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MODULE DERIVATIONS AND NON TRIVIALITY OF AN
EVALUATION FIBRATION

KATSUHIKO KURIBAYASHI

(communicated by Charles A. Weibel)

Abstract
We give a sufficient condition for the evaluation fibration,

whose total space is the free iterated loop space, not to be
totally non cohomologous to zero with respect to a given field.

1. Introduction

Let Fp the prime field with p elements if p 6= 0 and let F0 denote the rational

number field Q. We say that a fibration F i−→ E
p−→ B is totally non cohomol-

ogous to zero (henceforth TNCZ) with respect to the field Fp if the induced map
i∗ : H∗(E;Fp) → H∗(E;Fp) is surjective, equivalently, the Leray-Serre spectral
sequence for the fibration collapses at the E2-term.

Let X be an n-connected space of finite type with a base point and ΛmX the
m-fold free loop space map(Sm, X), namely, the space of all continuous maps from
the m-dimensional sphere Sm to X. For 1 6 m 6 n, let us consider the evaluation
fibration

Fm : ΩmX −→ ΛmX ev−→ X,

where ev is the evaluation map defined by ev(γ) = γ(0) for γ ∈ ΛmX. One may
ask when the evaluation fibration Fm is TNCZ. The purpose of this paper is to
give a sufficient condition for the evaluation fibration F not to be TNCZ with
respect to Fp. To this end, we first take a note of some non-trivial relation between
indecomposable elements in the cohomology algebra H∗(X;Fp). Such a relation
brings us a non-trivial relation in H∗(ΛmX;Fp) via the Eilenberg-Moore spectral
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sequences associated with fibre squares

ΛmX → X
. . .





y





y
evm





y
cm−1 → Λ2X → X

X
cm−1→ Λm−1X → X





y
ev2





y
c1





y
evm−1





y X c1→ ΛX → X

X → Λm−2X →




y
ev1





y∆




y

. . . X ∆→ X ×X,

in which ∆ is the diagonal map and the map ci is defined by carrying an element
x of X to the constant loop at x. In consequence, we will see that there exists a
non-trivial differential in the Leray-Serre spectral sequence. The module derivation,
which has been introduced and studied in [10], plays an important role in the
consideration. In fact our main theorem (Theorem 2.2) describes how to deduce
the non-triviality of Fm from a non-trivial relation in H∗(X;Fp) using the module
derivation.

Let F i−→ E
p−→ B be a fibration with a section. Recently, Kallel and Sjerve [8]

have related the brace product of the fibration, which has been introduced by James
[6], to some differential in the integral homology Leray-Serre spectral sequence for
the fibration. Since the evaluation fibration Fm has a section cm defined previously,
we can detect a non-trivial differential in the spectral sequence for the fibration Fm if
the brace product of the fibration is non-trivial. Observe that, in this case, the brace
product is viewed as the Whitehead product up to the iterated adjoint isomorphism
on the homotopy. As mentioned above, we obtain a way to deduce the non-triviality
of Fm using the module derivation so that, conversely, such information on the
non-triviality enables us to investigate the Whitehead products via the result due
to Kallel and Sjerve.

Let [ , ] : πk(X)⊗ πl(X) → πk+l−1(X) be the Whitehead product, h : πs(X) →
Hs(X) the Hurewicz map and let adm : πn(X) → πn−m(ΩmX) denote the iterated
adjoint map.

Consider the composition map

ρp ◦ h ◦ adm ◦ [ , ] : πn(X)⊗ πn(X) → H2n−m−1(ΩmX)
ρp−→ H2n−m−1(ΩmX;Fp),

where ρp is the mod p reduction. Let ξ : Hn(X;Fp) ⊗ Hn(X;Fp)/Im (1 − T ) →
H2n(X;Fp) be the map induced by the cup product, in which T is the homomor-
phism on Hn(X;Fp)⊗Hn(X;Fp) defined by T (x⊗ y) = (−1)ny ⊗ x. We can then
compare the dimension of the image by the composition map ρp ◦ h ◦ adm ◦ [ , ]
with that of the kernel of the map ξ. More precisely, we will establish the following
interesting inequality.

Theorem 1.1. Let p be an odd prime or zero and X an (n − 1)-connected space
(n > 2). Then, for m 6 n− 1,

dim Im (ρp ◦ h ◦ adm ◦ [ , ]) > dimKer ξ.
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Moreover, if ξ ≡ 0, then

dim Im (ρp ◦ h ◦ adm ◦ [ , ]) =
1
2
s(s + 1)− εs,

where dim Hn(X;Fp) = s and ε = 0 or 1 as n is even or odd.

In the case p = 2, the above (in)equality does not hold in general. Indeed, the result
[8, Lemma 4.4] due to Kallel and Sjerve implies that ρp ◦h◦adm ◦ [ιn, ιn] = 0 for the
generator ιn of πn(Sn) although n is even. The Whitehead products are trivial for
an H-space. So one can see that the condition ξ ≡ 0, which deduces the equality, can
not be relaxed even though p is odd. (We can give ΩSU(m) as such an example.)
It is important to mention that Theorem 1.1 recovers an inequality concerning the
Whitehead product due to Chen [2, Theorem 2]. The same argument as in the proof
of Theorem 1.1 enables us to obtain an estimate of the dimension of the image by
the composition ρp ◦ h ◦ adm ◦ [ , ] : πn(X)⊗ πn+1(X) → H2n−m(ΩmX;Fp).

