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SUPPORT VARIETIES: AN IDEAL APPROACH
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Abstract
We define support varieties in an axiomatic setting using

the prime spectrum of a lattice of ideals. A key observation is
the functoriality of the spectrum and that this functor admits
an adjoint. We assign to each ideal its support and can classify
ideals in terms of their support. Applications arise from study-
ing abelian or triangulated tensor categories. Specific examples
from algebraic geometry and modular representation theory
are discussed, illustrating the power of this approach which is
inspired by recent work of Balmer.
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1. Introduction

The spectrum of prime ideals and the support of objects like modules, sheaves,
complexes, etc. belong to the fundamental concepts of algebraic geometry. In fact,
the use of these concepts is not restricted to algebraic geometry; similar notions
exist, for instance, in modular representation theory. In this paper we discuss a
general approach which allows us to study prime ideal spectra and supports in
various settings.

A prime ideal spectrum comes naturally equipped with a topology which is usu-
ally called the Zariski topology. However, there are various instances where it is more
natural to consider another ‘opposite’ topology. It is one of the principal aims of this
work to clarify the parallel use of two different topologies on a prime ideal spectrum.
This is based on the notion of a spectral space, first introduced by Hochster [12].

We give a couple of motivating examples which illustrate the use of such different
topologies. Let A be a commutative ring and denote by SpecA the set of prime
ideals, together with the usual Zariski topology. We obtain another topology and
write Spec∗A if we take the quasi-compact Zariski open sets as a basis of closed
sets. Now suppose that A is noetherian. Let modA denote the abelian category of
all finitely generated A-modules. Then the assignment

mod A ⊇ C 7→
⋃

M∈C
supp M

induces a bijection between all Serre subcategories of modA and all open subsets
of Spec∗A; see [8], and [10] for a recent generalization. Our second example arises
from Ziegler’s work on the model theory of modules [23]. The points of the Ziegler
spectrum of A are the isomorphism classes of indecomposable pure-injective A-
modules, and the closed subsets correspond to complete theories of modules. The
indecomposable injective modules form a closed subset Inj A, and the assignment

Spec∗A 3 p 7→ E(A/p) = injective envelope of A/p

induces a bijection between all closed subsets of Spec∗A and all Ziegler closed
subsets contained in Inj A; see [17]. We do not comment any further on the sec-
ond example, but the first example is explained in some detail when we discuss
the abelian category of coherent sheaves and the triangulated category of perfect
complexes on a scheme.

Now let us give a brief outline of the contents of this paper. At the beginning
we introduce the notion of an ideal lattice and study its prime ideal spectrum. A
key observation is the functoriality of the spectrum and that this functor admits an
adjoint. We assign to each ideal its support and can classify ideals in terms of their
support. Examples of ideal lattices arise from tensor categories which are abelian
or triangulated. We provide a systematic treatment of such tensor categories and
discuss a number of examples from algebraic geometry and modular representation
theory. This is inspired by recent work of Balmer [2].

To be more specific, let C be a small abelian or triangulated tensor category with a
tensor identity. We consider the ideal lattice of thick tensor ideals of C and its prime
ideal spectrum Spec C. This space comes naturally equipped with a sheaf of rings
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OC and we can describe the ringed space (Spec C,OC) in some interesting exam-
ples. An important application says that every quasi-compact and quasi-separated
scheme X can be reconstructed from the triangulated tensor category of perfect
complexes on X. This is a slight generalization of a result of Balmer [1, 2] and
based on the fundamental work of Thomason [21, 22]. On the other hand, it is the
analogue—with almost identical proof—of the fact that a noetherian scheme X can
be reconstructed from the abelian tensor category of coherent sheaves on X.

There are a number of interesting examples of triangulated tensor categories C
where (Spec C,OC) is actually a projective scheme. We provide a general criterion
which explains those examples. For instance, this result establishes for a finite group
G and a field k a conceptual link between the identical classifications of

– thick tensor ideals of the category of perfect complexes over the graded com-
mutative cohomology ring H∗(G, k), due to Hopkins and Neeman [13, 16],
and

– thick tensor ideals of the stable category of finite dimensional k-linear repre-
sentations of G, due to Benson, Carlson, and Rickard [4].

This generalizes to finite group schemes, by the recent work of Friedlander and
Pevtsova [7].

Our personal motivation for this project stems from the work on support vari-
eties in non-commutative settings, for instance for modular representations of finite
dimensional algebras. It turns out that most parts of our theory do not require any
commutativity assumptions. However, the product formula

supp(ab) = supp(a) ∩ supp(b) = supp(ba)

for the support of two ideals a, b shows that commutativity is inherent to the subject,
even though we allow ab 6= ba.

Acknowledgements

The authors are grateful to Paul Balmer for various helpful comments on this
work. In addition, they wish to thank an anonymous referee for numerous further
comments. On the same note the authors wish to acknowledge the vital support
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2. The prime spectrum of an ideal lattice

2.1. Ideal lattices
In this section we introduce the notion of an ideal lattice. The collection of ideals

of some fixed algebraic structure is usually equipped with two additional structures.
We consider the partial ordering by inclusion and the internal multiplication. Recall
that a lattice is a partially ordered set such that each non-empty finite set admits
a supremum and an infimum.

Definition 2.1. An ideal lattice is by definition a partially ordered set L = (L,6),
together with an associative multiplication L× L → L, such that the following hold:
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(L1) The poset L is a complete lattice, that is,
∨

a∈A

a = sup A and
∧

a∈A

a = inf A

exist in L for every subset A ⊆ L.
(L2) The lattice L is compactly generated, that is, every element in L is the supre-

mum of compact elements. (An element a ∈ L is compact, if for all A ⊆ L with
a 6 supA there exists some finite A′ ⊆ A with a 6 supA′.)

(L3) We have for all a, b, c ∈ L

a(b ∨ c) = ab ∨ ac and (a ∨ b)c = ac ∨ bc.

(L4) The element 1 = sup L is compact, and 1a = a = a1 for all a ∈ L.
(L5) The product of two compact elements is again compact.
A morphism φ : L → L′ of ideal lattices is a map satisfying

φ(
∨

a∈A

a) =
∨

a∈A

φ(a) for A ⊆ L,

φ(1) = 1 and φ(ab) = φ(a)φ(b) for a, b ∈ L.

It is useful to think of a poset L as a category L where the objects of L are the
elements of L and

HomL(a, b) 6= ∅ ⇐⇒ cardHomL(a, b) = 1 ⇐⇒ a 6 b

for a, b ∈ L. Note that infimum and supremum in L correspond to product and
coproduct, respectively, in L. Thus a compactly generated complete lattice is pre-
cisely a locally finitely presentable category L (in the sense of [9]) satisfying

cardHomL(a, b) 6 1 for all a, b ∈ L.

Given an ideal lattice L, the multiplication L× L → L corresponds to a tensor
product L × L → L. A morphism L → L′ of ideal lattices corresponds to a functor
L → L′ preserving all colimits and the tensor product.

Next observe that an ideal lattice L is essentially determined by its subset Lc of
compact elements. To make this precise, let K be a poset and suppose that sup A
exists for every finite subset A ⊆ K. A non-empty subset I ⊆ K is an ideal of K if
for all a, b ∈ K

(1) a 6 b and b ∈ I implies a ∈ I, and
(2) a, b ∈ I implies a ∨ b ∈ I.

Given a ∈ K, let I(a) = {x ∈ K | x 6 a} denote the principal ideal generated by a.
The set K̂ of all ideals of K is called the completion of K. This set is partially
ordered by inclusion and in fact a compactly generated complete lattice. The map
K → K̂ sending a ∈ K to I(a) identifies K with K̂c.

Lemma 2.2. Let L be a compactly generated complete lattice. Then the map

L −→ L̂c, a 7→ I(a) ∩ Lc = {x ∈ L | x 6 a and x compact},
is a lattice isomorphism.
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Lattice theory Ring theory
lattice (L) ring (A)
element ideal
a 6 b I ⊆ J
a ∨ b I + J
a ∧ b I ∩ J
ab IJ

sup L (1)
inf L (0)

prime element prime ideal
compact element finitely generated ideal

semi-prime element semi-prime ideal

Table 1: A dictionary between lattice and ring theory

Proof. The inverse map sends an ideal I ∈ L̂c to sup I in L.

We note some immediate consequences which we use frequently without further
reference. Given elements a, b in a compactly generated complete lattice, we have

a =
∨

a′6a

a′ compact

a′, and (2.1)

a 6 b ⇐⇒ a′ 6 b for all compact a′ 6 a.

