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Abstract
This is an attempt to present one aspect of the work of

Jan-Erik Roos.

A glance at the list of publications reveals three clearly defined periods in his
life as an algebraist. During the first one he studied abelian categories, obtaining
fundamental results on derived functors of inverse limits. They are contained in [3],
[5]–[9], [11]–[17], [19]–[21]. In the second period he focused on the homological
theory of non-commutative rings, producing methods and results of lasting interest,
among them a truly classic theorem—the determination of the global dimension of
Weyl algebras. The papers [4], [18], [22]–[26], and [31] (treating related questions
from commutative ring theory) contain the results of that period. Björk [Bj] has
given an overview in the context of contemporary and subsequent research.

The work discussed here starts in the mid-1970s, when Jan-Erik turned to homo-
logical problems on finitely generated modules over commutative noetherian local
(or graded) rings. He has produced fascinating results on the structure of free res-
olutions of modules of infinite projective dimension, and has investigated deep and
mysterious links between homological properties of commutative rings and topo-
logical spaces. His study of numerical invariants encoded in Poincaré series, and
of algebraic invariants determined by Yoneda products and by homology products,
brings an unusual degree of integration between these components.

This highly original and technically difficult work also brings to mind other qual-
ities, such as elegance and optimism. A quick look at the many rings appearing
on the following pages shows that there is nothing contrived about his ‘examples’:
they are defined by the kind of simple expressions in few variables that one scrib-
bles on a piece of paper to have something ‘concrete’ to play with. Appearances
notwithstanding, some of these rings have been craftily constructed to posess a
desired property. Others have been found by sifting, with the determination of a
gold prospector, through computations of (literally!) thousands of examples. The
purpose in this survey is to provide a guide to some of Jan-Erik’s finds.

A different perspective of work completed by 1985 can be found in the article of
Anick and Halperin [AH]. Connection with topology, which were discussed early on
by Lemaire [Le] in a Bourbaki talk, and recently by Hess [He] in historical context,
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are not pursued very far here. Choices had to be made for a framework in which to
present the algebraic results. For simplicity and uniformity, all of them are stated
in the classical situation of commutative graded algebras over a field, generated by
finitely many elements of degree 1. Another decision concerns the presentation and
referencing of results that motivated Jan-Erik’s research, or were triggered by it. A
minimalist approach was adopted, so theorems of other authors are described only
in the text, and bibliographic information on their papers is reduced to the year
publication.

Several mathematicians whose work is touched upon in this survey got their
degrees from Jan-Erik. At the end of te paper one can find a list of all his graduate
students. Invariably, they had been drawn into research at the lively algebra seminar
that Jan-Erik ran for decades with contagious enthusiasm. It is there that many
results discussed below were first reported, and numerous collaborations started.

No attempt to describe Jan-Erik’s influence on the development of the subject
would be complete without a reference to the meeting on Algebra, Algebraic Topol-
ogy, and their Interactions that he organized in 1983 in Stockholm. The exchange of
ideas between two groups of mathematicians, one working in commutative algebra
and the other in homotopy theory, reached an incredible level of intensity. It can
be felt even today from the volume of proceedings [33], which carried the impact
of the meeting far beyond the already large circle of its participants.

1. Background

Due to the variety of concepts and techniques used in Roos’s research, it is not
easy to point to a standard text for prerequisites. One purpose of this introductory
section is to provide students of commutative rings with basic information on the
non-commutative algebra and homological algebra used in the theorems. Another
is to introduce notation that will stay fixed for the rest of the paper.

1.1. Hilbert series
Let k be a field and B =

⊕

j∈NBj be a graded k-algebra, with B0 = k and
rankk(Bj) < ∞ for all j ∈ N. Let V =

⊕

j∈N Vj be a graded left B-module. We
write V (s) for the graded B-module with V (s)j = Vj+s for all j. If V is finitely
generated, then rankk Vj < ∞ for all i ∈ N, so it has a Hilbert series

V (y) =
∑

j∈N
rankk(Vj)yj ∈ Z[[y]] .