Theorem 1.2. Let p be a prime number or zero and X an (n− 1)-connected space
(n > 2). Then, for m 6 n− 1,

dim Im {ρp ◦ h ◦ adm ◦ [, ] : πn(X)⊗ πn+1(X) → H2n−m(ΩmX;Fp)} > dimKer ζ,

where ζ : Hn(X;Fp)⊗Hn+1(X;Fp) → H2n+1(X;Fp) denotes the cup product.

When p = 0, we have the following theorem by analyzing the minimal model for
X.

Theorem 1.3. (1) The inequality in Theorem 1.1 becomes an equality if p = 0.
(2) The inequality in Theorem 1.2 becomes an equality if p = 0 and the multiplication
m2 : H2(X;Q)⊗H2(X;Q) → H4(X;Q) is a monomorphism.

This paper is organized as follows. In Section 2, after recalling briefly the Koszul
resolution and the module derivation, we describe our main theorem and its appli-
cations. Section 3 is devoted to proving the main theorem. In Section 4, we prove
Theorems 1.1, 1.2 and 1.3.

2. Main theorem and its applications

In order to describe our main theorem, we need algebraic notation and terminol-
ogy. For any non-negatively graded vector space V of finite type over Fp, we denote
by S(V ) the symmetric algebra generated by V . Let Γ(V ) be the divided power
algebra generated by V . The desuspension s−1V is the graded vector space defined
by (s−1V )i = V i+1 and we denote by s−1v ∈ s−1V the element which corresponds
to v ∈ V .

We here recall results on the torsion products.

Lemma 2.1. ([15, Proposition 3.5], [9, Propositions 1.1, 1.5] ) Let A be a sym-
metric algebra S(V ) over Fp.
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(i) There exists a projective resolution K• ϕ−→ A → 0 of A as a left A ⊗ A-module
such that K• = A⊗ A⊗ Γ(s−1V ), d(s−1u) = u⊗ 1− 1⊗ u for u ∈ V and ϕ is the
multiplication of A, where bideg s−1u = (−1, deg u). Hence, as a bigraded algebra,

TorA⊗A(A,A) ∼= S(V )⊗ Γ(s−1V ).

(ii) Let B•(A⊗ A,A) → A → 0 be the bar resolution of A as a left A⊗ A-module.
Then there exists an isomorphism of algebras

Ψ : TorA⊗A(A,A)bar
∼=−−−−→TorA⊗A(A, A)KT

such that Ψ(1[u ⊗ 1 − 1 ⊗ u]1) = s−1u for u ∈ V . Here TorA⊗A(A,A)bar and
TorA⊗A(A, A)KT denote the torsion products obtained from the bar resolution and
the Koszul-Tate resolution which is defined in (i), respectively.

Following [10], we define the module derivation D : A → Tor∗,∗A⊗A(A,A) by
D(a) = 1[a⊗ 1− 1⊗ a]1 for any graded commutative algebra A over Fp. The map
D enjoys the following property:

D(ab) = (−1)(deg a+1) deg bbD(a) + (−1)deg aaD(b)

for any a, b ∈ A. In particular, if A is taken to be the symmetric algebra S(V ), then
D(v) = s−1v for any v ∈ V up to the isomorphism Ψ. Observe that the image of
the module derivation D is in Tor−1,∗

A⊗A(A,A).
Let H∗ be a graded simply connected commutative algebra over Fp and QH∗

denote the vector space of indecomposable elements. Choosing a section s : QH∗ →
H∗ of the projection H∗ → QH∗ = H∗/H̄∗·H̄∗, we define a surjective algebra map
q : A = S(QH∗) → H∗ by q(v) = s(v) for v ∈ QH∗. Put A = S(QH∗). It follows
from Lemma 2.1 that TorA⊗A(A,A) ∼= S(QH∗) ⊗ Γ(s−1QH∗) as an algebra. In
particular, Tor−1,∗

A⊗A(A,A) ∼= S(QH∗)⊗ s−1QH∗ as an A-module. Therefore we can
define a morphism of A-modules

η : Tor−1,∗
A⊗A(A,A) → H∗ ⊗ S(s−1QH∗)

by η(a⊗ s−1v) = q(a)⊗ s−1v.
For any simply connected space Y , let σ∗ : H∗(Y ;Fp) → H∗−1(ΩY ;Fp) denote

the cohomology suspension. We are now ready to describe our main theorem.

Theorem 2.2. Let X be an n-connected space and m an integer which is less than
or equal to n. Suppose that there exist a subspace V ⊂ QH∗(X;Fp) and an element
ρ ∈ Ker q ∩ S(V ) ⊂ S(QH∗(X;Fp)) such that

σ∗ ◦ · · · ◦ σ∗
︸ ︷︷ ︸

m−times

|V : V → H∗(ΩmX;Fp)

is a monomorphism and the image of ρ under the composition map

ηD : A = S(QH∗(X;Fp)) → Tor−1,∗
A⊗A(A,A) → H∗(X;Fp)⊗ S(s−1QH∗(X;Fp))

is non zero. Then the evaluation fibration ΩmX → ΛmX → X is not TNCZ with
respect to Fp.
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Remark 2.3. If X is n-connected, then the cohomology suspension σ∗ : Hi(X;Fp) →
Hi−1(ΩX;Fp) is a monomorphism for i 6 2n + 1. (see [17, (6.5)Corollary]). There-
fore it follows that the m-fold cohomology suspension σ∗ ◦ · · · ◦ σ∗ : Hi(X;Fp) →
Hi−m(ΩmX;Fp) is a monomorphism for i 6 2n − m + 2. Moreover, the map ηD
is computable if algebra generators in H∗(X;Fp) and relations between the ele-
ments are clarified. From these facts, one can expect that the sufficient condition in
Theorem 2.2 is reasonable.