Now let L be an ideal lattice. The multiplication L× L → L restricts to a multi-
plication Lc × Lc → Lc. It turns out that all relevant structure is determined by the
multiplication of compact elements. In our applications, we always have for a, b ∈ L
that ab = sup a′b′ where a′ 6 a and b′ 6 b run through all compact elements.

2.2. The prime spectrum
Let L be an ideal lattice. We define the spectrum of prime elements in L and

discuss some of its basic properties. An element p 6= 1 in L is called prime if ab 6 p
implies a 6 p or b 6 p for all a, b ∈ L. A subset S ⊆ L is multiplicative if ab ∈ S for
all a, b ∈ S.

The basic example of an ideal lattice is the lattice of ideals of a commutative
ring; see Proposition 7.4. A dictionary between lattice and ring theory is provided
in Table 1.

Next we collect some elementary facts about prime elements.

Lemma 2.3. An element p 6= 1 in L is prime if and only if ab 6 p implies a 6 p
or b 6 p for all compact a, b ∈ L.

Proof. Use (2.1).

Lemma 2.4. Let a ∈ L and S ⊆ L be a non-empty multiplicative set of compact
elements. Suppose that s 66 a for all s ∈ S. Then there exists a prime p ∈ L such
that a 6 p and s 66 p for all s ∈ S.
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Proof. Consider the set A of all elements x ∈ L such that a 6 x and s 66 x for all
s ∈ S. The set A is non-empty and for every chain B ⊆ A, we have sup B in A since
the elements in S are compact. Thus A has a maximal element p, by Zorn’s lemma.
We claim that p is prime. Let x, x′ ∈ L with xx′ 6 p. Suppose that x 66 p and x′ 66 p.
Then we have s, s′ ∈ S such that s 6 p ∨ x and s′ 6 p ∨ x′, by the maximality of p.
Therefore

ss′ 6 (p ∨ x)(p ∨ x′) = pp ∨ px′ ∨ xp ∨ xx′ 6 p

which contradicts the fact that p ∈ A. Thus x 6 p or x′ 6 p, and therefore p is
prime.

An element a ∈ L is semi-prime if bb 6 a implies b 6 a for all b ∈ L.

Lemma 2.5. An element a ∈ L is semi-prime if and only if a = inf V for some set
V ⊆ L of prime elements.

Proof. Suppose that a is semi-prime and let V = {p ∈ L | a 6 p and p prime}. For
any compact b ∈ L such that b 66 a, consider the multiplicative set {bn | n > 1}. It
follows from Lemma 2.4 that there is a prime p ∈ V such that b 66 p. Thus a = inf V .
The other implication is clear.

We denote by Spec L the set of prime elements in L and define for each a ∈ L

V (a) = {p ∈ Spec L | a 6 p} and D(a) = {p ∈ Spec L | a 66 p}.
The subsets of SpecL of the form V (a) are closed under forming arbitrary intersec-
tions and finite unions. More precisely,

V (
∨

i∈Ω

ai) =
⋂

i∈Ω

V (ai) and V (ab) = V (a) ∪ V (b).

Thus we obtain the Zariski topology on Spec L by declaring a subset of Spec L to
be closed if it is of the form V (a) for some a ∈ L. The set Spec L endowed with
this topology is called the prime spectrum of L. Note that the sets of the form D(a)
with compact a ∈ L form a basis of open sets. This is a consequence of the following
lemma.

Lemma 2.6. For a ∈ L, we have

V (a) =
⋂
b6a

b compact

V (b) and D(a) =
⋃
b6a

b compact

D(b).

Proof. Use (2.1).

Proposition 2.7. The assignments

L 3 a 7→ V (a) = {p ∈ Spec L | a 6 p} and Spec L ⊇ Y 7→ inf Y

induce mutually inverse and order reversing bijections between
(1) the set of all semi-prime elements in L, and
(2) the set of all closed subsets of Spec L.
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Proof. Both maps are well-defined by Lemma 2.5. Given a semi-prime a ∈ L, the
equality inf V (a) = a is clear since a is a join of prime elements, by Lemma 2.5.
Now let Y ⊆ Spec L. The inclusion Y ⊆ V (inf Y ) is purely formal. Suppose that Y
is of the form Y = V (a) for some a ∈ L. If p ∈ V (inf Y ), then a 6 inf Y 6 p and
therefore p ∈ Y . Thus the proof is complete.

Corollary 2.8. The assignments

L 3 a 7→ D(a) =
⋃
b6a

b compact

D(b) and Spec L ⊇ Y 7→
∨

D(b)⊆Y
b compact

b

induce mutually inverse and order preserving bijections between
(1) the set of all semi-prime elements in L, and
(2) the set of all open subsets of Spec L.

Proof. We apply Proposition 2.7 and need to check that for V = Spec L \ Y and
a ∈ L, we have a 6 inf V if and only if D(a) ⊆ Y . This is clear since a 6 p for all
p ∈ V is equivalent to a 66 q implies q ∈ Y .

Remark 2.9. Let a ∈ L and denote by
√

a = inf V (a) the smallest semi-prime in L
containing a. Then we have

√
ab = inf(V (a) ∪ V (b)) =

√
ba for a, b ∈ L,

even though we do not assume commutativity of the multiplication in L.

3. The prime spectrum is spectral

This section is devoted to recalling the definition of a spectral topological space
and to showing that the space Spec L is spectral for an ideal lattice L.

In [12], a topological space is defined to be spectral if it is T0 and quasi-compact,
the quasi-compact open subsets are closed under finite intersections and form an
open basis, and every non-empty irreducible closed subset has a generic point. Recall
that a closed subset is irreducible if it cannot be written as the union of two proper
closed subsets.

We have the following basic property of a spectral space.

Lemma 3.1. Let X be a spectral space. Endow the underlying set with a new topol-
ogy by taking as open sets those of the form Y =

⋃
i∈Ω Yi with quasi-compact open

complement X \ Yi for all i ∈ Ω, and denote the new space by X∗. Then X∗ is
spectral and (X∗)∗ = X.

Proof. See [12, Prop. 8].

Let L be an ideal lattice. We now show that the space Spec L is spectral. We
proceed in several steps.

Lemma 3.2. An open subset of Spec L is quasi-compact if and only if it is of the
form D(c) for some compact c ∈ L.
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Proof. Fix an open subset D(a) of Spec L. Suppose first that D(a) is quasi-compact.
We have

D(a) =
⋃
b6a

b compact

D(b)

by Lemma 2.6, and therefore D(a) = D(b) for some compact b ∈ L.
Now suppose that a ∈ L is compact and D(a) ⊆ ⋃

b∈B D(b) for some subset B ⊆
L. We write b̄ =

∨
b∈B b and have D(a) ⊆ D(b̄). It follows from Lemma 2.4 that

an 6 b̄ for some n > 1. Thus an 6
∨

b∈B′ b for some finite subset B′ ⊆ B since an is
compact. This implies D(a) ⊆ ⋃

b∈B′ D(b), and therefore D(a) is quasi-compact.

Lemma 3.3. Let p, q ∈ Spec L. Then {p} = V (p). In particular, {p} = {q} implies
p = q.

Proof. Clear.

Lemma 3.4. Let Y ⊆ Spec L be a non-empty closed subset. If Y is irreducible, then
inf Y is prime and Y = {inf Y }.
Proof. First observe that we have c 6 inf Y for c ∈ L if and only if Y ⊆ V (c). To
show that inf Y is prime, let ab 6 inf Y . Then

Y ⊆ V (ab) = V (a) ∪ V (b),

and we have Y ⊆ V (a) or Y ⊆ V (b) since Y is irreducible. Thus a 6 inf Y or b 6
inf Y . Let p = inf Y and Y = V (a). Then we have by construction a 6 p and Y ⊆
V (p). Thus Y = V (p) = {p}, by Lemma 3.3.

Proposition 3.5. The prime spectrum Spec L of an ideal lattice L is spectral.

Proof. The space Spec L is T0 by Lemma 3.3. An open subset of SpecL is quasi-
compact if and only if it is of the form D(a) for some compact a ∈ L, by Lemma 3.2.
Thus the definition of the topology implies that the quasi-compact open subsets
form an open basis which is closed under finite intersections. Moreover, SpecL is
quasi-compact since 1 = sup L is compact. If Y is a non-empty irreducible closed
subset, then Y = {p} for p = inf Y by Lemma 3.4.

