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Abstract
Let L be an infinite dimensional graded Lie algebra that is

either the homotopy Lie algebra π∗(ΩX) ⊗ Q for a finite n-
dimensional CW complex X, or else the homotopy Lie algebra
for a local noetherian commutative ring R (UL = ExtR(Ik, Ik))
in which case put n = (embdim − depth)(R).

Theorem: (i) The integers λk =
k+n−2
∑

q=k

dimLi grow faster

than any polynomial in k.
(ii) For some finite sequence x1, . . . , xd of elements in L and

some N , any y ∈ L>N satisfies: some [xi, y] 6= 0.

To Jan–Erik Roos on his sixty–fifth birthday

1. Introduction

Let X be a simply connected CW complex of finite type. Then [16] its loop
space homology, H∗(ΩX;Q) is the universal enveloping algebra of the graded Lie
algebra LX = {(LX)i}i>1 = π∗(ΩX) ⊗ Q, equipped with the Samelson product.
Similarly, if R is a commutative local noetherian ring with residue field Ik then
[1], [17] ExtR(Ik, Ik) is the universal enveloping algebra of a graded Lie algebra
LR = {Li

R}i>1. We call LX (LR) the homotopy Lie algebra of X (of R) and call
ei(X) = dim (LX)i (or ei(R) = dim Li

R) the ith deviation of X (or of R).
For finite complexes X and for all local rings R the hypothesis dim L < ∞

imposes very special conditions (in this case X is called Q-elliptic). For example,
if X is Q-elliptic the H∗(ΩX;Q) is a Poincaré duality algebra [12] while if LR is
finite dimensional then R is a complete intersection [10], [11]. Moreover, it is known
(again for finite complexes X and for any R) that

• If dim LX < ∞ and dim LR < ∞ then

ei(X) = 0, i > 2 dim X, [9] and ei(R) = 0, i > 3, [10], [11].

• If dim LX = ∞ and dim LR = ∞ then for some K > 0, C > 1,
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k
∑

i=1

ei(X) > KCk, k > dim X − 1, [3] and
k

∑

i=1

ei(R) > KCk, k > 1, [2].

• If dim LX = ∞ and dim LR = ∞ then
k+dim X−2

∑

i=k

ei(X) > 0, all k > 1, [14] and ek(R) > 0, all k > 1, [13].

• If dim L = ∞ (L = LX or LR) then for all x ∈ L of sufficiently large even
degree there is some y = y(x) ∈ L such that (adx)ky 6= 0, k > 1, [7].

These results motivate/provide evidence for the two following main conjectures,
due to some combination of Avramov - Félix - Halperin - Thomas.

Conjecture 1. If X is finite dimensional, not Q-elliptic, and if R is not a complete
intersection then for some K > 0, C > 1:

∑k+dim X−2
i=k ei(X) > KCk, k > 1, and ek(R) > KCk, k > 1.

Conjecture 2. If X is finite dimensional, not Q-elliptic, and if R is not a complete
intersection then LX and LR each contain a free Lie subalgebra on two generators.

This paper makes some progress towards these conjectures. For simplicity we
adopt the following notation:

• X is a finite, non Q-elliptic, simply connected CW complex and R is a local
noetherian commutative ring that is not a complete intersection.

• L is either LX or LR, and Leven is the sub Lie algebra of elements of even
degree.

• n = nX = dim X or n = nR = (embdim−depth)(R).
• ei = ei(X), or ei = ei(R).
• h = hX = dim H∗(X;Q), or h = hR = dim H∗(KR), KR denoting the Koszul

complex of R.

Then, with the hypotheses and notation above, we establish

Theorem A.

(i) The integers λk =
k+n−2
∑

i=k

ek grow faster than any polynomial in k. In partic-

ular,

λk →∞ as k →∞.

(ii) Moreover, if Leven contains a maximal abelian sub Lie algebra of finite di-
mension then for some K > 0, C > 1,

λk > KCk, k > 1.

Theorem B. There is a finite sequence x1, . . . , xd of elements in L and an integer
N such that:

y ∈ L , deg y > N ⇒ some [xi, y] 6= 0 .
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2. General remarks.

