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CHAIN FUNCTORS WITH ISOMORPHIC HOMOLOGY

FRIEDRICH W. BAUER

{communicated by Walter Tholen)

Abstract
Every chain functor K* determines a homology theory

on a given category of topological spaces resp. of spectra
i!*(K*)(-) cf. §4. If K*, L* are chain functors such that
.H*(K*)(-) w .ff*(L*)(-) then there exists a third chain functor
C* and transformations of chain functors Kj : K* —y C*,
L 7 : L* —y C* inducing isomorphisms of the associated
homology theories (theorem 1.1.). Moreover the distinction
between regular and irregular chain functors is introduced.

0. Introduction

Let ft*( ) = {hn( ), d, n G Z} be a homology theory, given on a category of pairs
of topological spaces or pairs of spectra (cf. [8]). A chain theory associated with ft*
consists of a functor

if* : & —y ch(= category of chain complexes), (1)

and natural short exact sequences

0—>K.(A)-±+K.(X)-±+K.(X,A)—K} (2)

such that H*(K*(X, A)) is naturally isomorphic to h*(X, A), and that this isomor-
phism is compatible with the boundary operator

d : Hn(K*(X,A)) —• #„_!(#„(A))

induced by (2).
The main result of [6] is, that for CW spaces, the existence of such a chain theory is
equivalent to the property that ft* is the direct sum of ordinary homology theories.
In order to find some appropriate substitute for chain theories (which do not exist
for arbitrary homology theories) chain functors were introduced ( for the first time
in [2]):
A chain functor K* = {if*, Kl,i', I, <p, K} consists of a functor

if* : Ĵ  —y ch (= category of chain complexes), (3)
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& a suitable category of pairs of topological spaces or of spectra, a subfunctor
/ : Kl C if*, a natural inclusion i' : K*(A) C Kl(X,A) together with some
other structural (non-necessary natural) mappings ip : Kl(X,A) —> K*(X), K :
K*(X) —y Kl(X,A), satisfying certain properties.
Every homology theory h*() = {hn( ),d,n G Z} admits a chain functor such that
the derived homology homology Ht,{Kt,{X, A)) is naturally isomorphic to h*(X,A).
In addition the boundary

d:hn(X,A)—>hn-i(A)

is determined by the chain functor K*.
It turns out that every chain theory (i.e. every functor (1), accompanied by a natural
exact sequence (2)) determines to a chain functor, but not vice-versa. The question,
under what conditions a chain functor gives rise to a homology theory, which is
associated with a chain theory, has something to do with the non-naturality of K
and ip (cf. §5 for further references).
Concerning details about chain functors, the reader is referred to §4, resp. to §5
concerning the motivation. Apart from recalling the definition of a chain functor, the
purpose of §4 is the introduction of the stronger concept of a regular and the weaker
concept of an irregular-chain-functor (definition 4.1.) as well as some material
about transformations of chain functors (propositions 4.4., 4.5.). All this is needed
in [1].
The derived homology of an irregular-chain-functor does not furnish a homology
theory; irregular-chain-functor cannot be realized as spectra. Nevertheless, they are
needed to formulate some of the results about tensor produts of chain functors and
spectra in [1]. The existence theorem of a chain functor for a given homology theory
is formulated for homology theories, which are defined on a category of pairs of
spectra (in our case: CW-spectra, hence objects of the Boardman category) rather
than on a category of pairs of spaces (cf. [8] ).
Every homology theory ft* is associated to a chain functor (i.e. the derived homology
of this chain functor is isomorphic to ft*). Therefore the following quite natural
question arises:
Let K*, L* be two chain functors with isomorphic associated homology (i.e. there
is an isomorphism of homology theories ip : if*(K*) RJ if*(L*)) What can be said
about the relationship between K* and L* ? It can not be expected that they are
isomorphic as chain functors. However theorem 1.1. asserts that there exists a chain
functor C* and transformations

K* —% C* <A- L*

inducing isomorphisms of the associated homology such that

Apart from the general interest of this result, it is needed in a forthcoming paper
for the definition of the tensor-product of CW-spectra (more precisely: for the veri-
fication of the independence of this construction of the choice of the chain functors
involved).
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The proof of theorem 1.1. is displayed in §1 - §3.
Results about chain functors are recorded in the expository article [6].

