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CATEGORICAL HOMOTOPY THEORY
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(communicated by Gunnar Carlsson)

Abstract
This paper is an exposition of the ideas and methods
of Cisinksi, in the context of A-presheaves on a small
Grothendieck site, where A is an arbitrary test category in
the sense of Grothendieck. The homotopy theory for the cate-
gory of simplicial presheaves and each of its localizations can
be modelled by A-presheaves in the sense that there is a cor-
responding model structure for A-presheaves with an equiva-
lent homotopy category. The theory specializes, for example, to
the homotopy theories of cubical sets and cubical presheaves,
and gives a cubical model for motivic homotopy theory. The
applications of Cisinski’s ideas are explained in some detail for
cubical sets.

1. Introduction

Traditionally, categorical homotopy theory is a small collection of simple ideas
and definitions, combined with a rather subtle skill set.

In broad outline, one associates to each small category C a simplicial set BC,
variously called its nerve or classifying space, whose n-simplices are strings of com-
posable arrows of length n in C. This is a functorial construction: given a functor
f : C → D, applying f to strings of arrows of length n in C produces a corresponding
string in D, and one obtains an induced simplicial set map f∗: BC → BD.

The classifying space functor C 7→ BC preserves products, and it is almost a
tautology that if n = {0, . . . , n} is a finite ordinal number, viewed as a poset and
hence as a small category, then Bn is the standard n-simplex ∆n. It follows that
any natural transformation C × 1→ D of functors f, g: C → D induces a simplicial
homotopy BC ×∆1 → BD between the induced simplicial set maps f∗, g∗: BC →
BD. Thus, if C and D are equivalent categories or if a functor C → D has an
adjoint, then the associated classifying spaces are homotopy equivalent. A further
consequence is that the classifying space BC is contractible if a category C has
either an initial or terminal object.

The subtlety of the theory lies in the analysis of the homotopy fibres of the map
f∗: BC → BD which is induced by a functor f : C → D. Every object d ∈ D has an
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associated slice (or, in older language, “comma”) category f/d whose objects consist
of all morphisms f(c)→ d in D; the morphisms of this category are commutative
diagrams

f(c)
f(α) //

τ ¿¿9
99

9
F (c′)

τ ′¢¢¤¤
¤¤

¤

d

where α: c→ c′ is a morphism of C. There is an obvious forgetful functor f/c→ C
which takes the diagram above to the morphism α in C, and any morphism β: d→ d′

of D induces a functor β∗: f/d→ f/d′ by composition with β.
It is a basic observation of Quillen that the forgetful functors f/d→ C assemble

to define an isomorphism

holim−−−→
d∈D

B(f/d)→ BC

in the homotopy category. Quillen’s Theorem B asserts that if all induced maps
β∗: B(f/d)→ B(f/d′) are weak equivalences, then all diagrams of simplicial set
maps

B(f/d) //

²²

BC

f∗
²²

B(D/d) // BD

are homotopy cartesian. It follows, in this case, that B(f/d) is weakly equivalent to
the homotopy fibre of f∗: BC → BD over the vertex corresponding to the object d.

Quillen’s Theorem A says that if all of the simplicial sets B(f/d) are weakly
equivalent to a point, then the map f∗: BC → BD is a weak equivalence. This result
is a consequence of Theorem B, but it is more effectively proved with a comparison
of homotopy colimits — part of the appeal of the result lies in the simplicity of that
proof.

All of this has been known since the early 1970s, when Quillen [17] introduced
these concepts and results as a foundation for his description of higher algebraic
K-theory. This set of techniques is still fundamental for algebraic K-theory, and
Theorem B is now one of the most important theorems in the foundations of homo-
topy theory, although recognizing when it can be applied can be something of a
black art.

The homotopy theory of simplicial sheaves and presheaves is a direct extension
of the homotopy theory of simplicial sets. The main techniques and results of the
theory are geometric in the sense that they come from ordinary homotopy theory,
but they are expressed in the categorical context of sheaves and presheaves on a
Grothendieck site and derive much of their power in applications from holding at
that level of generality. The development of these theories and their applications
was initiated in the 1980s [7], [12], [19] and continues to the present [8], [16]. The
homotopy theory of stacks [9], [13] is a vital and important subindustry of this
work.
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Thomason’s work on the model structure for the category of small categories [18]
is also part of a history of the subject, but its impact has so far been rather muted.
It is strongly related to but not necessary for the ideas exposed in this paper.

The thesis of Denis-Charles Cisinski [3] represents the next leap forward for the
subject. Cisinski’s thesis is primarily concerned with the proof of some conjectures of
Grothendieck [6], [15] concerning diagram categories that model homotopy theory,
but the techniques that he has developed are arguably more important than the
conjectures themselves.

The theory begins with Grothendieck’s concept of a test category A and the
corresponding category of A-sets, which consists of contravariant set-valued func-
tors on A, or functors X: Aop → Set. In general, if A is a test category, then the
corresponding category of A-sets is a model for the standard homotopy category.

The standard examples arise in the following ways:

1) The category of ordinal numbers ∆ is a standard example of a test category
(Example 6 below): the corresponding category of ∆-sets is the category of
simplicial sets.

2) The category ¤ of abstract hypercubes, here called the box category, is a test
category (Lemma 3.11): the corresponding category of ¤-sets is the category of
cubical sets.

3) If A is a test category and C is a small category such that the classifying space
BC is contractible, then the product A× C is a test category (Corollary 9). It
follows that the class of test categories is closed under finite products, so that
bisimplicial sets, multi-simplicial sets, bicubical sets, simplicial cubical sets and
so on, all give models for the homotopy category.

So, when is a small category A a test category? Each object a of the category
A determines a representable functor ∆a = hom(a, ), and there is a cell category
iAX for each A-set X: the objects of iAX are the A-set morphisms ∆a → X (or
elements of X(a), a ∈ A) and the morphisms of the cell category are the diagrams

∆a //

¿¿9
99

99 ∆b

££§§
§§

X

of A-set morphisms, which can be interpreted as incidence relations in the A-set X.
If Y is a simplicial set, then the corresponding cell category i∆Y is the usual simplex
category of Y , which has often been denoted in the literature (see, for example, [5])
by ∆ ↓ Y .

The functor X 7→ iAX has a right adjoint C 7→ i∗AC, and we say that the small
category A is a test category if the space BA is contractible, and the canonical func-
tor ε: iAi∗AC → C is aspherical in the sense that all spaces B(ε/c) are contractible
for all small categories C.

We can now display another example of a class of test categories which is impor-
tant in applications:

4) If A is a test category and X is an A-set such that the nerve B(iAX) is
a contractible simplicial set, then the cell category iAX is a test category
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(Lemma 2.15). The category of iAX-sets is, in general, equivalent to the category
of A-sets Y → X fibred over X.
We can also be more precise about the homotopy theory: if A is a test category,

then there is a closed model structure on the category of A-sets with cofibrations
defined to be inclusions of diagrams and for which the weak equivalences are those
A-set maps f : X → Y such that the induced simplicial set map f∗: BiAX → BiAY
is a weak equivalence. Then it is relatively easy to show that the functor X 7→ BiAX
induces an equivalence

Ho(A-Set) ' Ho(S)

between the homotopy category of A-sets and the homotopy category of simplicial
sets. One can go further, and formally invert a set S of cofibrations in the model
structure of A-sets to produce a Bousfield localization of the homotopy category of
A-sets in an essentially standard way. These model structures are given by Cisinski
in his thesis [3].

Grothendieck introduced the notion of test category, and he knew that A-sets
would model the ordinary homotopy category for all test categories A — indeed,
the equivalence of homotopy categories is just a formal consequence of the definition
of test category. Grothendieck also introduced the study of good classes of functors
between small categories, which could potentially serve as classes of weak equiva-
lences for homotopy theories. He called such classes “fundamental localisers”, and
the terminology persists in [3].

These classes are called “weak equivalence classes” in this paper. A weak equiv-
alence class is a class W of functors between small categories which satisfy the
conditions that one would expect: informally speaking, the class satisfies the analog
of the closed model axiom CM2 (the two out of three axiom), contains all strong
deformation retractions, and contains the functor C → ∗ if C has a terminal object.
The “total space” of a functor f : C → D is a formal homotopy colimit of the slice
categories f/c in such a theory.

The standard features of categorical homotopy theory imply that the class W∞
of all functors C → D such that the induced map BC → BD is a weak equivalence
of simplicial sets satisfies the requirements for a weak equivalence class of functors.

Grothendieck made two conjectures about these objects:

Conjecture A. Suppose that W is a weak equivalence class and that f : C → D is
a functor such that f∗: BC → BD is a weak equivalence of simplicial sets. Then f
is a member of W.

In other words, W∞ is the smallest weak equivalence class.

Conjecture B. Suppose that W is a weak equivalence class and that A is a (local)
test category. Then the class of all maps f : X → Y of A-sets such that the functor
iAX → iAY is a member ofW is the class of weak equivalences for a model structure
on the category of A-sets for which the cofibrations are the monomorphisms.

In [3], Cisinski proves the first conjecture in its entirety and the second conjecture
in the case where W is generated over W∞ by a set of functors — this is the
“accessible” case (Cisinski has told me that Conjecture B is, in fact, false in general).
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Conjecture A, at least so far, appears to be much more important for applications
than Conjecture B.

This paper was written to express this collection of ideas and their proofs in
something like standard homotopy theoretic language and notation, and to begin
to describe their applications.

I was initially attracted to Cisinksi’s thesis as a result of my own work on the
homotopy theory of cubical sets — see [10]. This paper displays a model structure
on the category of cubical sets whose associated homotopy category was equivalent
to that of simplicial sets. The cofibrations are the monomorphisms and the weak
equivalences are those maps which induce weak equivalences of topological real-
izations. The verification of this model structure is achieved with some bounded
cofibration tricks from localization theory, and the equivalence of homotopy cate-
gories depends on a cubical set excision theorem which is proved with a somewhat
involved subdivision argument.

Cisinski displays the same model structure on cubical sets as an example of his
theory, and then the equivalence of homotopy categories arises from formal nonsense,
since the box category ¤ is a test category. He also proves much more, namely, that
the model structure on the category of cubical sets is proper and that the fibrations
are the expected analogs of Kan fibrations.

The techniques of [10] cannot begin to reach these last results, and their proofs
involve some of the most delicate aspects of Cisinski’s work. These include an inter-
nal description of homotopy colimits in a set-based cofibrantly generated model
structure and a general notion of regularity, which amounts the assertion that an
A-set X is a homotopy colimit of its cells. Regularity holds in contexts, like cubical
sets, where an A-set can be constructed inductively by attaching cells. The subtlety
of the theory for cubical sets is this: properness and the identification of fibrations
are proved here by displaying three ostensibly different model structures for the
category of cubical sets, which are then shown to be identical as a consequence of
Grothendieck’s Conjecture A and regularity.

The main results for cubical sets are proved in the final section of this paper:
properness is proved in Theorem 8.2, and Theorem 8.6 gives the good classification
of cubical set fibrations. After the fact, cubical set excision (Theorem 8.9) turns out
to be a direct consequence of the formal techniques displayed here, along with the
excision theorem for simplicial sets [11].

Much of the rest of the paper is an exposition of the basic theory. I have chosen
to emphasize presheaves of A-sets (here called A-presheaves) on an arbitrary small
Grothendieck site C because I believe that this is an important context for potential
applications. That said, A-presheaves are (A× C)-sets, and much of the elementary
theory for A-presheaves arises from formal manipulations of the homotopy theory
of A-sets.

That homotopy theory arises in part from a “Swiss army knife” result (Theorem
4.17 in Section 4) which establishes a model structure for the category of A-sets in
which some set S of monomorphisms become weak equivalences, and which depends
on a suitable theory of intervals. An interval theory is expressed here as a monoidal
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action

⊗: (A-Set)×¤→ A-Set

of the box category on the category of A-sets, satisfying a list of expected properties,
and the purpose of which is to define some notion of naive homotopy of morphisms.
The main examples of such theories arise either from taking iterated products X ×
I×n with objects I having two distinct global sections, or from Kan’s tensor product
operation [14] for cubical sets. The affine line A1 and the global sections 0, 1: ∗ → A1

generate an interval theory in the motivic context.
The construction of the resulting (⊗, S)-model structure on the category of

A-sets follows the general outlines that one finds in localization theory, except that
one is not localizing another model structure to construct it. It is general nonsense
that an injective replacement of a map or object can always be constructed, and
then one defines a weak equiivalence to be a map f : X → Y which induces an iso-
morphism π(Y, Z) ∼= π(X,Z) of naive homotopy classes (defined by intervals) for
all injective objects Z. It is one of the innovations of Cisinksi’s thesis that naive
homotopy equivalences alone can be used to prove a bounded cofibration property
(Lemma 4.9), and then Theorem 4.17 comes out in the usual way, modulo some
fussing with pushouts of trivial cofibrations (Lemma 4.12). This model structure
is proper if the set S of cofibrations is decently behaved and the interval theory is
defined by an actual interval I (Theorem 4.18). One of the interesting aspects of
Theorems 4.17 and 4.18 is that the set S can be empty, so that there is always a
“primitive” model structure defined by an interval theory, and this model structure
is proper.

Theorem 6.2 of Section 6 says that ifA is a test category, then any localized model
structure on the category of simplicial presheaves induces a model structure on the
category of A-presheaves in such a way that the associated homotopy categories
are equivalent. This result holds over any small Grothendieck site, and says that
all simplicial presheaf homotopy theories (including the motivic homotopy theories)
have A-models.

Theorem 6.2 specializes to the existence of a model structure on the category
of A-sets with corresponding homotopy category equivalent to any localized homo-
topy theory of simplicial sets, if A is a test category. In particular, the proof of
Grothendieck’s Conjecture B (in the accessible case) is therefore reduced to the
statement for simplicial sets. Theorem 6.2 does not follow from Theorem 4.17 —
it is a subsidiary structure, but the model structures that these results generate
coincide in a wide variety of interesting cases, including cubical sets.

One of the morals of this stream of ideas is that cubical sets are everywhere. The
definition and formal properties of the box category ¤ and the category ¤-Set of
cubical sets are summarized in Section 3 of this paper. The basic properties of test
categories are treated in Section 2. The proof of the assertion that the box category
is a test category turns out to be a bit subtle. In fact, the category of cubical sets
seems to be the delicate case throughout the theory. It can be a rather disconcerting
fact that products behave very badly in the homotopy theory of cubical sets: in
particular that the product ¤1 ×¤1 of a pair of copies of the standard interval in
cubical sets has the homotopy type of the wedge of circles S2 ∨ S1 (Remark 3.5).
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This forces one to be careful with interval theories everywhere, and prompts the
discussion of aspherical A-sets.

Section 5 contains a general discussion of homotopy colimits, internally defined
nerves, and the relation with the Grothendieck construction in an (⊗, S)-model
structure on a category of A-sets. Homotopy colimits are defined internally, by
taking colimits of projective cofibrant resolutions. From this point of view, the
internal nerve BhC of a small category C is the homotopy colimit for the diagram
which assigns a point to each object of C. This generalizes the observation that the
ordinary nerve BC is the homotopy colimit of a diagram of points in the category
of simplicial sets. The standard properties of the ordinary nerve BC also hold for
the internal nerve BhC. In particular, there is a weak equivalence

holim−−−→
d∈D

Bh(f/d)→ BhC

for any functor f : C → D, which, in turn, means that the internal nerve of the
Grothendieck construction models a homotopy colimit in this sense.

Section 7 contains an exposition of the basic aspects of the theory of weak equiv-
alence classes of functors, along with proofs of Conjecture A (Corollary 7.7) and the
case of Conjecture B corresponding to test categories and accessible weak equiva-
lence classes (Theorem 7.8). As one might expect, Grothendieck’s Conjecture B can
be proved with a localization argument in the presence of Conjecture A, but that
is not the way that it is done here. I prefer instead to follow Cisinski’s lead in using
an omnibus result (i.e. Theorem 6.2) which subsumes all localization arguments.
Theorem 4.17 has a similar flavour.

There is yet another innovation of Cisinski which is displayed in Section 7: the
cell category functorX 7→ iAX preserves homotopy cocartesian diagrams in striking
generality (Corollary 7.5). This was certainly not well known, even for simplex
categories, and it is a central feature of this theory.
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2. Homotopy theory of categories

Suppose that X is a simplicial set. The simplex category

i∆X = ∆ ↓ X
has objects consisting of all simplices ∆n → X and morphisms consisting of com-
mutative triangles of simplicial set maps

∆n //

¿¿:
::

: ∆m

¢¢¤¤
¤¤

X

Write cat for the category of small categories, and consider the functors

S
i∆ // cat

B // S

Say that a functor f : C → D between small categories is a weak equivalence if
the induced map f∗: BC → BD is a weak equivalence of simplicial sets.

For each simplicial set X there is a functor QX: i∆X → S which takes an object
σ: ∆n → X to the simplicial set ∆n. Then it is well known that the maps σ: ∆n →
X define a natural weak equivalence fX: holim−−−→ QX → X, and that the canonical
projection πX: holim−−−→ QX → B(i∆X) is also a natural weak equivalence.

It follows that the nerve functor B and the simplex category functor induce an
equivalence of categories

Ho(cat) ' Ho(S)

after formally inverting the weak equivalences in cat and S, respectively.
Suppose that A is a small category, and write A-Set (written Â in [3]) for

the category of set-valued contravariant functors defined on A; these functors will
be called A-sets. Write ∆a = hom( , a) for the representable contravariant functor
associated to an object a ∈ A. The A-set ∆a will often be called the standard a-cell.
Similarly, if X is an A-set, the elements of set X(a) will be called the a-cells of X.
The a-cells of X are classified by A-set maps ∆a → X, by the usual Yoneda Lemma
argument.

Suppose that X is an A-set, and write iAX for the category whose objects are
the natural transformations ∆a → X and whose morphisms are the commutative
triangles

∆a //

¿¿9
99

99 ∆b

££§§
§§

X

The assignment X 7→ iAX is functorial in X, and defines a functor iA: A-Set→
cat. The category iAX will often be called the cell category of X.

Say that a map f : X → Y is a weak equivalence of A-sets if the induced map
f∗: B(iAX)→ B(iAY ) is a weak equivalence of simplicial sets, or equivalently if the
induced functor f∗: iAX → iAY is a weak equivalence in cat.
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According to these definitions, the functor iA induces a “functor”

iA∗: Ho(A-Set)→ Ho(cat).

A basic question of Grothendieck [6], [15] is the following: when is iA∗ an equivalence
of categories?

The functor iA:A-Set→ cat has a right adjoint i∗A: cat→ A-Set which is defined
by

i∗A(C)(a) = hom(A/a, C).

This follows from the fact that every A-set (being a contravariant functor) is a
colimit of representables.