In order to prove Theorem 2.2, we will rely on the Eilenberg-Moore spectral
sequences which are obtained from m fibre squares. The construction of the fi-
bre square is as follows: Let us consider the fibration ΩmX −→ XIm res−→ X∂Im

,
where res is defined by res(γ) = γ|∂Im . We define the map cm−1 : X → X∂Im

by
cm−1(x)(t) = x for x ∈ X and t ∈ ∂Im. The pullback of the fibration by the map
cm−1 : X → X∂Im

is regarded as the m-fold free loop space ΛmX = map(Sm, X).
Moreover the map res : XIm → X∂Im

can be replaced by the map cm−1 : X →
Λm−1X with the homotopy equivalence c̃ : X → XIm

defined by c̃(x)(t) = x for
x ∈ X and t ∈ Im. Since the space X∂Im

can be viewed as the (m − 1)-fold free
loop space Λm−1X, we have a fibre square FSm(X):

ΛmX −−−−→ X




y
evm





y
cm−1

X −−−−→
cm−1

Λm−1X .

Observe that the fibration on the left hand side in FSm(X) is the evaluation fibra-
tion ΩmX → ΛmX → X and that FS1(X) is the fibre square which Smith has intro-
duced and studied in [15]. Suppose that X is an m-connected space. Then the fibre
square FSm(X) gives rise to the Eilenberg-Moore spectral sequence {mE∗,∗

r , dr}
converging to H∗(ΛmX;Fp) with

mE∗,∗
2

∼= Tor∗,∗H∗(Λm−1X;Fp)(H
∗(X;Fp),H∗(X;Fp))

as a bigraded algebra.
An important point in proving Theorem 2.2 is what we can translate information

of some relation on elements in H∗(X;Fp) to that in H∗(ΛmX;Fp) via the module
derivation D : H∗(X;Fp) → 1E

−1,∗
2 and H∗(X;Fp)-module maps with degree −1

which are defined below.
Let A and M be simply connected graded commutative algebras and φ : A → M

an algebra map. We regard M as an A-bimodule via φ. The map ˜D : Ker φ →
TorA(M, M) defined by ˜D(a) = 1[a]1 is an A-module map.

Lemma 2.4. ˜D(ab) = (−1)deg aa[b]1 for a ∈ A and b ∈ Ker φ.

Proof. Let ∂ : B∗(M, A, M) → B∗−1(M, A, M) be the external differential of the
bar complex which induces the torsion product TorA(M,M). Then, for a ∈ A and
b ∈ Ker φ, we see that ∂(1[a|b]1) = a[b]1 + (−1)deg a+1[ab] − (−1)deg a+11[a]b =
a[b]1 + (−1)deg a+1[ab]. This completes the proof.

We conclude this section with examples.
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Example 2.5. Let X be an (n − 1)-connected space (n > 1) and put rX = inf{i >
2|Hi(X;Fp) 6= 0}. Assume that rΣX is even and p 6= 2 or dim HrΣX (ΣX;Fp) > 2.
Then, for m 6 n, the evaluation fibration ΩmΣX → ΛmΣX → ΣX is not TNCZ
with respect to Fp.

Proof. Let {xi} be a basis of V = HrΣX H∗(ΣX;Fp). Assume that rΣX is even
and p 6= 2. Then, for any element xi, we see that x2

i ∈ Ker q ∩ S(V ) and ηD(x2
i ) =

2xi(s−1xi) 6= 0 in H∗(X;Fp) ⊗ S(s−1QH∗(X;Fp)). Suppose that
dim HrΣX (ΣX;Fp) > 2. It is readily seen that xixj ∈ Ker q∩S(V ) (i 6= j) and that

ηD(xixj) = (−1)rΣX (xjs−1xi) + (−1)rΣX (xis−1xj) 6= 0

in H∗(X;Fp) ⊗ S(s−1QH∗(X;Fp)). Since the map (σ∗)(m) : HrΣX (ΣX;Fp) →
HrΣX−m(ΩmΣX;Fp) is isomorphism, the result follows from Theorem 2.2

In the case m = 1, we can obtain a characterization for the evaluation fibration
ΩΣX → ΛΣX → ΣX to be TNCZ. Indeed, the cohomology of the free loop
space ΛY of a simply connected space Y is isomorphic to the Hochschild homol-
ogy of the singular cochain complex of Y as a vector space([7]). Moreover since
suspension spaces are K-formal in the sense of Anick (or El haouari) for any field
K ([1]), it follows that H∗(ΛΣX;Fp) is isomorphic to the Hochschild homology
HH(H∗(ΣX;Fp)). Therefore direct computation of the Hochschild homology of
spheres leads us to the following result.

Example 2.6. Suppose that X is a connected space. Then the evaluation fibration
ΩΣX → ΛΣX → ΣX is TNCZ with respect to Fp if and only if H∗(X;Fp) ∼=
H∗(S2k;Fp) for some k and p is odd or H∗(X;Fp) ∼= H∗(Sm;Fp) for some m and
p = 2 .