1. The Main Theorem

Let A*, B* be two chain functors and -0 : Ht,{At,) m .ff*(B*) an isomorphism
of the associated homology theories.
We do not necessarily find a mapping A : A* —y B* inducing ip. However we are
able to prove:

1.1.Theorem: There exists a chain functor C* and mappings of chain functors
A-y B-y

A, —\ C. +!• B ,
inducing isomorphism of homology theories Bj*, Bj* such that

It turns out that the mapping of chain functors Aj (Bj) appears as the composition
of two mappings of chain functors

A,

B*

where SA* (SB*) have a special property:

1.2. Definition: A chain functor K* is a s-chain functor whenever the following
holds:
(-k) There exists an (not necessarily additive) assignment which assigns to each
£ G Hn(K*(X,A)) a cycle z = z(() G £ (i.e. [z] = () such that for any f :
(X, A) —y (Y, B) in £? (the category on which the chain functor is defined) one
has:

/# *(C) = z{

where we denote as usual: /* = Ht,{Kt,){f), /# = K*(/).

The main tool for proving theorem 1.1. is:

1.3. Proposition: To each chain functor A* there exists a s-chain functor sAt,
and a mapping of chain functors

A\: A, —• *A*

inducing an isomorphism of the associated homology theories. The proof is rele-
gated to the next two sections.

Proof of theorem 1.1.: We have an isomorphism of homology theories
sip : H^A*) ^ #*(*B*) commuting with ^A*, BA* and r/>.
Let ^C e Hn(

sA)(X,A) be given, then we have B( = 8ip(AC) e Hn(
sB)(X,A)
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and the assignments ^(^C) = Az G A(, Bz = Bz(B() G B(, satisfying (*) in
definition 1.2..

In
SA«(X,A) e SB*(X,A) =ci1](X,A)

we invent new chains x(A(,) in dimension n + 1, satisfying

Let / : (X, A) —> (Y, B) be a given mapping, then we define

f#x(AC) = x(M\)).

The chain complex Ci1' amended by these new connecting chains x is called
Ci '(X, A). This construction is clearly functorial.
In a last step we take the subcomplex K*(X, A) c C* '(X, A) generated by all x(-)
and form the cone over K*:

C*(X,A) = d2)(X,A)UconeK4X,A).

Observe that a cycle in K*(X, A) consisting of elements x(-) can only appear for
algebraic reasons ( being the sum of chains like e.g. x{a\ A(,i+a.2 AC,2) — &\ ̂ (^Ci)"
O-2 x(A(2), o-i e Z). As a result all cycles in C*(X,A) are homologous to a cycle in
SA* resp. in SB* and such a cycle is bounding in C*(X,A) whenever it bounds in
SA* (resp. in SB*).
We endow C* with the structure of a chain functor such that there are inclusions
of chain functors

Arj : *A* —• C. «— S B, : Brj

in an obvious way:
We detect Cl by performing the previous constructions in sA'^, sBl, while the map-
pings K, (p, I, i' are more or less obvious.
Moreover we deduce immediately from our construction that Arj, Brj induce isomor-
phisms for the associated homology and that

( ^ r 1 A
v. =

 s<p.
Hence Aj = Ar\ AX, resp. for B satisfy the requirements of the theorem.-

2. Preparation of the proof of proposition 1.2.

Before displaying the details, we give an idea of the proof:
Let K* be a chain functor. We can assign to each homology class £ G Hn(K*)(X, A)
a cycle z = z(() G £. If / : (X,A) —> (Y,B) is a mapping, then we have for the
homology classes f*([z(C)]) = [z(f*(O], hence we can fix a chain x^ = x^\f,Q G
K*(Y,B) such that

If
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are two mappings, then we fix x^(fi, f2,C) G K*(X2,A2) such that