More explicitly, the natural map

hom(iAX,C)→ hom(X, i∗A(C))

is easy to describe: if σ: ∆a → X is an element ofX(a) and f : iAX → C is a functor,
then the composite functor

A/a ∼= iA∆a σ∗−→ iAX
f−→ C

is an element f∗(σ) ∈ i∗AC(a). An A-set morphism g: X → i∗AC is determined by
functors g(σ): A/a→ C, one for each element σ: ∆a → X, which make the obvious
diagrams of functors commute. Given such a g, define a functor g∗: iAX → C by
associating to an object σ: ∆a → X the object g(σ)(1a) ∈ C. One can show that
these two natural maps are inverse to each other, and there is a corresponding
bijection

hom(iAX,C) ∼= hom(X, i∗AC),

so that that i∗A is right adjoint to iA.
Note that the category iAi∗AC has objects all functors f : A/a→ C and has

morphisms given by all commutative diagrams

A/a θ∗ //

f ÀÀ:
::

:
A/b
g££¥¥

¥¥

C

where θ: a→ b is a morphism of A. The adjunction map

ε: iAi∗AC → C

is the functor which associates to each functor f : A/a→ C the object f(1a) ∈ C.

Lemma 2.1. There is an isomorphism of categories

ε/c ∼= iAi∗A(C/c)

for all categories C.
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Proof. An object of the category iAi∗A(C/c) is a functor f : A/a→ C/c, and a mor-
phism of this category is a commutative diagram

A/a θ∗ //

f ÁÁ>
>>

>>
A/b

g¡¡¢¢
¢¢

¢

C/c

as above. A functor f : A/a→ C/c can be identified uniquely with a pair (f ′, f ′′)
consisting of a functor f ′: A/a→ C and a morphism f ′′: f ′(1a)→ c. This identifica-
tion induces the required isomorphism of categories, since an object of ε/c consists
of a functor f : A/a→ C and a morphism f(1a)→ c.

The essential idea is to come up with conditions on A so that the adjunction
maps ε: iAi∗A(C)→ C are weak equivalences for all categories C. Observe that if all
counit maps ε are weak equivalences, then all unit maps η: X → i∗AiAX are weak
equivalences of A-sets, by a triangle identity. It also follows easily that a functor
f : C → D is a weak equivalence if and only if f∗: i∗AC → i∗AD is a weak equivalence
of A-sets in this case.

A functor f : C → D is said to be aspherical if the simplicial set B(f/d) is weakly
equivalent to a point for all d ∈ D. If f is aspherical, then it is a weak equivalence
by Quillen’s Theorem A. Say that a category A is aspherical if the canonical map
π: A→ ∗ is aspherical. In view of the fact that π/∗ ∼= A, A is aspherical if and only
if A is weakly equivalent to a point.

Say that a map f : X → Y ofA-sets is aspherical if the induced functor f∗: iAX →
iAY is aspherical. In general, there is an isomorphism

f∗/(∆a → Y ) ∼= iA(∆a ×G F ) (1)

so that f : X → Y is aspherical if and only if all pullbacks ∆a ×G F are weakly
equivalent to a point. Every aspherical map of A-sets is a weak equivalence, by
Quillen’s Theorem A. The class of aspherical maps ofA-sets is closed under pullback.

¿From this point of view, an A-set F is aspherical if the map F → ∗ is aspher-
ical. This means precisely that the induced functor iAF → A is aspherical. The
isomorphism

iA(F )/a ∼= iA(F ×∆a) (2)

is of central use in analyzing objects of this sort.
Say that A is a weak test category if the adjunction map ε: iAi∗A(C)→ C is a

weak equivalence for all small categories C.
It follows from Lemma 2.1 and Quillen’s Theorem A that A is a weak test cate-

gory if and only if the functor D 7→ i∗AD takes categories having a terminal object
to A-sets which are weakly equivalent to a point.

Suppose that the functor C 7→ i∗A(C) takes aspherical categories to A-sets which
are weakly equivalent to a point. Then categories having terminal objects are exam-
ples of aspherical categories, so that A is a weak test category. Suppose that A is a
weak test category and that C is an aspherical category. Then the adjunction map
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ε: iAi∗A(C)→ C is a weak equivalence, so that the A-set i∗A(C) is weakly equivalent
to a point.

We have proved the following:

Lemma 2.2. The following statements are equivalent:

1) A is a weak test category, i.e. all adjunction maps ε: iAi∗A(C)→ C are weak
equivalences.

2) if D is a category with terminal object, then the A-set i∗A(D) is weakly equivalent
to a point

3) if C is aspherical, then the A-set i∗A(C) is weakly equivalent to a point.

Say that A is local test category if all categories A/a are weak test categories.

Lemma 2.3. The following are equivalent:

1) A is a local test category;

2) if D is a category with a terminal object, then the A-set i∗A(D) is aspherical, or
equivalently the canonical functor π: iAi∗A(D)→ A is aspherical;

3) if C is an aspherical category, then the A-set i∗A(C) is aspherical, or equivalently
the canonical functor π: iAi∗A(C)→ A is aspherical.

Proof. The A-set i∗A(C) is aspherical if and only if all categories

iAi∗A(C)/a ∼= iA/ai
∗
A/a(C)

are weakly equivalent to a point. Now use Lemma 2.2.

Say that A is a test category if it is both a local test category and a weak test
category. This, however, is not the right definition to use in practice, in view of the
following:

Lemma 2.4. A category A is a test category if and only if it is a local test category
and is aspherical.

Proof. Suppose that A is a local test category and that A is aspherical. Suppose
that D is a category with terminal object. We want to show that the A-set i∗A(D) is
weakly equivalent to a point. But the functor iAi∗A(D)→ A is aspherical by Lemma
2.3 and A is aspherical, so that the A-set i∗A(D) is weakly equivalent to a point. It
follows that A is a weak test category as well as a local test category.

Suppose that A is a test category. Then the functor i∗A has a left adjoint and
therefore preserves terminal objects. The terminal object of the category of A-sets
is the one point A-set ∗, and there is an isomorphism iA(∗) ∼= A. Since A is a weak
test category, the adjunction map ε: iAi∗A(∗)→ ∗ is a weak equivalence. It follows
that A is aspherical.

Remark 2.5. One can show by using the argument in the proof of Lemma 2.4 that
if A is a weak test category, then A is aspherical.
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Example 2.6. Suppose that A is the category ∆ of finite ordinal numbers, so that
∆-Set is the category S of simplicial sets.

If C is a category i∗∆(C) is the simplicial set with n-simplices specified by

i∗∆(C)n = hom(∆/n, C)

If D is a category with terminal object t, then there is a contracting homotopy
h: D × 1→ D. The functor i∗∆ preserves products, so that h induces the composite

i∗∆(D)× i∗∆(1) ∼= i∗∆(D × 1) h∗−→ i∗∆(D).

There is a natural functor α: ∆/n→ n. This functor is essentially a last vertex
map, and is specified on objects by α(θ: m→ n) = θ(m). The particular example
α: i∆1→ 1 of this functor defines a 1-simplex α: ∆1 → i∗∆(1), and there is a
composite

i∗∆(D)×∆1 1×α−−−→ i∗∆(D)× i∗∆(1) ∼= i∗∆(D × 1) h∗−→ i∗∆(D)

which gives a contracting homotopy for i∗∆(D).
It follows that all maps ε: i∆i∗∆(C)→ C are weak equivalences. We know [5,

p. 236] that every simplicial set X is a homotopy colimit of its simplices in the
sense that there is a weak equivalence

holim−−−→
∆n→X

∆n → X,

and that the homotopy colimit is weakly equivalent to B(i∆X). It follows that the
simplicial set i∗∆(C) is naturally weakly equivalent to BC, and there are natural
weak equivalences

i∗∆(C) ' Bi∆i∗∆(C) ε∗−→ BC. (3)

Suppose that D is a category with a terminal object. In order to show that
∆ is a local test category (and hence a test category), we must show that the
canonical functor π: i∆i∗∆(D)→∆ is aspherical. The identification (2) restricts to
an isomorphism

i∆i
∗
∆(D)/n ∼= i∆(i∗∆(D)×∆n).

But then i∗∆(D) is a contractible simplicial set, so that i∗∆(D)×∆n is weakly equiv-
alent to a point, and it follows that the category i∆(i∗∆(D)×∆n) is aspherical.

Lemma 2.7. Suppose that A and B are small categories and that f : X → Y is a
morphism of (A× B)-Set. If f induces weak equivalences of B-sets X(a, )→ Y (a, )
for all objects a ∈ A, then f is a weak equivalence of (A× B)-sets.

Proof. Consider the functors

iA×BX
πX−−→ A× B p−→ A,

where q is a projection.
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An element of the category a/pπX can be identified with a pair

(a
γ−→ a1, x ∈ X(a1, b1)),

and a morphism (γ, x)→ (γ′, y) consists of a morphism

(a1
θ−→ a2, b1

τ−→ b2)

of A× B such that θγ = γ′ and (θ, γ)∗(y) = x.
There is a functor ωa: iBX(a, )→ a/pπX which is defined by sending the object

x ∈ X(a, b) of iBX(a, ) to the object

(a 1a−→ a, x ∈ X(a, b))

There is a functor γa: a/pπX → iBX(a, ) which is defined by sending the element

(a
γ−→ a1, x ∈ X(a1, b1))

to the element (γ, 1)∗(x) ∈ X(a, b1). Then γaωa = 1 and the morphisms

(γ, 1): (1a, (γ, 1)∗(x))→ (a, x)

define a natural transformation ωaγa → 1.
The functors ωa and γa therefore define a homotopy equivalence

BiBX(a, ) ' B(a/pπX)

which is natural in presheaves X. The assumptions imply that the map f : X → Y
induces a weak equivalence

B(a/pπX)
f∗−→ B(a/pπY )

for all objects a ∈ A. It follows that f induces a weak equivalence

BiA×B(X)→ BiA×B(Y )

of the respective homotopy colimits over A.

Lemma 2.8. Suppose that A is a local test category and that B is a small category.
Then A× B is a local test category.

Proof. Suppose that C is a small category with terminal object t. It suffices to show
that the object

i∗A×B/(a,b)(C)

is weakly equivalent to a point (see the proof of Lemma 2.3).
There is an isomorphism of categories

A× B/(a, b) ∼= A/a× B/b.
Write A′ = A/a and B′ = B/b. Then, in this notation, we must show that the
(A′ × B′)-set i∗A′×B′C is weakly equivalent to a point when we know that the A′-set
i∗A′C is weakly equivalent to a point.
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There are identifications

i∗A′×B′C(a′, b′) = hom(A′/a′ × B′/b′, C) = hom(A′/a′,hom(B′/b′, C)),

where hom(B′/b′, C) is the obvious category of functors and natural transforma-
tions. This category has a terminal object, namely the functor B′/b′ → C which
takes all objects to the terminal point. It follows that all A′-sets

hom(A′/?× B′/b, C) ∼= i∗A′ hom(B′/b, C)

are weakly equivalent to a point. It therefore follows from Lemma 2.7 that the
(A′ × B′)-set morphism

hom(A′/a′ × B′/b′, C)→ ∗
is a weak equivalence.

Corollary 2.9. Suppose that A is a test category and that the small category B is
aspherical. Then the product A× B is a test category.

Other useful tools include the following:

Lemma 2.10. Suppose that A and B are small categories, and suppose that B is
aspherical. Let

p∗: A-Set→ (A× B)-Set

which is induced by composition with the projection functor p: A× B → A. Then
a map f : X → Y is a weak equivalence of A-sets if and only if the induced map
f∗: p∗X → p∗Y is a weak equivalence of (A× B)-sets.

Proof. There is an isomorphism i(A×B)p
∗X ∼= iAX × B.

Let q∗: S→ (A×∆)-Set be the functor which is defined by composition with
the projection A×∆→∆. The functor i: A → S defined by a 7→ B(A/a) induces
a functor i∗: S→ A-Set where i∗X(a) = hom(B(A/a), X). Similarly the functor
j: A×∆→ S defined by (a,n) 7→ B(A/a)×∆n defines a functor j∗: S→ (A×
∆)-Set with

j∗X(a,n) = hom(B(A/a)×∆n, X).

Lemma 2.11. Suppose that A is a local test category. Then with the definitions
above, there are natural weak equivalences of (A×∆)-sets

p∗i∗X → j∗X ← q∗X

for all simplicial sets X.

Proof. The map q∗X(a, ∗)→ j∗X(a, ∗) is the simplicial set map

X → hom(B(A/a), X).

The contracting homotopy B(A/a)×∆1 → B(A/a) induces a homotopy equiv-
alence X → hom(B(A/a), X) for all simplicial sets X. It follows that all maps
q∗X(a, ∗)→ j∗X(a, ∗) are weak equivalences of simplicial sets, so that the induced
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map q∗X → j∗X is a weak equivalence of (A×∆)-sets for all simplicial sets X by
Lemma 2.7.

The map p∗i∗X → j∗X can be identified in simplicial degree n with the A-set
map

hom(B(A/a), X)→ hom(B(A/a),hom(∆n, X)).

The contracting homotopy ∆n ×∆1 → ∆n induces a contracting homotopy of
hom(∆n, X) onto X, and hence induces a contracting i∗A(1)-homotopy of j∗X(∗,n)
onto p∗i∗X(∗,n) (we need to know that A is a local test category, so that i∗A(1)
is aspherical, exactly at this point). The category A is a local test category, so all
maps p∗i∗X(∗,n)→ j∗X(∗,n) are weak equivalences of A-sets.

Corollary 2.12. The functor i∗: S→ A-Set preserves weak equivalences if A is a
local test category.

Proof. The functor q∗ preserves weak equivalences by Lemma 2.7, so that p∗i∗ pre-
serves weak equivalences by Lemma 2.11. The functor p∗ reflects weak equivalences
by Lemma 2.10, so i∗ preserves weak equivalences as claimed.

Lemma 2.11 admits a more general formulation, which will be of some use later.
Suppose that i: A → cat is an arbitrary functor. Then i induces a functor i∗: S→
A-Set which is defined by a 7→ hom(Bi(a), X). Then the functor j: A×∆→ S
defined by (a,n) 7→ Bi(a)×∆n induces

j∗: S→ (A×∆)-Set,

with

j∗X(a,n) = hom(Bi(a)×∆n, X).

Then the proof of the following is an abstraction of the proof of Lemma 2.11.

Lemma 2.13. Suppose that A is a small category. Suppose that all categories i(a)
have terminal objects, and that the A-set i∗∆1 is aspherical. Then with the defini-
tions above, there are natural weak equivalences of (A×∆)-sets

p∗i∗X → j∗X ← q∗X

for all simplicial sets X.

Corollary 2.14. Suppose, in addition to the assumptions of Lemma 2.13, that the
category A is aspherical. Then the functor i∗: S→ A-Set preserves and reflects
weak equivalences.

Proof. The functors p∗ preserves and reflects weak equivalences by Lemma 2.10.
Now argue as in the proof of Corollary 2.12.
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Here is a source of local test categories:

Lemma 2.15.
1) Suppose that A is a local test category and that X is an A-set. The category

iAX is a local test category.

2) The category of iAX-sets is equivalent to the category A-Set/X of A-set mor-
phisms Y → X over X.

Proof. Suppose that σ: ∆a → X is an object of iAX. Then there is an isomorphism
of categories

iAX/σ ∼= A/a
by the Yoneda Lemma. All categories A/a are weak test categories since A is a local
test category. It follows that iAX is a local test category.

Suppose that Y : (iAX)op → Set is an iAX-set. There is an A-set Ỹ with

Ỹ (a) =
⊔

σ∈X(a)

Y (σ),

and there is plainly an induced A-set morphism πY : Ỹ → X. The assignment Y 7→
πY is functorial in Y . Conversely, if p: Z → X is a morphism of A-sets, then the
assignment σ 7→ p−1(σ) ⊂ Z(a) for σ: ∆a → X defines a presheaf p−1 on iAX. These
two functors are inverse to each other up to isomorphism, so that there is an equiv-
alence of categories

iAX − Set ' A-Set/X.

The following is a relative version of Corollary 2.12:

Corollary 2.16. Suppose that A is a local test category and that Y is an A-set.
Then the functor S→ A-Set defined by X 7→ Y × i∗X preserves weak equivalences.

Proof. Write i∗[A]X = i∗X, where i∗X(a) = hom(B(A/a), X) as in Lemma 2.11.
Then there is an isomorphism

i∗[iAY ]X
∼= Y × i∗[A]X

in the category of A-sets over Y . The functor X 7→ i∗[iAY ]X preserves weak equiva-
lences by Corollary 2.12, since iAY is a local test category by Lemma 2.15.

The object ∆̃σ → Y over Y which corresponds to the iAY -set represented by the
cell σ: ∆a → Y is canonically isomorphic to σ: ∆a → Y . It follows that there is a
natural isomorphism

iiAY (Z → Y ) ∼= iAZ

for all objects Z → Y over Y . In particular, the forgetful functor from A-sets over
Y to A-sets defined by sending the object Z → Y to Z preserves and reflects weak
equivalences.
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3. Cubical sets: basic properties

Simplicial sets are contravariant set-valued functors defined on the category of
∆ of finite sets and order preserving maps, and as such are artifacts of the combi-
natorics of finite sets. Cubical sets are contravariant set-valued functors which are
defined on the “box category” ¤, and as such depend on the combinatorics of the
power sets of finite ordered sets.

Write n = {1, 2, . . . , n}, and let 1n be the n-fold product of copies of the category
1 defined by the ordinal number 1 = {0, 1} of the same name. Write 10 for the
category consisting of one object and one morphism.

Write P(n) for the partially ordered set of subsets of the set n, and observe that
there is an isomorphism of posets

Ωn: 1n ∼=−→ P(n),

which is defined by associating to the n-tuple ε = (ε1, . . . , εn) the subset Ωn(ε) =
{i | εi = 1} of the set n = {1, . . . , n}. The box category ¤ consists of certain poset
maps 1m → 1n. Insofar as every finite totally ordered set A has a unique order-
preserving bijection n→ A, it is convenient to represent box category morphisms
as poset morphisms P(A)→ P(B), where A and B are finite ordered sets.

Suppose that A ⊂ B ⊂ C are subsets of a finite ordered set C. The interval
[A,B] is the subposet of P(C) which consists of all subsets D of C such that
A ⊂ D ⊂ B. Note that there is a canonical poset isomorphism P(B −A)→ [A,B]
which is defined by E 7→ A ∪ E. The composite

P(B −A)
∼=−→ [A,B] ⊂ P(C)

is called a face functor, and is denoted by [A,B].
Suppose that B is a non-empty subset of a finite ordered set C. Then the assign-

ment E 7→ E ∩B defines a poset morphism sB: P(C)→ P(B) which is called a
degeneracy functor. The box category ¤ is the subcategory of the category of all
poset morphisms 1m → 1n which is generated by the face and degeneracy functors.

There is a commutative diagram

P(B −A)
[A,B] //

sE∩(B−A)

²²

P(C)

sE

²²
P((B ∩ E)− (A ∩ E))

[A∩E,B∩E]
// P(E)

which allows one to show that all morphisms of the box category ¤ are composites

P(C) sE−−→ P(E)
[A,A∪E]−−−−−→ P(D).

In fact, such decompositions are unique – the proof is left to the reader.
Every element i of the ordered set C determines two intervals in P(C), namely

[{i}, C] and [∅, C − {i}]. If C has n elements, then [{i}, C] uniquely determines a
functor d(i,1): 1n−1 → 1n, while the interval [∅, C − {i}] determines a functor d(i,0):
1n−1 → 1n. Note that for ε = 0, 1, the corresponding poset map d(i,ε): 1n−1 → 1n
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is defined by

d(i,ε)(γ1, . . . , γn−1) = (γ1, . . . ,
i
ε, . . . , γn−1).