Hilbert series of spaces V =
⊕

j∈N V j graded by upper degrees are defined similarly.

1.2. Poincaré series
The module V has a graded resolution ε : F → V where Fi a direct sum of graded

modules B(s)bis with bis ∈ N for all i, s and bis = 0 for all s < i. For k = B/B>1
one obtains graded vector spaces TorB

i (V, k) =
⊕

j∈NTorB
i (V, k)j for all i ∈ N. The
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Poincaré series of V over B is the formal power series

PB
V (y, z) =

∑

i∈N

(

TorB
i (V, k)(y)

)

zi ∈ Z[[y, z]] ;

Abusing notation, we let k denote the graded R-module R/R>1, and set PB(y, z) =
PB

k (y, z). Poincaré series determine Hilbert series via an equality

PB
V (y,−1) =

V (y)
B(y)

(1)

where the left hand side is the limit of the sequence
( ∑r

i=0(−1)i TorB
i (V, k)(y)

)

r∈N,
which converges in the (y)-adic topology of Z[[y]].

If B is left noetherian, then V has a graded resolution F as above by finitely
generated free B-modules, so TorB

i (V, k)(y) is a polynomial for each i, that is,

PB
V (y, z) ∈ Z[y][[z]] .

In this case, one also has a Poincaré series in a single homological variable:

PB
V (z) = PB

V (1, z) .

1.3. Yoneda products
Pairings of Ext groups, defined by Yoneda, turn

E(B) =
⊕

i∈N , j∈Z
Exti

B(k, k)j .

into a bigraded algebra, the Yoneda algebra of B, and give ExtB(V, k) (respectively,
ExtB(k, V )) a structure of bigraded left (respectively, right) module over it.

A Hopf algebra is a graded algebra B equipped with a homomorphism of graded
k-algebras ∆: B → B ⊗k B, called the diagonal. If B is a Hopf algebra, then the
Yoneda algebra E(B) is graded-commutative for the cohomological degree, that is

α β = (−1)ipβ α for all α ∈ Ei(B)j and all β ∈ Eq(B)q

1.4. Koszul duals
For degree reasons

⊕

i∈N Exti
B(k, k)i ⊆ E(B) is a bigraded subalgebra. Regraded

diagonally, that is, by assigning Exti
B(k, k)i degree i, it is called the Koszul dual

algebra B! of B. Priddy (1970) proved that B! is is generated in degree 1 and its
ideal of relations is generated in degree 2.

He also constructed a complex of free graded left B-modules

K•(B) = · · · −→ B ⊗k B!
i(−i) ∂i−→ B ⊗k B!

i−1(1− i) −→ · · · −→ B −→ 0 (2)

with H0(K•(B)) = k and each ∂i determined by the product B!
1 ⊗k B!

i−1 → B!
i. In

case B is generated by B1, he proved that the following conditions are equivalent:

(3.1) The complex K•(B) of (2) is exact.

(3.2) PB(y, z) = B!(yz)

(3.3) E(B) = B!
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(3.4) B!! ∼= B

When these conditions are satisfied, the algebra B is said to be Koszul .

1.5. Commutative algebras
Let S = k[x1, . . . , xe] be a polynomial ring on indeterminates of degree 1, let I

be an ideal generated by forms of degree at least 2, and set R = S/I. Let M be a
graded R-module, finitely generated in non-negative degrees. A famous theorem of
Hilbert yields

M(y) =
p(y)

(1− y)e for some p(y) ∈ Z[y] . (4)

As R is commutative, TorR(k, k) has a homology product that turns it into a
bigraded algebra, graded-commutative for the homological degree.