One may expect that the evaluation fibration Fm(X) : ΩmX → ΛmX → X is
TNCZ with respect to Fp if and only if the cohomology algebra H∗(X;Fp) is free
because the assertion is true if p = 0. However it is not true in general when p > 0.
In fact the evaluation fibration F1(CP (n)) over the complex project space is TNCZ
with respect to Fp if and only if n + 1 ≡ 0 mod p (see [9, Theorem 2]).

Since it is difficult to determine the cohomology of the m-fold free loop space in
general, we can not deduce easily that a give evaluation fibration is TNCZ. Theorem
2.2 is applicable to the case where X is the Stiefel manifold.

Example 2.7. For any 1 6 m < n, the evaluation fibration

ΩmSO(n + k)/SO(n) −→ ΛmSO(n + k)/SO(n) −→ SO(n + k)/SO(n)

is not TNCZ with respect to Fp if n is even and p is odd.

Proof. Put X = SO(n + k)/SO(n). As is known [11], H∗(X;Fp) ∼=






∧(e2n+3, ..., e2n+2k−3)⊗ Fp[xn]/(x2
n) if n is even and k is odd

∧(e2n+3, ..., e2n+2k−5, e′n+m−1)⊗ Fp[xn]/(x2
n) if n and k are even .
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We choose a 1-dimensional subvector space V of QH∗(X;Fp) so that V = Fp{xn}.
Since the element xn is of the least degree, it follows that σ∗◦· · ·σ∗|V is a monomor-
phism (see Remark 2.3). Moreover we see that ηD(x2

n) = 2xns−1xn 6= 0
in H∗(x;Fp)⊗S(s−1QH∗(X;Fp)). By virtue of Theorem 2.2, we have the result.

3. Proof of the main theorem

For based spaces Y and X, let map∗(Y,X) denote the space of all based maps
from Y to X. Throughout this section, we assume that X is an n-connected space.
For any integer m 6 n, let us consider a morphism of fibre squares

ΩmX = map∗(Sm, X) //

jm
vvl

l

l

l

l

l

l

l

� �

map∗(Im, X)

wwo

o

o

o

o

o

o

res

��

ΛmX = map(Sm, X) //

evm

��

XIm

res

��

∗

vvl

l

l

l

l

l

l

l

l

l

l

l

l

/ / map∗(∂Im, X)
jm−1

w wo

o

o

o

o

o

o

= Ωm−1X

X cm−1
/ / X∂Im

= Λm−1X.
Observe that the back square gives rise to the Eilenberg-Moore spectral sequence
{mÊ∗,∗

r , d̂r} converging to H∗(ΩmX;Fp) with

mÊ∗,∗
2

∼= Tor∗,∗H∗(Ωm−1X;Fp)(Fp,Fp)

as a bigraded algebra. For the rest of this section, the cohomology algebra H∗(X;Fp)
will be denoted by H∗ and the coefficient fields of the cohomologies will be omitted
when no confusion results. Let {mfr} : {mE∗,∗

r , dr} → {mÊ∗,∗
r , d̂r} be the mor-

phism of spectral sequences induced from the above morphism of fibre squares. Let
{mF−i}i>0 and {mF̂−j}j>0 denote the filtrations of the Eilenberg-Moore spectral
sequences {mE∗,∗

r , dr} and {mÊ∗,∗
r , d̂r}, respectively. The naturality of the mor-

phism of spectral sequences allows us to obtain the following lemma.

Lemma 3.1. The following two diagrams consist of commutative squares:

H∗ D−→ Tor−1,∗
H∗⊗H∗(H∗, H∗) ∼= 1E

−1,∗
2 → 1E−1,∗

∞ ← 1F−1 ↪→ H∗(ΛX)




y
=





yTorid⊗ε(ε,ε)





y1f2





y1f∞





y
j∗1

H∗ eDΩ−→ Tor−1,∗
H∗ (Fp,Fp) ∼= 1Ê

−1,∗
2 → 1Ê−1,∗

∞ = 1F̂−1 ↪→ H∗(ΩX),

Ker c∗m−1
eD−→ Tor−1,∗

H∗(Λm−1X)(H
∗,H∗) ∼= mE−1,∗

2 → · · ·




y
j∗m−1





y
Torj∗m−1

(ε,ε)




ymf2

H∗(Ωm−1X)
eDΩ−→ Tor−1,∗

H∗(Ωm−1X)(Fp,Fp) ∼= mÊ−1,∗
2 → · · ·

· · · → mE−1,∗
∞ ← mF−1 ↪→ H∗(ΛmX)




ymf∞





y
j∗m

· · · → mÊ−1,∗
∞ = mF̂−1 ↪→ H∗(ΩmX).
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Here ˜DΩ is the map defined by mapping x to [x], D and ˜D are the module deriva-
tion and the H∗-module map defined in §2, respectively, and ε : H∗ → Fp is the
augmentation.

The upper sequences in Lemma 3.1 are covered by more algebraic sequences.