Similarly, every j ∈ C determines a poset map sC−{j}: P(C)→ P(C − {j}).
Write sj: 1n → 1n−1 for the corresponding induced poset map, and note that sj

is the projection which drops the jth entry in the sense that

sj(γ1, . . . , γn) = (γ1, . . . , γj−1, γj+1, . . . , γn).

Write s1: 1→ 10 for the obvious map to the terminal object 10 in the box category
¤.

The standard “co-cubical” identities are easy to derive. In particular, if i < j,
there is a commutative diagram of face functors

1n−2 d(i,ε1)
//

d(j−1,ε2)

²²

1n−1

d(j,ε2)

²²
1n−1

d(i,ε1)
// 1n

(4)

if n > 2. If i = j, there is a diagram

∅ //

²²

1n−1

d(i,1)
²²

1n−1

d(i,0)
// 1n−1

(5)

There are relations
sjsi = sisj+1, if i 6 j. (6)

Similarly,
sjd(j,ε) = 1, (7)

and there are commutative diagrams

1n d(i,ε)
//

sj−1
²²

1n+1

sj

²²
1n−1

d(i,ε)
// 1n

if i < j (8)

and

1n d(i+1,ε)
//

sj

²²

1n+1

sj

²²
1n−1

d(i,ε)
// 1n

if i > j. (9)

A cubical set X is a contravariant set-valued functor X: ¤op → Set. Write Xn =
X(1n), and call this set the set of n-cells of X. A morphism f : X → Y of cubical
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sets is a natural transformation of functors, and we have a category ¤-Set of cubical
sets.

The standard n-cell ¤n is the contravariant functor on the box category ¤
which is represented by 1n. All box category morphisms θ: 1m → 1n induce cubi-
cal set maps θ: ¤m → ¤n in the obvious way. Among these, the cubical set maps
d(i,ε): ¤n−1 → ¤n are called cofaces and the maps sj: ¤n+1 → ¤n are called code-
generacies.

Write Xn = X(1n) for a cubical set X, and say that an element of this set is
an n-cell of X; a cell of X is a member of Xn for some n. If x is an n-cell of X,
represented by the cubical set map x: ¤n → X, then the composite

¤n−1 d(i,ε)

−−−→ ¤n x−→ X

represents the face d(i,ε)(x) of x, while the composite

¤n+1 sj

−→ ¤n x−→ X

represents the degeneracy sj(x). A cell y is said to be degenerate if it has the form
sjx for some cell x; otherwise, it is non-degenerate.

The cell category i¤X for a cubical set X is defined as in Section 2: the objects
of i¤X are the morphisms σ: ¤n → X (equivalently, n-cells of X, as n varies), and
a morphism is a commutative triangle of cubical set morphisms.

The nerve functor restricts to a covariant simplicial set-valued functor ¤→ S
which is defined by 1n 7→ B(1n) = (∆1)×n This functor can be used to define a
cubical singular functor S: S→ ¤-Set, where

S(Y )n = homS((∆1)×n, Y ).

This functor has a left adjoint (called triangulation) X 7→ |X|, where

|X| = lim−→
¤n→X

(∆1)×n.

Here, the colimit is indexed by members of the cell category i¤X.
There are similarly defined realization and singular functors

| |: ¤-Set ¿ Top: S

relating cubical sets and topological spaces, and of course realization is left adjoint
to the singular functor in that context as well.

Example 3.1. Suppose that C is a small category. The cubical nerve B¤(C) is the
cubical set whose n-cells are all functors of the form 1n → C, and whose struc-
ture maps B¤(C)n → B¤(C)m are induced by precomposition with box category
morphisms 1m → 1n. Observe that there is a natural isomorphism

B¤(C) ∼= S(BC),
where BC is the standard nerve for the category C in the category of simplicial sets.

Define the n-skeleton sknX for a cubical set X to be the subcomplex which is
generated by the k-cells Xk for 0 6 k 6 n.
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Lemma 3.2. Suppose that x and y are degenerate n-cells of a cubical set X which
have the same boundary in the sense that d(i,ε)x = d(i,ε)y for all i and ε. Then x = y.

Proof. We shall use the classical cubical set identities arising from the diagrams (4)
to (9).

Suppose that the degenerate cells six and sjy have the same boundary. If i = j,
then x = d(i,0)six = d(i,0)siy = y, and so the cells six and siy coincide. Suppose,
therefore, that i < j.

Then

x = d(i,0)six = d(i,0)sjy = sj−1d(i,0)y,

so that

sjsi(d(i,0)y) = sisj−1(d(i,0)y) = six.

This means that sjsid(i,0)y and sjy have a common boundary, and then one applies
d(j,0) to show that sid(i,0)y = y. Finally, one sees that

six = sisj−1d(i,0)y = sjsid(i,0)y = sjy.

Corollary 3.3. A map f : sknX → Y of cubical sets is completely determined by
the restrictions f : Xk → Yk for 0 6 k 6 n.

Proof. We want to show that the maps f : Xk → Yk extend uniquely to a morphism
f∗: sknX → Y . Suppose that z ∈ sknXn+1. Then z is degenerate, so that z = six
for some x ∈ Xn, and it must be that f∗(z) = sif(x), if the extension exists. Suppose
that z is degenerate in two ways, so that also z = sjy for some i < j and y ∈ Xn.
Then the cells sif(x) and sjf(y) have a common boundary, and therefore coincide
by Lemma 3.2.

It follows that there are pushout diagrams
⊔

x∈NXn
∂¤n //

²²

skn−1X

²²⊔
x∈NXn

¤n // sknX

where NXn denotes the non-degenerate part of Xn, and ∂¤n = skn−1 ¤n. In other
words, there is a good notion of skeletal decomposition for cubical sets.

The object ∂¤n is the subcomplex of the standard n-cell which is generated by
the faces d(i,ε): ¤n−1 → ¤n. It follows from the fact that diagram (4) is a pullback
in the box category that there is a coequalizer

⊔

(ε1,ε2)
06i<j6n

¤n−2 ⇒
⊔

(i,ε)

¤n−1 → ∂¤n

where εi ∈ {0, 1}.
Example 3.4. The cubical set un

(i,ε) is the subobject of ¤n which is generated by all
faces d(j,γ): ¤n−1 ⊂ ¤n except for d(i,ε): ¤n−1 → ¤n. From diagram (4), it again
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follows that there is a coequalizer diagram
⊔

¤n−2 ⇒
⊔

(j,γ)6=(i,ε)

¤n−1 → un
(ε,i)

where the first disjoint union is indexed over all pairs (j1, γ1), (j2, γ2) with 0 6 j1 <
j2 6 n and (jk, γk) 6= (i, ε), k = 1, 2.

Remark 3.5. The triangulation functor | |: ¤-Set→ S does not preserve products.
The product ¤1 ×¤1 has two non-degenerate 2-cells given by the identity and twist
isomorphism 1× 1→ 1× 1, and it has an “extra” non-degenerate 1-cell which cor-
responds to the diagonal map 1→ 1× 1. It follows that |¤1 ×¤1| has the homotopy
type of the wedge of circles S2 ∨ S1.

Lemma 3.6. Suppose that x, y: ¤n → X are n-cells of a cubical set X such that
the induced simplicial set maps x∗, y∗: |¤n| → |X| coincide. Then x = y.

Proof. The inclusion sknX ⊂ X induces a monomorphism | sknX| → |X|, so that
we can assume that X = sknX. We may further suppose that X is generated by
the subcomplex skn−1X together with the n-cells x and y.

The proof is by induction on n. The assumption that x∗ = y∗ therefore guarantees
that x and y have the same boundary in the sense that d(i,ε)x = d(i,ε)y for all i and
ε. Thus, if x and y are both degenerate, then x = y by Lemma 3.2.

Suppose that y is non-degenerate and is distinct from x. WriteX0 for the smallest
subcomplex of X containing skn−1X and x, and let i: X0 → X be the inclusion of
the subcomplex X0 in X. There is a pushout diagram

∂¤n //

²²

X0

²²
¤n

y
// X

On applying the triangulation functor, the assumption that x∗ = y∗ implies that
the dotted arrow lifting exists in the solid arrow pushout diagram

|∂¤n| //

²²

|X0|
i∗²²

|¤n|
y∗

//

x∗
;;

|X|

making it commute. The map i∗ is an inclusion which is not surjective, since the
solid arrow diagram is a pushout. But the existence of the dotted arrow forces i∗ to
be surjective. This is a contradiction, so x = y.

Corollary 3.7. Suppose that f : X → Y is a map of cubical sets such that the
induced simplicial set map f∗: |X| → |Y | is a monomorphism. Then f is a
monomorphism of cubical sets.

Corollary 3.8. Suppose that f : X → Y is a map of cubical sets such that the
induced simplicial set map f∗: |X| → |Y | is an isomorphism. Then f is an iso-
morphism of cubical sets.
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Proof. The map f is a monomorphism by Corollary 3.7. If Y has non-degenerate
cells outside of X, then |Y | has non-degenerate simplices outside of |X|.

The problem with realizations of products which is displayed in Remark 3.5
can be fixed (following Kan [14]) as follows. The object 1n+m is not the product
1n × 1m in the box category, but there is nevertheless a functor ×̃: ¤×¤→ ¤
which is defined on objects by

1n×̃1m = 1n+m,

(equivalently, P(A)×̃P(B) = P(A tB)) and is defined on morphisms by θ×̃γ =
θ × γ.

If X and Y are cubical sets, define

X ⊗ Y = lim−→
σ:¤n→X, τ:¤m→Y

¤n+m.

Here, if the morphisms θ: 1n → 1r and γ: 1m → 1s define morphisms θ: σ → σ′ and
γ: τ → τ ′ in the box categories for X and Y , respectively, then the corresponding
map 1n+m → 1r+s is induced by θ×̃γ.

There is an isomorphism

K ⊗¤n ∼= lim−→
¤m→K

¤m+n.

It follows that the functor K 7→ K ⊗¤n has a right adjoint Z 7→ Z(n), where Z(n)
r =

Zr+n and has cubical structure map γ∗: Z(n)
r → Z

(n)
s defined by (γ×̃1)∗: Zr+n →

Zs+n.
The functor K 7→ K ⊗¤n therefore preserves colimits. Thus, if K ⊂ ¤n is the

subcomplex which is generated by some list of faces d(i,ε): ¤n−1 → ¤n, then K ⊗
¤m is isomorphic to the subcomplex of ¤n+m which is generated by the list of faces
d(i,ε): ¤n+m−1 → ¤n+m. A similar statement holds for all objects ¤n ⊗ L.

It follows that the induced maps ∂¤n ⊗¤m → ¤n ⊗¤m and ¤n ⊗ ∂¤m → ¤n ⊗
¤m are monomorphisms of cubical sets, and there are isomorphisms

(∂¤n ⊗¤m) ∪ (¤n ⊗ ∂¤m) ∼= ∂¤n+m

(un
(i,ε) ⊗¤m) ∪ (¤n ⊗ ∂¤m) ∼= un+m

(i,ε)

(∂¤n ⊗¤m) ∪ (¤n ⊗ um
(i,ε)) ∼= un+m

(n+i,ε).

(10)

There are isomorphisms

|X ⊗ Y | ∼= lim−→
¤n→X, ¤m→Y

|¤n+m|

∼= lim−→
¤n→X, ¤m→Y

|¤n| × |¤m|

∼= |X| × |Y |.

(11)

It is an easy consequence that the functorX 7→ X ⊗ Y preserves monomorphisms
of cubical sets. To see this, use the natural isomorphism (11) in conjunction with
Corollary 3.7.
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Lemma 3.9. Suppose that A→ B and K → L are monomorphisms of cubical sets.
Then the induced diagram

A⊗K //

²²

B ⊗K
²²

A⊗ L // B ⊗ L

(12)

is a pushout and a pullback.

Proof. The induced diagram of triangulations is isomorphic to the diagram

|A| × |K| //

²²

|B| × |K|
²²

|A| × |L| // |B| × |L|

which is a pushout. The triangulation functor K 7→ |K| preserves pushouts. It
follows that the cubical set map

(A⊗ L) ∪ (B ⊗K)→ B ⊗ L
induces an isomorphism of realizations, and is therefore an isomorphism by
Corollary 3.8.

We have thus proved that diagram (12) is a pushout in the category of cubical
sets. It is a diagram of monomorphisms by the observation preceding the statement
of the lemma, and must therefore be a pullback by elementary set theory.

The canonical forgetful functor π: i¤X → ¤ for a cubical set X specializes to a
forgetful functor

π: i¤B¤(C)→ ¤,

where B¤C is the cubical nerve for a small category C — see Example 3.1.

Lemma 3.10. Suppose that C has a terminal object t. Then the functor

i¤B¤(C)→ ¤

is aspherical. In particular, the cubical set B¤(C) is aspherical, and the category
i¤B¤(C) is weakly equivalent to a point.

Proof. We must show that all categories i¤(B¤(C)×¤n) are aspherical (see (1)).
The objects of the category i¤(B¤(C)×¤n) consist of pairs of functors

(f : 1k → C,1k σ−→ 1n),

and morphisms are defined in the obvious way.
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The category C has terminal object t, so there are natural diagrams

1k

d(k+1,0)
²²

f

""DD
DD

DD

1k+1
f∗ // C

1k

d(k+1,1)

OO

t

<<zzzzzz

Suppose that s: 1k+1 → 1k is the degeneracy defined by projection onto the first k
factors. Then the assignment

(f : 1k → C,1k σ−→ 1n) 7→ (f∗, σ · s)
defines a functor h: i¤(B¤(C)×¤n)→ i¤(B¤(C)×¤n), and the coface maps
d(k+1,0) define a homotopy d(k+1,0): (f, σ)→(f∗, σ · s) from the identity on i¤B¤(C)
to h. The coface maps d(k+1,1) define a homotopy from the endofunctor (f, σ) 7→
(t, σ) to the functor h. It follows that the category i¤(B¤C ×¤n) is equivalent to
i¤¤n, and is therefore aspherical.

Lemma 3.11. The box category ¤ is a test category.

Proof. Suppose that D is a category with terminal object. By Lemma 2.3, in order
to show that ¤ is a local test category, we must show that all cell categories
i¤(i∗¤D ×¤n) are aspherical.

Every poset 1n has a terminal object tn = (1, . . . , 1). There is a functor ¤/1n →
1n which is defined by sending an object θ: 1m → 1n to θ(tm). This functor is
natural in morphisms of the box category ¤, and induces a cubical set map α:
B¤C → i∗¤C which is natural in small categories C.

We know from Lemma 3.10 that the cubical set B¤(1) is aspherical.
Let h: D × 1→ D be the contracting homotopy for the category D, and consider

the induced composite

i∗¤D ×B¤(1) 1×α−−−→ i∗¤D × i∗¤(1) ∼= i∗¤(D × 1)→ i∗¤(D).

Then the projection i∗¤D ×B¤(1)→ i∗¤D is aspherical since B¤(1) is aspherical.
The displayed homotopy also implies that the projection i∗¤D ×¤n → ¤n induces
a weak equivalence i¤(i∗¤D ×¤n)→ i¤¤n.

Thus, the box category ¤ is a local test category. The category ¤ is also plainly
aspherical because it has a terminal object, so Lemma 2.4 shows that it is a test
category.

Remark 3.12. Lemma 3.11 and its proof are part of a general yoga. Suppose that
i: A → cat is a functor which is defined on a small category A. Then the A-set i∗(C)
is defined for a small category C by a 7→ hom(i(a), C). Suppose that the following
conditions hold:
1) all categories i(a) have terminal objects.
2) if D has a terminal object, then the A-set i∗D is aspherical.
3) the category A is aspherical.
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Then A is a test category. The argument is the same as that given for Lemma 3.11.
This argument appears in the context of the discussion of aspherical functors in

[3]. Note that the cubical nerve B¤C is i∗C for the inclusion functor i: ¤→ cat,
as in Lemma 2.13.

Remark 3.13. Lemma 3.10 implies that B¤1 is aspherical, and the proof of Lemma
3.11 implies that I = i∗¤1 is aspherical, but the cubical set ¤1 is not aspherical by
Remark 3.5 and Lemma 8.7.

4. Fundamental model structures

Suppose throughout this section that A is a small category, and recall that A-Set
denotes the category of A-sets, consisting of functors Aop → Set with natural trans-
formations as morphisms.

The box category ¤ is a monoidal category with multiplication

⊗: ¤×¤→ ¤

induced by the product functor

(1n,1m) 7→ 1n+m,

and with unit object the terminal object ∗ = 10. Note that a monoidal functor
¤→M taking values in a monoidal category M is completely determined by the
image of the maps 0, 1: ∗ → 1 in M , so that monoidal functors ¤→M can be
identified with interval objects in M .

An interval theory in the category of A-sets is a coherent action

⊗: A− Pre C ×¤→ A-Set

of the box category on the category of A-sets, written as

(X,1n) 7→ X ⊗¤n,

and which is subject to the following conditions:

DH1 The functor X 7→ X ⊗¤1 preserves filtered colimits and monomorphisms.

DH2 For every monomorphism i: X → Y and every coface d(i,ε): ¤n−1 → ¤n, the
square

X ⊗¤n−1
i⊗1 //

1⊗d(i,ε)

²²

Y ⊗¤n−1

1⊗d(i,ε)

²²
X ⊗¤n //

i⊗1
// Y ⊗¤n

is a pullback.
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DH3 For 1 6 i 6 n, the square

∅ //

²²

X ⊗¤n−1

d(i,0)

²²
X ⊗¤n−1

d(i,1)
// X ⊗¤n

is a pullback.

Example 4.1. If I is any A-set equipped with a monomorphism (d0, d1): ∗ t ∗ → I,
then the assignment (X,1n) 7→ X × I×n defines a coherent action

I: A-Set×¤→ A-Set

of the box category on the category of A-sets, and this action satisfies the con-
ditions DH1–DH3. Note that DH3 follows from the condition that (d0, d1) is a
monomorphism.

Example 4.2. The assignment (X,Y ) 7→ X ⊗ Y defines a monoidal structure on the
category of cubical sets, and this monoidal structure induces a coherent action

⊗: ¤-Set×¤→ ¤-Set

of the box category on the category of cubical sets, given by (X,1n) 7→ X ⊗¤n by
the obvious restriction of structure.

The axiom DH1 is a consequence of the fact that the functor X ⊗¤n has a right
adjoint and and the separate knowledge (see the paragraph before the statement
of Lemma 3.9) that it preserves monomorphisms. DH2 is a consequence of Lemma
3.9, while DH3 is most effectively proved by a separate triangulation argument, as
in the proof of Lemma 3.9.

Suppose that X is an A-set, and write

X ⊗K = lim−→
¤n→K

X ⊗¤n.

Define a cubical function space hom¤(X,Y ) for A-sets X and Y by

hom¤(X,Y )n = hom(X ⊗¤n, Y ).

Then there is a natural bijection

hom(X ⊗K,Y ) ∼= hom(K, hom¤(X,Y ))

relating morphisms in A-sets to cubical set homomorphisms. It follows that the
assignment K 7→ X ⊗K preserves colimits in cubical sets K.