So we continue and construct chains of increasing dimensions:

s ( f c )(/i,--,/*,C) G Kn+k(Xk,Ak)

such that

dx(k) = J^^y+i X(k-D{fu... j . f.+u...
i=0

where for i = k we take

and for i = 0

X{k-1Hf2,---,fk,fl*O-
Such an assignment ( i->- {a;W|i = 0,1,...} with a;(°)(C) = z(() is called to. In order
to be able define a chain functor SK* and establish a mapping of chain functors
A : K* —y SK* we are obliged to introduce pro-chains:

2.1. Definition Let a = {c, x^k\ x^k\ k = 1,2, • • • } be a collection of chains c G
Kn(X,A), x^ G ifn+fc(F,B), af(fc) e ifn+fc_!(y,B) /or all (X,A), (Y,B) € Ĵ 2

SMC/I i/iai i/ie following conditions hold:
p i ) / / / : (-X",A) —> (Y,B) is a mapping, c G Kn(X,A) Ha, then there exists
a unique a e Kn(Y,B) n a and x^) = aj^^^c) e Kn+1(Y,B) n a, ^)
x^1) (/,d c) e Kn(Y, B)na such that

dx{1) + xw =/#c - ci.

we say that c ̂  ci m a or c ^ ci.
More general: For mappings % : (Xi,Ai) —> (Xi+i,Ai+i),

(X,A) = (X^Ai) A ••• A (X f c + 1 ,A f c + 1 ) = ( y , B )

assume we have

already defined for j ^ fe—1 (correspondingly x^ =x(-j\fi,--- , fj, d c\, • • • ,dcj) e
Kn+j_i). Then we find x^ such that

k

d x ( k ) + x(k) = ^ ( - l ) « + i x ^ - 1 \ f 1 , - - - , f i f i + 1 , - - - , f k , C l , --- , £ i , - - - , c k )
i=0

where for i = k we take

fk#x{

and for i = 0
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p2) To any two elements c\, c2 G a there exists a c G a, c ^ Cj.
T/ien a is a pro-chain m K*.

Remarks and examples: 1) Let c G iifra(X, A) be given, then c = {/#c, 0},
/ : (X, A) —> (Y, B) for any (Y, B) G .ft2 is a pro-chain, which is generated by c.
2) Suppose that there exists in a a c G .Kn (X, A) such that c ^ C\ for any Ci G a
Then we say that a is a principal pro-chain, generated by c. The preceding c is an
example of a principal pro-chain.
3) Let a be any pro-chain, c G Kn(X, A) (~l a, then cCT = {ci|c ̂  Ci} with corre-
sponding x^\ x^ is a principal pro-chain generated by c in a.
4) If we take a pro-chain a with all o;(*), x^ = 0, then c ̂  C\ in a simply means,
that there exists a / G Mor$? with / #c = ci. The higher conditions in pi) (fc ̂  2)
are all redundant and pi), p2) means that a is an ideal.
5) The assignment to which we introduced at the beginning of this section is a
prochain; although not being an ideal, it is associated with a principal pro-chain
(all c ̂  z((), where the ̂ -relation is determined by to).
6) Let oi, CT2 be two principal pro-chains, with generating a, c2 G Kn(X,A). Then
we can add all items in both pro-chains, obtaining this way a principal pro-chain
0i + <T2 generated by c\ + c<i.
7) Let a = {c, x^k\x^}, be any pro-chain, then

da = {dc, x^}

is again a pro-chain, the boundary of a.
A pro-chain is a pro-cycle, whenever all x^ = 0, or alternatively da contains only
zeros. If a is generated by c, then da is again a principal pro-chain, generated by
dc.
8) Let ̂  : (X, A) —> (Y, B) be a mapping and a a principal pro-chain, generated
by c G Kn(X, A) then we find a unique ci G Kn(Y, B) n a, c ̂  c\ and define:

This assignment is additive and compatible with the formation of boundaries. More-
over everything is functorial.
9) Let K* (X, A) be the chain complex of principal pro-chains generated by all
c G K* (X, A) then