Lemma 3.2. (i) There exist an H∗-module map α̃1 : H∗ ⊗ s−1QH∗ → 1F−1 =
F−1H∗(ΛX;Fp) and an H∗-algebra map α1 : H∗ ⊗ S(s−1QH∗) → H∗(ΛX;Fp)
such that the following two diagrams are commutative:

A = S(QH∗) D−−−−→ Tor−1,∗
A⊗A(A, A)





y
q





yTorq⊗q(q,q)

H∗ D−−−−→ Tor−1,∗
H∗⊗H∗(H∗,H∗)

(I)∼= S(QH∗)⊗ s−1QH∗ q⊗1−−−−→ H∗ ⊗ s−1QH∗ ↪→ H∗ ⊗ S(s−1QH∗)




yeα1





y
α1

∼= 1E
−1,∗
2 → 1E−1,∗

∞ ←−−−− 1F−1 ↪→ H∗(ΛX),

A1 := H∗ ⊗ S(s−1QH∗)
φ1−−−−→ H∗





y
α1





y
=

H∗(ΛX)
c∗1−−−−→ H∗,

where φ1 : H∗⊗S(s−1QH∗) → H∗ is defined by φ1(h⊗s−1v) = 0 and φ1(h⊗1) = h.
(ii) There exist an H∗-module map α̃m : H∗ ⊗ (s−1)(m)QH∗ →F−1H∗(ΛmX;Fp)
= mF−1 and an H∗-algebra map αm : H∗ ⊗ S((s−1)(m)QH∗) → H∗(ΛmX;Fp)
such that the following two diagrams are commutative:

Ker φm−1
eD−−−−→ Tor−1,∗

Am−1
(A,A)





y
αm−1





y
Torαm−1 (q,q)

Ker c∗m−1
eD−−−−→ Tor−1,∗

H∗(Λm−1X)(H
∗,H∗)

∼= H∗ ⊗ (s−1)(m)QH∗ η−−−−→ H∗ ⊗ S((s−1)(m)QH∗)




yeαm





y
αm

∼= mE−1,∗
2 → mE−1,∗

∞ ←mF−1 ↪→ H∗(ΛmX),

Am := H∗ ⊗ S((s−1)(m)QH∗)
φm−−−−→ H∗





y
αm





y
=

H∗(ΛmX)
c∗m−−−−→ H∗

where (s−1)(m)QH∗ denotes the m-fold desuspension of the vector space QH∗ and
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φm : H∗⊗S((s−1)(m)QH∗) → H∗ is defined by φm(h⊗ (s−1)(m)v) = 0 and φm(h⊗
1) = h.

By virtue of Lemma 2.1, we can obtain the isomorphism (I). Observe that the
composition map S(QH∗)⊗s−1QH∗ q⊗1−−−−→H∗⊗s−1QH∗ ↪→ H∗⊗S(s−1QH∗) = A1

coincides with the map η defined before Theorem 2.2.

Proof of Lemma 3.2. We define H∗-module map α̃1 : H∗⊗s−1QH∗ → F−1H∗(ΛX)
by α̃1(s−1v) = 1[q(v)⊗ 1− 1⊗ q(v)]1, where 1[q(v)⊗ 1− 1⊗ q(v)]1 denotes a repre-
sentative element of {D(q(v))} such that c∗1(1[q(v)⊗ 1− 1⊗ q(v)]1) = 0. Moreover,
choosing 1[α̃m−1 (s−1)(m−1)v]1 as a representative element of {˜D((s−1)(m−1)v)} ∈
mE−1,∗

∞ , we define H∗-module maps α̃m : H∗ ⊗ (s−1)(m)QH∗ → F−1H∗(ΛmX) by
α̃m((s−1)(m)v) = 1[α̃m−1(s−1)(m−1)v]1 inductively. Since the evaluation fibration
evm : ΛmX → X has a section cm : X → ΛmX, there is no loss in generality in
supposing that c∗m(1[α̃m−1((s−1)(m−1)v)]1) = 0. We have the required maps α̃1 and
α̃m.

The module map ˜D defined in Ker φm−1 or Ker c∗m−1 will be denoted below by
˜Dm. From the definitions of D and ˜Dm, we see that Im ηD ⊂ Ker φ1 and that
Im η ˜Di−1 ⊂ Ker φi. This fact allows us to compose the maps D, ˜Dm and η’s as
η ˜Dm−1 · · · η ˜D1ηD.

Lemma 3.3. The following diagram is commutative:

A = S(QH∗)
ηeDm−1···ηeD1ηD−−−−−−−−−→ H∗ ⊗ S((s−1)(m)QH∗)





y
q





y
αm

H∗(X;Fp) H∗(ΛmX;Fp)




y
π





y
j∗m

QH∗(X;Fp) −−−−→
(σ∗)(m)

H∗(ΩmX;Fp),

where (σ∗)(m) is the m-fold suspension map.

Proof. It follows from [13, Proposition 4.5] that the composition map

H∗(Ωi−1X) DΩ−−−−→Tor−1,∗
H∗(Ωi−1X)(Fp,Fp) ∼= iÊ

−1,∗
2 → iÊ−1,∗

∞ = F−1 → H∗−1(ΩiX)

coincides with the cohomology suspension. Lemmas 3.1 and 3.2 yield the result.

Lemma 3.4. αmη ˜Dm−1 · · · η ˜D1ηD(Ker q) = 0.

Proof. Let π1 : F−1H∗(ΛX;Fp) → 1E−1,∗
∞ be the natural projection. From the

commutativity of the diagram (i) of Lemma 3.2, it follows that π1α̃1(q⊗1)D(x) = 0
for any x ∈ Ker q. Therefore we see that α̃1(q ⊗ 1)D(x) + ev∗1y = 0 for some
y ∈ H∗(X;Fp). Since c∗1ev

∗
1 = id, it follows from the definition of α̃1 that y = 0.