There is a close relation between spectral spaces and ideal lattices, and we make
this more precise. Given a topological space X, we denote by Lopen(X) the lattice
of open subsets of X and consider the multiplication map

Lopen(X)× Lopen(X) −→ Lopen(X), (U, V ) 7→ UV = U ∩ V.

Note that the lattice Lopen(X) is complete.

Lemma 3.6. Let X be a space and U ∈ L = Lopen(X). Then
(1) U is prime in L if and only if X \ U is irreducible, and
(2) U is compact in L if and only if U is quasi-compact.

Proof. Clear.
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Proposition 3.7. Let X be a spectral space. Then Lopen(X) is an ideal lattice and
every ideal in Lopen(X) is semi-prime. Moreover, the map

X −→ Spec Lopen(X), x 7→ X \ {x},
is a homeomorphism.

Proof. Using Lemma 3.6, the properties of a spectral space can be translated into
the defining properties of an ideal lattice. Clearly, every ideal is semi-prime, since
UU = U for all U ∈ Lopen(X). It is straightforward to check that the given map is
a homeomorphism.

Example 3.8. Let A be a commutative ring. Then the lattice Lid(A) of ideals of A
is an ideal lattice and therefore Spec A = Spec Lid(A) is spectral. More generally, if
X is a quasi-compact and quasi-separated scheme, then the underlying space of X
is spectral.

4. An adjoint of the functor Spec

The prime spectrum of an ideal lattice satisfies a universal property which we
discuss in this section. Then we view the assignment L 7→ Spec L as a functor from
ideal lattices to spectral topological spaces and study its adjoint.

Definition 4.1. A spectrum of an ideal lattice L is a pair (X, δ) where X is a
topological space and δ is a map which assigns to each a ∈ L an open subset δ(a) ⊆
X, such that

δ(
∨

a∈A

a) =
⋃

a∈A

δ(a) for A ⊆ L, (4.1)

δ(1) = X and δ(ab) = δ(a) ∩ δ(b) for a, b ∈ L.

A morphism f : (X, δ) → (X ′, δ′) of spectra is a continuous map f : X → X ′ such
that δ(a) = f−1(δ′(a)) for all a ∈ L. Such a morphism is an isomorphism if and only
if f : X → X ′ is a homeomorphism.

Theorem 4.2. Let L be an ideal lattice. Then the pair (Spec L,D) is a spectrum of
L. For every spectrum (X, δ) of L, there exists a unique continuous map f : X →
Spec L such that δ(a) = f−1(D(a)) for every a ∈ L. The map f is defined by

f(x) =
∨

x6∈δ(c)
c compact

c for x ∈ X.

Proof. Clearly, the pair (Spec L,D) is a spectrum. Now let (X, δ) be a spectrum
of L. We show that for each x ∈ X the element f(x) =

∨
x6∈δ(c) c is prime. First

observe that f(x) 6= 1 since δ(1) = X. Suppose that ab 6 f(x), and we may assume
that a, b are compact. Using (4.1), observe that the compact c ∈ L with x 6∈ δ(c)
form a directed set. Thus ab 6 c for some compact c ∈ L with x 6∈ δ(c). Using (4.1)
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again, we have

δ(a) ∩ δ(b) = δ(ab) ⊆ δ(c)

and therefore x 6∈ δ(a) or x 6∈ δ(b). We conclude that a 6 f(x) or b 6 f(x). The
definition of f implies δ(a) = f−1(D(a)) for every a ∈ L, since

x ∈ δ(a) ⇐⇒ a 66 f(x) ⇐⇒ f(x) ∈ D(a) ⇐⇒ x ∈ f−1(D(a)).

The continuity of f follows from the fact that the sets D(a) with a ∈ L are precisely
the open subsets of Spec L. Now let f1, f2 : X → Spec L be two maps satisfying

f−1
1 (D(a)) = δ(a) = f−1

2 (D(a))

for every a ∈ L. Fix x ∈ X. Then we have

{f1(x)} =
⋂

f1(x)6∈D(a)

V (a) =
⋂

f2(x)6∈D(a)

V (a) = {f2(x)}.

This implies f1(x) = f2(x) by Lemma 3.3, and therefore the proof is complete.

We observe that a spectrum (X, δ) is determined by its restriction to the subset
of compact elements since

δ(a) =
⋃
b6a

b compact

δ(b) for a ∈ L.

This observation has the following consequence.

Corollary 4.3. Let X be a topological space and δ0 be a map which assigns to each
compact a ∈ L an open subset δ0(a) ⊆ X, such that

δ0(a ∨ b) = δ0(a) ∪ δ0(b) for a, b ∈ L,

δ0(1) = X and δ0(ab) = δ0(a) ∩ δ0(b) for a, b ∈ L.

(1) There exists a unique continuous map f : X → Spec L such that

δ0(a) = f−1(D(a))

for every compact a ∈ L.

(2) There exists a unique spectrum (X, δ) of L such that δ(a) = δ0(a) for every
compact a ∈ L.

Proof. Define the continuous map f : X → Spec L as in Theorem 4.2 and define
δ(a) = f−1(D(a)) for every a ∈ L. It is clear from the defining formula that (X, δ)
is a spectrum of L. The uniqueness of δ follows from the formula

δ(a) =
⋃
b6a

b compact

δ0(b) for a ∈ L.

Our next application says that Spec is actually a functor into the category of
topological spaces.
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Lemma 4.4. A morphism of ideal lattices φ : L → L′ induces a unique continuous
map Spec φ : Spec L′ → Spec L such that

D(φ(a)) = (Spec φ)−1D(a) for a ∈ L.

Proof. The pair (Spec L′, D ◦φ) is a spectrum of L. Now apply Theorem 4.2. Note
that we can compute more explicitly

(Spec φ)p = sup{a ∈ L | φ(a) 6 p} for p ∈ Spec L′.

The universal property of the prime spectrum yields an adjoint functor for Spec.

Theorem 4.5. We have an adjoint pair of contravariant functors

Latid
Spec // Topsp
Lopen

oo

between the category of ideal lattices and the category of spectral spaces. More pre-
cisely, for an ideal lattice L and a spectral space X, there are mutually inverse
bijections

HomLatid(L, Lopen(X))
Σ // HomTopsp

(X, Spec L).
Λ

oo

The functor Lopen is fully faithful, and an ideal lattice L is isomorphic to one of the
form Lopen(X) if and only if every ideal in L is semi-prime.

Proof. Both functors are well-defined by Propositions 3.5 and 3.7. The maps Σ and
Λ are defined by

(Σφ)(x) =
∨

x6∈φ(c)
c compact

c and (Λf)(a) = f−1(D(a)) for x ∈ X, a ∈ L.

It follows from Theorem 4.2 that both maps are mutually inverse bijections. Next
observe that Lopen is fully faithful. This follows from the fact that the adjunction
morphism X → Spec Lopen(X) is a homeomorphism; see also Proposition 3.7. It
remains to describe the image of Lopen. Clearly, every ideal in Lopen(X) is semi-
prime; see Proposition 3.7. Conversely, if every ideal in L is semi-prime, then the
adjunction morphism L → Lopen(Spec L) is an isomorphism, by Corollary 2.8. Thus
the proof is complete.

5. Support data

Let L be an ideal lattice. We have seen that the space Spec L is spectral and,
in view of our applications, from this point on we consider the ‘opposite’ topology
on X = Spec L. To be precise, we let Spec∗ L = X∗ where the points of X∗ and
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X coincide and Y ⊆ X∗ is by definition open if Y =
⋃

i∈Ω Yi with quasi-compact
Zariski-open complement X \ Yi for all i ∈ Ω; see Lemma 3.1. For a ∈ L, we call

supp(a) = {p ∈ Spec∗ L | a 66 p}
the support of a and observe that supp(a) is closed if a is compact. Let us reformulate
the classification of semi-prime ideals in terms of the topology Spec∗ L.

Proposition 5.1. The assignments

L 3 a 7→ supp(a) =
⋃
b6a

b compact

supp(b) and Spec∗ L ⊇ Y 7→
∨

supp(b)⊆Y
b compact

b

induce mutually inverse and order preserving bijections between
(1) the set of all semi-prime elements in L, and
(2) the set of all subsets Y ⊆ Spec∗ L of the form Y =

⋃
i∈Ω Yi with quasi-compact

open complement Spec∗ L \ Yi for all i ∈ Ω.