1.6. Homotopy Lie algebras
The k-dual of each TorR

i (k, k)j is naturally isomorphic to Exti
R(k, k)j , and the

homology product dualizes to a diagonal map turning E(R) into a bigraded Hopf
algebra. Milnor and Moore (1965), for char(k) = 0, André (1971), for char(k) > 2,
and Sjödin (1980), for char(k) = 2 proved that such a Hopf algebra is the universal
enveloping algebra of a bigraded Lie algebra π(R), called the homotopy Lie algebra
of R. When char(k) = 0 it is described by

π(R) = {ξ ∈ E(R) | ∆(ξ) = ξ ⊗ 1 + 1⊗ ξ}

Set εij(R) = rankk πi(R)j and call εi(R) =
∑

j∈Z εij(R) the i’th deviation of R.
The Lie algebra π(R) yields compact descriptions of the other invariants of k. By

the Poincaré-Birkhoff-Witt Theorem, if {ξu}u∈N is a homogeneous basis of π(R),
then E(R) has a k-basis consisting of the distinct products ξn1

u1
· · · ξns

us
with u1 <

· · · < us, nr > 0 if ur has even homological degree ur, and nr = 0, 1 otherwise. The
Lie bracket in π(R) give the multiplication table of basis elements. The deviations
determine the Poincaré series through the formula

PR(y, z) =

∏∞
h,j=0(1 + yjz2h+1)ε2h+1,j(R)

∏∞
h,j=0(1− yjz2h+2)ε2h+2,j(R) (5)

The Koszul dual R! is the universal enveloping algebra of the Lie algebra π(1)(R),
obtained by diagonally regrading the subalgebra

⊕

i∈N πi(R)i of π(R). It is a quo-
tient of the free associative k-algebra on indeterminates ξ1, . . . , ξe of degree 1 by a
two-sided generated by linear combinations of ξiξj + ξjξi and ξ2

i for 1 6 i 6 j 6 e.

1.7. Homology of loop spaces
Let X be a connected CW complex of finite type. The singular cohomology

ring H∗(X; k) with coefficients in k is then a gradaded-commutative k-algebra with
rankk Hn(X; k) < ∞ for each n > 0, and Hn(X; k) = 0 for n > dim X. We let RX; k
denote the commutative k-subalgebra of H∗(X; k) generated by H2(X; k), graded
by assigning degree i to the elements of H2i(X; k).
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If ΩX is the loop space of X, then the singular homology H∗(ΩX; k) is a graded
vector space of finite rank in each degree. Furthermore, composition of loops endows
it with a structure of a (non-commutative, in general) associative k-algebra.

2. Irrational Poincaré series

By Hilbert’s Syzygy Theorem, over the polynomial ring S = k[x1, . . . , xe] for each
finitely generated module M one has PS

M (y, z) ∈ Z[y, z]. On the other hand, Serre’s
characterization of regularity shows that for R = S/I with 0 6= I ⊆ (x1, . . . , xe)2, all
non-negative powers of z appear in the series PR(y, z). In the late 1950s Kostrikin
and Shafarevich, Serre, and Kaplansky asked whether it always represents a rational
function. In the same breath, Serre had also asked if the series H∗(ΩX; k)(z) is
rational for every simply connected finite CW complex X when char(k) = 0.

The simplest case of these questions are rings with Ri = 0 for i > 2, and com-
plexes with dim X 6 2, for which the easily computed answers

PR(y, z) =
1

R(−yz)
and H∗(ΩX; k)(z) =

z
1 + z −H∗(X; k)(z)

are roughly equivalent. Roos extended the equivalence a step further.

2.1. Short algebras
We say that the algebra R is short if Ri = 0 for i > 3. For such an algebra,

Löfwall established in his thesis (1986) the relation

1
PR(y, z)

=
1

R!(yz)
− 1

z

(

R(−yz)− 1
R!(yz)

)

. (6)

Roos gave a different proof of this result, and used it to link homological invariants
of short algebras with those of short CW complexes, that is, simply connected finite
CW complexes of dimension at most 4; clearly, if X is short, then so is RX; k.
Following Anick and Gulliksen, we say that two serie P (z) and Q(z) are rationally
related if there exist polynomials a(z), b(z), c(z), d(z) ∈ Z[z], such that

P (z) =
a(z)Q(z) + b(z)
c(z)Q(z) + d(z)

and a(z)d(z)− b(z)c(z) 6= 0 .