Thus α̃1(q ⊗ 1)D(x) = 0 and hence α1ηD(x) = 0. The same argument still works
well on the diagram (ii) of Lemma 3.2. In consequence we have αiη ˜Di−1(z) = 0 for
z ∈ Ker αi−1. This completes the proof.

Proof of Theorem 2.2. We can choose a basis S for H∗(ΩmX;Fp) extending that
of (σ∗)(m)(V ), say {(σ∗)(m)x1, ..., (σ∗)(m)xs, ..} ∪ {b1, b2, ..}, where {x1, .., xs, ..} is
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a basis for V with deg x1 6 deg x2 6 · · · . Suppose that the evaluation fibration
ΩmX → ΛmX → X is TNCZ with respect to Fp. Then there exists an isomorphism
Φ : H∗(ΛmX;Fp) → H∗(X;Fp)⊗H∗(ΩmX;Fp) of an H∗(X;Fp)-module such that
in∗2Φ = j∗m, where in2 : ΩmX → X × ΩmX is the inclusion into the second factor.
We here consider the image of (s−1)(m)xi by in∗2Φαm. From Lemma 3.3, it follows
that in∗2Φαm((s−1)(m)xi) = j∗αm((s−1)(m)xi) = (σ∗)(m)xi. Therefore we can write

Φαm((s−1)(m)xi) = (σ∗)(m)xi +
∑

z∈S,deg z<deg xi−m

Q(z,i)z

where Q(z,i) are appropriate elements of H>1(X;Fp). Since ηDρ 6= 0 by the assump-
tion, we see that the element ηD(ρ) is expressed as

∑k
i=1 Pis−1xi with elements Pi

of H∗(X;Fp) in which Pk 6= 0. Letting η̃ = η ˜Dm−1 · · · η ˜D1ηD, then Lemma 2.4
implies that η̃(ρ) =

∑k
i=1 Pi(s−1)(m)xi. From Lemma 3.4, it turns out that

0 = Ψαmη(ρ) =
k

∑

i=1

Pi((σ∗)(m)xi +
∑

z∈S,deg z<deg xi−m

Q(z,i)z)

= Pk((σ∗)(m)xk +
∑

z∈S,deg z<deg xk−m

Q(z,k)z)

+
k−1
∑

i=1

Pi((σ∗)(m)xi +
∑

z∈S,deg z<deg xi−m

Q(z,i)z).

The fact that H∗(X;Fp)⊗H∗(ΩmX;Fp) is a free H∗(X;Fp)-module enables us to
deduce that Pk = 0, which is a contradiction.

4. Proofs of Theorems 1.1, 1.2 and 1.3

Proof of Theorem 1.1.. Let {Er, dr} and {Ẽr, d̃r} be the integral homology Leray-
Serre spectral sequence for the evaluation fibration Fm and its mod p reduction,
respectively. From [8, Theorem 3.5] and a result due to Hansen [5], we can obtain
the following commutative diagram (4.1):

πn(X)⊗ πn(X)
[,]−→ π2n−1(X)





y1⊗adm





yadm

πn(X)⊗ πn−m(ΩmX)
{,}−→ π2n−m−1(ΩmX)





yh⊗h





yh

Hn(X)⊗Hn−m(ΩmX) = E2
n,n−m E2

0,2n−m−1 = H2n−m−1(ΩmX)




y

∼=




y

En
n,n−m

dn

−→ En
0,2n−m−1





y
ρp





y
ρp

Ẽn
n,n−m

d̃n

−→ Ẽn
0,2n−m−1,
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where {, } denotes the brace product in the sense of James associated with the fibra-
tion Fm. Thus in order to prove Theorem 1.1, it suffices to show that dim(Im d̃n) >
dimKer ξ and that dim(Im d̃n) = 1/2 · s(s + 1)− εs if ξ′ ≡ 0.

Let {ιi}16i6s be a basis for Hn(X;Fp) and ιi(m) the iterated transgression image
of the element ιi in Hn−m(ΩmX;Fp). We denote by x∗ the dual element to an
element x of H∗(X;Fp) or H∗(ΩmX;Fp). Let ξ′ : Fp{ι∗i⊗ι∗j ; i−j > ε} → H2n(X;Fp)
be the restriction of the cup product to the subspace of Hn(X;Fp) ⊗ Hn(X;Fp)
generated by the elements ι∗i ⊗ ι∗j . Observe that dim Ker ξ′ = dim Ker ξ. For a basis
{bl} of Ker ξ′, we write bl =

∑

i−j>ε αij
l ι∗i ⊗ ι∗j . Since

∑

αij
l ι∗i · ι∗j = ξ′(bl) = 0, it

follows from Lemmas 2.4 and 3.4 that (4.2):

0 = αmη ˜Dm−1 · · · η ˜D1ηD(ξ′(bl))

= (−1)n(m−1)
∑

αij
l {ι

∗
j · ιi(m)∗ + (−i)nι∗i · ιj(m)∗},

where ιi(m)∗ is the element of H∗(ΛmX;Fp) such that j∗m(ιi(m)∗) = ιi(m)∗. We
look at the mod p cohomology Leray-Serre spectral sequence {Er, dr} for Fm. Let V
be the subspace of En,n−m