Proof. Use Corollary 2.8 and observe that the subsets Y =
⋃

i∈Ω Yi with quasi-
compact open complement Spec∗ L \ Yi are precisely the open subsets of Spec L =
(Spec∗ L)∗, by Lemma 3.1.

Next we introduce for an ideal lattice the concept of a support datum. This
is inspired by Balmer’s definition of a support datum on a triangulated tensor
category [2, Defn. 3.1]. The subsequent theorem is the analogue of [2, Thm. 3.2].

Definition 5.2. A support datum on an ideal lattice L is a pair (X, σ) where X is
a topological space and σ is a map which assigns to each compact a ∈ L a closed
subset σ(a) ⊆ X, such that

σ(a ∨ b) = σ(a) ∪ σ(b) for a, b ∈ L, (5.1)
σ(1) = X and σ(ab) = σ(a) ∩ σ(b) for a, b ∈ L.

A morphism f : (X,σ) → (X ′, σ′) of support data is a continuous map f : X → X ′

such that σ(a) = f−1(σ′(a)) for all compact a ∈ L. Such a morphism is an isomor-
phism if and only if f : X → X ′ is a homeomorphism.

The following result complements the universal property of the pair (SpecL,D)
of Theorem 4.2 and the proof is almost the same.

Theorem 5.3. Let L be an ideal lattice. Then the pair (Spec∗ L, supp) is a support
datum on L. For every support datum (X,σ) on L, there exists a unique continuous
map f : X → Spec∗ L such that σ(a) = f−1(supp(a)) for every compact a ∈ L. The
map f is defined by

f(x) =
∨

x6∈σ(c)
c compact

c for x ∈ X.

Proof. Clearly, the pair (Spec∗ L, supp) is a support datum. Now let (X,σ) be a
support datum on L. We show that for each x ∈ X the element f(x) =

∨
x 6∈σ(c) c is

prime. First observe that f(x) 6= 1 since σ(1) = X. Suppose that ab 6 f(x), and we
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may assume that a, b are compact. Using (5.1), observe that the compact c ∈ L with
x 6∈ σ(c) form a directed set. Thus ab 6 c for some compact c ∈ L with x 6∈ σ(c).
Using (5.1) again, we have

σ(a) ∩ σ(b) = σ(ab) ⊆ σ(c)

and therefore x 6∈ σ(a) or x 6∈ σ(b). We conclude that a 6 f(x) or b 6 f(x). The
definition of f implies σ(a) = f−1(supp(a)) for every compact a ∈ L, since

x ∈ σ(a) ⇐⇒ a 66 f(x) ⇐⇒ f(x) ∈ supp(a) ⇐⇒ x ∈ f−1(supp(a)).

The continuity of f follows from the fact that the sets supp(a) with compact a ∈ L
form a basis of closed sets for the topology on Spec∗ L. Now let f1, f2 : X → Spec∗ L
be two maps satisfying

f−1
1 (supp(a)) = σ(a) = f−1

2 (supp(a))

for every compact a ∈ L. Fix x ∈ X. Then we have

{f1(x)} =
⋂

f1(x)∈supp(a)
a compact

supp(a) =
⋂

f2(x)∈supp(a)
a compact

supp(a) = {f2(x)}.

This implies f1(x) = f2(x) since the space Spec∗ L is T0, by Proposition 3.5 and
Lemma 3.1.

6. Classifying support data

Let L be an ideal lattice. A support datum (X, σ) on L is called classifying if the
space X is spectral and the assignments

L 3 a 7→
⋃
b6a

b compact

σ(b) and X ⊇ Y 7→
∨

σ(b)⊆Y
b compact

b

induce bijections between
(1) the set of all semi-prime elements in L, and
(2) the set of all subsets Y ⊆ X of the form Y =

⋃
i∈Ω Yi with quasi-compact open

complement X \ Yi for all i ∈ Ω.
Note that (Spec∗ L, supp) is a classifying support datum by Proposition 5.1.

Proposition 6.1. Let f : (X,σ) → (X ′, σ′) be a morphism of support data. If both
support data are classifying, then the map f : X → X ′ is a homeomorphism.

Proof. Let Y ⊆ X and Y ′ ⊆ X ′ be subsets which are unions of subsets with quasi-
compact open complement, and suppose

∨
σ(b)⊆Y

b compact

b = a =
∨

σ′(b)⊆Y ′
b compact

b.

Then we have
Y =

⋃
b6a

b compact

σ(b) and Y ′ =
⋃
b6a

b compact

σ′(b).
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This implies

f−1(Y ′) =
⋃
b6a

b compact

f−1(σ′(b)) =
⋃
b6a

b compact

σ(b) = Y.

It follows that the map Y 7→ f−1(Y ) induces an inclusion preserving bijection
between the open subsets of X∗ and (X ′)∗. In fact, we use that X, X ′ are spec-
tral and apply Lemma 3.1. Thus f is a homeomorphism X∗ → (X ′)∗ and therefore
also a homeomorphism X → X ′.

The following consequence is the analogue of [2, Thm. 5.2]. Note that we do not
assume that the support space is noetherian.

Corollary 6.2. A support datum (X, σ) on L is classifying if and only if the canon-
ical morphism (X, σ) → (Spec∗ L, supp) is an isomorphism.

7. Thick tensor ideals

In this section we consider an additive category with a tensor product and study
its collection of ideals. If there is an additional abelian or triangulated structure,
then we consider those tensor ideals which are also thick subcategories.

In this paper, all categories are assumed to be small, that is, the isomorphism
classes of objects form a set (in some fixed universe).

7.1. Sublattices of an ideal lattice
Let L be an ideal lattice. We fix a subset L′ ⊆ L satisfying the following condi-

tions.
(L∧) If A ⊆ L′, then inf A ∈ L′.
(L∨) If A ⊆ L′ is directed, then sup A ∈ L′.
We consider on L′ the partial order induced from the partial order on L and define
the map

π : L −→ L′, a 7→
∧

a6a′∈L′
a′.

Note that we have

π(a) 6 a′ ⇐⇒ a 6 a′ for a ∈ L, a′ ∈ L′. (7.1)

Thus π is a left adjoint of the inclusion L′ → L if we think of posets as categories.
Moreover, we have 1 = inf ∅ ∈ L′.

Lemma 7.1. The poset L′ is a complete and compactly generated lattice. Every
compact element in L′ is of the form π(a) for some compact a ∈ L.

Proof. Let A ⊆ L′. Then we use (L∧) to compute the infimum inf A in L′ and have

supA = inf{a′ ∈ L′ | a 6 a′ for all a ∈ A}.
It follows from (7.1) and (L∨) that π preserves compactness and that each element in
L′ is the supremum of compact elements. Thus L′ is compactly generated. If a′ ∈ L′
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is compact, write a′ =
∨

i ai as directed union of all compact elements ai 6 a′ in L
and use that a′ = π(a′) =

∨
i π(ai) equals π(ai) for some index i.

Given a, b ∈ L′, we define their product in L′ as

a · b = π(ab)

and use a dot to distinguish it from the product in L. We make a further assumption.

(Lπ) Given a, b ∈ L, we have π(aπ(b)) = π(ab) = π(π(a)b).

Lemma 7.2. Let a, b, c ∈ L′. Then we have

(1) (a · b) · c = a · (b · c),
(2) a · 1 = a = 1 · a,
(3) a · (b ∨ c) = (a · b) ∨ (a · c) and (a ∨ b) · c = (a · c) ∨ (b · c).

Proof. Clear.

Proposition 7.3. Let L be an ideal lattice and L′ be a subset satisfying the con-
ditions (L∧), (L∨), and (Lπ). Then L′ inherits from L the structure of an ideal
lattice.

Proof. We apply Lemmas 7.1 and 7.2. Thus L′ satisfies (L1)–(L4). To check (L5),
let a′, b′ ∈ L′ be compact and choose compact elements a, b ∈ L with π(a) = a′ and
π(b) = b′. Now we obtain

a′ · b′ = π(a′b′) = π(π(a)π(b)) = π(ab).

The element ab is compact in L, and π preserves compactness by (L∨). Thus a′ · b′
is compact in L′.

7.2. The ideal lattice of a semi-ring
Let A = (A, +, ·) be a semi-ring, that is, A is a set together with two associative

binary operations with identities (denoted by 0 and 1) such that the addition is
commutative and distributivity holds. A subset I ⊆ A containing 0 is by definition
an ideal if for all x, y ∈ A

(1) x ∈ I and y ∈ I implies x + y ∈ I, and

(2) x ∈ I or y ∈ I implies xy ∈ I.

