(d1gp)hs0(d1gp)−1, s0pq) ◦ (g, s0pq)

= (ta · b)−1 ◦ (a−1 · sb) ◦ (sa · b) ◦ (a · tb).
B5: For a = (g, s0p) ∈ C1 and y = (l, s1s0q) ∈ C2(q) it must be that

{a, δy} = (ta · y)−1 ◦ (sa · y)a·q.

From [24], we have

∂3(F(2,0)(1)(x, t)) = [s0x, s1d2t][s1d2t, s1x][s1x, t][t, s0x] ∈ ∂3(NG3 ∩D3).

Thus, for t = p · l ∈ NG2 and x = g−1 ∈ NG1, we have

{a, δy} = {(g, s0p), (d2l, s0q)}
= (s1s0ps1d2l

−1s1s0p
−1s1g

−1s0gs1s0ps1d2ls1s0p
−1s0g

−1s1g, s1s0pq)

≡ (s1s0pl−1s1s0p
−1s1g

−1s0gs1s0pls1s0p
−1s0g

−1s1g, s1s0pq)
mod ∂3(NG3 ∩D3)

= ((s1s0p)l−1(s1s0p)−1, s1s0pq) ◦ (s1s0(d1gp)ls1s0(d1gp)−1,

s1s0pq)(g,s0pq)

= (ta · y)−1 ◦ (sa · y)a·q.

B6: It must be that
{δx, b} = [(x · sb)p·b]−1 ◦ (x · tb).

Similarly, from [24], we have

∂3(F(0)(2,1)(k, y)) = [s0d2k, s1y][s1k, s1d2x][x, s1k] ∈ ∂3(NG3 ∩D3).

Thus, for k = l−1 ∈ NG2 and y = p · g ∈ NG1 we have

{δx, b} = {δ(l, s1s0p), (g, s0q)}
= {(d2l, s0p), (g, s0q)}
= (s1s0ps1g

−1s1s0p
−1s1d2l

−1s0d2ls1s0ps1gs1s0p
−1s0d2l

−1s1d2l,

s1s0pq)

≡ (s1s0ps1g
−1s1s0p

−1l−1s1s0ps1gs1s0p
−1l, s1s0pq)

mod ∂3(NG3 ∩D3)

= (s1(s0pg−1s0p
−1)l−1s1(s0pgs0p

−1)l, s1s0pq)

= (l−1, s1s0pq)p·(g−1,s0q) ◦ (l, s1s0p) · q
= [(x · sb)p·b]−1 ◦ (x · q).
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B7: For r ∈ C0, a = (g, s0p) and b = (h, s0q)

{a · r, b} = {(g, s0pr), (h, s0q)}
= (s1s0(pr)s1h

−1s1s0(pr)−1s1g
−1s0g

s1s0(pr)s1hs1s0(pr)−1s0g
−1s1g, s1s0prq)

= (s1s0ps1(s0rh
−1s0r

−1)s1s0p
−1s1g

−1s0g

s1s0ps1(s0rhs0r
−1)s1s0p

−1s0g
−1s1g, s1s0prq)

= {(g, s0p), (s0rhs0r
−1, s0rq)}

= {a, r · b}.
Furthermore, r · {a, b} = {r · a, b} and {a, b} · r = {a, b · r} can be shown similarly.
Therefore the braided regular crossed module axioms are verified.

Remark 2.6. If the Moore complex of the simplicial group G is of length 2, we have
∂3(NG3 ∩D3) = 1, and then we have a construction of a braided regular crossed
module from a simplicial group with Moore complex of length 2.

Theorem 2.7. The category of braided regular crossed modules is equivalent to that
of simplicial groups with Moore complex of length 2.

Proof. In the above proposition, a braided regular crossed module was already
constructed by using the Fα,β functions from the Moore complex of a simplicial
group. This defines a functor from simplicial groups to braided regular crossed
modules

∆: SimpGrp → BRCM.