K, : & —• ch

is a functor (into the category of (free) chain complexes).
The assignment

c G Kn(X,A) H c e K*(X,A)

of example 1) yields a natural transformation A : K* —y K*.
10) Let a G Kn(X,A) be a principal pro-cycle, generated by z G ifn(X, A). Then
a ~ z in if*(X,A): The required principal pro-chain £ G Kn+i(X,A) with d£ =
a — z is generated by 0 (although not being zero as a pro-chain!) and has the
elements x^ as c's, the old a;(*+1) as new cc(*)'s (of £), resp. for a;^).
Suppose we have da = z in i£T*(X, A), then we infer in the same manner, that
dc = z, c G Kn+i (X, A) being the generating element of a.
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As a result:
The natural transformation A induces an isomorphism in homology.
11) We fix to as in the beginning and define for any ( e Hn(K*)(X, A)

z(C)=z(C)u.
By definition we have

(4)

3. Proof of proposition 1.2.

In the preceding section we established a functor K* : £2 —> ch which must
be equipped with the structure of a chain functor: K^(X,A) consists of all those
principal pro-chains a = {c, x^k\ x^} with c e K'n. This yields a functor K^ :
.ft2 —\ ch as well as an inclusion

Let a' G K^(X,A) with generating c' be given, then we set <p(o') = <p(c') •
Suppose a e Kn(X) with generating c be given, then we set K(CT) = K(C).
Since (pn ~ 1 in K*, we have x : (pn(c) ~ c so that x : (pn ~ la is a chain homotopy.
This provides us with non-natural chain mappings K, (f and a non-natural chain
homotopy y K ~ 1. The chain homotopy j# ip~l is treated in the same way.
Let a be a cycle in Kn(X,A) then we find z € Zn(iif,(X,A)), «' € ^(-X.A),
a e -ftrn (A, A) such that

a ~ z ~ l(z') + q#(a) = l(z') + g#(a).

Therefore ^ : i?«(K")(X, A) —• iJn(K,)(X, A) is epic.
The remaining properties of a chain functor are verified by the same kind of argu-
ment.
We set K* = SK* and observe that A : K* —> SK*, A(c) = c is a mapping
of chain functors, which, according to remark 10 in §2 induces an isomorphism in
homology. Property (*) of proposition 1.2. follows from remark 11) (3) in §2.
This completes the proof of proposition 1.2.-

Remark: The conceptual background of the construction of a s— chain functor
goes back to K. Sitnikov's construction a Steenrod-Sitnikov homology: Instead of
stating that two cycles Zi G Zn(Xi)), i = 1,2, X\ C X2 are homologous one has
to specify a chain xi2 furnishing that homology. Alternatively one can think of the
construction of a strong shape category, where one must employ higher individual
homotopies of arbitrary degrees (rather than just stating that two mappings are
homotopic).

4. Chain Functors:

We recall the definition of a chain functor and of a transformation (or a mapping
between) chain functors. Concerning the motivation and the main results about
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chain functors the reader is referred to [2]-[5] resp. to §5.
Let .ft be a subcategory of Top and .ft2 a category of pairs (X, A), i : A C X, j :
Xc(x,A), A,xe&.
Suppose C* : .ft —> ch (= category of free chain complexes with natural bases) is
a functor and C* C C* a subfunctor, being equipped with the following additional
structures: There are functors

C*, Cl : & —• ch,

and natural inclusions / : C[ C C*, i' : C*(A) C Ci(X,A) such that C*(X) =
C*(X,X), C'*(X) = Cl(X,X). We denote induced maps C*(/) always by /#.
There are (not necessarily natural) chain transformations

together with chain homotopies resp. relations:

D\)
i# = i', i : Ac X.

We have a diagram with exact upper row (p : Cl(X,A) —> C"(X,A) =
Cl(X,A)/im i' being simply the projection):

(S) 0_

C.

Cl(X,A) C':(X,A)

and a natural mapping

V : Jf.(C:(X,A)) —»• H*(C*(X, A))

defined by

^ " ) = {*(*')+«#(<*)}

where z" is the homology class of a z' e C'n(X, A), with

and a e Cn(A, A),

da = —s# i' dz'
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p(z') = z", q : (A, A) C (X, A), s : A C (A, A).

In view of condition ••) below, ip(z") depends only on z' but not on a. We require

D2) %p is an epimorphism;

ker 2* C kerp* K,

with
• ff.(C:(X,A)), /» = # , ( / )

for any / e Mor Ĵ 2.
In order to simplify the notation we will denote (by an abuse of notation) <̂ # as
well as <>?#* simply by ip (resp. for K) where the precise meaning will be always clear
from the context.