The ideals of A are partially ordered by inclusion and form a lattice which we denote
by Lid(A). Given I, J ∈ Lid(A), we define

IJ = {
∑

i

xiyi | xi ∈ I, yi ∈ J} and I + J = {x + y | x ∈ I, y ∈ J}.

Note that I + J = I ∨ J .

Proposition 7.4. Let A be semi-ring. Then the lattice Lid(A) of ideals satisfies
the conditions (L1)–(L4). An ideal in Lid(A) is compact if and only if it is finitely
generated. If A is commutative, then condition (L5) is satisfied.
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Proof. The proof is straightforward. To identify the compact elements, one uses
that

∨
i Ii =

⋃
i Ii for any directed set of ideals Ii. To show (L5), let I = 〈I0〉 and

J = 〈J0〉 be ideals generated by subsets I0 and J0, respectively. If A is commutative,
then IJ = 〈xy | x ∈ I0, y ∈ J0〉. Therefore (L5) holds.

Example 7.5. Let A be a (not necessarily commutative) ring and suppose A satisfies
the ascending chain condition on ideals. Then the lattice Lid(A) of ideals is an ideal
lattice. Note that we have the following weak commutativity:

√
IJ =

√
JI for any

pair I, J of ideals.

7.3. Thick tensor ideals
Let C = (C,⊗, e) be an additive category with a tensor product. To be precise,

we have an additive bifunctor C × C → C and a natural isomorphism (x⊗ y)⊗ z
∼−→

x⊗ (y ⊗ z). In addition, we require the existence of a tensor identity e, that is,
we have natural isomorphisms x⊗ e

∼−→ x and e⊗ y
∼−→ y satisfying the Pentagon

Axiom and the Triangle Axiom.
Denote by C the set of isomorphism classes of objects in C, and let x + y = xq y

and xy = x⊗ y for x, y ∈ C. Then C is a semi-ring, and we shall identify C and C
whenever it is convenient. A tensor ideal of C is a full additive subcategory D such
that for all x, y ∈ C, we have x⊗ y ∈ D if x ∈ D or y ∈ D. Note that the tensor ideals
in C are precisely the ideals of the semi-ring C. We denote by Lid(C) the lattice of
tensor ideals of C and define the multiplication of tensor ideals as in Lid(C).

Now suppose that there exists some additional exact or triangulated structure
on C. A full subcategory of C is called thick if it is ‘compatible’ with this additional
structure; see below. We view the thick tensor ideals as a subset of Lid(C) and
denote it by Lthick(C). We say that an ideal D ∈ Lthick(C) is generated by a class
D0 of objects and we write

D = 〈D0〉
if D is the smallest thick tensor ideal containing D0. The product of D1,D2 in
Lthick(C) is by definition 〈D1D2〉 where D1D2 is computed in Lid(C).

7.4. Abelian and triangulated tensor categories
Let C be an abelian category, or more generally, an exact category in the sense

of Quillen. A full subcategory D is called thick if for every exact sequence 0 → x′ →
x → x′′ → 0 in C, we have x ∈ D if and only if x′, x′′ ∈ D. Now suppose that there
is a tensor product ⊗ defined on C.
Proposition 7.6. Let C be an abelian category, or more generally an exact category,
with a tensor product which is exact in each variable. Suppose that either the tensor
product is commutative, or that there exists an object c ∈ C such that there is no
proper thick subcategory of C containing c. Then the thick tensor ideals in C form
an ideal lattice. Moreover, an ideal is compact if and only if it is generated by a
single object.

Proof. It is straightforward to check the conditions (L∧) and (L∨) for the subset
of thick tensor ideals Lthick(C) in Lid(C). To verify (Lπ), observe that for a tensor
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ideal D ∈ Lid(C), the thick subcategory generated by D equals π(D). Here we use
the exactness of the tensor product. We deduce from Propositions 7.3 and 7.4 that
Lthick(C) is an ideal lattice. Note that a finitely generated ideal 〈x1, . . . , xn〉 is
generated by x1 q . . .q xn. Thus compact and cyclic ideals coincide. Finally, if ⊗ is
not commutative, then (L5) follows from the identity 〈x〉〈y〉 = 〈x⊗ c⊗ y〉, assuming
that c generates C.

Now let C be a triangulated category. A full subcategory D is called thick if D is
a triangulated subcategory and for each x ∈ D a decomposition x = x1 q x2 implies
x1, x2 ∈ D. Now suppose that there is a tensor product ⊗ defined on C.
Proposition 7.7. Let C be a triangulated category with a tensor product which is
exact in each variable. Suppose that either the tensor product is commutative, or
that there exists an object c ∈ C such that there is no proper thick subcategory of C
containing c. Then the thick tensor ideals in C form an ideal lattice. Moreover, an
ideal is compact if and only if it is generated by a single object.

Proof. The proof is the same as that of Proposition 7.6.

Remark 7.8. Let (C,⊗, e) be an abelian or triangulated tensor category with exact
tensor product and tensor identity e. Let E be the thick subcategory generated
by e. Then we have x⊗ y ∈ E for all x, y ∈ E and therefore (E ,⊗, e) is a category
satisfying the assumptions from Propositions 7.6 or 7.7.

7.5. Support data
Let C be an abelian or triangulated tensor category. We assume from now on that

the lattice of thick tensor ideals of C is an ideal lattice, for instance by imposing the
assumptions from Propositions 7.6 or 7.7. We write

Spec C = Spec∗ Lthick(C)
for the spectrum of prime ideals. Note that we keep the ‘opposite’ of the Zariski
topology in view of our applications. This practice is in accordance with Balmer’s
notion of a spectrum in [2]. The compact ideals in Lthick(C) are precisely the ideals
〈x〉 generated by a single object x ∈ C. We write

supp(x) = supp(〈x〉) = {P ∈ Spec C | x 6∈ P} for x ∈ C
and call this subset of Spec C the support of x. It is convenient to work with support
data defined on objects of C instead of support data defined on ideals of C. This
motivates the following definition from [2].

Definition 7.9. A support datum on C is a pair (X, τ) where X is a topological
space and τ is a map which assigns to each object x ∈ C a closed subset τ(x) ⊆ X,
such that for all x, y ∈ C

τ(x) =
⋃

x′∈〈x〉
τ(x′), τ(xq y) = τ(x) ∪ τ(y),

τ(e) = X and τ(x⊗ y) = τ(x) ∩ τ(y).

A morphism f : (X, τ) → (X ′, τ ′) of support data is a continuous map f : X → X ′

such that τ(x) = f−1(τ ′(x)) for all x ∈ C.
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Lemma 7.10. Let C be an abelian or triangulated tensor category satisfying the
assumptions from Propositions 7.6 or 7.7.
(1) If (X, τ) is a support datum on C, then σ(〈x〉) = τ(x) defines a support datum

on the lattice of thick tensor ideals of C.
(2) If (X, σ) is a support datum on the lattice of thick tensor ideals of C, then

τ(x) = σ(〈x〉) defines a support datum on C.
Proof. We start with a support datum (X, τ) on C. The map σ on compact ideals
of C is well-defined because of the condition τ(x) =

⋃
x′∈〈x〉 τ(x′). Now compute for

compact ideals 〈x〉 and 〈y〉
σ(〈x〉) ∪ σ(〈y〉) = τ(x) ∪ τ(y) = τ(xq y) = σ(〈xq y〉) = σ(〈x〉 ∨ 〈y〉),

and if the tensor product is commutative

σ(〈x〉) ∩ σ(〈y〉) = τ(x) ∩ τ(y) = τ(x⊗ y) = σ(〈x⊗ y〉) = σ(〈x〉〈y〉),
using that 〈x〉〈y〉 = 〈x⊗ y〉. In the non-commutative case, we have 〈x〉〈y〉 = 〈x⊗
c⊗ y〉 for some c ∈ C with 〈c〉 = C. Thus

σ(〈x〉) ∩ σ(〈y〉) = τ(x) ∩ τ(y) = τ(x) ∩ τ(c) ∩ τ(y)
= τ(x⊗ c⊗ y) = σ(〈x⊗ c⊗ y〉) = σ(〈x〉〈y〉).

Finally, we have
σ(1) = σ(〈e〉) = τ(e) = X.

We conclude that (X, σ) is a support datum on the lattice of thick tensor ideals of
C. The proof of the converse is analogous.

From now on we do not distinguish between support data on the lattice of thick
tensor ideals Lthick(C) and support data on C. We leave it to the interested reader
to reformulate our general results about ideal lattices for the lattice Lthick(C) and
its spectrum Spec C.