Theorem ([28]). If X is a short CW complex and char(k) = 0, then the series
H∗(ΩX; k)(z) and PRX; k(z) are (explicitly) rationally related. Furthermore, every
short Q-algebra is isomorphic to RX;Q for some short space X.

Short algebras and short CW complexes are very special objects in their respec-
tive categories. Roos’ insight to focus on the properties of their series was validated
by Anick and Gulliksen (1985), who proved that the Poincaré series of any object in
one of these categories is rationally related to the Poincaré series of a short object.

2.2. Artinian algebras
Anick (1979) constructed a simply connected finite CW complex X of dimension

4 for which the series H∗(ΩX;Q)(z) is transcedental. Roos’s theorem in §2.1 then



Homology, Homotopy and Applications, vol. 4(2), 2002 6

produced a short graded algebra R for which PR(z) is transcendental. Soon after
seeing Anick’s result, Löfwall and Roos (1980) proved:

Theorem ([29]). If R = k[x1, x2, x3, x4, x5]/I where I is the ideal

(x2
1 , x2

2 , x2
3 , x2

5 , x1x2 , x3x5 , x1x2
4 , x2x2

4 , x3x2
4 , x3

4 , x2
4x5 , x1x3 + x2x4 + x4x5)

then the Poincaré series PR(t) is transcendental.

Their approach differs from Anick’s. Using classical cohomological techiques, they
first construct a graded Lie algebra L, finitely generated in degree 1 and related in
degree 2, whose universal enveloping algebra A has transcendental Hilbert series
A(z). The commutative ring R = A!/(A!)>3 is then short, and has R! = A. Formula
(6) then shows that PR(z) is transcendental. Roos [30] presents a highly read-
able account of this construction and of related developments, in particular of the
proof by Bøgvad (1983) that the trivial extension of R by its dualizing module is a
Gorenstein artinian algebra with transcendental Poincaré series.

2.3. Toric algebras
The ring in the preceding theorem has a single non-monomial relation. It soon

turned out that the presence of such a relation is unavoidable: Backelin (1982)
proved that if I is generated by monomials, then the series PR(y, z) is rational. In
the 1990s, under the influence of toric geometry, homological properties of algebras
with binomial relations came under close scrutiny. It was asked whether PR(y, z) is
rational for all rings with binomial relations. Gasharov, Peeva, and Welker (2000)
gave a positive answer for ‘generic’ defining binomials. However, Roos and Sturmfels
showed that, in general, the answer is still negative:

Theorem ([43]). Let k[u, v] be a polynomial ring with variables of degree 1, and
let R be the graded k-algebra obtained from the graded subalgebra

k[u36 , u33v3 , u30v6 , u28v8 , u26v10 , u25v11 , u24v12 , u18v18 , v36] ⊂ k[u, v]

by dividing all degrees by 36. The Poincaré series PR(t) is then transcendental.

The series is computed through several reductions, using Levin’s theories of Golod
homomorphisms (1975) and of large homomorphisms (1985). From the theorem
Fröberg and Roos [45] extracted an affine monomial curve with transcendental
Poincaré series: the subalgebra k[x18, x24, x25, x26, x28, x30, x33] of k[x].

3. Yoneda algebras

Since the Yoneda algebra E(R) = ExtR(k, k) and the homotopy Lie algebra π(R)
determine each other, in the following discussion we freely swith between them.

Some of the deepest cohomological information on R concerns the structure of the
Lie algebra π(R), and the behavior of the deviations εi(R) = rankk πi(R), cf. §1.6.
In [32] Roos surveyed the subject until around 1980. To put his own contributions
in context we sketch some additional results.