Lemma 4.3. The cubical set inclusion ∂¤n ⊂ ¤n induces a natural inclusion

X ⊗ ∂¤n → X ⊗¤n.
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Proof. The axiom DH2 implies that all squares

X ⊗¤n−2
1⊗d(i,ε1)

//

1⊗d(j−1,ε2)

²²

X ⊗¤n−1

1⊗d(j,ε2)

²²
X ⊗¤n−1

1⊗d(i,ε1)
// X ⊗¤n

are pullbacks for i < j. In effect,this diagram is isomorphic to the diagram

(X ⊗¤j−2)⊗¤n−j
(1⊗d(i,ε2))⊗1//

1⊗d(1,ε2)

²²

(X ⊗¤j−1)⊗¤n−j

1⊗d(1,ε2)

²²
(X ⊗¤j−2)⊗¤n−j+1

(1⊗d(i,ε1))⊗1

// (X ⊗¤j−1)⊗¤n−j+1

In the presence of axiom DH3 (which takes care of the intersections of faces not
covered by instances of the square above), it follows that the canonical map

X ⊗ ∂¤n → ∪(i,ε) X ⊗¤n−1

is an isomorphism, by comparison of coverings.

It follows that any cubical set inclusion K ⊂ L induces a monomorphism X ⊗
K → X ⊗ L.

Remark 4.4. The axiom DH2 implies that if i: X → Y is an inclusion of A-sets,
then the diagram

X ⊗ ∂¤n //

i⊗1
²²

X ⊗¤n

i⊗1
²²

Y ⊗ ∂¤n // Y ⊗¤n

is a pullback. The morphisms i⊗ 1 are monomorphisms by DH1, and it follows
that the canonical map

(Y ⊗ ∂¤n) ∪X⊗∂¤n (X ⊗¤n)→ Y ⊗¤n

is a monomorphism. By attaching cells, one can then show that if j: K → L is a
monomorphism of cubical sets, then the induced map

(Y ⊗K) ∪(X⊗K) (X ⊗ L)→ Y ⊗ L
is a monomorphism, as is any map i⊗ 1: X ⊗ L→ Y ⊗ L. A set theoretic argument
finally shows that the diagram

X ⊗K 1⊗j //

i⊗1
²²

X ⊗ L
i⊗1

²²
Y ⊗K

1⊗j
// Y ⊗ L
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is a pullback, and that the map

(Y ⊗K) ∪(X⊗K) (X ⊗ L)→ (Y ⊗K) ∪ (X ⊗ L)

is an isomorphism onto a union of subobjects of Y ⊗ L.

We shall also need the following result.

Lemma 4.5. There is a cardinal number ζ such that |X ⊗¤n| < λ if |X| < λ, for
all cardinals λ > ζ.

Proof. Choose an infinite cardinal β such that the cardinality of the set of mor-
phisms of A is bounded above by β. The collection of isomorphism classes of all
β-bounded A-sets forms a set. It follows that we can choose a cardinal ζ such that
|A⊗¤n| < ζ for all β-bounded objects A.

Choose a cardinal λ > ζ, and suppose that X is an A-set such that |X| < λ.
Suppose that {x1, x2, . . .} indexed by γ < λ is a well ordering of the elements xi

appearing in all sections ofX. ThenX is a filtered colimit of the β-bounded subcom-
plexes 〈xi1 , xi2 , . . . , xik

〉 which are generated by the finite subsets of the elements
xi, and there are at most λ such subcomplexes. Then X ⊗¤n is a filtered colimit
of the subcomplexes 〈xi1 , xi2 , . . . , xik

〉 ⊗¤n by DH1, and each of these objects is
λ-bounded. It follows that X ⊗¤n is λ-bounded.

Suppose that S is a set of monomorphisms of A-sets. The set S can be empty.
Define the class of anodyne (⊗, S)-cofibrations (or just anodyne cofibrations) in

the category of A-sets to be the saturation of the set consisting of all inclusions

(Y ⊗¤n) ∪ (∆a ⊗ un
(i,ε))→ ∆a ⊗¤n (13)

arising from all subobjects Y ⊂ ∆a, together with all inclusions

(A⊗¤n) ∪ (B ⊗ ∂¤n)→ B ⊗¤n (14)

arising from all monomorphisms f : A→ B in the set S.
The set Λ(⊗, S) consisting of all maps of the form (13) and all maps of the form

(14) is a set of generators for the class of (⊗, S)-anodyne cofibrations.
Note that condition (13) implies that any inclusion C → D of A-sets induces an

anodyne cofibration

(C ⊗¤n) ∪ (D ⊗ un
(i,ε))→ D ⊗¤n. (15)

Lemma 4.6. If j: C → D is an anodyne cofibration, then the induced map

(D ⊗ ∂¤1) ∪(C⊗∂¤1) (C ⊗¤1)→ D ⊗¤1

is an anodyne cofibration.

Proof. It is enough to prove the statement of the lemma for maps of the form (13)
and (14).
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The map

(((Y ⊗¤n) ∪ (∆a ⊗ un
(i,ε)))⊗¤1) ∪ ((∆a ⊗¤n)⊗ ∂¤1)→ (∆a ⊗¤n)⊗¤1

can be identified up to isomorphism with the map

(Y ⊗ (¤n ⊗¤1)) ∪ (∆a ⊗ ((un
(i,ε) ⊗¤1) ∪ (¤n ⊗ ∂¤1)))→ ∆a ⊗ (¤n ⊗¤1)

which is isomorphic to the map

(Y ⊗¤n+1) ∪ (∆a ⊗ un+1
(i,ε))→ ∆a ⊗¤n+1

by a cubical set isomorphism (10).
Similarly, the map

(((A⊗¤n) ∪ (B ⊗ ∂¤n))⊗¤1) ∪ ((B ⊗¤n)⊗ ∂¤1)→ (B ⊗¤n)⊗¤1

is isomorphic to the map

(A⊗¤n+1) ∪ (B ⊗ ∂¤n+1)→ B ⊗¤n+1.

Say that an A-set map p: X → Y is injective if it has the right lifting property
with respect to all anodyne cofibrations. An A-set X is said to be injective if the
map X → ∗ is injective.

A naive homotopy is a map X ⊗¤1 → Y . Note that naive homotopy of maps
f : X → Z is an equivalence relation if Z is injective, by extension arguments along
anodyne cofibrations of the form X ⊗ un

(i,ε) → X ⊗¤n.
Say that a map g: X → Y is an (⊗, S)-equivalence (or just an equivalence) if it

induces an isomorphism

g∗: π(Y,Z)
∼=−→ π(X,Z)

in naive homotopy classes for all injective objects Z.
A cofibration is a monomorphism. An (⊗, S)-fibration (or a fibration) is a map

which has the right lifting property with respect to all maps which are simultane-
ously cofibrations and (⊗, S)-equivalences, a.k.a. trivial cofibrations.

Lemma 4.7. All anodyne cofibrations are (⊗, S)-equivalences.

Proof. If i: C → D is an anodyne cofibration, and f : C → Z is a map, where Z is
injective, then the dotted lifting exists in the diagram

C
f //

i ²²

Z

D

>>

so that the function i∗: π(D,Z)→ π(C,Z) is surjective. If g1, g2: D → Z are maps
which become homotopic when restricted to C, then g1, g2 and the homotopy define
a map

(C ⊗¤1) ∪ (D ⊗ ∂¤1)→ Z

which extends to a map D ⊗¤1 → Z by Lemma 4.6, so g1 and g2 are homotopic.
Thus, the function i∗ is injective as well as surjective.
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Here is a general set of tricks that applies to any set T of monomorphisms
g: C → D of A-sets.

Suppose that α is a cardinal such that α > ζ, where ζ is a cardinal as in Lemma 4.5.
Suppose further that α > |A|. Suppose that α > |D| for all morphisms g: C → D
appearing in the set T and that α > |T |. Choose a cardinal λ such that λ > 2α.

Suppose that f : X → Y is a morphism of A-sets. Define a functorial system of
factorizations

X
is //

f ##FFF
FFF

F Es(f)
fs

²²
Y

of the map f indexed on all ordinal numbers s < λ as follows:

1) Given the factorization (fs, is) define the factorization (fs+1, is+1) by requiring
that the diagram

⊔
D C

αD //

g∗
²²

Es(f)

²²⊔
DD // Es+1(f)

is a pushout, where the disjoint union is indexed over all diagrams D of the form

C
αD //

g
²²

Es(f)
fs

²²
D

βD

// Y

with g: C → D in the set T . Then the map is+1 is the composite

X
is−→ Es(f)

g∗−→ Es+1(f)

2) If s is a limit ordinal, set Es(f) = lim−→t<s
Es(f).

Set Eλ(f) = lim−→s<λ
Es(f). Then there is an induced factorization

X
iλ //

f ##GGG
GGG

G Eλ(f)
fλ

²²
Y

of the map f . Then iλ is a cofibration. The map fλ has the right lifting property
with respect to the maps g: C → D in T by a standard argument, since any map
α: C → Eλ(f) must factor through some Es(f) by the choice of cardinal λ.

Write L(X) = Eλ(c) for the result of this construction when applied to the canon-
ical map c: X → ∗. Then we have the following:
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Lemma 4.8.

1) Suppose that t 7→ Xt is a diagram of cofibrations indexed by the cardinal ω > 2α.
Then the natural map

lim−→
t<ω

L(Xt)→ L(lim−→
t<ω

Xt)

is an isomorphism.
2) The functor X 7→ L(X) preserves cofibrations.
3) Suppose that γ is a cardinal with γ > α, and let Fγ(X) denote the filtered system

of subobjects of X having cardinality less than γ. Then the natural map

lim−→
Y ∈Fγ(X)

L(Y )→ L(X)

is an isomorphism.
4) If |X| < 2ω, where ω > λ, then |L(X)| < 2ω.
5) Suppose that U, V are subobjects of an A-set X. Then the natural map

L(U ∩ V )→ L(U) ∩ L(V )

is an isomorphism.

Proof. It suffices to prove all of these statements for the functor X → E1(X). Note
as well that E1(X) is defined by the pushout diagram

⊔
g∈T C × hom(C,X) //

²²

X

²²⊔
g∈T D × hom(C,X) // E1(X)

Statements 1) and 3) follow, respectively, from the fact that the maps

lim−→
t<ω

hom(C,Xt)→ hom(C, lim−→
t<ω

Xt)

and
lim−→

Y ∈Fγ(X)

hom(C, Y )→ hom(C, lim−→
Y ∈Fγ(X)

Y ) = hom(C,X)

are bijections on account of the size of C relative to the chosen cardinals.
Observe that, in sections,

E1(X) =


 ⊔

g∈T

(D − C)× hom(C,X)


 tX (16)

and this construction plainly preserves monomorphisms, giving statement 2). It also
follows that, in sections,

|E1(X)| < α · (2ω)α + 2ω = 2ω,

giving statement 4). Statement 5) is also a consequence of the decomposition given
in equation (16).
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Now restrict to the special case where T is the generating set Λ(⊗, S), and make
the construction X 7→ L(X) relative to this choice of T . Then for every A-set X,
the object LX is injective, and every map f : X → Y has a functorial factorization

X
i //

f ÃÃA
AA

AA
Z

q
²²
Y

where the map q is injective and i is anodyne. The map i is therefore a cofibration
which has the left lifting property with respect to all injective maps. The functor
X 7→ LX further satisfies all of the properties described by Lemma 4.8.

Lemma 4.9. Suppose given a diagram

X

i²²
A // Y

of cofibrations of A-sets such that i is an equivalence and |A| < 2λ. Then there is a
subobject B ⊂ Y with A ⊂ B such that |B| < 2λ and B ∩X → B is an equivalence.

Proof. Observe that since i∗: LX → LY is an equivalence, it must be a naive
homotopy equivalence since LX and LY are injective. Thus, there is a morphism
σ: LY → LX, and homotopies σ · i∗ ' 1 and i∗ · σ ' 1. Let h: LX ⊗¤1 → LX be
a homotopy from σ · i∗ to the identity on LX. Then the map σ and the homotopy
h together determine the map (σ, h) in the diagram

(LY ⊗¤0) ∪ (LX ⊗¤1)
(σ,h) //

²²

LX

LY ⊗¤1

H

66

which extends to the homotopy H as indicated. Thus, there is a map σ′: LY → LX
such that σ′ · i∗ = 1 and

i∗ · σ′ ' i∗ · σ ' 1.

It follows that we can assume that σ · i∗ = 1. Let K: LY ⊗¤1 → LY be a homotopy
from i∗ · σ to the identity.

Suppose that Ai is a subobject of Y such that |Ai| < 2λ. Then |LAi ⊗¤1| < 2λ

by Lemma 4.5, so there is a 2λ-bounded subobject Ai+1 of Y such that Ai ⊂ Ai+1

and such that the composite

LAi ⊗¤1 → LY ⊗¤1 K−→ LY
factors (uniquely) through LAi+1 in the sense that there is a commutative diagram

LAi ⊗¤1 //

²²

LAi+1

²²
LY ⊗¤1

K
// LY
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This is the successor ordinal step in the construction of a system i 7→ Ai with i < λ
(recall that λ > 2α) and A = A0. Let B = lim−→i

Ai. Then, by construction, B is
2λ-bounded and the restriction of the homotopy K to LB ⊗¤1 factors through the
inclusion j: LB → LY .

The diagram

L(B ∩X)
j̃ //

ĩ ²²

LX
i∗

²²
LB

j
// LY

is a pullback, and i∗σ(LB) ⊂ LB. It follows that σ restricts to a map σ′: LB →
L(B ∩X). Then

j̃σ′ĩ = σjĩ = σi∗j̃ = j̃

so that σ′ĩ = 1. Finally, jĩσ′ = i∗σj by construction, so the restricted homotopy
LB ⊗¤1 → LB is a homotopy from ĩσ′ to the identity. In particular, the induced
map B ∩X → B is an equivalence.

We need to know that the class of trivial cofibrations is closed under pushout,
and for that we need to prove the following:

Lemma 4.10. Suppose given a diagram

C
f,g //

i ²²

E

D

where i is a cofibration, and suppose that there is a naive homotopy h: C ⊗¤1 → E
from f to g. Then the induced map g∗: D → D ∪g E is an equivalence if and only
if f∗: D → D ∪f E is an equivalence.

Proof. There are pushout diagrams

C
d0 //

i
²²

C ⊗¤1 h //

i∗²²

E

i∗²²
D

d0∗
// D ∪C (C ⊗¤1)

h′
//

j
²²

D ∪f E

j∗²²
D ⊗¤1

h∗
// (D ⊗¤1) ∪h E

where the top composite is f . The maps d0∗, j and j∗ are anodyne cofibrations. Thus
f∗ = h′ · d0∗ is equivalent to h′, and h′ is equivalent to h∗, so f∗ is an equivalence if
and only if h∗ is an equivalence.

A similar analysis holds for the induced map g∗: D → D ∪g E. Thus f∗ is an
equivalence if and only if g∗ is an equivalence.
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Lemma 4.11. Suppose that i: C → D is a trivial cofibration. Then the cofibration

(C ⊗¤1) ∪ (D ⊗ ∂¤1)→ D ⊗¤1

is an equivalence.

Proof. Consider the diagram

C ⊗ ∂¤1 //

²²

D ⊗ ∂¤1 //

²²

LD ⊗ ∂¤1

²²
C ⊗¤1 // D ⊗¤1 // LD ⊗¤1

Then there is an induced diagram

(C ⊗¤1) ∪ (D ⊗ ∂¤1) //

²²

(C ⊗¤1) ∪ (LD ⊗ ∂¤1)

²²
D ⊗¤1 // LD ⊗¤1

in which the horizontal maps are anodyne extensions, and hence equivalences.
There is a factorization

C
i′ //

i ÃÃB
BB

BB
D′

p
²²
D

where i′ is anodyne and p is both injective and an equivalence. In the induced
diagram

(C ⊗¤1) ∪ (LD′ ⊗ ∂¤1) //

²²

(C ⊗¤1) ∪ (LD ⊗ ∂¤1)

²²
LD′ ⊗¤1 // LD ⊗¤1

the top horizontal map is induced by the homotopy equivalence

LD′ ⊗ ∂¤1 → LD ⊗ ∂¤1,

and is therefore an equivalence by Lemma 4.10. The bottom horizontal map is also a
homotopy equivalence. The left-hand vertical map is an equivalence by comparison
with the map

(C ⊗¤1) ∪ (D′ ⊗ ∂¤1)→ D′ ⊗¤1

and Lemma 4.6.

Lemma 4.12. The class of trivial cofibrations is closed under pushout.

Proof. First of all, if j: C → D is a cofibration and an equivalence, then every map
α: C → Z taking values in an injective object Z extends to a map D → Z. In effect,
there is a homotopy h: C ⊗¤1 → Z from α to a map β · j for some map β: D → Z.
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Then the lifting H exists in the diagram

(C ⊗¤1) ∪ (D ⊗ {1}) (h,β) //

²²

Z

D ⊗¤1

H

77

since the vertical map is an anodyne cofibration, so α extends to the morphism
H|D⊗{0}.

Suppose that the diagram

C //

j
²²

C ′

j′²²
D // D′

is a pushout, where j is a trivial cofibration. Suppose that the A-set Z is injective.
Then every map α′: C ′ → Z extends to a map β′: D′ → Z since the diagram is a
pushout and j has this extension property. The diagram

(C ⊗¤1) ∪ (D ⊗ ∂¤1) //

²²

(C ′ ⊗¤1) ∪ (D′ ⊗ ∂¤1)

²²
D ⊗¤1 // D′ ⊗¤1

is a pushout. The left-hand vertical map is a trivial cofibration by Lemma 4.11
and therefore has the left lifting property with respect to the map Z → ∗ by the
argument above.

It follows that the induced map

j′∗: π(D′, Z)→ π(C ′, Z)

is a bijection, so that j′ is an equivalence.

Lemma 4.13. Suppose that the map p: X → Y is injective and that the object Y is
injective. Then p has the right lifting property with respect to all trivial cofibrations,
so that p is a fibration.

Proof. Suppose given a diagram

A
α //

i ²²

X
p

²²
B

β
// Y

(17)

where i is a trivial cofibration. Then there is a map θ: B → X such that θ · i = α
since X is injective. The extension h exists in the diagram

(A⊗¤1) ∪ (B ⊗ ∂¤1)
(pαprA,(β,pθ)) //

²²

Y

B ⊗¤1

h

55
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since the vertical map is a trivial cofibration and Y is injective. Here, prA: A⊗¤1 →
A is the map induced by the cubical set map ¤1 → ∗.

In particular, diagram (17) is homotopic to the diagram

A
α //

i ²²

X
p

²²
B

pθ
//

θ
>>

Y

for which the indicated lifting exists, via the diagram

A⊗¤1
αprA //

i×i
²²

X
p

²²
B ⊗¤1

h
// Y

Form the diagram

(A⊗¤1) ∪B (αprA,θ)//

²²

X

p
²²

B ⊗¤1
h

//

66

Y

to show that the required lifting exists for diagram (17).

Corollary 4.14. Every injective object is fibrant, so that the classes of fibrant
objects and injective objects coincide.

Lemma 4.15. Suppose that p: X → Y is a fibration and an equivalence. Then p
has the right lifting property with respect to all cofibrations.