8. The structure sheaf of a tensor category

Let C be an abelian or triangulated tensor category with tensor identity e. Fol-
lowing [2], we define a structure sheaf on Spec C as follows. For an open subset
U ⊆ Spec C, let

CU = {x ∈ C | supp(x) ∩ U = ∅}
and observe that CU is a thick tensor ideal. We denote by C/CU the corresponding
quotient category and observe that e is the tensor identity of this category. Thus
one obtains a presheaf of rings on Spec C by

U 7→ EndC/CU
(e).

If V ⊆ U are open subsets, then the restriction map EndC/CU
(e) → EndC/CV

(e)
is induced by the quotient functor C/CU → C/CV . The sheafification is called the
structure sheaf of C and is denoted by OC . Note that the endomorphism ring of a
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tensor identity is commutative, if the tensor product is commutative, or if C is a
suspended tensor category; see for instance [20, Thm. 1.7]. Next observe that

OC,P ∼= EndC/P(e) for each P ∈ Spec C.
This is an immediate consequence of the following lemma.

Lemma 8.1. Let C be an abelian or triangulated tensor category and P ∈ Spec C.
Then

lim−→P∈U

HomC/CU
(x, y) ∼−→ HomC/P(x, y) for all x, y ∈ C,

where U runs through all (quasi-compact) open subsets containing P.

Proof. Use that P =
⋃
P∈U CU .

Now we discuss briefly the functoriality of the spectrum.

Lemma 8.2. Let F : C → C′ be an exact tensor functor.

(1) F induces a unique continuous map f : Spec C′ → Spec C such that

supp(Fx) = f−1(supp(x)) for x ∈ C.
The map sends P ∈ Spec C′ to F−1(P).

(2) F induces a morphism of ringed spaces

(f, f ]) : (Spec C′,OC′) → (Spec C,OC).
Proof. (1) The map sending x ∈ C to supp(Fx) is a support datum on C. Now apply
Theorem 5.3 to obtain a continuous map Spec C′ → Spec C.

(2) Let U ⊆ Spec C be open. Then F maps CU to Cf−1U and induces a functor
C/CU → C′/C′f−1U . This functor induces a homomorphism

EndC/CU
(e) → EndC′/C′

f−1U
(e′).

Thus we obtain a morphism f ] : OC → f∗OC′ .

9. Applications to schemes

9.1. Coherent sheaves on a scheme
We consider a noetherian scheme X and reconstruct it from the abelian tensor

category cohX of coherent OX -modules. This is based on the following well-known
classification of all thick subcategories of coh X. Given x ∈ coh X, we write

suppX(x) = {P ∈ X | xP 6= 0}.
Proposition 9.1. Let X be a noetherian scheme. The assignments

coh X ⊇ D 7→
⋃

x∈D
suppX(x) and X ⊇ Y 7→ {x ∈ coh X | suppX(x) ⊆ Y }

induce bijections between
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(1) the set of all thick subcategories of coh X, and
(2) the set of all subsets Y ⊆ X of the form Y =

⋃
i∈Ω Yi with quasi-compact open

complement X \ Yi for all i ∈ Ω.

Proof. See [8, Prop. VI.4].

Note that every open subset of a noetherian space is quasi-compact. Nonetheless,
the above formulation is appropriate because it generalizes to schemes which are
not necessarily noetherian; see for instance [11].

The abelian category cohX carries a commutative tensor product ⊗OX
, and we

deduce from the classification of thick subcategories the following properties.

Proposition 9.2. Let X be a noetherian scheme and C = coh X. Then every thick
subcategory of C is a tensor ideal and the thick tensor ideals of C form an ideal
lattice.

Proof. We apply Proposition 9.1. The formula

suppX(x⊗OX y) = suppX(x) ∩ suppX(y)

shows that every thick subcategory is a tensor ideal. The space X is spectral because
the scheme is noetherian. Thus X∗ is spectral and Lopen(X∗) is an ideal lattice,
by Proposition 3.7. We have an isomorphism Lopen(X∗) ∼= Lthick(C), and therefore
Lthick(C) is an ideal lattice.

It would be interesting to have a direct proof (not involving a classification) that
the thick tensor ideals of coh X form an ideal lattice. Note that Proposition 7.6 does
not apply because the tensor product ⊗OX

is exact only in trivial cases.

Theorem 9.3. Let X be a noetherian scheme and consider the abelian tensor cat-
egory coh X of coherent OX-modules. The pair (X, suppX) is a classifying support
datum on coh X and there is an induced isomorphism

(X,OX) ∼−→ (Spec coh X,Ocoh X)

of ringed spaces.

Proof. Let C = coh X. It follows from well-known properties of the support
suppX(x) that (X, suppX) is a support datum on C. Thus we obtain a contin-
uous map f : X → Spec C satisfying suppX(x) = f−1(supp(x)) for each x ∈ C, by
Theorem 5.3. The classification of thick subcategories of C from Proposition 9.1
shows that the support datum (X, suppX) is classifying. Here we use in addition
that the underlying space of X is spectral. It follows from Corollary 6.2 that f is a
homeomorphism.

It remains to construct an isomorphism f ] : OC → f∗OX . Observe that for
each open U ⊆ Spec C, the restriction coh X → coh f−1U induces an equivalence
C/CU

∼−→ coh f−1U ; see [8, Prop. VI.2]. Thus we obtain for e = OX an isomorphism

OC(U) = EndC/CU
(e) ∼−→ OX(f−1U)

which yields the isomorphism f ] : OC ∼−→ f∗OX .



Homology, Homotopy and Applications, vol. 9(1), 2007 65

9.2. Perfect complexes on a scheme
We consider a quasi-compact and quasi-separated scheme X and its triangulated

tensor category Dper(X) of perfect complexes with tensor product ⊗L
OX

; see [21,
Sec. 2] for a concise discussion of these concepts. For instance, every noetherian
scheme is quasi-compact and quasi-separated. Let us recall Thomason’s classifica-
tion of thick tensor ideals. Given x ∈ Dper(X), we write

suppX(x) = {P ∈ X | xP 6= 0}.
Proposition 9.4. Let X be a quasi-compact and quasi-separated scheme. The as-
signments

Dper(X) ⊇ D 7→
⋃

x∈D
suppX(x) and X ⊇ Y 7→ {x ∈ Dper(X) | suppX(x) ⊆ Y }

induce bijections between
(1) the set of all thick tensor ideals of Dper(X), and
(2) the set of all subsets Y ⊆ X of the form Y =

⋃
i∈Ω Yi with quasi-compact open

complement X \ Yi for all i ∈ Ω.

Proof. See [22, Thm. 4.1].

We observe that the thick tensor ideals of Dper(X) form an ideal lattice by Propo-
sition 7.7. The following result shows that a quasi-compact and quasi-separated
scheme can be reconstructed from the triangulated tensor category of perfect com-
plexes; it is a slight generalization of [2, Thm. 6.3] which assumes the scheme to be
topologically noetherian.

Theorem 9.5. Let X be a quasi-compact and quasi-separated scheme and con-
sider the triangulated tensor category Dper(X) of perfect complexes on X. The pair
(X, suppX) is a classifying support datum on Dper(X) and there is an induced iso-
morphism

(X,OX) ∼−→ (SpecDper(X),ODper(X))

of ringed spaces.

Proof. The proof is essentially the same as that of Theorem 9.3, with C = coh X
replaced by C = Dper(X). Note that the assumption on X implies that the under-
lying space is spectral. We use the classification of thick tensor ideals from Propo-
sition 9.4. For the equivalence C/CU

∼−→ Dper(f−1U), up to direct factors, when
U ⊆ Spec C is quasi-compact open, we refer to [21, Sec. 5].

10. A projective scheme

There are a number of interesting examples of triangulated tensor categories
C where (Spec C,OC) is actually a projective scheme. Here, we present a general
criterion which explains those examples. We fix a triangulated tensor category C
with tensor identity e. As before, we assume that the tensor product is exact in
each variable. This implies in particular that the tensor category is suspended in
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the sense of [20], that is, the tensor product and the suspension are compatible. Let
us start with some preparation. For x, y ∈ C, we write

Hom∗
C(x, y) =

∐

n∈Z
HomC(x, Σny)

where Σ denotes the suspension of C. The graded endomorphism ring End∗C(x) acts
on Hom∗

C(x, y) from the right and End∗C(y) acts from the left. We use the graded
ring homomorphism

φx : End∗C(e) −→ End∗C(x), α 7→ α⊗ x.