The algebra R is said to be complete intersection if the ideal I can be generated
by a regular sequence. For such rings π(R) is completely understood, and is small:
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Tate (1957) proved that πi(R) = 0 for all i > 3. On the other hand, if R is not
complete intersection, then Halperin (1987) proved that πi(R) 6= 0 for all i > 1.
Furthermore, drawing on a result of Félix, Halperin, and Thomas (1982) on the
growth of the rational homotopy groups of Avramov (1984) showed that there is an
infinite sequence of indices 0 < s1 < · · · < sj < · · · with bounded ratios sj+1/sj

and a real number γ > 1 such that εsj (R) > γsj for all j > 1.

3.1. Generation
Levin (1974) conjectured that E(R) is always finitely generated as an associative

k-algebra. This is equivalent to the finite generation of π(R) as a Lie algebra. Löfwall
(1986) proved that if R is short in the sense of §2.1, then π(R) is a semi direct
product π(1)(R)n L(W ), where L(W ) is the free Lie algebra on the graded vector
space V (1), where V is the third syzygy in a minimal free resolution of the graded
right R!-module k. It follows that π(R) is finitely generated if and only if rankk V
is finite. Here is a short ring for which this fails:

Theorem ([28]). If R = k[x1, x2, x3, x4, x5]/I where I is the ideal

(x2
1 , x2

2 , x2
3 , x2

4 , x2
5 , x2x3 , x4x5 , x1x2x4 , x1x2 + x1x3 + x1x4 + x1x5)

then the Yoneda Ext algebra E(R) is not finitely generated.

The ring above was found by following the link to rational homotopy theory.
Indeed, Halperin and Stasheff (1979), and others, had shown that short CW com-
plexes are formal spaces. This has as a consequence an isomorphism of Q-algebras
H∗(ΩX;Q) ∼= E′(H∗(X;Q)), where the prime indicates a regrading of the bigraded
Ext algebra. The algebra E(RX;Q) is a retract of E′(H∗(X;Q)), and is equal to it
in degree 1. For k = Q, the ring in the theorem is R = RX;Q where X is a short CW
complex, constructed by Lemaire (1974), with the property that the subalgebra of
H∗(ΩX;Q) generated by H1(ΩX;Q) is not finitely generated over Q.

3.2. Double Yoneda algebras
For a graded R-module M , let E(M) denote the bigraded E(R)-module

ExtR(M,k). By definition one has E(R)(y, z) = PR
M (y, z). Furthermore, E2(M) =

ExtE(R)(E(M), k) is a trigraded module over the trigraded algebra E2(R), and
formula (1) yields PR

M (y, z) = 1/E(R)(y, z,−1). In particular, if E(R)(y, z, u) is
rational, then so is be PR

M (y, z). Now the algebra E(R) is a Hopf algebra, cf. §1.6,
hence the algebra E2(R) is graded commutative, cf. §1.3, and thus formula (4)
would yield the desired rationality provided E2(R) is finitely generated as an alge-
bra over k and E2(M) is finitely generated as a module over it. Few would have
even attempted such a long shot. Roos pulled it off twice.

A class of rings introduced by Golod (1962) has long served as testing ground for
homological conjectures. Avramov (1974) and Löfwall (1986) independently showed
that for a Golod ring R the Lie algebra π>2(R) is finitely generated and free. Using
this fact, Roos proved the following

Theorem ([27]). If R is Golod and M is a finitely generated R-module, then the
algebra E(R) is coherent, the E(R)-module E(M) is coherent, the commutative
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algebra E2(R) is finitely generated, the E2(R)-module E2(R) is finitely generated,
and the series PR

M (y, z) is rational with the same denominator as PR(y, z).

The last assertion had been proved earlier, by completely different means, by
Ghione and Gulliksen (1975). In collaboration with Backelin, Roos undertook a
systematic exploration of double Ext algebras. They applied it to prove the next

Theorem ([34]). If the ideal I is generated by monomials in the indeterminates,
then the commutative k-algebra E2(R) is finitely generated.