Proof. Suppose, first of all, that Y is injective.
The map p is a naive homotopy equivalence, so there is a map g : Y → X and a

homotopy h : Y ⊗¤1 → Y from p · g to 1Y . The lifting h′ exists in the diagram

Y
g //

d0 ²²

X
p

²²
Y ⊗¤1

h
//

h′
::

Y

since d0 is an anodyne cofibration and p is injective. Let σ = h′ · d1. Then p · σ = 1Y .
The map σ is a trivial cofibration. Thus, the lifting exists in the diagram

(Y ⊗¤1) ∪ (X ⊗ ∂¤1)
(σ·pr,(1X ,σ·p)) //

²²

X

p
²²

X ⊗¤1

H

33

p⊗1
// Y ⊗¤1

pr
// Y
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by Lemma 4.11. It follows that the identity diagram on p: X → Y is homotopic to
the diagram

X
σ·p //

p
²²

X
p

²²
Y

1
//

σ
>>

Y

Thus, any diagram

A //

j
²²

X
p

²²
B // Y

is homotopic to a diagram which admits a lifting. It follows that p has the right
lifting property with respect to all cofibrations.

If Y is not injective, form the diagram

X
j //

p
²²

Z
q

²²
Y

jY

// L(Y )

where j is an anodyne cofibration and q is injective. Then j is an injective model
for X and the map p is an equivalence, so the injective map q is an equivalence.
Then the map q is a fibration by Lemma 4.13, and has the right lifting property
with respect to all cofibrations by the previous paragraphs.

Factorize the map X → Y ×L(Y ) Z as

X
i //

%%LLLLLLL W

π²²
Y ×L(Y ) Z

where π has the right lifting property with respect to all cofibrations and i is a
cofibration. Write q∗ for the induced map Y ×L(Y ) Z → Y . Then the composite
q∗π has the right lifting property with respect to all cofibrations and is therefore
a homotopy equivalence and hence an equivalence. The cofibration i is also an
equivalence, and it follows that the lifting exists in the diagram

X
1X //

i ²²

X
p

²²
Z q∗π

//

>>}}}}}
Y

so that p is a retract of a map which has the right lifting property with respect to
all cofibrations.

Corollary 4.16. A map p: X → Y is a fibration and an equivalence if and only if
it has the right lifting property with respect to all cofibrations.
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Proof. Suppose that p has the right lifting property with respect to all cofibrations.
Then p is a fibration. It is also a homotopy equivalence by a standard argument, so
it is an equivalence.

Theorem 4.17. Suppose that A is a small category. Suppose that the morphism

⊗: A-Set×¤→ A-Set

is an interval theory for the category of A-sets. Suppose that S is a set of monomor-
phisms of A-sets. Then the category A-Set of A-sets and the classes of (⊗, S)-
equivalences, (⊗, S)-fibrations and cofibrations together satisfy the axioms for a
closed model category.

Proof. Corollary 4.16 and a small object argument based on all inclusions Y ⊂ ∆a

together imply that every map f : X → Y has a factorization

X
f //

i ¿¿8
88

8 Y

W

p

CC§§§§

where i is a cofibration and p is a fibration and an equivalence.
Lemmas 4.9 and 4.12 together imply that there is a set of trivial cofibrations

A→ B which generates the class of all trivial cofibrations. It follows that every
map f : X → Y has a factorization

X
f //

j ¾¾6
66

6 Y

Z

q

DD©©©©

where j is a trivial cofibration and p is a fibration.
We have therefore verified the factorization axiom CM5. The lifting axiom CM4

is a consequence of Corollary 4.16. All other axioms are trivial.

Theorem 4.18. Suppose that A is a small category. Suppose that the interval the-
ory

⊗: A-Set×¤→ A-Set

is defined by an interval I in the sense that

Z ⊗¤n = Z × I×n.

Suppose further that all cofibrations in the set S pull back to weak equivalences
along all fibrations p: X → Y with Y fibrant. Then the corresponding (⊗, S)-model
structure on the category of A-sets is proper.

Proof. Write W for the class of all maps f : U → V such that the induced map f∗
is an equivalence in all diagrams

U ×Y X
f∗ //

²²

V ×Y X //

²²

X
p

²²
U

f
// V // Y
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for all fibrations p with Y fibrant. The class includes all projections

K ⊗¤n = K × I×n → K.

The class of cofibrations in W is closed under pushout, and an iterated pushout
argument therefore implies that all projections K ⊗ un

(i,ε) → K ⊗¤n are members
of W. It follows that all generating anodyne cofibrations

(Y ⊗¤n) ∪ (∆a ⊗ un
(i,ε))→ ∆a ⊗¤n

are in W.
All maps f : A→ B in the set S are in W by assumption. It follows by induction

on n using comparisons of pushout diagrams

C ⊗ ∂¤n−1 //

²²

C ⊗ un
(i,ε)

²²
C ⊗¤n−1 // C ⊗ ∂¤n

that all morphisms f ⊗ 1: A⊗ ∂¤n → B ⊗ ∂¤n are in W, and hence that all mor-
phisms f ⊗ 1: A⊗K → B ⊗K are in W for all cofibrations f ∈ S.

The class W is closed under retractions and transfinite compositions as well as
pushout, so all anodyne cofibrations are in W.

Suppose that p: X → Y is a fibration with Y fibrant, and consider a diagram

X
p

²²
A

i
// B

β
// Y

where i is a trivial cofibration. Then there is a diagram

X
p

²²
A

i //

jA ²²

B
β //

jB ²²

Y

L(B)
r

// L(A)
i∗

// L(B)

<<yyyyyy

where jA and jB are anodyne cofibrations, and i∗ is a section of a homotopy equiv-
alence r: L(B)→ L(A). To show that i pulls back to an equivalence along p, it
suffices to show that i∗ pulls back to an equivalence along p. But i∗r is homotopic
to a map which pulls back to an equivalence along p and ri = 1, so i∗ pulls back
to an equivalence along p; the point is that r must pull back to a weak equivalence
along p, so that i∗ pulls back to a weak equivalence.

We have shown that all trivial cofibrations pull back to weak equivalences along
all fibrations p: X → Y for which Y is fibrant. Trivial cofibrations also pull back to
weak equivalences along all trivial fibrations. An arbitrary fibration q: Z →W is
a retract of a fibration q′: V →W having the property that all trivial cofibrations
pull back to weak equivalences along q′.
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This follows from the usual argument: form the diagram

Z
j //

q
²²

W ′
p

²²
W

jW

// LW

where jW and j′ are anodyne cofibrations, LW is fibrant and p is a fibration (see
Lemma 4.13). Then the induced map θ: Z →W ×LW W ′ is a weak equivalence since
the map jW∗: W ×LW W ′ →W ′ is a weak equivalence by the previous paragraphs.
The map θ has a factorization

Z
i //

θ &&MMMM
MMM

M V

π
²²

W ×LW W ′

where i is a trivial cofibration and π is a trivial fibration. Set q′ = p∗ · π, where
p∗: W ×LW W ′ →W . Then all trivial cofibrations pull back to weak equivalences
along q′, and q is a retract of q′ since the lifting exists in the diagram

Z
1 //

i ²²

Z
q

²²
V ′ p∗π

//

==

W

Every equivalence f : X → Y has a factorization f = q · j, where q is a trivial
fibration and j is a trivial cofibration. It follows that every equivalence pulls back
to an equivalence along all fibrations.

We shall also commonly say that the (⊗, S)-model structure of Theorem 4.18,
which is defined by an interval I, is the (I, S) model structure.

Example 4.19. Suppose that A = C ×∆, where C is a small Grothendieck site and
∆ is the ordinal number category. Then the category of A-sets is the category
s Pre(C) of simplicial presheaves on C, which is well known [7] to have a cofibrantly
generated simplicial model structure for which the weak equivalences are the local
weak equivalences and the cofibrations are the monomorphisms. Pick a generating
set S of trivial cofibrations for this theory. Let ∆1 denote the interval theory associ-
ated to the constant simplicial presheaf on the simplicial set ∆1 with the inclusions
of its vertices.

The associated (∆1, S)-model stucture is the standard model structure on
s Pre(C). In effect, every injective object for this theory is globally fibrant in the
usual sense, and the injective model construction j: X → LX is a local weak equiv-
alence as well as a cofibration. A map f : X → Y of simplicial presheaves is a local
weak equivalence if and only if the induced map LX → LY of fibrant models is a
naive homotopy equivalence, and this is equivalent to f being a (∆1, S)-equivalence.

Example 4.20. If A = ∆ (C = ∗ in the previous example), then the category of
A-sets is the category S of simplicial sets, which has a standard definition of weak
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equivalence. The generating set S of trivial cofibrations can be taken to be the set of
inclusions Λn

k ⊂ ∆n, and the interval is ∆1 with the inclusion of its two vertices. The
associated (∆1, S)-model structure on the simplicial set category S is the standard
model structure.

Example 4.21. Suppose that C is a small Grothendieck site and f : A→ B is a
monomorphism of simplicial presheaves on C. One formally inverts f in the homo-
topy category [5] by enlarging the generating set S of local trivial cofibrations
(Example 4.19) to also include the set of cofibrations

(Y ×B) ∪ (A× LU∆n)→ B × LU∆n

arising from all inclusions Y ⊂ LU∆n of simplicial presheaves which are freely
generated by simplices in sections, where U ranges over the objects of C. The result-
ing set Sf , together with the interval structure ∆1, gives the (∆1, Sf )-model struc-
ture on s Pre(C). This model structure is the f -local model structure for s Pre(C),
since every injective model for the (∆1, Sf )-model structure is a fibrant model for
the f -local model structure.

It is a consequence of Theorem 4.18 that the f -local structure on s Pre(C) is
proper, if f is a map of the form f : ∗ → I for some simplicial presheaf I.

Example 4.22. Suppose that X is a scheme of finite dimension, and let C be the
site (Sm|X)Nis of smooth schemes over X with the Nisnevich topology [4], [8], [16].
The motivic model structure for the category of simplicial presheaves on the smooth
Nisnevich site (Sm|X)Nis is the f -local theory, where f : ∗ → A1 is some choice of
rational point. It follows from Example 4.21 that the motivic model structure on
s Pre(Sm|X)Nis is the (∆1, Sf )-model structure.

One can take a different approach, by specifying the interval theory A1 to be the
theory arising from the presheaf represented by the X-scheme A1, with the rational
points 0, 1: ∗ → A1 as endpoints. Let S be the generating set of trivial cofibrations
for the ordinary local model structure on s Pre(Sm|X)Nis as in Example 4.19. Then
the (A1, S)-model structure on s Pre(Sm|X)Nis is the motivic model structure on
that category.

The motivic model structure on s Pre(Sm|X)Nis is proper, by the general remark
at the end of Example 4.21.

Example 4.23. The cubical set category ¤-Set corresponds to the case A = ¤.
There is an interval theory

⊗: ¤-Set×¤→ ¤-Set,

which is specified by (X,1n) 7→ X ⊗¤n — see Example 4.2 in Section 3. In this
case, take S = ∅.

The monomorphisms in the category of cubical sets are generated by all inclusions
∂¤n ⊂ ¤n (these take the place of the inclusions Y ⊂ LU∆a for this theory). It
follows that the injective maps in the (⊗, ∅)-model structure for cubical sets are
those maps p: X → Y which have the right lifting property with respect to all
inclusions un

(i,ε) ⊂ ¤n. Every weak equivalence f : X → Y in this model structure
induces a weak equivalence f∗: |X| → |Y | of the associated topological realizations.
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We shall see later (as a consquence of Theorem 8.8) that maps which induce weak
equivalences of topological realizations are exactly the weak equivalences for this
model structure. It will also come from a more sophisticated analysis that the model
structure for cubical sets is proper (Theorem 8.2) and that the fibrations are exactly
the injective maps (Theorem 8.6).

5. Homotopy colimits

Suppose that A is a small category and that

⊗: A-Sets×¤→ A-Sets

is an interval theory on the category of A-sets. Let S be a set of cofibrations of
A-sets.

We shall be primarily interested in (⊗, S)-model structures M on the category
of A-sets which arise from Theorem 4.17, and for which the following assumption
is satisfied:
M1 Every map ∆a → ∗ is a weak equivalence of M.
That said, much of what follows does not depend on this assumption. It will be
specifically invoked as needed, starting in Corollary 5.10.

Recall that the cofibrations in all such model structures M are the inclusions of
A-sets. Here is a general observation that is quite useful, and I would like to thank
Denis-Charles Cisinksi for pointing it out:

Lemma 5.1. Suppose that A is a small category with an interval theory ⊗. Suppose
that S is a set of cofibrations of A-sets, and let C be a small category having a
terminal obect t. Then the map i∗A(C)→ ∗ has the right lifting property with respect
to all cofibrations.

Proof. Suppose that A ⊂ B is an inclusion of A-sets. Then the induced functor
iA(A)→ iA(B) identifies iA(A) with a subcategory of iA(B) which has a very strong
closure property: if τ → σ is a map of iA(B) such that σ is an object of iA(A), then
the morphism τ → σ is in iA(A). It follows that any functor iA(A)→ C can be
extended to a functor iA(B)→ C which sends every object γ outside iA(A) to the
terminal object t.

An obvious consequence of Lemma 5.1 is that every projection mapX × i∗A(C)→
X is a weak equivalence in the (⊗, S)-model structure on the category of A-sets.

We say that the model structure M is regular (or that its class of weak equiva-
lences is regular), if the map

holim−−−→
∆a→X

∆a → X

is a weak equivalence of M for all A-sets X.

Homotopy colimits are constructed internally in the model structure M. This
construction is perhaps not yet widely known and will be summarized here. It is
also related to the “internal nerve” Bh(C) for a small category C in the model
category M.
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If X: I → A-Set is a functor defined on a small category I, then one defines the
homotopy colimit holim−−−→ i∈IX(i) in M by setting

holim−−−→
i∈I

X(i) = lim−→
i

Z(i),

where π: Z → X is a pointwise trivial fibration and Z is a projective cofibrant
I-diagram.

To explain, when we say that a map f : X → Y of I-diagrams has the property
P pointwise, we mean that all constitutent maps f : X(i)→ Y (i) of A-sets have the
property P. In particular, a map π: Z →W is a pointwise trivial fibration if and
only if all maps π: Z(i)→ Y (i) are trivial fibrations of M.

Recall (see, for example, [1]) that, since M is cofibrantly generated, there is a
model structure on the category of I-diagrams I →M for which the weak equiva-
lences and fibrations are defined pointwise. The cofibrations for the theory are called
projective cofibrations, and the model structure on the category of I-diagrams is
called the projective model structure.

Observe that if f : Z → Z ′ is a pointwise weak equivalence of projective cofibrant
I-diagrams, then it has a factorization

Z
f //

i ¾¾7
77

7 Z ′

W

q

BB¦¦¦¦

where i is a trivial projective cofibration and q is left inverse to a trivial projective
cofibration. The colimit functor takes trivial projective cofibrations i to trivial cofi-
brations of M; in effect, the colimit functor is left adjoint to the constant functor
from A-Set to I-diagrams in A-sets, and the constant functor preserves fibrations
and trivial fibrations.

It follows that the homotopy type in M of the homotopy colimit holim−−−→ iX(i) is
independent of the choice of projective cofibrant model π: Z → X. It also follows
that any pointwise weak equivalence f : X → Y of I-diagrams induces a weak
equivalence

f∗: holim−−−→ iX(i)→ holim−−−→ i Y (i)

in M.

Example 5.2. The construction just given specializes to the standard description of
homotopy colimit for simplicial sets, up to natural weak equivalence.

To see this, recall [2, Section XI.3.2] that the homotopy inverse limit holim←−−− X
of a small diagram X: I → S of Kan complexes can be defined by

holim←−−− X = hom(B(I/?), X),

where the function complex construction takes place in the category SI of
I-diagrams in simplicial sets.

It is also shown in [5] that if all objects X(i) of the diagram X are Kan com-
plexes and if j: X → Z is a (globally) fibrant model for X in the model category of
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I-diagrams with pointwise weak equivalences and pointwise cofibrations, then there
is a weak equivalence

holim←−−− X ∼= lim←− Z.

It is worth repeating the proof here: the map j induces a weak equivalence

j∗: holim←−−− X → holim←−−− Z

by a comparison of towers of fibrations, and the induced map

hom(∗, Z)→ hom(B(I/?), Z)

is a weak equivalence since the map B(I/?)→ ∗ is a pointwise weak equivalence of
I-diagrams (all I-diagrams are cofibrant) and Z is globally fibrant.

The homotopy colimit holim−−−→ I X is defined dually, so that there is a natural
isomorphism of function spaces

hom(holim−−−→ I X,Y ) ∼= holim←−−− Iop hom(X,Y )

for all simplicial sets Y , as in [2, Proposition XII.4.1]. This isomorphism forces
holim−−−→ X to be the co-end of the diagrams

B(j/I)×X(i)
α∗×1 //

1×α∗ ²²

B(i/I)×X(i)

B(j/I)×X(j)

arising from all morphisms α: i→ j of I. It is then an exercise to show that the
object holim−−−→ I X is isomorphic to the diagonal of the bisimplicial set

⊔

i0→···→in

X(i0),

which is the standard description.
Now suppose that π: Z → X is a projective cofibrant model for the I-diagram

X. Then I claim that there is a weak equivalence

lim−→ Z ' holim−−−→ X,

where holim−−−→ X has the standard definition [2],[5].
In effect, the map π induces a weak equivalence

π∗: holim−−−→ Z → holim−−−→ X

by standard results about bisimplicial sets. If Y is a Kan complex, then the function
complex hom(Z, Y ) is a globally fibrant Iop-diagram, by an adjunction argument.
There is a commmutative diagram

hom(lim−→I
Z, Y )

∼= //

ρ∗Z²²

lim←−Iop hom(Z, Y )

ρ∗
²²

hom(holim−−−→ I Z, Y ) ∼=
// holim←−−− Iop hom(Z, Y )
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and the map ρ∗ is a weak equivalence since hom(Z, Y ) is a globally fibrant Iop-
diagram. The induced map ρ∗Z is a weak equivalence for all Kan complexes Y , so
that the canonical map ρZ is a weak equivalence of simplicial sets.

Remark 5.3. The usual model structure on the category S of simplicial sets is the
primary example of a regular model structure M on a category of A-sets. In this
case, A is the category ∆ of finite ordinal numbers — see Example 4.20. The fact
that a simplicial set Y is a homotopy colimit of its simplices in the sense that the
map

holim−−−→
∆n→Y

∆n → Y

is a weak equivalence is standard, and is usually seen [5, Lemma IV.5.2] as a conse-
quence of a result of Quillen which asserts that if f : X → Y is a map of simplicial
sets then the induced map

holim−−−→
∆n→Y

∆n ×Y X → X

is a weak equivalence. This result is in fact equivalent to regularity for the standard
model structure on simplicial sets — see Corollary 5.10 below.

Lemma 5.4.

1) Suppose that the diagram

A
α //

i ²²

X

²²
B // Y

is a pushout in the category of A-sets, where i is a cofibration. Then the canonical
map from the homotopy colimit of the diagram

B
i←− A α−→ X

to Y is a weak equivalence of M.
2) Suppose that a diagram

X0 → X1 → · · ·
indexed by some ordinal number consist of cofibrations. Then the canonical map
from the homotopy colimit of this diagram to lim−→i

Xi is a weak equivalence of
M.