2 generated by the elements
∑

αij
l {ι∗j⊗ιi(m)∗+(−i)nι∗i ⊗

ιj(m)∗}. Since ev∗ is a monomorphism, every element of V is a permanent cycle.
The equality (4.2) implies that all elements in V are in the image by the differential
dn : E0,2n−m−1

n → En,n−m
n . Therefore, letting dim H2n−m−1(ΩmX;Fp) = k and

dim H2n−m−1(X;Fp) = l, we have dim H2n−m−1(ΛmX;Fp) 6 k − dimKer ξ′ +
l because dim V = dimKer ξ′. We again turn to the mod p homology spectral
sequence {Ẽr, d̃r}. The map ev∗ is an epimorphism so that every element in Ẽ2

∗,0 =
H∗(X;Fp) is a permanent cycle. Thus we have dim H2n−m−1(ΛmX;Fp) = k −
dim Im d̃n

n,n−m+l and hence (4.3): dim Im d̃n
n,n−m > dimKer ξ′. We have the former

half of Theorem 1.1. Suppose that ξ ≡ 0. Then dimKer ξ′ = 1/2 ·s(s+1)−εs. Since
the Whitehead product is skew commutative, it follows from the diagram (4.1) that
d̃n(ιi ⊗ ιj(m)) = d̃n(ιj ⊗ ιi(m)), further d̃n(ιi ⊗ ιj(m)) = d̃n(ιj ⊗ ιi(m)) = 0 if n is
odd. Thus we see that dim Im d̃n

n,n−m 6 1/2·s(s+1)−εs. Combining this inequality
with (4.3), we can conclude that dim Im d̃n

n,n−m = 1/2 · s(s + 1)− ε.

If X is (n − 1)-connected, then the Hurewicz homomorphism h : πn+1(X) →
Hn+1(X) is surjective. Therefore, in the homology Leray-Serre spectral sequence
{Er, dr} in the above proof, every element of E2

n,n+1−m and E2
n+1,n−m is spherical,

that is; the element is in the image of the the Hurewicz homomorphism. With this
in mind, we shall prove Theorem 1.2. The proof is similar to that of Theorem 1.1
although a little complicated argument is needed. In fact, we have to consider two
differentials d̃n+1 : Ẽn+1

n+1,n−m → Ẽn+1
0,2n−m and d̃n : Ẽn

n,n+1−m → Ẽn
0,2n−m in the

mod p homology Leray-Serre spectral sequence {Ẽr, d̃r}.

Proof of Theorem 1.2.. Under the notation in the proof of Theorem 1.1, let us con-
sider the commutative diagram (4.2):
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πi(X)⊗ πj(X)
[,]−→ πi+j−1(X)





y1⊗adm





yadm

πi(X)⊗ πj−m(ΩmX)
{,}−→ πi+j−1−m(ΩmX)





yh⊗h





yh

Hi(X)⊗Hj−m(ΩmX) = E2
i,j−m E2

0,i+j−1−m = Hi+j−1−m(ΩmX)




y





y

Ei
i,j−m

di

−→ Ei
0,i+j−1−m





y
ρp





y
ρp

Ẽi
i,j−m

d̃i

−→ Ẽi
0,i+j−1−m,

for i = n and j = n + 1. Observe that the composition of left vertical arrows is
surjective. As in the proof of Theorem 1.1, it suffices to show that dim(Im d̃n) >
Ker ζ. By comparing the dimension of the E∞-term of {Ẽr, d̃r} with that of the
E∞-term of {Er, dr} on the total degree 2n− 1−m, we see that

dim Im {d̃n : Ẽn
n,n−m → Ẽn

0,2n−m−1} = dim Im {dn : E0,2n−m−1
n → En,n−m

n }.

Put k = dim H2n−m(ΩmX;Fp) and l = dim H2n−m(X;Fp). Then it follows that

dim H2n−m(ΛmX;Fp) = k − dim d0,2n−m
n − dim d0,2n−m

n+1

+dim cokerd0,2n−m−1
n + l

6 k − dim d0,2n−m
n + dim En,n−m

2

− dim Im d0,2n−m−1
n + l.

On the other hand, dim H2n−m(ΛmX;Fp) = k − dim d̃n
n,n+1−m − dim d̃n+1

n+1,n−m +
dim E2

n,n−m− dim Im d̃n
n,n−m + l. We here consider the commutative diagram (4.2)

for i = n + 1 and j = n. Since the composition of the left vertical arrows is
also surjective in this case, the skew commutativity of the Whitehead product en-
ables us to deduce that Im d̃n+1

n+1,n−m = 0. It turns out that dim Im d0,2n−m
n 6

dim Im d̃n
n,n+1−m. We are left to show that dimKer ζ 6 dim Im d0,2n−m

n . Since
the Hurewicz map h : πi(X) → Hi(X) is an isomorphism for i = n and an
epimorphism for i = n + 1, it follows that the iterated cohomology suspension
(σ∗)(m) : Hi(X;Fp) → Hi−m(ΩmX;Fp) is a isomorphism for i = n and a monomor-
phism for i = n + 1. Lemma 3.3 implies that every element x in the image of
the map (σ∗)(m) : Hn+1(X;Fp) → Hn+1−m(ΩmX;Fp) is also in Im j∗m. There-
fore the element x is a permanent cycle. As in the proof of Theorem 1.1, ap-
plying the map αmη ˜Dm−1 · · · η ˜D1ηD to appropriate elements of Ker ζ, we have
non-trivial relations between indecomposable elements of H∗(ΛmX;Fp). In the co-
homology Leray-Serre spectral sequence, the relations are caused by the differential
d0,2n−m

n : E0,2n−m
n → En,n+1−m

n . Thus the same argument as in the proof of Theo-
rem 1.1 enables us to obtain the required inequality.
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Remark 4.1. The proof of [2, Theorem 2] relies on the bijectivity of the Hurewicz
homomorphism [2, page 259, line 6]. So it does not seem to be easy to improve the
proof due to Chen for showing Theorem 1.2.