This is a far reaching generalization of Backelin’s result that PR(y, z) is rational.

3.3. Lie subalgebras generated in degree 1
The Lie subalgebra π(1)(R) generated by π1(R), and the series of subdeviations

δi(R) = rankk π(1)(R)i, capture the impact of the quadratic relations of R. The
extremal cases are easily described: At one end, δ2(R) = 0 if and only if δi(R) = 0
for all i > 2, if and only if R has no quadratic relation. At the other, δi(R) = εi(R)
for all i > 2 if and only if R is Koszul. In both cases, the Hilbert series R!(y) of the
Koszul dual R!, which is the universal enveloping algebra of π1(R), is rational. By
a classical result of Kronecker, its denominator converges in the unit circle if and
only if it is a product of cyclotomic polynomials, which here means δi(R) = 0 for
all i � 0.

Non-complete intersection algebras R with π(1)(R) is nilpotent can be described
by the condition that the number s(R) = sup{i ∈ N | δi(R) 6= 0} is finite and at least
3. Initially such rings were not easy to come by. The first examples were constructed
by Löfwall around 1974 (unpublished). Kustin and Slattery (1994) found algebras
with s(R) = 3 having 4 generators and 5 relations. Hreinsdottir (1998), (2000)
proved that for n > 3 the coordinate ring of the variety of 2 (respectivery, 3)
commuting n × n matrices has s(R) = 3 (respectively, s(R) = 4). A systematic
procedure described by Roos [37] shows that s(R) can be any integer, and that the
homological properties of rings with s(R) < ∞ deserve further study.

The question whether there exist rings with π(1)(R) non-nilpotent and with
bounded subdeviations, was raised in the early eighties by Anick and Löfwall. An
amazing positive answer was obtained by Löfwall and Roos.

Theorem ([42]). If char(k) = 0 and R = k[x1, x2, x3, x4, x5]/I where I is the ideal

(x2
2 , x2x3 + x1x4 , x2

3 − x2x4 − x1x5 , x3x4 + x2x5 , x2
4)

then for i > 5 the sequence of subdeviations of R is periodic of period 4, namely by

(δi(R))i>1 = (5, 5, 3, 3, 5, 6, 3, 3
︸ ︷︷ ︸

, 5, 6, 3, 3
︸ ︷︷ ︸

, 5, 6, 3, 3
︸ ︷︷ ︸

, . . . )

The construction of the algebra in the theorem is of considerable intrinsic inter-
est, as it links up with Kac’s (1977) classification of simple Lie superalgebras. A
precedent had been set by Anick (1983), who produced a CW complex X with cells
in dimension 2 and 5 with rational homotopy Lie algebra π(X) ⊗Z Q exhibiting a
similar periodic behavior. However, Anick’s approach cannot be modified to yield
algebras with relations in degree two, needed for the Koszul dual R!. Löfwall and
Roos use their methods to prove the following theorem.
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Theorem ([42]). There exists a CW complex X with five 2-cells and seven 4-cells.
such thet H∗(ΩX;Z) has elements of order p for every prime number p.

This space has many fewer cells then the original complexes with loop space
homology torsion of every prime order, that Anick (1986) and Avramov (1986),
obtained from an algebraic construction of Gulliksen, Fröberg, and Löfwall (1986).

4. Koszul algebras
Interest in Koszul agebras, defined in §1.4, has been spurred as much by their

remarkable algebraic rigidity as by the unusual frequency with which they appear
in solutions to completely different problems arising in algebraic topology, algebraic
geometry, commutative algebra, representation theory, and combinatorics.

Koszul algebras have been steadily moving to the center of Roos’ work.

4.1. Recognition
It has long been known that it is very difficult to determine whether a given

algebra is Koszul. Eisenbud and Peeva asked if such a coclusion could be reached
from knowing that the residue field k has a resolution that is linear up to a certain
possibly big, but a priori known degree. In response to that question, Roos proved
the following remarkable result.