Conversely, we suppose that

C : C2
δ // C1

s //
t

// C0

is a braided regular crossed module. We will construct a simplicial group G whose
Moore complex has length 2 by using the Fα,β functions.

Let G0 = C0. The set

M = {a ∈ C1 : s(a) = e}
is a group with the following operation

ab = a ◦ t(a) · b
for a, b ∈ M. The group C0 acts on M as follows: for all a ∈ M and p ∈ C0, we set
ap = p−1 · a · p by using the biaction of C0 on C1 and C2. By using this action, we
can create the semidirect product group

M o C0 = G1.

The group operation in G1 is given by

(a, p)(a′, p′) = (ap′ ◦ ((p′)−1t(a)p′) · a′, pp′)



Homology, Homotopy and Applications, vol. 9(1), 2007 153

for all (a, p), (a′, p′) ∈ Mo C0. Define the face and degeneracy maps by

d0(a, p) = p, d1(a, p) = pt(a), s0(p) = (0e, p).

These maps satisfy the simplicial identities. Indeed

d0s0(p) = d0(0e, p) = p

d1s0(p) = d1(0e, p) = pt(0e) = pe = p.

Moreover, d1 and d0 are group homomorphisms, since

d1((a, p)(a′, p′)) = d1((ap′a′, pp′))

= pp′t(ap′)t(a′)
= pt(a)p′t(a′)
= d1(a, p)d1(a′, p′),

d0((a, p)(a′, p′)) = pp′

= d0(a, p)d0(a′, p′).

Furthermore, we know that C2(e) is a (vertex) group from [9]. An action of a ∈ M
on y ∈ C2(e) can be given by

ya = t(a) · y ◦ {a, δy}
where {−,−} is the braiding map. Then, by using this action we can create the
semidirect product group C2(e)oM .

Moreover, an action (a, p) ∈ Mo C0 on (y, a′) ∈ C2(e)oM can be given by

(y, a′)(0e,p) = (yp, (a′)p)

(y, a′)(a,e) = (t(a) · y ◦ {a, δy}, aa′).

Using this action, we have the semidirect product

G2 = (C2(e)oM)o (M o C0)

and homomorphisms

d0(y, a, a′, p) = (a′, p)
d1(y, a, a′, p) = (a ◦ t(a) · a′, p) = (aa′, p)
d2(y, a, a′, p) = (δ(y) ◦ t(δ(y)) · a, pt(a′)) = (δ(y)a, pt(a′))

s0(a′, p) = (0e, 0e, a
′, p)

s1(a, p) = (0e, a, 0e, p).

We thus have a 2-truncated simplicial group {G2, G1, G0} that looks like

(C2(e)oM)o (M o C0)

d2
0,d2

1,d2
2 // //// (M o C0)

d1
0,d1

1 ////oo
s1
0,s1

1

oo
C0.

s0
0

oo

There is a Cosk2 functor from the category of 2-truncated simplicial groups to
that of simplicial groups. We set G′ = Cosk2{G2, G1, G0} and claim NG ′

3 = 1. We
now give the sketch of the argument. From the result of Conduché as given in
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Lemma 1.1 of this paper, for the 2-truncated simplicial group {G2, G1, G0}, we
have N(Cosk2{G2, G1, G0})3 = 1. From [24], by using the image of Fα,β functions,
we have that ∂3(NG3 ∩D3) is the product of [ker d2, ker d0 ∩ ker d1], [ker d1, ker d0 ∩
ker d2], [ker d0, ker d1 ∩ ker d2], [ker d0 ∩ ker d2, ker d0 ∩ ker d1], [ker d1 ∩ ker d2, ker d0

∩ ker d1] and [ker d1 ∩ ker d2, ker d0 ∩ ker d2]. A direct calculation using the descrip-
tions of the face maps and the actions above shows that these are all trivial, so
∂3(NG3 ∩D3) = 1, but again ∂3 is a monomorphism so NG ′

3 = 1 as required.