D3) Let 8 : _Hn(C'J(X, A)) —> #n_i(C*(A)) be the boundary associated with the
exact row (S), then we have

ker ip C ker 8.

Moreover
•) All inclusions / : (X, A) C (Y, B) induce monomorphisms; moreover we assume
that im /# C C*(Y,B), im i' C C*(X,A), im I C C*(X,A) are direct summands
(cf. [2] lemma 5.4.).
**) Ct(X,X) = Ct(X) is acyclic.
***) C.(0)=O.
D4) To each homotopy H : /o — /i : (X, A) —> (Y, B) there exists a natural, with
i' and / compatible chain homotopy

D(H): C , ( / o ) ^ , ( / i ) .

We call C* (or C*) equipped with these additional structures

C. = { C Cl, i', I, if, K}

a chain functor.

The derived homology .H*(C*) of a chain functor is defined by

H.(C.)(X,A) = H.(C.(X,A))

with boundary
d : Hn(C*)(X,A) —»• ff^C.)(A)

defined by the boundary 8 of (5).
Moreover we will always assume that all functors C* have compact carriers, i.e.
1) to every c e C*(X,A) there exists a / : (K,L) —y (X,A), (K,L) compact,
c' e C.(K,L), such that /#(c') = c and 2) if / : (if,L) —»• (X,A), (K,L) com-
pact, c' e C*(K,L), /#(c') = 0, then there exists a factorization f = fx g, g :
(K,L) —y (-ftTi,.Li), (#i,I,i) compact, such that g#(c') = 0.
A homology theory ft* = {/ira, 9, n £ Z} is related to a chain functor C* (or C*)
whenever H* (C*) and ft* are isomorphic as homology theories (i.e. the isomorphisms
are natural and commute with boundaries).
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If in addition the derived homology {Hn(C*), 8} of a chain functor is isomorphic
to a homology theory on £2, then we call C* (or alternatively C*) a regular chain
functor.
Compact carriers for the chain functors imply the same property for the derived
homology theories.
Since .H*(C*) satisfies all properties of a homology theory except possibly the exci-
sion axiom, we can formulate:

4.1. Definition: 1) A chain functor C* = {C*, ,Cl, ,i', I, <p, K} is regular when-
ever the derived homology satisfies an excision axiom (i.e. .ff*(C*) is a homology
theory).
2) Suppose C*, Cl : £2 —> ch are functors (possibly without compact carriers)
coming together with mappings I, ip, K, i' satisfying Dl)-D4), but a) not neces-
sarily *) and b) i', I are not any more required to be inclusions. Then we call
C* = {C*, Cl, I ,ip, K, i'} by an abuse of notation an irregular -chain-functor.

Notice that an irregular-chain-functor may not be a chain functor at all. In [4] an
irregular-chain-functor is called a weak chain functor. Although every irregular-
chain-functor allows the formation of derived homology groups, one does not nec-
essarily have a boundary operator.
Summarizing we state that the class of chain functors contains the class of regular
chain functors, while irregular-chain-functors form a much bigger class.
We record the following results on chain functors:
1) Every homology theory on a category of topological spaces (satisfying some mild
conditions) is isomorphic to the derived homology of a chain functor (theorem 8.1.
in [2]).
This chain functor is clearly regular but not uniquely determined by this property,
although the procedure described in [2] is functorial. The question of its uniqueness
is the subject of the present paper.
The properties required of a category of topological spaces such that theorem 8.1. in
[2] holds are in fact very mild. So it turns out that the existence proof of a chain
functor for a given homology theory carries over from e.g. the category of CW-pairs
to the category of CW-spectra (i.e. to pairs of objects in the Boardman category).
This is crucial for exploring localizations in [1].
2) The derived homology of a chain functor .ff*(C*) is always exact and homotopy
invariant by definition, but does not necessarily satisfy an excision axiom. So only
for regular chain functors .ff*(C*) is a generalized homology theory.
3) Every regular chain functor C* being defined on the category of CW-pairs gives
rise to a CW-spectrum |C*| functorially such that

denoting by E* the homology theory associated with the spectrum E) (cf. theorem
1.1. in [3]).