Theorem ([36]). Let n > 2 be an integer, and assume that k has characteristic 0.
The k-algebra R(n) = k[x1, x2, x3, x4, x5, x6]/I(n), where I(n) is the ideal

(x2
1 , x1x2 , x2x3 , x2

3 , x3x4 , x2
4 , x4x5 , x5x6 , x2

6

x1x3 + nx3x6−, x4x6 , x3x6 + x1x4 + (n− 2)x4x6) ,

have the same Hilbert series, but the Poincaré series are given by the formula

1
PR(n)(y, z)

=
(1 + yz)2

1− 4yz − (yz)2 + 6(yz)3 + 3(yz)4
+

(yz)n+1(y + yz)
(1 + yz)2

.

In particular, the minimal resolution of the residue field of R(n) is linear for the
first n steps, but a non-linear term appears at the (n + 1)st step.

4.2. Generalizations
The starting point is the definition of Koszul algebras by means of condition

(3.1). By dualizing over k the differentials of the complex K•(R) in (2), one obtains
a complex of graded R!-modules of the form

K•(R) = · · · −→ R∗i (−i)⊗k R! −→ R∗i−1(1− i)⊗k R! −→ · · · −→ R! −→ 0

with H0(K•(R)) = k. Roos says that R satisfies condition Lt for some integer t > 2
if Hi(K•(R)) = 0 for i 6= 0, t−1; note that condition L2 is equivalent to (3.4), hence
to the Koszul property. Partly in collaboration with Löfwall, he proves:

Theorem ([37]). If R satisfies condition Lt for some t > 2, then

1
PR(y, z)

=
1

R!(yz)
+

1
(−z)t−2

(

R(−yz)− 1
R!(yz)

)
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For t = 3 the formula above reduces to the expression (6) for the Poincaré series
of a short algebras, as it should, since short algebras clearly satisfy condition L3.
Further examples of generalized Koszul algebras are discussed in the next section.

4.3. Algebras with quadratic relations
When the number e of generators of the graded k-algebra R is small, its homotopy

Lie algebra and its Poincaré series belong to a few well understood families: for e 6 2
this due to Scheja (1964), and for e = 3 to Avramov, Kustin, and Miller (1988) and
to Weyman (1989).

For a number of year, Roos has been studying the quotients of k[x1, x2, x3, x4]
modulo ideals I generated by quadratic forms. The ultimate goal of his investigation
is a complete classification of all possible Hilbert series R(y) and R!(y), and Poincaré
series PR(y, z). So far, the most detailed account of his results is published in the
form of tables in [40]. It contains a list of 60 algebras R yielding all possible values
of R(y), and a possibly incomplete list of 83 algebras providing different values of
PR(y, z). Surprisingly, 82 of these algebras satisfy L3, and the remaining one L4.

In parallel to the investigation of quadratic forms in 4 variables, Roos has been
looking at ideals generated by quadrics in k[x1, x2, x3, x4, x5]. The situation here
is known to be more complicated: the theorems in §3.1 and §2.2 show that the
Yoneda algebra may be infinitely generated, and that the Poincaré series may be
transcendental. Unpublished results on the case e = 5 spread over an intimidating
number of cases (2500 at one count, and growing). They have been lovingly collected
by Jan-Erik in several thick notebooks, which somehow appear to be always at hand.
While it is difficult to predict whether this monumental effort will eventually lead to
a complete classification, it has already produced results: some algebras encountered
during the census campaign have raised suspicions—confirmed later—that they may
have unusual properties, cf. §§ 2.3, 3.3, 4.4.

Poincaré series in such quantities have been determined with extensive computer
calculations based on the software packages MACAULAY of Bayer and Stillman,
BERGMAN of Backelin, and CBAS of Löfwall and Pettersson. The mathematical
and computational background underlying many computations is developed in [37].
More about the ideology and motivation behind his approach can be found in [39].