3. Crossed Squares and Braided, Regular Crossed Modules

Loday and Guin-Walery [26] introduced the notion of crossed square as an alge-
braic model of connected 3-types.

A crossed square of groups is a commutative square of groups;

L

λ′

²²

λ // M

µ

²²
N ν

// P

together with left actions of P on L, M , N and a function h : M ×N → L. Let M
and N act on M,N and L via P . The structure must satisfy the following axioms
for all l ∈ L, m,m′ ∈ M , n, n′ ∈ N , p ∈ P ;

(i) the homomorphisms µ, ν, λ, λ′ and µλ are crossed modules and both λ, λ′ are
P -equivariant,

(ii) h(mm′, n) = h(mm′,m n)h(m,n),
(iii) h(m,nn′) = h(m, n)h(nm,n n′),
(iv) λh(m,n) = mnm−1

(v) λ′h(m,n) =m nn−1,
(vi) h(λl, n) = lnl−1,
(vii) h(m,λ′l) =m ll−1,
(viii) h(pm,p n) =p h(m,n).

Conduché constructed (private communication to Brown in 1984; see also pub-
lished version [17]) a 2-crossed module from a crossed square

L

λ′

²²

λ // M

µ

²²
N ν

// P

as

L
(λ−1,λ′) // M oN

µν // P.

In [5], by taking the bisimplicial nerve of the crossed square and using the Artin-
Mazur codiagonal functor (cf. [2]), we obtained a 2-truncated simplicial group G(2)
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that looks like

G(2) : (Lo (N oM))o (N o (M o P ))

d2
0,d2

1,d2
2 ////// N o (M o P )

d1
0,d1

1 ////oo
s1
0,s1

1

oo P
s0
0

oo

with the faces and degeneracies as given in [5]. We also showed that the Moore
complex of this 2-truncated simplicial group

NG2
∂2 // NG1

∂1 // NG0

is isomorphic to the mapping cone complex

L
(λ−1,λ′) // M oN

µν // P (1)

of the crossed square, and that this mapping cone has a 2-crossed module structure.
In this section, we will construct a braided regular crossed module as

C : C2
δ // C1

s //
t

// C0

by applying the Brown-Gilbert functor from 2-crossed modules to braided regular
crossed modules to this mapping cone complex (1).

Clearly we have C0 = P ∼= G
(2)
0 , and by using the action of P on M oN , we have

C1 = (M oN)o P ∼= NG(2)
1 o s0(G

(2)
0 ). The source and target maps are given by

s(m,n, p) = µ(m)ν(n)p and t(m,n, p) = p for m ∈ M,n ∈ N, p ∈ P . The groupoid
composition in C1 is given by

(m,n, p) ◦ (m′, n′, p′) = (mν(n)m′, nn′, p′)

if µ(m′)ν(n′)p′ = p. We have

t((m,n, p) ◦ (m′, n′, p′)) = p′ = t(m′, n′, p′)

and

s((m,n, p) ◦ (m′, n′, p′)) = s((mν(n)m′, nn′, p′))

= µ(mν(n)m′)ν(n)ν(n′)p′

= µ(m)ν(n)µ(m′)ν(n′)p′

= µ(m)ν(n)p
= s(m,n, p),

and thus we have a groupoid structure (C1, C0). The biaction of the group C0 on
the groupoid (C1, C0) can be given by

p · (m,n, q) = (pm,p n, pq)
(m, n, q) · p = (m, n, qp)

for (m,n, q) ∈ C1 and p ∈ C0.
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We also have C2 = Lo P ∼= NG(2)
2 o s0s0(NG(2)

0 ), and the groupoid composition
can be given by

(l, p) ◦ (l′, p) = (ll′, p),

and the biaction of C0 on the groupoid (C2, C0) can be given by

p · (l, q) = (pl, pq), (l, q) · p = (l, qp).