Note that End∗C(e) acts on Hom∗
C(x, y) from the right via φx and from the left via

φy, with

α · β = (−1)|α||β|β · α
for homogeneous elements α ∈ End∗C(e) and β ∈ Hom∗

C(x, y) with |γ| denoting the
degree of a homogeneous element γ. This follows from arguments similar to those
in [20]. In particular, End∗C(e) is graded commutative.

10.1. Cohomological localization
We need a basic result about the localization of triangulated categories. Under

appropriate assumptions, we show that first taking cohomology and then localizing
is the same as first localizing and then taking cohomology. For a homogeneous
element σ : Σnx → x in End∗C(x), we denote by x/σ its cofiber in C.
Proposition 10.1. Let C be a triangulated category and D ⊆ C a full triangulated
subcategory. Let c ∈ C be an object and φ : H → End∗C(c) be a graded ring homo-
morphism such that H is graded commutative. Fix a subset S ⊆ H of homogeneous
elements and consider for each x ∈ C the following commutative diagram of canon-
ical homomorphisms in the category of graded H-modules.

Hom∗
C(c, x)

µ //

π

²²

S−1 Hom∗
C(c, x)

S−1π

²²
Hom∗

C/D(c, x) ν // S−1 Hom∗
C/D(c, x)

(1) If {c/φ(σ) | σ ∈ S} ⊆ D, then ν is an isomorphism.

(2) If D ⊆ {x ∈ C | S−1 Hom∗
C(c, x) = 0}, then S−1π is an isomorphism.

Proof. We assume that H is graded commutative because we need in (2) that
localization of graded H-modules with respect to S is an exact functor.

(1) Assume {c/φ(σ) | σ ∈ S} ⊆ D. Let Q : C → C/D denote the quotient functor.
Then H acts on Hom∗

C/D(c, x) via Q, and each σ ∈ S acts invertibly since Qφ(σ) is
invertible. Thus the canonical map

Hom∗
C/D(c, x) → S−1 Hom∗

C/D(c, x)

is invertible.
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(2) Assume D ⊆ {x ∈ C | S−1 Hom∗
C(c, x) = 0}. We embed C into the category

Mod C of additive functors Cop → Ab via the Yoneda functor

C −→ Mod C, x 7→ HomC(−, x).

Note that every cohomological functor F : C → A into an abelian Grothendieck cate-
gory A extends uniquely to an exact and coproduct preserving functor F̄ : Mod C →
A; see [15, Lem. 2.2]. Now take the composition

C Hom∗C(c,−)−−−−−−−→ ModH
S−1

−−→ Mod H

which annihilates D by our assumption. We obtain the following commutative dia-
gram

C F=Hom∗C(c,−) //

Q

²²

ModH

S−1

²²
C/D G // ModH

which can be extended to the following commutative diagram of exact and coproduct
preserving functors.

Mod C F̄ //

Q∗

²²

ModH

S−1

²²
Mod C/D Ḡ // ModH

Note that

F̄ (M) ∼=
∐
n

M(Σ−nc) ∼=
∐
n

HomC(HomC(−,Σ−nc),M)

for M in Mod C. The first isomorphism is clear for each representable functor
M = HomC(−, x). Then observe that every M ∈ Mod C is a colimit of representable
functors and both functors preserve colimits. The second isomorphism follows from
Yoneda’s lemma. The functor Q∗ has a right adjoint

Q∗ : Mod C/D −→ Mod C, M 7→ M ◦Q,

and the adjunction morphism Q∗Q∗M → M is an isomorphism for all M ∈
Mod C/D, since Q is a quotient functor. Now consider for x ∈ C the adjunction
morphism

ηx : HomC(−, x) → Q∗Q∗HomC(−, x).

First observe that Q∗ηx is an isomorphism. On the other hand, F̄ ηx equals π up to
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an isomorphism, since

F̄ (Q∗Q∗HomC(−, x)) ∼=
∐
n

HomC(HomC(−, Σ−nc), Q∗Q∗HomC(−, x))

∼=
∐
n

HomC/D(Q∗HomC(−, Σ−nc), Q∗HomC(−, x))

∼=
∐
n

HomC/D(HomC/D(−,Σ−nc),HomC/D(−, x))

∼=
∐
n

HomC/D(Σ−nc, x)

= Hom∗
C/D(c, x).

Thus S−1π ∼= S−1(F̄ ηx) = Ḡ(Q∗ηx) is an isomorphism, and this finishes the proof.

We formulate an immediate consequence.

Corollary 10.2. Let C be a triangulated category. Let c ∈ C be an object such that
its graded endomorphism ring End∗C(c) is graded commutative and fix a homogeneous
prime ideal p. Let

Cp = {x ∈ C | Hom∗
C(c, x)p = 0}.

Then we have a natural isomorphism Hom∗
C/Cp

(c, x) ∼−→ Hom∗
C(c, x)p for all x ∈ C.

10.2. Cohomological support
We keep fixed a triangulated tensor category C with tensor identity e and suppose

that H = End∗C(e) is concentrated in non-negative degrees. Let Proj H denote the
set of homogeneous prime ideals of H which do not contain H+ =

∐
n>0 Hn. This set

is endowed with the Zariski topology and OH denotes the corresponding structure
sheaf. We define the cohomological support of an object x ∈ C as

suppH(x) = {p ∈ ProjH | End∗C(x)p 6= 0},
where H acts on End∗C(x) via the canonical ring homomorphism H → End∗C(x)
taking an element α to α⊗ x. It is useful to observe that for each p ∈ ProjH

End∗C(x)p = 0 ⇐⇒ Hom∗
C(c, x)p = 0 for all c ∈ C. (10.1)

10.3. A projective scheme
We provide a criterion for (Spec C,OC) to be a projective scheme. We assume

that the tensor product on C is commutative or that C is generated by a single
object as a triangulated category. Thus the thick tensor ideals of C form an ideal
lattice, by Proposition 7.7. The following elementary observation will be useful.

Lemma 10.3. Let C be an abelian or triangulated tensor category and (X,σ) be a
support datum on C. Then C0 = {x ∈ C | σ(x) = ∅} is a thick tensor ideal and (X,σ)
induces a support datum (X, σ′) on the quotient C/C0 such that σ′(x) = σ(x) for all
x ∈ C.
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The following is the main result.

Theorem 10.4. Let C be a triangulated tensor category with tensor identity e and
suppose that H = End∗C(e) is concentrated in non-negative degrees. Define for each
x ∈ C

suppH(x) = {p ∈ Proj H | End∗C(x)p 6= 0}
and suppose that

suppH(x⊗ y) = suppH(x) ∩ suppH(y) for all x, y ∈ C.
Then C0 = {x ∈ C | suppH(x) = ∅} is a thick tensor ideal of C and (Proj H, suppH)
induces a support datum on the quotient C̄ = C/C0. We obtain an induced morphism

f : (Proj H,OH) → (Spec C̄,OC̄)
of ringed spaces which induces a ring isomorphism

OC̄,f(p)
∼−→ OH,p

for all p ∈ ProjH. In particular, f is an isomorphism if and only if the support
datum (Proj H, suppH) on C̄ is classifying.

Proof. The condition

suppH(x⊗ y) = suppH(x) ∩ suppH(y)

implies that (Proj H, suppH) is a support datum on C, and therefore also on C̄ by
Lemma 10.3. Thus we obtain a continuous map f : Proj H → Spec C̄ satisfying

suppH(x) = f−1(supp(x))

for all x ∈ C̄, by Theorem 5.3.
We need to construct a morphism of sheaves f ] : OC̄ → f∗OH . First observe that

for each x ∈ C̄, the ring H acts on Hom∗̄
C(e, x) via the quotient functor C → C̄. In

particular,

Hom∗
C(e, x)p

∼−→ Hom∗̄
C(e, x)p for p ∈ Proj H

by Proposition 10.1. Now fix an open subset U ⊆ Spec C̄ and consider the composi-
tion of the functors

F : C̄ Hom∗C̄(e,−)−−−−−−−→ Mod H
(−̃)−−→ Qcoh Proj H

(−)|f−1(U)−−−−−−−→ Qcoh f−1(U).