Proof. For part 1), find a factorization

X ′
p

²²
A α

//

j >>|||||
X

where p is a trivial fibration and j is a cofibration. Then the diagram

B
i←− A j−→ X ′
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is projective cofibrant, and one can use a standard patching lemma argument since
all A-sets are cofibrant in M.

For part 2), observe that the given diagram is projective cofibrant.

Suppose that f : I → J is a functor between small categories, and that X: I →
A-Set is a functor on I. One defines the homotopy left Kan extension Lf∗X: J →
A-Set by setting Lf∗X = f∗Z, where π: Z → X is a pointwise trivial fibration and
Z is projective cofibrant. Here f∗Z denotes the left Kan extension of Z along f ; it
is defined for j ∈ J by setting

f∗Z(j) = lim−→
f(i)→j

Z(i).

Note that the functor f∗ is left adjoint to restriction along the functor f , which
is denoted by f∗. The restriction functor f∗ clearly preserves pointwise fibrations
and pointwise weak equivalences, so that the functor f∗ preserves projective cofi-
brations and trivial projective cofibrations. It follows in particular that the object
Lf∗X = f∗Z is cofibrant, and that the homotopy type of Lf∗X in the projec-
tive model structure of J-diagrams in M is independent of the choice of cofibrant
resolution Z up to pointwise weak equivalence. Once again, if α: X → Y is a point-
wise equivalence of I-diagrams in M, then the induced map α∗: Lf∗X → Lf∗Y of
J-diagrams in M.

Note that left Kan extension along the functor I → ∗ is just the colimit, and
that left Kan extensions compose up to natural isomorphism. The latter statement
means that if

I
f−→ J

g−→ K

are composable functors between small categories, then there is a natural isomor-
phism of functors

g∗f∗ ∼= (gf)∗. (18)

It follows that if π: Z → X is a projective cofibrant resolution of a diagram X: I →
M, then there are identifications

Lg∗(Lf∗X) = g∗(Lf∗X) = g∗(f∗Z) ∼= (gf)∗Z = L(gf)∗X, (19)

where the first identification follows from the fact that Lf∗X = f∗Z is projective
cofibrant.

Suppose that C is a small category, and define the internal nerve BhC in M by
setting

Bh(C) = holim−−−→
c∈C

∗ .

In other words,

Bh(C) = lim−→
c∈C

Z(c),

where Z → ∗ is a cofibrant resolution of the functor ∗: C → A-Set which takes all
objects of C to a point.
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Any functor f : C → D induces a map f∗: Bh(C)→ Bh(D), albeit somewhat
non-canonically. Suppose that πC : ZC → ∗ and πD: ZD → ∗ are projective cofibrant
resolutions in the categories of C-diagrams and D-diagrams, respectively. Then πD

is a pointwise trivial fibration, so that the restriction f∗πD: f∗ZD → ∗ is a pointwise
trivial fibration. It follows that the lifting θ exists in the diagram

f∗ZD

f∗πD

²²
ZC πC

//

θ
;;wwwwww
∗

and any two such lifts are homotopic. The composite

lim−→
c

ZC(c)→ lim−→
c

f∗ZD(c)→ lim−→
d

ZD(d)

defines a map Bh(C)→ Bh(D), and this map is well defined in the homotopy
category. In this way, the association C 7→ Bh(C) defines a functor cat→ Ho(M).

Lemma 5.5. Suppose that the small category D has a terminal object, and that
X: D → A-Set is a functor. Then there is a weak equivalence holim−−−→ X → X(t) in
M. In particular, the map BhD → ∗ is a weak equivalence of M.

Proof. Suppose that t is the terminal object of D and let Z → X be a projective
cofibrant resolution of the D-diagram X. Then there is an isomorphism lim−→ Z ∼=
Z(t), and there is a weak equivalence Z(t)→ X(t), which is part of the structure
of the projective cofibrant resolution.

Lemma 5.6. Suppose that X is a set which is identified with a discrete category.
Then there is a weak equivalence BhX → X in M.

Proof. An X-diagram in A-sets is a collection {Zx} of A-sets Zx indexed by the
elements x ∈ X, and there is an isomorphism

lim−→{Zx} ∼=
⊔

x∈X

Zx.

If {Zx} → {∗} is a projective cofibrant resolution, then each of the trivial fibrations
Zx → ∗ has a section ∗ → Zx which is a trivial cofibration. The induced map X →⊔

x Zx is a trivial cofibration of M, so the map

BhX =
⊔
x

Zx → X

is a weak equivalence of M.

Lemma 5.7. Suppose that f : C → D is a functor between small categories. Then
there is a canonical weak equivalence

holim−−−→
d∈D

Bh(f/c)→ Bh(C)

in the model structure M.
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Proof. Consider the functors

C
f−→ D → ∗

and choose a projective cofibrant resolution π: Z → ∗ in the category of C-diagrams.
There is an identification

lim−→
c∈C

Z(c) ∼= lim−→
d∈D

lim−→
f(c)→d

Z(c)

on account of the isomorphism (18). The restriction functor Q∗ defined by the
forgetful functor Q: f/d→ C has a right adjoint Q! defined by

Q!F (c) = lim←−
c→c′,α′:f(c′)→d

F (α′),

where the inverse limit is computed over all pairs of diagrams

c′

β

²²
c

99tttt

%%JJJ
J

c′′

f(c′)

f(β)

²²

α′

&&LLLL

d

f(c′′) α′′

88rrrr

The index category has one component for each morphism ω: f(c)→ d in D, and
each such component contains an initial object defined by the pair of arrows

c
1−→ c, f(c) ω−→ d.

It follows that

Q!F (c) =
∏

ω:f(c)→d

F (ω)

In particular, the functor Q! preserves pointwise fibrations and pointwise trivial
fibrations, and so the restriction functor Q∗ preserves projective cofibrations as well
as pointwise trivial fibrations. It follows that

lim−→
ω:f(c)→d

Z(c) = lim−→
ω:f(c)→d

Q∗Z(ω) ' Bh(f/d).

for all objects d of D.

Lemma 5.8. Suppose that the functors f : C → D and g: D → C define a
homotopy equivalence of categories. Then the induced maps f∗: BhC → BhD and
g∗: BhD → BhC are weak equivalences of M.

Proof. The assumption that the functors f and g define a homotopy equivalence in
cat means that there are natural transformations between both f · g and g · f and
the respective identity functors.

Suppose that a category E has a terminal object and consider a projection
pr: C × E → C. Then there is an isomorphism pr/c ∼= C/c× E for each object
c ∈ C. The category C/c× E has a terminal object, so that the projection C/c×
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E → C/c induces a weak equivalence

Bh(C/c× E)→ Bh(C/c)

for each c ∈ C by Lemma 5.5. It follows from Lemma 5.7 that the map

Bh(C × E)→ BhC

is a weak equivalence.
Suppose that the functor h: C × 1→ D is a homotopy of functors f1, f2: C → D.

The projection functor pr: C × 1→ C induces a weak equivalence Bh(C × 1)→
BhC, so that the two canonical inclusions C → C × 1 induce the same map BhC →
Bh(C × 1) in the homotopy category. It follows that f1 and f2 induce the same map
in the homotopy category.

The composites fg and gf are both homotopic to identity functors. It follows that
the induced functors (fg)∗: BhD → BhD and (gf)∗: BhC → BhC are isomorphisms
in the homotopy category Ho(M), so f∗ is an isomorphism in the homotopy category.

Corollary 5.9. Suppose that f : X → Y is an A-set morphism. Then there is a
cononical weak equivalence

holim−−−→
σ:∆a→Y

Bh(iA(∆a ×Y X))→ Bh(iAX)

in the model structure M.

Proof. Apply Lemma 5.7 to the induced functor f∗: iAX → iAY and observe that
there is an isomorphism

f∗/σ ∼= iA(∆a ×Y X)

for each σ: ∆a → Y .

Corollary 5.10. Suppose that the model structure M on the category of A-sets
satisfies the property M1 and is regular. Suppose that f : X → Y is a map of A-
sets. Then the canonical maps ∆a ×Y X → X induce a weak equivalence

holim−−−→
∆a→Y

(∆a ×Y X)→ X.

in M.

Proof. Apply Corollary 5.9, and observe that the regularity condition and M1
together imply that there are natural weak equivalences

Bh(iA(Z)) ' Z
for all A-sets Z.

Corollary 5.11. Suppose that the model structure M on the category of A-sets
satisfies the condition M1 and is regular. Then there are natural weak equivalences

i∗AC ← holim−−−→
∆a→i∗AC

∆a → Bh(iAi∗AC)→ BhC

in the model structure M, for all small categories C.
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Proof. The fibres ε/c of the functor ε: iAi∗AC → C have the form ε/c ∼= iAi∗A(C/c),
by Lemma 2.1. The maps i∗A(C/c)→ ∗ are weak equivalences of M by Lemma
5.1. Thus, the map ε induces a weak equivalence BhiAi∗AC → BhC. The other two
displayed morphisms are weak equivalences by, respectively, the regularity assump-
tion and a comparison of homotopy colimits.

Suppose given a small diagram F : I → cat taking values in small categories.
Recall that the Grothendieck construction ∫I F (also denoted by some variant of
∫i∈I F (i)) is a category having all pairs (x, i) with i ∈ I and x ∈ F (i) as objects.
The morphisms of this category are the pairs (f, α): (x, i)→ (y, j) such that α: i→ j
is a morphism of I and f : α∗(x)→ y is a morphism of F (j).

There are a few general things to know about Grothendieck constructions:

Lemma 5.12. Suppose that f : C → D is a functor between small categories. Then
there is a natural homotopy equivalence

Q: ∫
d∈D

(f/d)→ C

in the category cat of small categories.

Proof. The functor Q is the forgetful functor which sends a pair (f(c)→ d, d) to
the object c ∈ C.

We shall display a functor

i: C → ∫
d∈D

(f/d)

such that the composite Q · i is the identity. We shall also show that there is a
natural transformation (or homotopy) from i ·Q to the identity functor on ∫d(f/d).

The Grothendieck construction ∫d(f/d) can be identified with the category which
has as objects all morphisms β: f(c)→ d of D, and the morphisms are commutative
diagrams

f(c)
f(α)//

β
²²

f(c′)
β′

²²
d

θ
// d′

(20)

where α: c→ c′ is a morphism of C and θ: d→ d′ is a morphism of D. From this
point of view, the functor Q is defined by sending the morphism (20) to the arrow
α: c→ c′ of C. There is a functor i: C → ∫d(f/d) which sends the morphism α to
the diagram

f(c)
f(α)//

1 ²²

f(c′)

1²²
f(c)

f(α)
// f(c′)
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The composite Q · i is the identity, and the diagrams

f(c) 1 //

1 ²²

f(c)

θ
²²

f(c)
θ

// d

define a natural transformation i ·Q→ 1 of functors from ∫d(f/d) to itself.

There is a canonical functor π: ∫I F → I for any diagram F : I → cat of small
categories, which is idefined by π(x, i) = i.

There is a functor fi: F (i)→ π/i which is defined by the assignment x 7→ 1i:
π(x, i)→ i. There is a functor gi: π/i→ F (i) which is defined by sending the mor-
phism α: π(j, y)→ i to α∗(y) ∈ F (i). The functors gi are natural in i, and one sees
that gi · fi = 1 for all i ∈ I. For each object α: π(j, y)→ i, there is commutative
diagram

π(j, x)
(α,1) //

α ÁÁ=
==

==
π(i, α∗(x))

1||xx
xx

xx

i

and the collection of all such diagrams defines a homotopy from the identity on π/i
to fi · gi. We have proved the following:

Lemma 5.13. For any small diagram F : I → cat, there is a natural homotopy
equivalence gi: F (i)→ π/i, where π: ∫I F → I is the canonical functor.

Recall that M denotes the (⊗, S)-model structure on the category of A-sets,
where ⊗ is an interval theory and S is a set of cofibrations of A-sets which become
weak equivalences in M.

Corollary 5.14. There is a weak equivalence

holim−−−→
i∈I

BhF (i)→ Bh(∫
I
F )

in M for any small diagram F : I → cat taking values in small categories.

Proof. There is a weak equivalence

holim−−−→
i∈I

Bh(π/i)→ Bh(∫
I
F )

by Lemma 5.7. Now use Lemma 5.8 and Lemma 5.13 to identify Bh(π/i) with
BhF (i).

Corollary 5.15. Suppose that f : F →G is a natural transformation of I-diagrams
of small categories such that each induced map BhF (i)→ BhG(i) is a weak equiv-
alence of M. Then the induced map

Bh(∫
I
F )→ Bh(∫

I
G)

is a weak equivalence of M.
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Suppose that F : I → A-Set is a small diagram of A-sets. Then i 7→ iAF (i) is
a diagram of categories. The corresponding Grothendieck construction ∫I iAF is
isomorphic to the category whose objects are all morphisms ∆a → F (i), and whose
morphisms are all commutative diagrams

∆a θ //

x
²²

∆b

y
²²

F (i)
α∗

// F (j)

where α: i→ j is a morphism of I. Note that this category also coincides up to
isomorphism with the Grothendieck construction

∫
a∈A

hom(∆a, F )

associated to the A-set of categories a 7→ hom(∆a, F ), where hom(∆a, F ) is the
category with objects x: ∆a → F (i) and with morphisms α: x→ y defined by mor-
phisms α: i→ j in I such that the diagram

∆a

x ²²
y

##HHH
HHH

F (i)
α∗

// F (j)

commutes.
The canonical A-set maps F (i)→ lim−→i

F induce a functor of A-diagrams of
categories

Ψ: hom(∆a, F )→ lim−→
i

F (i)(a),

where the set lim−→i
F (i)(a) has been identified with a discrete category. In general, if

X is an A-set which is identified with a presheaf a 7→ X(a) taking values in discrete
categories, then the Grothendieck construction ∫aX(a) is isomorphic to the category
iAX. It follows that the functor Ψ induces a functor

ψ: ∫
i∈I

iAF (i)→ iA(lim−→
i

F (i))

Note that the category hom(∆a, F ) is isomorphic to the Grothendieck construction
∫i F (i)(a) of the functor taking values in discrete categories given by i 7→ F (i)(a).

Lemma 5.16. The functor ψ induces a weak equivalence

ψ∗: Bh( ∫
i∈I

iAF (i))→ Bh(iA(lim−→
i

F (i)))

of M in the following cases:
1) I is the category

0 //

²²

2

1

and F (0)→ F (1) is a monomorphism.
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2) I is an ordinal number poset and all maps F (s)→ F (t) are monomorphisms.

Proof. By Lemma 5.6 and Corollary 5.15, it suffices to show that the natural trans-
formation

F (i)(a)→ lim−→
i

F (i)(a)

of I-diagrams in discrete categories induces a weak equivalence

Bh(∫
i
F (i)(a))→ Bh(lim−→

i

F (i)(a)) ∼= lim−→
i

F (i)(a)

in both cases under consideration. We know from Corollary 5.14 that there is an
equivalence

holim−−−→
i∈I

BhF (i)(a)→ Bh(∫
i
F (i)(a)),

and each BhF (i)(a) is equivalent to the discrete A-set F (i)(a) by Lemma 5.6.
Finally, the canonical map

holim−−−→
i∈I

F (i)(a)→ lim−→
i∈I

F (i)(a)

is a weak equivalence in cases 1) and 2), by Lemma 5.4.

Remark 5.17. Lemma 5.7 suggests a way to avoid the problem of the non-functorial-
ity of the assignment C 7→ BhC. Suppose given a small diagram C: I → cat of small
categories, and form the Grothendieck construction ∫I C. Let π: ∫I C → I be the
canonical functor, and suppose that Z → ∗ is a projective cofibrant resolution of the
point over ∫i Ci. Then the restriction Qi∗Z → ∗ is a projective cofibrant resolution of
the point over π/i, so that lim−→ Qi∗Z represents Bh(π/i) and thus has the homotopy
type of BhCi. The diagram

i 7→ lim−→ Qi∗Z

is functorial in i and thus represents a diagram i 7→ Bh(Ci) up to weak equivalence.
If α: J → I is a functor and C is the same I-diagram of small categories, then

there is an induced commutative diagram of functors

∫j Cα(j)
α //

π
²²

∫i Ci

π
²²

J α
// I

Choose a cofibrant resolution Z → ∗ over ∫i Ci as above and choose a cofibrant
resolution Z ′ → ∗ over ∫j Cα(j). Choose also a map θα: Z ′ → α∗Z. Then the maps
π/j → π/α(j) induce natural weak equivalences

lim−→ Qj∗Z ′ → lim−→ Qα(j)∗Z,

so the Bh construction is insensitive to the “change of universes” given by restriction
along α: J → I.



Homology, Homotopy and Applications, vol. 8(1), 2006 124

We shall need a more precise approach to regularity in applications. Say that an
A-set is regular in M if the map

holim−−−→
∆a→X

∆a → X

is a weak equivalence of M. From this point of view, the model structure M is
regular if and only if all A-sets are regular in M.

Lemma 5.18.

1) Suppose that the diagram

X1
//

i ²²

X3

²²
X2

// X4

is a pushout and that i is a cofibration. Then if X1, X2 and X3 are regular in
M so is X4.

2) If
X0 → X1 → · · ·

is a totally ordered system of cofibrations between objects which are regular in
M, then lim−→ Xi is regular in M.

Proof. The diagram
BhiAX1

//

²²

BhiAX3

²²
BhiAX2

// BhiAX4

is homotopy cocartesian in M: this follows from Corollary 5.14 and Lemma 5.16. It
follows that the corresponding diagram of homotopy colimits

holim−−−→
∆a→X1

∆a //

²²

holim−−−→
∆a→X3

∆a

²²
holim−−−→
∆a→X2

∆a // holim−−−→
∆a→X4

∆a

is also homotopy cocartesian, and then the map

holim−−−→
∆a→X4

∆a → X4

is a weak equivalence of M by a patching lemma argument.
Statement 2) has a similar proof.

6. Homotopy theories for test categories

Suppose that C is a small Grothendieck site, and that A is a small category.
Write A- Pre(C) for the category of presheaves of A-sets on the site C. Note that
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A-presheaves on C are B-sets for B = A× C, so that all of the results of the last two
sections apply.

Suppose in particular that A is a test category, and let the interval I = i∗A(1)
define an interval theory

I: A- Pre(C)×¤→ A- Pre(C)
on the category of A-presheaves on C.

Let ∆1 denote the interval theory on the category s Pre(C) which is associated
to the simplicial set ∆1 and its inclusions of vertices. Suppose that S is a set
of cofibrations of simplicial presheaves such that the class of weak equivalences
for the associated (∆1, S)-model structure on s Pre(C) contains all ordinary local
equivalences — see Examples 4.19 and 4.21.