Thus we have a regular crossed module

C : Lo P
δ′ // (M oN)o P

s //
t

// P

from the mapping cone complex (1), where the morphism δ′ is given by (l, p) 7→
(λ−1(l), λ′(l), p). The braiding map on this structure is given by

{(m,n, p), (m′, n′, p′)} =
(
h(ν(n−1)m−1, n−1(pm′)n), pp′

)

for m,m′ ∈ M , n, n′ ∈ N and p, p′ ∈ P , where h is the h-map of the crossed square.
Thus, if given a crossed square

L

λ′

²²

λ // M

µ

²²
N ν

// P

its associated braided regular crossed module is

Lo P
δ′ // (M oN)o P

s //
t

// P

as described above.
Now, let

C : C2
δ // C1

s //
t

// C0

be any braided regular crossed module. Consider its associated 2-truncated simpli-
cial group

G′ : (C2(e)oM)o (M o C0)

d2
0,d2

1,d2
2 ////// (M o C0)

d1
0,d1

1 ////oo
s1
0,s1

1

oo
C0

s0
0

oo

together with the face and degeneracy maps as given in Theorem 2.7.
We investigate the Moore complex of this 2-truncated simplicial group. Clearly

NG ′
0 = C0. By the definition of d1

0, we have ker d1
0 = NG ′

1 = M , and by the definition
of d1

1, we have

ker d1
1 = M = {(m, p) : p = t(m)−1,m ∈ M,p ∈ P}.

Similarly, by the definition of the face maps d2
0 and d2

1, we have ker d2
0 ∩ ker d2

1 =
NG ′

2 = C2(e).
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Mutlu and Porter in [24] defined a functor from simplicial groups to crossed
squares, denoting it by

M(−, 2) : SimpGrp → Crs2.

We now briefly explain this functor.
Let G be a simplicial group. Then the following diagram

NG2/∂3NG3

∂′2
²²

∂2 // NG1

µ

²²
NG1

µ′
// G1

is the underlying square of a crossed square. The extra structure is given as fol-
lows; NG1 = ker d1

0 and NG1 = ker d1
1. Since G1 acts on NG2/∂3NG3,NG1 and

NG1, there are actions of NG1 on NG2/∂3NG3 and NG1 via µ′, and NG1 acts on
NG2/∂3NG3 and NG1 via µ. Both µ and µ′ are inclusions, and all actions are given
by conjugation. The h-map is

h : NG1 ×NG1 −→ NG2/∂3NG3

(x, y) 7−→ h(x, y) = [s1x, s1ys0y
−1]∂3NG3.

Here x and y are in NG1 as there is a bijection between NG1 and NG1.
Now, we apply this functor to the 2-truncated simplicial group G′ given above.

From Section 2, we have ∂3(NG ′
3) = 1. In the above calculations, we have NG ′

0 = C0,
NG ′

1 = M , NG ′
1 = M and NG ′

2 = C2(e). Thus we have a crossed square M(G′, 2)
that looks like

C2(e)
δ //

δ′

²²

M

µ

²²
M

µ′
// M o C0.

The braiding map {−,−} : C1 × C1 → C2 induces the h-map of the crossed square.
Thus, if given a braided regular crossed module

C : C2
δ // C1

s //
t

// C0

its associated crossed square is

C2(e)
δ //

δ′

²²

M

µ

²²
M

µ′
// M o C0

as described above.
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4. Quadratic modules from braided regular crossed modules

Quadratic modules of groups were initially defined by Baues in [6] as models
for connected 3-types. In [5, Section 5], we constructed a functor from 2-crossed
modules to quadratic modules. Furthermore, in [5], by using the Fα,β functions, we
gave a construction of a quadratic module from a simplicial group.