With X is associated the commutative graded differential algebra APL(X) whose
Sullivan minimal model (ΛV, d) satisfies [18], [8]

H(ΛV, d) ∼= H∗(X;Q) and ei(X) = dim V i+1, i > 1.

In particular, Hi(ΛV, d) = 0, i > n. Moreover, [18], [8] the differential d =
∑

i>2

di,

with di : V → ΛiV . Finally, (ΛV, d2) = C∗(LX) where for any graded Lie alge-
bra E over Ik, C∗(E) is the Cartan-Chevalley-Eilenberg-Quillen complex, whose
cohomology is ExtUE(Ik, Ik).

Similarly, with R is associated its Koszul complex KR which is connected by
quasi-isomorphisms to a commutative graded chain algebra [2]. This in turn has a
’Sullivan model’ (ΛV, d) in which V = {Vi}i>1 and d decreases degrees by 1. Here
we have Hi(ΛV, d) = Hi(KR) = 0, i > n, and

ei(R) = dim Vi−1, i > 2 .

Moreover (ΛV, d2) = C∗(L>2
R ).

Recall now that the depth of an augmented graded algebra A is the least m (or
∞) such that ExtmA (Ik, A) 6= 0. We define the depth of a graded Lie algebra, E, to
be the depth of its universal enveloping algebra (depth E = depth UE) and recall
from [4] that

depth LX 6 LScat(X) 6 nX and depth LR 6 nR . (2.1)

We shall make frequent use of the remark [4] that if I is an ideal in a graded Lie
algebra E then

depth I 6 depth E . (2.2)

Finally, since in both cases we have dim H(ΛV, d) = h < ∞, we can apply a
result of Lambrechts:

Lemma 2.3 [15]. For all k sufficiently large, there is some l ∈ [k + 1, k + n − 1]
such that
dimV l > dimV k /hn.

In fact Lambrechts shows that dim V k 6 h
n−1
∑

i=1

dim V k+i+ dim Gk, where G∗ ⊂ L

is the abelian ideal of Gottlieb elements. As noted in [4] this implies that G∗ is finite
dimensional, and so the inequality of Lemma 2.3 holds for large k.

3. Proof of Theorem A.

(i) We prove this in the case that Leven contains an infinite dimensional abelian
sub Lie algebra, E, since otherwise (i) will follow from (ii). For convenience, we
abuse notation and write the degrees as subscripts.
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Note that the sub Lie algebra F = E6k ⊕L>k has finite codimension in L. Thus
we can write F = Im ⊂ Im−1 ⊂ · · · ⊂ I0 = L where each Ik is constructed from
Ik+1 by adding a single element of maximal degree. It follows that each Ik is a sub
Lie algebra containing Ik+1 as an ideal. In particular by (2.1) and (2.2).

depth F 6 depth L 6 n .

On the other hand F/L>k is the abelian Lie algebra E6k and UE6k = Ik[E6k] is
a polynomial algebra. In particular, depth E6k = dim E6k, and there are constants
0 < c < C such that for any finitely generated UE6k-module M , and some integer
r(M),

ckr(M) 6
∑

i6k

dim Mi 6 Ckr(M), k sufficiently large.

The integer r(M) is called the polynomial growth of M .
Now ([6];Theorem 4.1) asserts that for some q 6 n and some α ∈ TorUL>k

q (Ik, Ik)
the module UE6k · α has polynomial growth at least equal to (dim E6k) − n. But
the action of UE6k in TorUL>k(Ik, Ik) is induced from the adjoint representation
of E6k in the complex (ΛC(sL>k), ∂) dual to C∗(L>k); here ΛC denotes the free
co-commutative coalgebra. In particular for some z ∈ (ΛC)qsL>k, UE6k · z has
polynomial growth at least equal to (dim E6k)− n.

Since q 6 n this implies in turn that for some y ∈ L>k,

poly growth (UE6k · y) >
dim E6k

n
− 1 .

Fix some r > 0 and choose k so that dim E6k > (n + 1)r. Then poly growth
(UE6k · y) > r. It follows that there are r elements x1, . . . , xr ∈ E6k such that
Ik[x1, . . . , xr]

∼=→ Ik[x1, . . . , xr] · y. Choosing di so that the xdi
i all have the same

degree d we see that

dim Lkd+deg y > λkr > µ((k + 1)d + deg y)r , k > 2 , (3.1)

for some positive constants λ and µ. Now, for k sufficiently large, repeated appli-
cations of Lemma 2.3 give an infinite sequence of integers i1 < i2 < ... such that
i1 = kd + degy, and

is+1 6 is + n− 1 and dim Lis >
µ((k + 1)d + deg y)r

(nh)s , s > 1 .