Say that a map f : X → Y of A-presheaves is an S-equivalence if the induced
map i∗∆iA(X)→ i∗∆iA(Y ) is a (∆1, S)-equivalence of simplicial presheaves. Since
there are natural weak equivalences of simplicial sets

i∗∆(C) ' Bi∆i∗∆(C) ε∗−→ BC

for any small category C, one sees that f :X→Y is an S-equivalence ofA-presheaves
if and only if the induced map BiAX → BiAY is an (∆1, S)-equivalence of simplicial
presheaves. It is a consequence of Lemma 2.2 that the maps

i∗Ai∆i
∗
∆iA(X)

i∗Aε−−→ i∗AiA(X)
η←− X (21)

are S-equivalences for all A-presheaves X. Similarly, for each simplicial presheaf Y
the natural morphisms

i∗∆iAi
∗
Ai∆(Y )

i∗∆(ε)−−−→ i∗∆i∆(Y )
η←− Y (22)

are local weak equivalences of simplicial presheaves.
Choose an infinite cardinal ζ such that |i∗A(1)| < ζ. Choose a cardinal α such

that α > ζ and α is larger than |C| and |A|. Suppose further that α > |D| for all
morphisms C → D in the set of cofibrations of simplicial presheaves S and that
α > |S|. Finally, choose a cardinal λ such that λ > 2α.

The “bounded cofibration” statement Lemma 4.9 says in the case at hand that
given a diagram

X

i²²
A // Y

of cofibrations of simplicial presheaves such that i is an (∆1, S)-equivalence and
|A| < 2λ, there is a subobjectB ⊂ Y withA ⊂ B such that |B| < 2λ andB ∩X → B
is an (∆1, S)-equivalence. We shall prove the corresponding statement for cofibra-
tions and S-equivalences in the category of A-presheaves, subject to the choices of
cardinals made above.
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Lemma 6.1. Suppose given a diagram

X

i²²
A // Y

of cofibrations of A-presheaves such that i is an S-equivalence and |A| < 2λ. Then
there is a suboject B ⊂ Y with A ⊂ B such that |B| < 2λ and B ∩X → B is an
S-equivalence.

Proof. The induced diagram

i∗∆iAX

i∗²²
i∗∆iAA // i∗∆iAY

of cofibrations of simplicial presheaves satisfies the conditions of Lemma 4.9. Thus,
there is a subobject α: B1 ⊂ i∗∆iAY with |B1| < 2λ such that i∗∆iAA ⊂ B1 and such
that the restricted map

B1 ∩ i∗∆iAX → B1

is an equivalence of simplicial presheaves. Write

C1 = iAA ∪ iAB1

for the smallest subobject of iAY which contains i∆A and the image of the adjoint
map α∗: i∆B1 → iAY in the category of presheaves of categories. The presheaf
of categories C1 is 2λ-bounded in the sense that its presheaves of morphisms and
arrows both have cardinality bounded above by 2λ.

The subobject C1 ⊂ iAY is contained in a (smallest) subobject C2 which is a
sieve in the sense that whenever ∆a → X(U) is an object of C2(U) and θ: b→ a is
a morphism of A, then the morphism

∆b
θ //

ÂÂ?
??

??
∆a

σÄÄ~~
~~

~

X(U)

is in D1(U). The subobject D1 is 2λ-bounded. Furthermore, there is a subobject
A1 ⊂ Y such that i∆A1 = D1. In effect,

A1(U)(a) = { σ(1a) | σ: ∆a → Y (U) is an object of D1(U)}.
Note that |A1| < 2λ.

We have therefore found a 2λ-bounded subobject A1 ⊂ Y such that A ⊂ A1,
B1 ⊂ i∗Ai∆A1, and such that the cofibration i∗∆iAA→ i∗∆iAY has a factorization

i∗∆iAA ⊂ B1 ⊂ i∗∆iAA1 → i∗∆iAY.

Continue inductively to produce families of subobjects

Bi ⊂ Bi+1 ⊂ i∗∆iAY
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and subobjects

A ⊂ Ai ⊂ Ai+1 ⊂ Y
such that

i∗∆iAAi ⊂ Bi+1 ⊂ i∗∆iAAi+1,

where i < γ and γ is a cardinal with 2α < γ.
Write B = lim−→ Ai. The functor i∗∆iA preserves filtered colimits of size γ by the

assumptions on the cardinal γ, as well as monomorphisms and pullbacks. It follows
that the induced map

i∗∆iA(B ∩X)→ i∗∆iAB

is a filtered colimit of the maps

Bi ∩ i∗∆iA(X)→ i∗∆iABi

and is therefore a trivial cofibration of simplicial presheaves. Note as well that
|B| < 2λ by construction.

Theorem 6.2. Suppose that A is a test category and let C be a small Grothendieck
site. Suppose that S is a set of cofibrations of simplicial presheaves on C such that the
class of all weak equivalences in the resulting (∆1, S)-model structure on the category
of simplicial presheaves contains all local equivalences. Then there is model structure
on the category of A-Pre(C) for which the weak equivalences are the S-equivalences
and the cofibrations are the monomorphisms. There is an equivalence

Ho(sPre(C))(∆1,S) ' Ho(A-Pre(C))S

of the associated homotopy categories.

Proof. Say that a map p: X → Y of A-presheaves is an S-fibration if it has the right
lifting property with respect to all maps which are cofibrations and S-equivalences.

Choose a cardinal λ as in the preamble to statement of Lemma 6.1. Let TS be the
set of all cofibrations C → D of A-presheaves which are S-equivalences and such
that |D| < 2λ.

It follows from Lemma 5.16 that if the diagram

A //

i ²²

X
i∗²²

B // Y

is a pushout diagram of A-presheaves with i a cofibration, then the induced diagram

i∗∆iAA //

²²

i∗∆iAX

²²
i∗∆iAB // i∗∆iAY

is a homotopy co-cartesian diagram of simplicial presheaves. The functor X 7→
i∗∆iAX preserves filtered colimits indexed over sufficiently large infinite ordinals
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γ. It is a standard consequence of Lemma 6.1 that a small object argument of size
γ produces a factorization

X
j //

f !!B
BB

BB
Z

p
²²
Y

for every map f : X → Y of A-presheaves, where p is an S-fibration and j is a filtered
colimit of size γ of pushouts of coproducts of maps appearing in TS . The map j is
a cofibration and an S-equivalence.

The codiagonal ∇: X tX → X has a factorization

X tX ∇ //

(i0,i1) $$HHH
HHH

X

X × I
pr

>>}}}}}

where (i0, i1) is a cofibration and pr is a weak equivalence, since I = i∗A(1) is aspher-
ical. It follows (since all A-presheaves are cofibrant) that each of the maps i0 and
i1 is an S-equivalence as well as a cofibration.

Suppose that a map p: X → Y has the right lifting property with respect to all
cofibrations. Then there are commutative diagrams

∅ //

²²

X
p

²²
Y

1
//

σ
>>~~~~~
Y

and

X tX (1,σp) //

(i0,i1) ²²

X
p

²²
X × I

77pppppppp

p·pr
// Y

It follows that the induced map p∗: i∗∆iA(X)→ i∗∆iA(Y ) is a (∆1, S)-equivalence
of simplicial presheaves, so that p is an S-equivalence of A-presheaves.

Conversely, suppose that p: X → Y is a fibration and an S-equivalence. Then p
has a factorization

X
p //

j ¿¿8
88

8 Y

W

q

CC§§§§

where j is a cofibration and q has the right lifting property with respect to all
cofibrations — this follows from a transfinite small object argument based on the
inclusions Y ⊂ LU∆a. But then q is an S-equivalence so j is a cofibration and an
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S-equivalence, and there is a commutative diagram

X
1 //

j
²²

X
p

²²
W q

//

r
==|||||
Y

so that p is a retract of q. The map p therefore has the right lifting property with
respect to all cofibrations.

We have shown that a map p: X → Y is a trivial fibration if and only if it has
the right lifting property with respect to the set of inclusions Y ⊂ LU∆a. It follows
that every map f : X → Y has a factorization f = q · j, where j is a cofibration and
q is an S-fibration and an S-equivalence.

The factorization axiom CM5 and the lifting axiom CM4 have therefore both
been established. The rest of the closed model axioms are trivial to verify.

The demonstration of the equivalence of homotopy categories

Ho(sPre(C))(∆1,S) ' Ho(A- Pre(C))S

uses the weak equivalences displayed in (21) and (22).

Say that the model structure on the category of A-presheaves given by Theorem
6.2 is the S-model structure.

Example 6.3. Suppose that S is a generating set for the class of locally trivial cofi-
brations of simplicial presheaves, as in Example 4.19. Let A be an arbitrary test
category. Then the S-model structure on the category of A-presheaves gives a homo-
topy category which is equivalent to the homotopy category of the standard model
structure on simplicial presheaves.

This result specializes to the case C = ∗, giving a model structure on the category
of A-sets with associated homotopy category equivalent to the homotopy category
of simplicial sets. This homotopy category is therefore equivalent to the standard
homotopy theory of topological spaces and continuous maps. This result applies, in
particular, to cubical sets, bisimplicial sets, cubical simplicial sets and so on.

In the broader context, we obtain sensible homotopy theories of cubical pre-
sheaves, bisimplicial presheaves and so on, all of which have homotopy categories
equivalent to the homotopy category of simplicial presheaves.

Example 6.4. All localized simplicial presheaf homotopy theories (Example 4.21)
have analogues over any test category, by Theorem 6.2. In particular, the motivic
homotopy theory of simplicial presheaves on the smooth Nisnevich site (Sm|X)Nis

on a scheme X (Example 4.22) has an equivalent counterpart over any test cate-
gory. Thus, for example, all motivic homotopy types have cubical and bisimplicial
representatives.

7. Weak equivalence classes of functors

A weak equivalence class is a class W of functors between small categories such
that the following conditions are satisfied:
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LF1 The class W is weakly saturated in the sense that the following hold:

a) Every identity morphism is in W.

b) Given functors

C
f−→ D

g−→ E

if any two of f , g and g · f are in W, then so is the third.
c) Given functors

A
i−→ B

r−→ A

such that r · i = 1, if i · r is a member of W then r is a member of W.

LF2 If C has a terminal object, then the functor C → ∗ is in W.

LF3 Given a commutative triangle of functors

A
u //

α ½½6
66

6 B

β¥¥©©
©©

C

if all induced functors α/c→ β/c are in W, then the functor u is in W.

A weak equivalence class is called a fundamental localiser in [3]; the terminology
was introduced by Grothendieck.

Example 7.1. Let W∞ denote the class of all functors f : C → D such that the
induced map f∗: BC → BD is a weak equivalence of simplicial sets. Since there is a
natural weak equivalence BC ' i∗∆C, we could equally well specify the members of
W∞ to be those functors f : C → D which induce weak equivalences i∗∆C → i∗∆D.
The class W∞ is a weak equivalence class of functors in the sense described above.
The proof of LF3 uses the fact that if π: D → C is a functor, then there is a weak
equivalence

holim−−−→
c∈C

B(π/c)→ BD

This is an old result of Quillen. Alternatively, it follows from Lemma 5.7.

Remark 7.2. Consider the projection functor pr: C ×D → C, where D has a ter-
minal object. For each c ∈ C, the induced functor pr/c→ C/c may be identified up
to isomorphism with the projection (C/c)×D → C/c. The categories (C/c)×D
and C/c both have terminal objects, so the projection (C/c)×D → C/c is inW. It
follows that the projection pr: C ×D → C is W-aspherical and hence is a member
of the weak equivalence class W.

It follows that if h: C × 1→ D is a homotopy (a.k.a. natural transformation)
between functors f, g: C → D, then f is a member of the class W if and only if g is
a member of W.
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Lemma 7.3. Suppose that

C0
f //

g
²²

C2

C1

is a diagram of functors of small categories. Then if g is in W, then so is the
canonical map j: C2 → ∫i Ci

Proof. It suffices to assume that g is the identity functor. In effect, there is a map
of diagrams

C0

g
²²

C0
1oo

1 ²²

f // C2

1²²
C1 C0

f
//

g
oo C2

such that all the (vertical) transition functors are members of W. It follows that
the induced functor on Grothendieck constructions is a member of W, by LF3.

Suppose that i: C0 → C1 is the identity functor. The canonical functor ∫i Ci →
C1 ∪C0 C2 can be indentified with a functor r: ∫i Ci → C2 which is specified by
the assignments (x, 2) 7→ x, (y, 0) 7→ f(y) and (y, 1) 7→ f(y). The canonical functor
j: C2 → ∫i Ci is specified by x 7→ (x, 2), so obviously r · j = 1. The sets of morphisms

(f(y), 2)← (y, 0)→ (y, 1)

(f(y), 2)← (y, 0)→ (y, 0)

(x, 2)← (x, 2)→ (x, 2)

specify a string of homotopies from the identity on ∫i Ci to the composite j · r.
It follows that the composite j · r is a member of W, so that the morphisms r

and j are members of W by LF1.

Note that there is an isomorphism

∫
i
Ci
∼=

⊔

i

Ci

for all diagrams indexed by discrete categories. It follows that the class W is closed
under small disjoint unions.

In what follows suppose that A is a fixed choice of test category.
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Lemma 7.4. 1) Suppose given a diagram of A-sets

X0
//

i ²²

X2

X1

where the map i is a monomorphism. Then the induced map

∫
i
iAXi → iA(X1 ∪X0 X2)

is in W.

2) Suppose given a diagram Y in A-Set which is indexed by some ordinal number
α and such that all morphisms Yi → Yj are monomorphisms. Then the induced
map

∫
i
iAYi → iA(lim−→

i

Y (i))

is a member of W.

Proof. According to the method of proof of Lemma 5.16, it suffices to prove part 1)
in the case where all Xi are sets (i.e. discrete A-sets) and X1 ∪X0 X2 is a singleton
set. Then the pushout diagram has one of the forms

∅ //

²²

∅
²²∗ // ∗

X0
//

∼= ²²

∗

²²
X1

// ∗
In either case, there is a canonical functor ∗ → ∫iXi which is a member of W, by
Lemma 7.3.

For 2) it suffices again to assume that all A-sets Yi are discrete. Given y ∈ lim−→ Yi,
there is a smallest i < α such that y ∈ Yi, and the fibre of the functor π: ∫i Yi →
lim−→ Yi over y is isomorphic to the subcategory of α consisting of all t such that
i 6 t. This fibre has an initial object and is therefore W-aspherical. This is true of
all fibres, and the fibres coincide with the categories π/y since lim−→ Yi is discrete, so
that the functor ∫i Yi → lim−→ Yi is in W.

The argument for the proof of part 2) of Lemma 7.4 came from [15]. The following
is now a direct consequence of Lemmas 7.3 and 7.4.

Corollary 7.5. Suppose given a pushout diagram of A-sets

X0
//

i
²²

X2

²²
X1

// X1 ∪X0 X2

where i is a monomorphism. If the functor iAX0 → iAX2 is a member of W, then
the functor iAX1 → iA(X1 ∪X0 X2) is in the classW. If iAX0 → iAX1 is a member
of W, then iAX2 → iA(X1 ∪X0 X2) is in W.
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Weak equivalences of simplicial sets are essentially initial in the collection of all
weak equivalence classes of functors, according to the following result:

Theorem 7.6. Suppose that W is a weak equivalence class of functors. Suppose
that f : X → Y is a weak equivalence of simplicial sets. Then the induced functor
i∆X → i∆Y of simplex categories is a member of W.

Proof. First of all, note that i∆(∆n) ∼= ∆/n and therefore has a terminal object,
so that i∆∆n is W-aspherical. All maps of simplices ∆n → ∆m therefore induce
functors i∆∆n → i∆∆n which are members of W.

Suppose that 0 6 s0 < s1 < · · · < sr 6 n and let ∆n〈s0, . . . , sr〉 be the subcom-
plex of the boundary ∂∆n which is generated by the faces dsj : ∆n−1 → ∆n. Then
there is a pushout diagram

∆n−1〈s0, . . . , sr−1〉 dsr−1
//

²²

∆n〈s0, . . . , sr−1〉
²²

∆n−1
dsr

// ∆n〈s0, . . . , sr〉

in which the vertical maps are inclusions (see [5, p. 218]). Note that if a face is
missing from ∆n〈s0, . . . , sr〉, then a face is missing from ∆n−1〈s0, . . . , sr−1〉. Thus,
one can use Corollary 7.5 and Lemma 7.4 to show that the induced functor

i∆∆n〈s0, . . . , sr〉 → i∆∆n

is a member ofW provided that some face is missing from ∆n〈s0, . . . , sr〉. It follows,
in particular, that all inclusions Λn

k ⊂ ∆n induce functors i∆Λn
k → i∆∆n which are

members of W.
It suffices to show that every trivial cofibration i: A→ B induces a functor

i∆A→ i∆B which is a member of W, by a standard factorization argument.
If i: A→ B is a trivial cofibration, it has a factorization

A
j //

i ÃÃA
AA

AA
X

p
²²
B

where p is a Kan fibration and j is a filtered colimit of pushouts of disjoint unions of
inclusions Λn

k ⊂ ∆n. It follows from Corollary 7.5 and Lemma 7.4 that the induced
functor j∗: i∆A→ i∆X is a member of W. The fibration p is a weak equivalence,
so the lifting σ exists in the diagram

A
j //

i ²²

X
p

²²
B

1
//

σ
>>}}}}}
B
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¿From the commutative diagram

A
1 //

j
²²

A
1 //

i ²²

A
j

²²
X p

// B σ
// X

we see that the composite σ · p induces a functor i∆X → i∆X which is a member
of the class W. It follows from LF1 that σ and hence i induce functors which are
members of W.

The following result, which, in other words, asserts thatW∞ is the minimal weak
equivalence class (see Example 7.1), is Grothendieck’s Conjecture A. The first proof
of this result appeared in Cisinski’s thesis [3].

Corollary 7.7. Suppose that W is a weak equivalence class of functors and that
f : C → D is a functor between small categories such that the induced map f∗: BC →
BD is a weak equivalence of simplicial sets. Then f is a member of W.

Proof. The map i∗∆C → i∗∆D is a weak equivalence, since there is a natural weak
equivalence BC ' i∗∆C. The natural map ε: i∆i∗∆C → C is a member ofW by LF2
and LF3. Theorem 7.6 implies that the induced map i∆i∗∆C → i∆i

∗
∆D is a member

of W. It therefore follows from the commutativity of the diagram

i∆i
∗
∆C //

ε
²²

i∆i
∗
∆D

ε
²²

C
f

// D

that the functor f is in the class W.

The following is a special case of Grothendieck’s Conjecture B. This result was
first proved by Cisinski [3], and the proof given here is essentially his.

Theorem 7.8. Suppose thatW(T ) is the smallest weak equivalence class containing
a set of functors T and that A is a test category. Then the class of all maps f : X →
Y of A-sets such that the functor iAX → iAY is a member of W(T ) is the class
of weak equivalences for a model structure on the category of A-sets for which the
cofibrations are the monomorphisms.

Proof. Suppose, first of all, that A is the category of ordinal numbers, so that the
A-set category is the category of simplicial sets. It is enough to establish the result
in this case, since the general statement is then a consequence of Theorem 6.2.

The class W∞ of functors C → D which induce ordinary weak equivalences
BC → BD is contained in W(T ) by Corollary 7.7. Each functor f : C → D in the
set T induces a simplicial set map f∗: BC → BD, which can be replaced by a cofi-
bration i(f): BC → Y up to weak equivalence. Let S denote the union of the set of
all cofibrations i(f), f ∈ T , along with the set of all anodyne extensions Λn

k ⊂ ∆n.
The (∆1, S)-model structure on simplicial sets is the localization of the standard
model on S at the set of cofibrations i(f), f ∈ T .



Homology, Homotopy and Applications, vol. 8(1), 2006 135

Let W ′ be the class of all functors g: C → D such that g∗: BC → BD is a weak
equivalence in the (∆1, S) model structure. I claim thatW ′ coincides with the weak
equivalence class W(T ).