4.4. Functional equation
If R is Koszul, then it satisfies an equality

R(y)R!(−y) = 1 (7)

obtained by eliminating theeseries PR(y,−1) from formulas (3.2). In his 1983 thesis,
Backelin asked whether such an equality characterizes Koszul algebras. In 1985 he
and Fröberg proved that this is indeed the case when e 6 3. The theorem in §4.2
shows that if R satisfies condition Lt for some t > 2, then equality (7) implies that
R is Koszul. Among the more that 2500 cases of algebras with quadratic relations
in at most 5 variables with known homological invariants described in §4.3, only 4
non-Koszul algebras satisfy (7), cf. [41]. In particular, Roos proves:
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Theorem ([38]). If R = k[x1, x2, x3, x4, x5]/I where I is the ideal

(x2
1 + x1x2 , x2

1 + x2x3 , x1x3 , x2
3 , x3x4 + x2x5 , x3x5 , x4x5 + x2

5)

then R satisfies equation (7), but is not Koszul, and the following equality holds:

1
PR(y, z)

=
1

R!(yz)
+

y5z3(1 + x)
(1 + yz)2

.

Independently, Positselski also answered Backelin’s question in 1995.

4.5. Modules
Let R be a Koszul algebra. Formulas (1) and (4) show that the Poincaré series

of its residue field is a rational function. Experience and mathematics both show
that among all finitely generated R-modules M , the residue field k is the one with
the most complicated homological behavior, so there might be an understandable
inclination to expect that every series PR

M (y, z) is rational. This is easily seen to be
the case for R = k[x1, . . . , xe]/(x1, . . . , xe)2, for every e > 1. Surprisingly, Jacobsson
(1985) showed that for every n > 3 the Koszul algebra

R[n] =
k[x1, . . . , xn]
(x1, . . . , xn)2

⊗k
k[y1, . . . , yn]
(y4, . . . , yn)2

has modules with transcendental Poincaré series. Thus, two algebras defined by
quadratic monomial relations exhibit fundamentally different homological behavior.

Roos’ latest research has focused on the question of why such phenomena occur.
He says that R is good if there exists a polynomial dR(z), such that dR(z)PR(z) is
in Z[z] for all finitely generated R-modules M . In [46] he produces some sufficient
conditions for R to be good, and uses them to give examples of such algebras.
However, he is mostly interested in bad Koszul algebras, and his main result is to
show that the algebras R[n] above are as bad as they come.

Theorem ([46]). For every algebra R there exists a graded module M over some
algebra R[n], such that the Poincaré series PR(z) and PR[n]

M (z) are rationally related.

The construction of the module M above is based on a careful analysis and
further extensions of Jacobsson’s construction. Jan-Erik would have been acting out
of character, had he not taken the new toy apart and reassembled it in a different
form—just to understand how it really works. Here is a result of this activity.

Theorem ([48]). Over the ring R = C[x1, x2, x3, x4]/(x2
1, x1x2, x3x4, x2

4), for each
integer p let Mp be the module with presentation matrix

(

x2 x1 x4

x3 −x4 x1 + 2 cos
(

2π
p

)

x4

)

When p ranges over the prime numbers, the Poincaré series PR
Mp

(z) are all rational,
and the radii of convergence of the series

∑∞
i=0 rankk TorR

i (k, k)izi converge to 1.

This is related to a question of Avramov (1992).
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[9] Roos, Jan-Erik, Caractérisation des catégories qui sont quotients de
catégories de modules par des sous-catégories bilocalisantes , C. R. Acad.
Sci. Paris 261 (1965), 4954–4957.

[10] Roos, Jan-Erik, An algebraic study of group and nongroup error-correcting
codes, Information and Control 8 (1965), 195–214.

[11] Roos, Jan-Erik, Sur les foncteurs dérivés des produits infinis dans les
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