It follows at once that (provided k is sufficiently large)
q+n−2
∑

j=q

dim Lj >
µ

(nh)d qr , deg y + kd 6 q 6 deg y + (k + 1)d .

Since both sides of the equation are independent of k this establishes (i) in the
presence of an infinite dimensional abelian subalgebra.
(ii) Let E = ⊕r

i=1Ikxi be a maximal abelian sub Lie algebra of Leven. Give Leven the
decreasing filtration defined by F 0 = Leven, and F i = {y ∈ Leven | [xj , y] = 0 , 1 6
j 6 i}. The maximality of E implies that F r = 0. Choose graded subspaces V i ⊂
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Leven such that F i−1 = V i ⊕ F i, and choose integers d1, ..., dr so that d1deg x1 =
... = drdeg xr = d. Then for all q and all k

(adx1)qd1 ⊕ ...⊕ (adxr)qdr : V 1
2k ⊕ ...⊕ V r

2k −→ L2k+qd

is injective ; i.e. dim L2k 6 dim L2k+qd, k > 0, q > 0.
On the other hand, a simple extension of the argument in ([8]; Chapter 33) gives

an infinite sequence of even integers i1 < i2 < ... such that is+1 6 n2is, s > 1,
and constants a > 0, D > 1 such that dim Lis > aDis , s > 1. Now application of
Lambrecht’s lemma 2.3 gives (ii) in the same way it completed the proof of (i).

�

4. Proof of Theorem B.
As recalled in §2, L has finite depth. This means that ExtUL(Ik, UL) 6= 0,

and in [5] it is shown that for some finitely generated sub Hopf algebra G the
restriction ExtUL(Ik, UL) → ExtG(Ik, UL) is non zero. Suppose G is generated
in degrees less than or equal to n, and denote E = L6n. Then the restriction
ExtUL(Ik, UL) → ExtG(Ik, UL) factors through ExtUE(Ik, UL), and so the re-
striction ExtUL(Ik, UL) → ExtUE(Ik, UL) is non zero. In particular, E has finite
depth. The adjoint action of E in L defines a representation of UE in L, and The-
orem B is a corollary of

Theorem C. For some N and all y ∈ L>N the graded vector space UE · y grows
faster than any polynomial.

Proof. Let Z ⊂ L be the subspace of elements z such that UE · z grows at most
polynomially (i.e. for some constant c > 0 and some r, dim [UE · z]k 6 ckr, k > 1.
Since UE · [z, w] ⊂ [UE · z, UE ·w] it follows that Z is a sub Lie algebra of L, stable
under the adjoint representation of E.

In particular, if x ∈ Z ∩ E then UE.x is an ideal in E of at most polynomial
growth. Since depth UE.x 6 depth E < ∞ (by 2.2) if follows from ([6]; Theorem
B) that UE.x is finite dimensional . Thus Z ∩E is an ideal in E that is the union of
finite dimensional ideals. Since L = L>1 these finite dimensional ideals are solvable
and their sum Z ∩ E is then itself finite dimensional [4].

Thus Z>q∩E = 0 (some q) and E⊕Z>q is itself a sub Lie algebra of L. Moreover
the composite

ExtUL(Ik, UL) → ExtU(E⊕Z>q)(Ik, UL) → ExtUE(Ik, UL)

is non-zero. But ExtU(E⊕Z>q)(Ik, UL) is the cohomology of the complex (∧(sE)∗⊗
∧(sZ>q)∗ ⊗UL, d), and a simple ‘filtration argument’ shows that the restriction to
(∧(sE)∗ ⊗ UL, d) is zero in cohomology unless for some a ∈ UL , 1⊗ a is a cocycle
in the quotient complex (∧(sZ>q)∗⊗UL, d). This can only occur when Z>q is finite
dimensional and concentrated in odd degrees [4].

Thus Z itself is finite dimensional and it suffices to choose N so that Z is con-
centrated in degrees < N .
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