Note that W ′ is a weak equivalence class which contains all elements of T , so
that W(T ) ⊂ W ′.

All simplicial set maps i(f): BC → Y are weakly equivalent to maps f∗: BC →
BD induced by generators f : C → D of T , and the functors i∆BC → i∆BD are
equivalent to the functors f : C → D on account of the natural weak equivalences

i∆BC ' i∆i∗∆C ε−→ C

displayed first in (3). It follows from Lemma 7.4 that all (∆1, S)-weak equivalences
X → Y induce functors i∆X → i∆Y which are members of W(T ). Thus, if the
functor g: E → F is a member ofW ′, then the functor i∆BE → i∆BF is a member
of W(T ), and so g is a member of W(T ).

A map f : X → Y of A-sets is said to be a simplicial weak equivalence if the
induced map BiAX → BiAY is a weak equivalence of simplicial sets. Recall fur-
ther (Theorem 6.2, Example 6.3) that the weak equivalences, so defined, are the
weak equivalences for a model structure Ms on the category of A-sets. This model
structure satisfies the condition M1 of Section 5, since iA∆a = A/a has a terminal
object.

Theorem 7.9. Suppose that A is a test category. Suppose that M is an (⊗, S)-
model structure on the category of A-sets which satisfies M1 and is regular. Then
every weak equivalence of Ms is a weak equivalence of M.

Proof. The class F (M) of all functors f : C → D which induce a weak equivalence
BhC → BhD of M is a weak equivalence class. In particular, the axiom LF1 follows
from the model axioms for M, the axiom LF2 follows from Lemma 5.5 and LF3 is
a consequence of Lemma 4.7.

If g: C → D is a functor such that BC → BD is a weak equivalence of simplicial
sets, then the induced map BhC → BhD is a weak equivalence of M by Corol-
lary 7.7.

If f : X → Y is a weak equivalence of Ms, then BiAX → BiAY is a weak equiv-
alence of simplical sets. Thus, BhiAX → BhiAY is a weak equivalence of M by the
previous paragraphs, so that f : X → Y is a weak equivalence of M by the regularity
assumption.

Lemma 7.10. Suppose that A is a test category. Suppose that Y is a fibrant object
in the model structure Ms on the category of A-sets. Then the functor X 7→ X × Y
preserves weak equivalences.

Proof. Let i∗: S→ A-Set be the functor which is defined by

i∗X(a) = hom(B(A/a), X),

as in the preamble to Lemma 2.11, and recall that i∗ is right adjoint to the func-
tor Z 7→ BiAZ. Then the canonical morphism η: Z → i∗BiAZ is isomorphic to
the map η: Z → i∗AiAZ, and is therefore a weak equivalence of Ms. The functor
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Z 7→ BiAZ preserves trivial cofibrations by Corollary 7.5, so that the functor i∗

preserves fibrations.
Let j: BiAY → Z be a trivial cofibration with Z a fibrant simplicial set. Then

the composite

X × Y 1×η−−→ X × i∗BiAY 1×i∗j−−−−→ X × i∗Z
is the product of the identity on X with a homotopy equivalence Y → i∗Z of fibrant
objects. It follows that Y may be replaced by i∗Z.

The functor Z 7→ X × i∗W preserves weak equivalences of simplicial sets W by
Corollary 2.16. It follows that the simplicial set Z may be replaced up to weak
equivalence by the nerve BC of a small category C.

Observe that i∗BC = i∗AC. Write π for the composite

iA(X × i∗AC)→ iAi∗AC
ε−→ C,

which is induced by the projection X × i∗Ac→ i∗AC. Then there are isomorphisms

π/c ∼= iAX × (ε/c) ∼= iAX × iAi∗A(C/c)

by Lemma 2.1. The functor X 7→ X × i∗A(D) preserves weak equivalences if the
category D has a terminal object, since i∗AD is aspherical. Also, there is a natural
weak equivalence

holim−−−→
c∈C

B(π/c)→ BiA(X × i∗AC).

It follows that the functor X 7→ X × i∗AC preserves weak equivalences.

8. Homotopy theory of cubical sets

Let the object I = i∗¤(1) define an interval theory for the category ¤-Set of
cubical sets. Let S be the set of vertex maps ∗ → ¤n of the standard n-cells. Then
there is an (I, S)-model structure on the category of cubical sets, as a result of
Theorem 6.2.

We shall say that the model structure Ms on the category of cubical sets arising
from Theorem 6.2 and Example 6.3 is the standard structure. This is the model
structure on ¤-Set whose weak equivalences are those maps f :X → Y which induce
weak equivalences Bi¤X → Bi¤Y of simplicial sets.

A priori, the standard and the (I, S)-model structures on the category of cubical
sets are potentially distinct, but we have the following result:

Theorem 8.1. The class of weak equivalences of the (I, S)-model structure on the
category of cubical sets coincides with the class of weak equivalences of the standard
model structure Ms on ¤-Set, and so the two model structures coincide.

Proof. Every weak equivalence of the (I, S)-model structure is a weak equivalence
of Ms.

The (I, S)-model structure on ¤-Set is constructed to satisfy the axiom M1.
Thus, according to Theorem 7.9, we only need to show that the (I, S)-model struc-
ture on the category of cubical sets is regular.
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This, however, is a consequence of Lemma 5.18, together with the observation
that the cofibrations of the category cubical sets are generated by the inclusions
∂¤n ⊂ ¤n, provided we can show that all maps

holim−−−→
¤k→¤n

¤k → ¤n

are (I, S)-equivalences.
We know that ¤n → ∗ is an (I, S)-equivalence, by construction. It follows that

the map
holim−−−→

¤k→¤n

¤k → Bhi¤¤n

is an (I, S)-equivalence. But finally, the category

i¤¤n ∼= ¤/1×n

has a terminal object, and so the cubical set map Bhi¤¤n → ∗ is an (I, S)-
equivalence by Lemma 5.5.

Theorem 8.2. The standard model structure Ms on the category of cubical sets is
proper.

Proof. On account of Theorem 4.18, it is enough to show that all vertex maps
∗ → ¤n pull back to weak equivalences along all fibrations p: X → Y for which the
base Y is fibrant.

Suppose given a diagram

X
p

²²
∗

v
// ¤n

α
// Y

The map v is an anodyne cofibration for the (I, S)-structure and Y is fibrant, so
there is a map x: ∗ → Y and a naive homotopy ¤n × I → Y from α to the composite

¤n → ∗ x−→ Y.

The standard anodyne cofibrations d0, d1: U → U × I pull back to weak equivalences
along p (see the argument for Theorem 4.18), so it follows that the pullback along
p of the composite

∗ v−→ ¤n α−→ Y

may be replaced by the pullback of the composite

∗ v−→ ¤n → ∗ x−→ Y.

Let F be the fibre of p over the vertex x. Then there are pullback diagrams

F
v∗ //

²²

F ×¤n
pr //

²²

F //

²²

X
p

²²
∗

v
// ¤n // ∗

x
// Y

and the map v∗ is a weak equivalence by Lemma 7.10.
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Suppose that ¤k is a fixed standard cell in the category of cubical sets. Recall
from Lemma 2.4 and Lemma 2.15 the associated cell category i¤¤k is a test
category, and that the category of i¤¤k-sets can be identified with the category of
(¤-Set)/¤k of cubical sets τ : X → ¤k. The tensor product pairing ⊗ for the cate-
gory of cubical sets determines an interval theory (τ,1n) 7→ τ ⊗¤n, where τ ⊗¤n

is the composite

X ⊗¤n pr−→ X
τ−→ ¤k.

Theorem 4.17 determines a (⊗, ∅)-model structure on the category of cubical sets
over ¤k.

The (⊗, ∅)-structure for cubical sets over the standard cells ¤k specializes to
the (⊗, ∅)-structure of Example 4.23 for the full category of cubical sets by taking
k = 0. It is a consequence of the next result (which is relative to all cells ¤k) that
the standard structure coincides with the (⊗, ∅)-structure for the category of cubical
sets.

Lemma 8.3. Suppose that A is the test category i¤¤k, and that M is the corre-
sponding (⊗, ∅)-model structure on the category (¤-Set)/¤k of A-sets. Then every
weak equivalence of the standard model structure Ms is a weak equivalence of M.

Proof. All vertex maps ∗ → ¤n → ¤k are trivial cofibrations, so that all morphisms

¤n → ¤m → ¤k

are weak equivalences of M. In particular, the map

¤n → ¤k 1−→ ¤k

to the terminal object is an equivalence of M, so that the condition M1 is verified
for this model structure.

In the diagram

holim−−−→
¤r→¤n

¤r //

' ²²

¤n

'
²²holim−−−→

¤r→¤n

¤k

'
// ¤k

of cubical sets over ¤k, the indicated maps are weak equivalences of M, so that
the map

holim−−−→
¤r→¤n

¤r → ¤n

is also an equivalence of M, for all standard cells ¤n → ¤k of (¤-Set)/¤k. The
inclusions in this category are generated by morphisms of the form

∂¤n ⊂ ¤n → ¤k,

and it follows from Lemma 6.1 that the model structure M is regular.
The Lemma is now a consequence of Theorem 7.9.
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Corollary 8.4. The standard model structure coincides with the (⊗, ∅)-structure
for the category (¤− Set)/¤k of cubical sets over ¤k, for all k > 0.

Proof. The two theories have the same weak equivalences (and cofibrations), by
Lemma 8.3 and the observation that every anodyne weak equivalence is a standard
weak equivalence.

A map of cubical sets f : X → Y is an injective fibration (for the (⊗, ∅)-structure)
if it has the right lifting property with respect to all inclusions un

(i,ε) ⊂ ¤n. A fibra-
tion of cubical sets, in the standard structure, is a map which has the right lifting
property with respect to all trivial cofibrations A ⊂ B. Every fibration is an injective
fibration.

Lemma 8.5. Every injective fibration f : X → ¤k of cubical sets is a fibration.

Proof. A map

X
g //

¿¿9
99

9 Y

¤¤§§
§§

¤k

is a standard weak equivalence of cubical sets over ¤k if and only if the map X →
Y of cubical sets is a standard weak equivalence. This is a consequence of the
isomorphism

iA(X → ¤k) ∼= i¤X

for A = i¤¤k. It follows that the map g is a standard fibration of cubical sets over
¤k if and only if the map X → Y is a standard fibration of cubical sets.

The standard and (⊗, ∅)-model structures for the category of cubical sets over
¤k coincide (Corollary 8.4), so the two theories have the same fibrant objects. In
particular, every injective object of (¤-Set)/¤k is fibrant for the standard theory,
by Lemma 4.13.

Theorem 8.6. Every injective fibration of cubical sets is a fibration.

Proof. Suppose we know that if a map q: V →W is an injective fibration and a
standard weak equivalence, then it is a trivial fibration.

Suppose further that f : X → Y is an injective fibration, and form the diagram

X
j //

f
²²

U
p

²²
Y

jY

// L(Y )

where the horizontal maps are trivial cofibrations, L(Y ) is fibrant and p is an injec-
tive fibration (this can be done in the (⊗, ∅)-model structure). Then Lemma 4.13
implies that p is a fibration. It follows that the induced map p∗: Y ×L(Y ) U → Y is
a fibration.
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The map X → Y ×L(Y ) U is a weak equivalence by properness (Theorem 8.2),
and it has a factorization

X
i //

%%LLLLLLL W
q

²²
Y ×L(Y ) U

where i is an (⊗, ∅)-anodyne cofibration and q is an injective fibration. Then the
map q is also a weak equivalence, and so it is a trivial fibration by our assumption.
One sees easily that f is a retract of the composite p∗q, and so f is a fibration.

Suppose now that the cubical set map q: V →W is an injective fibration and a
weak equivalence. Then in all diagrams

¤m ×W V
τ∗ //

q∗
²²

¤n ×W V //

q∗
²²

V
q

²²
¤m

τ
// ¤n

σ
// W

the maps labelled q∗ are fibrations (Lemma 8.5), and the map τ∗ is a weak equiv-
alence by properness. It is therefore a consequence of Quillen’s Theorem B that all
diagrams of simplicial set maps

Bi¤(¤n ×W V ) //

²²

Bi¤V

²²
Bi¤(¤n)

σ∗
// Bi¤W

are homotopy cartesian: recall that there are isomorphisms

i¤(¤n ×W V ) ∼= f∗/σ

for all cells σ: ¤n →W of W . The map Bi¤(V )→ Bi¤(W ) is a weak equivalence
by assumption, so that all induced maps ¤n ×W V → ¤n are weak equivalences,
and hence trivial fibrations. It follows that q: V →W has the right lifting property
with respect to all inclusions ∂¤n ⊂ ¤n, and is therefore a trivial fibration, as
claimed.

Recall from Section 3 that the triangulation |X| of a cubical setX is the simplicial
set defined by

|X| = lim−→
¤n→X

B(1n).

The cells σ: ¤n → X of a cubical set X induce simplicial set maps

B(1n) ∼= |¤n| σ∗−→ |X|,
and these maps together determine a map

fX : holim−−−→
σ:¤n→X

|¤n| → |X|
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in the obvious way. Observe that the canonical map

πX : holim−−−→
σ:¤n→X

|¤n| → Bi¤X

is a weak equivalence for all cubical sets X. This is a consequence of the fact that
all triangulations |¤n| are contractible simplicial sets.

Lemma 8.7. The map

fX : holim−−−→
σ:¤n→X

|¤n| → |X|

is a weak equivalence of simplicial sets.

Proof. In fact, the realization functor preserves projective cofibrations and point-
wise weak equivalences for all diagrams of cubical sets, and of course preserves all
colimits. It therefore preserves all homotopy colimits.

The standard model structure on the category of cubical sets is regular — this is
demonstrated in the proof of Lemma 8.3. The regularity property means that the
canonical map

holim−−−→
σ:¤n→X

¤n → X

is a weak equivalence of cubical sets. The desired result follows, by applying the
realization functor.

As a consequence, the description of standard weak equivalence of cubical sets
given here, via the functor X 7→ Bi¤X, coincides with the geometric description of
weak equivalence defined by the functor X 7→ |X|. The standard model structure
Ms for cubical sets therefore coincides with the geometric model structure given
in [10]. The triangulation functor | |: ¤-Set→ S also preserves and reflects weak
equivalences of cubical sets.

The right adjoint S: S→ ¤-Set of the triangulation functor is defined by

S(X)n = hom(B(1n), X).

This functor is also (see Lemma 2.13) the functor i∗: S→ ¤-Set induced by the
inclusion i: ¤→ cat. It is plainly the case that all of the categories 1n have termi-
nal objects, and we know from Corollary 3.8 that the cubical set i∗(∆1) = B¤(1)
is aspherical. It follows from Corollary 2.14 and Lemma 3.11 that the functor S
preserves and reflects weak equivalences of simplicial sets.

Theorem 8.8. The triangulation functor | | and its right adjoint S induce an
adjoint equivalence of homotopy categories

Ho(¤-Set) ' Ho(S).

The adjunction maps η: X → S|X| and ε: |SY | → Y are natural weak equivalences.
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Proof. There are natural weak equivalences

i∗∆i¤X ' Bi¤X ' |X|
for all simplicial sets X: the first comes from Equation (3) and the second is a
consequence of Lemma 8.7. The functor i∗∆i¤ induces an equivalence

i∗∆i¤: Ho(¤-Set) '−→ Ho(S)

by Theorem 6.2 (Example 6.3). This functor is, in particular, fully faithful. It follows
that the triangulation functor | | induces a fully faithful functor | | on the level of
homotopy categories. The functor S also preserves weak equivalences, and therefore
induces a functor

S: Ho(S)→ Ho(¤-Set)

which is right adjoint to | |. From the collection of pictures

[Y,Z]
∼= //

η∗
²²

[|Y |, |Z|]

[Y, S|Z|]
∼=

88ppppppp

one sees that composition with the natural cubical set morphism η: Z → S|Z| is an
isomorphism for all maps Y → Z in the homotopy category. It follows that η is an
isomorphism in Ho(¤-Set), and hence that η is a weak equivalence of cubical sets
— see [5, I.1.14]. It follows that Sε is a weak equivalence for all natural simplicial
set maps ε: |S(Y )| → Y . The functor S reflects weak equivalences, so all canonical
maps ε are weak equivalences of simplicial sets.

At the risk of adding a final bit of notational confusion, I shall define the
topological realization |X| of a cubical set X by setting

|X| = lim−→
¤n→X

|B(1n)|,

where |B(1n)| is the topological realization of the simplicial set B(1n). The object
|B(1n)| is, in other words, an ordinary topological hypercube. The topological
realization functor has a right adjoint

S¤: Top→ ¤-Set

which is defined for a topological space Y by

S¤(Y )n = hom(|B(1n)|, Y ).

Write S∆: Top→ S for the ordinary singular functor taking values in simplicial
sets. The topological realization of a cubical set X is naturally isomorphic to the
topological realization of the triangulation |X| ∈ S, so there is a corresponding
natural isomorphism

S¤(Y ) ∼= S(S∆(Y ))

relating the right adjoints.
The following result is the excision statement for cubical sets:
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Theorem 8.9. Suppose that a topological space Y is covered by open subsets U1

and U2. Then the canonical map

S¤U1 ∪ S¤U2 → S¤Y

is a weak equivalence of cubical sets.

Proof. The idea of proof is to show that the induced map of triangulations

|S¤U1| ∪ |S¤U2| ∼= |S¤U1 ∪ S¤U2| → |S¤Y |
is a weak equivalence of simplicial sets. There is a natural isomorphism S¤Z ∼=
S(S∆Z) for all topological spaces Z, and it follows from Theorem 8.8 that there is
a natural weak equivalence

|S¤Z| ∼= |S(S∆Z)| ε−→ S∆Z,

which will be denoted by ε. It follows that there is a commutative diagram

|S¤U1| ∪ |S¤U2| //

ε∗
²²

|S¤Y |
ε

²²
S∆U1 ∪ S∆U2

// S∆Y

in which the vertical maps are weak equivalences of simplicial sets by a patching
lemma argument. The map

S∆U1 ∪ S∆U2 → S∆Y

is a weak equivalence of simplicial sets, by excision for simplicial sets [11, Theo-
rem 20].

Theorems 8.8 and 8.9 also appear in [10]. In particular, Theorem 8.9 appears as
Theorem 2.7 in that paper, and is the central device given there for establishing
the Theorem 8.9. The proof of Theorem 8.9 which is given in [10] is a direct and
somewhat dirty subdivision argument.

Acknowledgements

This research was supported by NSERC. I would like to thank Denis-Charles
Cisinski for a series of helpful discussions which were initiated during the meeting
“Homotopy Theory and its Applications” held in London, Canada in September,
2003. This meeting was supported by the Fields Institute, and I would like to thank
the Institute for making that meeting possible.

References

[1] Blander, B., Local projective model structures on simplicial presheaves,
K-Theory 24(3) (2001), pp. 283–301.

[2] Bousfield, A.K., and Kan, D.M., Homotopy Limits, Completions and Local-
ization, Lecture Notes in Mathematics, 304, Springer-Verlag, Berlin-Heidel-
berg-New York, 1972.



Homology, Homotopy and Applications, vol. 8(1), 2006 144
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