The rest of this section is devoted to proving Theorem 1.3. We first recall an
equality related to the differential of the minimal model for X and the Whitehead
product. Let (∧V, d) be the minimal model for the given (n−1)-connected space X.
It is known that there exists a non-degenerate Q-bilinear map 〈 ; 〉 : V s×πs(X)⊗Z
Q→ Q for any s > 2. We define another bilinear map 〈 ; 〉2 : ∧2V × (π∗(X)⊗ZQ)⊗
(π∗(X)⊗ZQ) → Q by 〈v∧w; γ0⊗γ1〉2 = 〈v; γ1〉〈w; γ0〉+(−1)deg w deg γ0〈v; γ1〉〈w; γ0〉.
The linear map [ , ]Q : π∗(X) ⊗Z Q ⊗ π∗(X) ⊗Z Q → π∗(X) ⊗Z Q is defined by
[γ0⊗q0, γ1⊗ q1]Q = [γ0, γ1]⊗ q0q1, where [ , ] is the Whitehead product, qi ∈ Q and
γi ∈ π∗(X). Observe that (Im [ , ])⊗Z Q = Im [ , ]Q. We then obtain the equality
(4.3):

〈d1v; γ0 ⊗ γ1〉2 = (−1)k+s−1〈v; [γ0, γ1]Q〉,

where v ∈ V , γ0 ∈ πk(X)⊗ZQ, γ1 ∈ πs(X)⊗ZQ and d1 is the quadratic part of the
differential d (see [4, Proposition 13.16]). To simplify, the composition V n⊗V n+1×
(πn(X)⊗ZQ)⊗(πn+1(X)⊗ZQ)

∼=−−−−→(∧2V )2n+1×π∗(X)⊗ZQ⊗π∗(X)⊗ZQ
〈 ; 〉2−−−−→Q

is denoted by 〈 ; 〉′ below. It is immediate that 〈v ⊗ w; γ0 ⊗ γ1〉′ = 〈v; γ1〉〈w; γ0〉
for v ⊗ w ∈ V n ⊗ V n+1. Therefore, the map 〈 ; 〉′ is also non-degenerate. Thus
the equality (4.3) yields that dim Im d1 = dim(Im [ , ]⊗Z Q). We note that V n ∼=
Hn(X;Q) and V n+1 = V̂ n+1 ⊕Q{vα} for which V̂ n+1 ∼= Hn+1(X;Q), Q{vα} = 0
if n 6= 2 and Q{vα} ∼= Ker m2 if n = 2. Moreover, we see that the map ζ :
Hn(X;Q)⊗Hn+1(X;Q) = V n⊗V n+1 → H2n+1(X;Q) factors through the injection
ζ : V n⊗V n+1 → (Ker d)2n+1. For dimensional reasons, we can write (Ker d)2n+1 =
Q{vn

i · v
n+1
j } ⊕ Q{wβ} ⊕ Q{

∑

aiα
l vn

i vα}. Here {vn
i } and {vn+1

j } are bases for V n

and V n+1 respectively and wβ are appropriate indecomposable elements. Observe
that d2n = d2n

1 . In general, ζ(Ker ζ) ⊂ Im d so that dim(Im [ , ]⊗Z Q)2n > Ker ζ.
Thus we have the following proposition.

Proposition 4.2. dim(Im [ , ]⊗Z Q)2n = Ker ζ if and only if ζ(Ker ζ) = Im d.

Proof of Theorem 1.3.. We first prove (2). From the injectivity of the map m2, we
see that ζ(Ker ζ) = Im d. Moreover, since dim(Im ρ0 ◦h ◦ adm ◦ [ , ]) = dim(h⊗ 1 ◦
adm⊗1(Im [ , ]⊗ZQ)), it follows from Proposition 4.2 that dim(Im ρ0◦h◦adm◦[ , ]) 6
dim(Im [ , ] ⊗Z Q) = dim Ker ζ. The result follows from Theorem 1.2. The same
argument as above, in which V n+1 is replaced with V n, enables us to deduce that
the inequality in Theorem 1.1 becomes an equality if p = 0.

As mentioned above, the inequality dim(Im [ , ]⊗ZQ)2n > Ker ζ holds in general
for (n−1)-connected space (n > 2). We conclude this section with an example which
asserts that the inequality can be strict.

Example 4.3. We define a minimal differential graded algebra (∧V, d) over Q as
follows: let V be the vector space generated by the elements xα, xβ , xγ with degree
2, v, wαβ , wγα with degree 3 and z with degree 4. Define the differential d by
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d(xi) = 0 = d(v), d(wαβ) = xαxβ , d(wγα) = xγxα and d(z) = xγwαβ − wγαxβ .
Then it follows that dimKer ζ = 0 and dim(Im d)5 = 1. From Proposition 4.2, we
can conclude that dim(Im [ , ]⊗Z Q)2n > Ker ζ.
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