4.2. Definition 1) Let K*, L* be two regular chain functors, then a mapping (or
transformation) of chain functors

A : K* — • L ,
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is a natural transformation of functors

X(X,A)-- K*(X,A)^L*(X,A)

such that \\Kl = X' is a natural transformation of functors

A': K^L't
which is compatible with I, i' and the natural chain homotopies D(H) in D4).
2) Let K*, L* be irregular, then a transformation of irregular-chain-functors A :
K* —y L* is a pair of natural transformations

A : if* —^ L*

X' : K[ —• L't

commuting with i', I and the chain homotopies D(H).
3) Two irregular-chain-functors K*, L* are equivalent as irregular-chain-functors
whenever there exist transformations of chain functors

X
(*) K, " L,

such that
XJ] = 1L,, J]X=1K,, \'TI'~1K, JI'X'~1K,.

Observe that two regular chain functors are equivalent as chain functors, (i.e. one
has transformations (*) satisfying A r\ = 1L,, r] X = IK,) if and only if they are
equivalent as irregular-chain-functors. In case of irregular-chain-functors A' is not
a restriction of A to Kl.
It turns out that for a regular chain functor .ff*(C*) = {Hn(C*),d} is a homology
theory on £2 ([2] proposition A6) and that any transformation A : K* —> L* be-
tween regular chain functors induces a natural transformation of homology theories.
The latter follows because we have for any z £ Zn(C*(X,A))

z~l z1 +q#(a)

and by definition

d[z] = [r1 dz'].

Since A commutes with / and i', we have

d\.[z] = \.d[z].-

Let
Ai, A2 : K* —y L*

be two transformations of chain functors. They are homotopic whenever there exists
a natural homotopy D : X\ ~ A2 which respects the subfunctors K'*, L'* and
commutes with / and i'.
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Consequently [K*,L*] denotes the family of all homotopy classes of chain functor
transformations, furnishing the homotopy category of chain functors.
One can define suspensions of chain functors as for chain complexes (simply by
raising the dimension index). This gives rise to a triangulation (cf. [7] ) of the
category of chain functors €h, allowing us to talk about exact sequences.
In [1] §2 we need:

Dl') By changing ip on im i' we can assume that

(p i' = i. (5)

In particular we obtain for any a G C* (A):

Kipi'(a)=i'(a). (6)

Proof: We are entitled to redefine ip on the direct summand im V C C* (X, A) (cf.
[2] lemma 5.4.) without changing the chain functor within its isomorphism class. So
we do this by setting ip i' = i. All other properties of the given chain functor (e.g.
j# (p ~ /, (p K ~ 1) remain unchanged.

Dl") Let z' G Cl(X,A), d z' G imi' be a relative cycle then there exist a chain
homotopy

I K ip(z') - l(z') = d D(z') - D(d z')

withD(dz') = 0.
Proof. There are three chain homotopies:

, D(K V ) . i# D((f) . b
I Kip ~ J#(p Kip ~ J#(p ~ /,

with D(d z') G C*+i (X, A). However on im i' we have

/ K ip i'(a) - I i'(a) = I i'(a) - I i'(a) = 0.

We alter D on im i' to zero, without affecting the isomorphism class of C*.-

A natural transformation A : K* —> L* is supposed to commute with i', I, and
D(H). We do not require explicitely that A commutes with K,ip and all the other
items of a chain functor (like the chain homotopies y> n ~ 1, j# y> ~ I). However
this would not be such a severe restriction:

4.3. Definition: A natural transformation of chain functors is called geometric (A
g-transformation) whenever im A C !/*( ) is a direct summand.