Here, we denote for any H-module M by M̃ its associated sheaf. Note that the stalk
of M̃ at a homogeneous prime p equals the degree zero part M(p) of the localized
module Mp. We claim that F annihilates C̄U . In fact, x ∈ C̄U implies f−1(supp(x)) ∩
f−1(U) = ∅ and therefore suppH(x) ∩ f−1(U) = ∅. Thus Hom∗̄

C(e, x)(p) = 0 for all
p ∈ f−1(U) and therefore Fx = 0. It follows that F factors through C̄/C̄U and
induces a map EndC̄/C̄U

(e) → OH(f−1(U)) which extends to a map

OC̄(U) → OH(f−1(U)).

This yields the morphism of sheaves f ] : OC̄ → f∗OH .
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Now fix a point p ∈ ProjH. Then f ] induces a map f ]
p : OC̄,f(p) → OH,p. We have

an isomorphism OC̄,f(p)
∼= EndC̄/f(p)(e) by Lemma 8.1. Next observe that

f(p) = {x ∈ C̄ | End∗C(x)p = 0}.
We have

{e/σ ∈ C̄ | σ ∈ H \ p} ⊆ f(p) ⊆ {x ∈ C̄ | Hom∗̄
C(e, x)p = 0}.

This follows from (10.1), and we obtain a second isomorphism

EndC̄/f(p)(e) ∼= End∗̄C(e)(p)
∼= End∗C(e)(p) = OH,p

from Proposition 10.1. We conclude that f ]
p is an isomorphism. It follows that f

is an isomorphism of ringed spaces if and only if the map Proj H → Spec C̄ is a
homeomorphism. This last condition is satisfied if and only if the support datum
(Proj H, suppH) is classifying, by Corollary 6.2.

Note that our Theorem 10.4 gives a partial answer to Balmer’s question when
(Spec C,OC) is a scheme [2, Rem. 6.4]. The result is best illustrated by the following
example from representation theory; see [7, Thm. 7.3] for an alternative discussion.

Example 10.5. Let k be a field and let A = kG be the group algebra of a finite
group G or more generally a finite group scheme. We consider the category modA
of finite dimensional A-modules and its bounded derived category Db(mod A). The
tensor product ⊗k on mod A induces a tensor product on Db(mod A) which is exact
in each variable. The trivial representation k is the tensor identity and its graded
endomorphism ring equals the group cohomology ring

H = H∗(G, k) = Ext∗A(k, k).

Note that for x ∈ Db(mod A), we have suppH(x) = ∅ if and only if x belongs to the
thick tensor ideal Dper(A) of perfect complexes. The composite

mod A
inc−−→ Db(mod A) can−−→ Db(mod A)/Dper(A)

induces an equivalence mod A
∼−→ Db(mod A)/Dper(A), where mod A denotes the

stable module category of A; see for instance [18, Thm 2.1]. The thick tensor ideals
of modA have been classified for the case where G is a finite group and k is alge-
braically closed, by Benson, Carlson, and Rickard in [4, Thm. 3.4], and for a finite
group scheme over an arbitrary field, by Friedlander and Pevtsova in [7, Thm. 6.3].
The classification implies that (ProjH, suppH) is a classifying support datum on
mod A, and therefore we have an isomorphism

(Proj H∗(G, k),OH∗(G,k))
∼−→ (Spec mod kG,Omod kG)

of ringed spaces by Theorem 10.4.

The following example shows a triangulated tensor category which arises in mod-
ular representation theory. The tensor product is not necessarily commutative. This
category can be used to define support varieties of representations of finite dimen-
sional algebras, generalizing the classical case of a group algebra; see [19].
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Example 10.6. Let A be a finite dimensional algebra over a field k and let Ae = A⊗k

Aop be its enveloping algebra. We consider the category mod Ae of finite dimensional
Ae-modules and the full subcategory B of Ae-modules which are projective when
restricted to A or Aop. Note that B carries an exact structure which is induced from
the natural exact structure of modAe. The inclusion B → mod Ae induces a fully
faithful exact functor Db(B) → Db(mod Ae). The tensor product ⊗A on modAe is
exact in each variable when restricted to B and therefore induces an exact tensor
product on Db(B). The Ae-module A, viewed as a complex concentrated in degree
zero, is a tensor identity of Db(B). The tensor product restricts to a tensor product
on the thick subcategory C ⊆ Db(B) which is generated by A. We therefore have a
triangulated tensor category (C,⊗A, A) and the lattice of thick tensor ideals is an
ideal lattice, by Proposition 7.7. Note that the tensor product of C is not necessarily
commutative. The graded endomorphism ring of the tensor identity

End∗C(A) = Ext∗Ae(A,A) = HH∗(A)

equals the Hochschild cohomology ring of A.

11. Decompositions of ideals

In this final section we sketch how the decomposition of objects and ideals of an
additive tensor category are reflected by the decomposition of their supports. The
prototypical result in this direction is Carlson’s theorem from modular representa-
tion theory which says that the variety of an indecomposable module is connected
[5].

11.1. Decompositions of ideals
Let L be an ideal lattice and write 0 = inf L. A non-zero element a ∈ L is called

indecomposable if a = a1 ∨ a2 and a1 ∧ a2 = 0 implies a1 = 0 or a2 = 0.

Proposition 11.1. Let L be an ideal lattice and suppose that the space Spec∗ L
is noetherian. Given a semi-prime a ∈ L, there exists a unique decomposition a =∨

i∈Ω ai such that
(1) ai is indecomposable and semi-prime for all i ∈ Ω, and
(2) ai ∧ aj = 0 for all i 6= j in Ω.

Proof. First observe that every open subset of Spec∗ L is quasi-compact since
Spec∗ L is noetherian. Thus Proposition 5.1 provides a bijection b 7→ supp(b) be-
tween all semi-primes in L and all subsets of Spec∗ L which are unions of closed
subsets. Under this bijection, a decomposition a =

∨
i ai satisfying (1) and (2) cor-

responds to a disjoint union

supp(a) =
⋃

i

supp(ai).

Now observe that the unions of closed subsets are closed under arbitrary intersec-
tions. Thus there exists a partition supp(a) =

⋃
i Yi into unions of closed subsets

which admits no proper refinement; see Lemma 11.2 below. We obtain the decom-
position a =

∨
i ai by taking for ai the semi-prime satisfying supp(ai) = Yi.
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Lemma 11.2. Let X be a set and Y be a family of subsets which is closed under
forming intersections. Then there exists for each Y ∈ Y a unique partition Y =⋃

i∈Ω Yi into non-empty subsets from Y which admits no proper refinement. More
precisely, for all i, a disjoint union Yi = Yi1 ∪ Yi2 with Yi1, Yi2 ∈ Y implies Yi1 = ∅
or Yi2 = ∅.
Proof. Let (

⋃
i∈Ωs

Ysi)s∈Σ be the family of all partitions of Y with Ysi ∈ Y for all
s, i. For each x ∈ Y , let

Yx =
⋂
s∈Σ

x∈Ysi

Ysi.

Then Y =
⋃

x∈Y Yx is a partition which admits no proper refinement.

Remark 11.3. There are refinements of Proposition 11.1 which do not require the
space Spec∗ L to be noetherian. For instance, if a ∈ L is compact and the space
supp(a) is noetherian (with the induced topology), then we have a unique decom-
position a =

∨n
i=1 ai into indecomposables such that ai ∧ aj = 0 for all i 6= j.

11.2. Decompositions in tensor categories
Let C be an abelian or triangulated tensor category. We consider the lattice

Lthick(C) of thick tensor ideals of C and recall the following definition from [14].
Given a thick tensor ideal D, a family (Di)i∈Ω of thick tensor ideals is a decompo-
sition of D if
(1) the objects in D are the finite coproducts of objects from the Di, and
(2) Di ∩ Dj = 0 for all i 6= j.

Such a decomposition is denoted by D =
∐

i∈ΩDi, and we call D indecomposable if
D 6= 0 and any decomposition D = D1 qD2 implies D1 = 0 or D2 = 0.

The decomposition D =
∨

iDi of a thick tensor ideal (as discussed in Proposi-
tion 11.1) amounts to a decomposition D =

∐
iDi, provided that

D1 ∧ D2 = 0 =⇒ D1 ∨ D2 = D1 qD2

for every pair of thick tensor ideals D1,D2. This property holds if C admits an
appropriate internal Hom-functor, because thenD1 ∧ D2 implies HomC(D1,D2) = 0.
We do not go into details, but refer to the literature. A treatment of decompositions
in the stable module category mod kG can be found in [14], where kG denotes the
group algebra of a finite group G. For further discussions, see the recent work of
Balmer [3] and Chebolu [6].
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