Recall that a nil(2)-module is a pre-crossed module ∂ : M → N with an additional
“nilpotency” condition. This condition is P3(∂) = 1, where P3(∂) is the subgroup
of M generated by Peiffer commutator 〈x1, x2, x3〉 of length 3.

The Peiffer commutator in a pre-crossed module ∂ : M → N is defined by

〈x, y〉 = (∂xy)xy−1x−1

for x, y ∈ M .
For a group G, the group

Gab = G/[G,G]

is the abelianisation of G and

∂cr : M cr = M/P2(∂) → N

is the crossed module associated to the pre-crossed module ∂ : M → N . Here
P2(∂) = 〈M, M〉 is the Peiffer subgroup of M .

The following definition is due to Baues (cf. [6]).

Definition 4.1. A quadratic module (ω, δ, ∂) is a diagram

C ⊗ C

ω

||xx
xx

xx
xx

x
w

²²
L

δ
// M

∂
// N

of homomorphisms between groups such that the following axioms are satisfied.

QM1: The homomorphism ∂ : M → N is a nil(2)-module with Peiffer commutator
map w defined above. The quotient map M ³ C = (M cr)ab is given by x 7→
x, where x ∈ C denotes the class represented by x ∈ M and C = (M cr)ab

is the abelianisation of the associated crossed module M cr → N .

QM2: The boundary homomorphisms ∂ and δ satisfy ∂δ = 1 and the quadratic
map ω is a lift of the Peiffer commutator map w, that is δω = w or equiva-
lently

δω(x⊗ y) = (∂xy)xy−1x−1 = 〈x, y〉
for x, y ∈ M .

QM3: L is an N -group and all homomorphisms of the diagram are equivariant
with respect to the action of N . Moreover, the action of N on L satisfies
the formula (a ∈ L, x ∈ M)

∂xa = ω(
(
x⊗ δa

) (
δa⊗ x

)
)a.
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QM4: Commutators in L satisfy the formula (a, b ∈ L)

ω(δa⊗ δb) = [b, a].

Now, consider the braided regular crossed module

C : C2
δ // C1

s //
t

// C0

and its associated 2-crossed module

C2(e)
δ // M

t // C0 (2)

as given in [9]. Applying the functor from 2-crossed modules to quadratic modules as
described in [5, Section 5] to this associated 2-crossed module (2) gives a quadratic
module

C ⊗ C

ω

yyrrrrrrrrrr
w

²²
C2(e)/P ′3

δ′
// M/P3

∂′
// C0

where P3 is the normal subgroup of M generated by elements of the form

〈x, 〈y, z〉〉 and 〈〈x, y〉, z〉
for x, y, z ∈ M . The Peiffer elements in M are given by 〈x, y〉 = (t(x)y)xy−1x−1 for
x, y ∈ M . Also, P ′3 is the normal subgroup of C2(e) generated by elements of the
form

{x, 〈y, z〉} and {〈x, y〉, z}
where {−,−} is the Peiffer map of the associated 2-crossed module (2).

Since t(〈x, 〈y, z〉〉) = 1 and t(〈〈x, y〉, z〉) = 1, the map ∂′ : M/P3 → C0 given by
∂′(mP3) = t(m) is a well defined group homomorphism. In addition, since
δ{x, 〈y, z〉} = 〈x, 〈y, z〉〉 and δ{〈x, y〉, z} = 〈〈x, y〉, z〉, the map δ′ : C2(e)/P ′3 →M/P3

given by δ′(xP ′3) = δ(x)P3 is a well defined group homomorphism. The braiding map
induces the quadratic map ω.

Thus, if given a braided regular crossed module

C : C2
δ // C1

s //
t

// C0 ,

its associated quadratic module is

C ⊗ C

ω

yyrrrrrrrrrr
w

²²
C2(e)/P ′3

δ′
// M/P3

∂′
// C0

as described above.
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[16] D. Conduché, Modules croisés généralisés de longueur 2, J. Pure Appl.
Algebra 34, 155–178, (1984).
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