We have:

4.4. Proposition: If A : K* —> L* is a g-transformation, then there exists a
g-transformation A : K* —> L* , commuting with all structure of chain functors
(e.g. (p, K, • • • )and an equivalence e : L* ss L* such that

sX = A.
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Proof: im A C L*( ) is a direct sumund and free. So we are allowed to change
ip, K, as well as the relevant homotopies first on free generators of im A afterwards
extending this linearily on whole im A so that A now commutes with all these items.
This establishes L*. Since none of these mappings and chain homotopies is natural,
this can be done without changing the isomorphism class of L*. The equivalence e
is the identity as a functor transformation (forgetting the additional structure of a
chain functor).-

Moreover we can assert that every transformation A : K* —y L* is up to a
homotopy equivalence a g- transformation:
4.5. Proposition: Let A : K* —y L* be a transformation of chain functors,
then there exists a homotopy equivalence 7 : L* —y L* and a g-transformation
A : K* —y L* such that

A = 7 A.

Proof: We establish L* D L* by "doubling im A":
Let A be a second copy of im A C L»( ). To each c G im A we find a c G A. If w is
any of the operations ip, K or the relevant chain homotopies, we define

w(c) = i
\ w(c) ••• w(c) S" im A.

Then we invent new connecting chains vc, c G im A satisfying

dvc + Vdc = c — c,
and formally vc = 0 for all c g" im A. For any w as before, we set w(vc) = vw(cy
All this is firstly performed for free generators and then for any c G im A by linear
extension, providing us with an enlarged chain functor 7 : L, C L,, j(c) = c, with
L* = L* © (A, {vc}} being the amalgameted sum. The inclusion 7 is obviously
a chain homotopy equivalence. In particular the inclusion turns out to induce an
isomorphism in homology. We define

A(o) = Ma),

obtaining a g-transformation with

Remarks: 1) In order to obtain Dl') and Dl") we only need to know that im i' is a
direct summand in C'(X, A), therefore it would suffice to require only this. However
the chain functor constructed in [2] being associated with a given homology theory
satisfies automatically all the other properties listed in *) (cf. [2] lemma 5.4). It
turns out that verifying all these properties together for chain functors, which will
be constructed does not cause any trouble at all.
The essence of Dl'), Dl") is that these properties can be assumed to be true (up
to an equivalence of chain functors) for any chain functor.
2) Suppose that the free generators of K* () as well as those of L* () are geometrically
defined (as for example singular simplexes for ordinary singular homology or singu-
lar manifolds for bordism theories are), then a transformation is a g-transformation,
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whenever generators are transformed into generators by all operations in a chain
functor.
3) Denoting the category of chain functors by £f) we pointed out already, that,
according to 4.5., every A e Cf)(K,,, L*) is, up to a homotopy equivalence, a g-
transformation which, according to 4.4. can be assumed to commute with all con-
ceivable structure of a chain functor.

Finally we would like to asses how restrictive the assumption is that a chain functor
is required to have a natural basis (i.e. that base elements are mapped into base
elements by continuous mappings). In [2] lemma 5.4. 2) this is guaranteed for the
chain functor, which is established there.
Suppose C* = {C*, Cl, i, I i'} satisfies all asumptions of a chain functor, but
C* (X, A) is not necessarily free at all.

4.6. Proposition: There exists a chain functor K* (i.e. all K*(X,A) are free with
a natural base) and a transformation A : K* —> C* (a concept, which is defined
as in definition 4-2.) inducing an isomorphism in homology.

Proof: Let Ki'(X,A) be the free group, generated by the non-zero elements of
C* (X, A). Let k = J2mi [°i] be an element of Ki' (X, A) then there exists an asso-
ciated fcW = [J2mi ci] G Ki'(X,A). We invent a connecting chain wfc satisfying

dwk + wdk = k -

and for continuous h : (X, A) —> (Y, B)

Let ~KX> be KW amended by these new chains ( as in the proof of 4.5.) and
set K* = ~KX> U cone W* with W* being generated by all connecting chains w.
This can easily be equipped with the structure of a chain functor: We define e.g.
vik) = J2mi[ci\' an<i y(w*) = 0- The mapping A : K* —> C* is defined by
[c] i—y c and X(wk) = 0. It clearly induces an isomorphism of the homology groups.

5. Motivation of the definition of a chain functor

Let ft* = {hn, 8} be a generalized homology theory, defined on some £2. It is
desirable to have some kind of a chain theory available, providing us with chains,
cycles and individual homologies between these cycles, furnishing us with the cor-
rect homology groups h*(X,A) as well as with the correct boundary operator
d : hn(X,A) —> hn-i(A). Examples are ordinary singular or Steenrod-Sitnikov
homology theories, but also bordism theories, where the chains are represented by
singular manifolds with boundaries, resp. the cycles by closed singular manifolds.
To this end one would like to detect a functor C* : £2 —> ch and a natural
isomorphism

A: Ht(C*(X,A))t*h*(X,A). (7)
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Moreover we require the existence of a short exact sequence

c.(X,A)—>-0 (8)

such that the boundary d defined by (7) is compatible with the boundary d of ft*,
i.e. such that the diagram

A ' hn(X,A)

[a (9)
fl-n_i(C.(A)) ^ ^ hn-i(A)

is commutative.
The great disappointment comes with a theorem of the authors of [6] asserting that
the existence of such a naive chain theory, satisfying (6) - (8) is equivalent to the
fact that (on the category of CW-pairs) ft* is the direct sum of ordinary homology
theories.
Since most homology theories (as for example many bordism theories) are not of
this type, the existence of such a chain theory can not be expected.
However since there is nevertheless still need for some kind of a chain theory for
arbitrary homology theories, one has to modify (6)-(8) appropriately.
This is the reason for introducing chain functors in §4. The short exact sequence
(5) is replaced by the diagram (S). The "relative cycles" (i.e. the chains c G C*(X)
satisfying dc G im i#) are retrieved by the chains z' G Cl(X, A) with dz' G im i'.
As already indicated in §4, the main interest in chain functors originates from the
fact that every homology theory ft* ( ) is associated with a chain functor K*, which
means that

# * ( # * ) « ft*().

A convenient way to prove this (not the original proof given in [2]) is to deal firstly
with homology theories ft*( ) having a classifying spectrum E, i.e.

The relevant statement is therefore:
There exists a functor

$ : Spec —> Cf),

Spec being the category of spectra, together with an isomorphism of homology theo-
ries

which is natural in all variables .
The first step to verify this is to establish the free chain complex functor F̂ 1 : £2 —»•
ch, with stable mappings / : Dn — ^ A X (i.e. one has / = {fk : Dn+k —>•
Ek AX}). The boundary df is established by forming / | bd Dn+k. This F^1 is far
from having the desired homology and must be further adapted, which causes some
technical problems.
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The proof of this (seemingly less general) assertion can be used for a proof of the
more general fact that any homology theory ft* ( ) (eventually without a classifying
spectrum) is associated with a chain functor. There exists a key to translate the
arguments for verifying the restrictive assertion, to the general case.

The fact that <>?#,«# as well as the chain homotopies in §4 Dl) are not always
natural is not accidental:
Call to this end a chain functor C* flat whenever all these items are natural, while
a homology theory ft* (defined on any category of pairs of spaces) is called flat
whenever there exists a (naive) chain theory (6)-(8) associated with ft*. Hence,
according to the main result of [6], on CW-pairs ft* is flat, whenever H* is the
direct sum of ordinary homology theories.
It turns out that (for any £2) ([5] theorem 3.3.):
ft* is flat, if and only if there exists a flat chain functor associated with ft*.
As a result the lack of naturality of y #, K# , • • • is closely related to the non-vanishing
of the Postnikov-invariants of the classifying spectrum E of a homology theory.
In dealing with bordism homology fi*( ) one has a completely different option to
detect a chain functor K* with

#*(#*)( )«ft*():

The candidates for the chains are now singular manifolds and the cycles closed sin-
gular manifolds (cf. [5] for further references).
Neither the present paper nor [1] is attempting to treat £ft as a closed model cat-
egory or as a triangulated category, incorporating it in the list of candidates for a
stable homotopy category, as this is now the custom. This is postponed to a forth-
coming paper. Our present approach uses chain functors entirely as a concept, for
establishing results about stable homotopy theory for spectra.
However with the introduction of irregular-chain-functors , the category <th be-
comes "larger" than the Boardman category, providing new objects, which can not
be realized as spectra, although they are needed for a systematic description of some
phenomena in stable homotopy theory, as will become clear in the course of [1].
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