A FINITE DIMENSIONAL L_{∞} ALGEBRA EXAMPLE IN GAUGE THEORY

MARILYN DAILY and TOM LADA

(communicated by James Stasheff)

Abstract
We construct an example of a finite dimensional L_{∞} algebra which is generated by a Lie algebra together with a non-Lie action on another vector space. We then show how this example fits into the gauge transformation theory of Berends, Burgers and Van Dam.

Introduction

Although L_{∞} algebras (or sh Lie algebras) have been objects of much research during the past several years, concrete examples of these structures remain somewhat elusive. Initial results by Daily $[\mathbf{3}]$ in the \mathbb{Z} graded setting and by Fialowski and Penkava [5], [4], and by Bodin, Fialowski and Penkava [2] in the $\mathbb{Z} / 2$ graded case have recently appeared. The original interest in these L_{∞} structures was perhaps motivated by their appearance in several aspects of mathematical physics ranging from closed string field theory [10] to the gauge theory for fields on massless particles of high spin [1], [6].

In this note, we will recall the definition of L_{∞} algebra structures in Section 1. In Section 2, we construct a finite dimensional example of such an algebra. We review the relationship between Berends, Burgers and van Dam's gauge theory and L_{∞} algebras in Section 3. The mechanics of this correspondence is illustrated by using the example that is constructed in Section 2. This particular example consists of a Lie algebra together with its non-Lie action on another vector space. We leave it as a challenge to the physicists to develop a physical model whose gauge transformations are described by this algebraic example.

1. L_{∞} algebras

We begin by recalling the definition of an L_{∞} algebra [7],[9]. Let V be a graded vector space over a field k.

[^0]Definition 1. An L_{∞} structure on V is a collection of skew symmetric linear maps $l_{n}: V^{\otimes n} \rightarrow V$ of degree $2-n$ that satisfy the relations

$$
\sum_{i+j=n+1} \sum_{\sigma} e(\sigma)(-1)^{\sigma}(-1)^{i(j-1)} l_{j}\left(l_{i}\left(v_{\sigma(1)}, \ldots, v_{\sigma(i)}\right), v_{\sigma(i+1)}, \ldots, v_{\sigma(n)}\right)=0
$$

where $(-1)^{\sigma}$ is the sign of the permutation, $e(\sigma)$ is the sign that arises from the degrees of the permuted elements, and σ is taken over all ($i, n-i$) unshuffles.

This is the cochain complex point of view; for chain complexes, we require that the maps l_{n} have degree $n-2$.

If we denote the desuspension of V by $\downarrow V$, i.e. $(\downarrow V)_{n}=V_{n+1}$, we may then describe an L_{∞} structure on the cochain complex V by a coderivation \bar{D} of degree +1 on the cocommutative coalgebra $\Lambda^{*}(\downarrow V)$ such that $\bar{D}^{2}=0$. Equivalently, this L_{∞} structure may be described by the linear map $D: \Lambda^{*}(\downarrow V) \rightarrow \downarrow V$ where $D=p_{1} \circ \bar{D}$ and $p_{1}: \Lambda^{*}(\downarrow V) \rightarrow \downarrow V$ is the projection. From this point of view, the L_{∞} algebra relations are given by $D \circ \bar{D}=0$.

2. A finite dimensional example

Consider the graded vector space $V=\oplus V_{n}$ where V_{0} is a 2 dimensional space with basis $<v_{1}, v_{2}>$. and V_{1} is a 1 dimensional space with basis $<w>$. Let $V_{n}=0$ for $n \neq 0,1$. We define an L_{∞} structure, $l_{n}: V^{\otimes n} \rightarrow V$, on V via the following maps:

$$
\begin{array}{r}
l_{1}\left(v_{1}\right)=l_{1}\left(v_{2}\right)=w \\
l_{2}\left(v_{1} \otimes v_{2}\right)=v_{1}, \quad l_{2}\left(v_{1} \otimes w\right)=w \\
l_{n}\left(v_{2} \otimes w^{\otimes n-1}\right)=C_{n} w \quad \text { for all } n \geqslant 3
\end{array}
$$

where $C_{3}=1$ and $C_{n}=(-1)^{n-1}(n-3) C_{n-1}$. We extend these maps to be skew symmetric and define l_{n} to be 0 when evaluated on any element of $V^{\otimes n}$ that is not listed above.

Theorem 2. The maps l_{n} defined above satisfy the relations for an L_{∞} algebra structure.

Proof. It is clear that the first two relations, $l_{1} l_{1}=0$ and $l_{1} l_{2}-l_{2} l_{1}=0$ are satisfied. Moreover, the vector space V_{0} with the bracket $\left[v_{1}, v_{2}\right]=l_{2}\left(v_{1} \otimes v_{2}\right)$ is a Lie algebra. As a result, the next relation evaluated on $v_{i} \otimes v_{j} \otimes v_{k}$ is satisfied because the Jacobi identity holds here. However, the Jacobi identity does not hold when evaluated on the element $v_{1} \otimes v_{2} \otimes w$, but the generalized Jacobi expression $l_{1} l_{3}+l_{2} l_{2}+l_{3} l_{1}$ will equal zero. This says that the action of V_{0} on V_{1} is not that of a Lie module. For $n>3$, the summands in the L_{∞} relation can be calculated as follows:

$$
\begin{gathered}
l_{1} l_{n}\left(v_{1} \otimes v_{2} \otimes w^{\otimes n-2}\right)=0 \\
l_{2} l_{n-1}\left(v_{1} \otimes v_{2} \otimes w^{\otimes n-2}\right)=(-1)^{n-1} l_{2}\left(l_{n-1}\left(v_{2} \otimes w^{\otimes n-2}\right) \otimes v_{1}\right)
\end{gathered}
$$

$$
\begin{gathered}
=(-1)^{n-1} C_{n-1} l_{2}\left(w \otimes v_{1}\right)=(-1)^{n} C_{n-1} w \\
l_{k} l_{n-k}\left(v_{1} \otimes v_{2} \otimes w^{\otimes n-2}\right)=0 \text { for all } 3 \leqslant k \leqslant n-3
\end{gathered}
$$

because each summand in this expansion contains the term $l_{k}\left(v_{1} \otimes w^{\otimes k-1}\right)=0$. Further, we have

$$
\begin{gathered}
l_{n-1} l_{2}\left(v_{1} \otimes v_{2} \otimes w^{\otimes n-2}\right)=l_{n-1}\left(l_{2}\left(v_{1} \otimes v_{2} \otimes w^{\otimes n-2}\right)-(n-2) l_{n-1}\left(l_{2}\left(v_{1} \otimes w\right) \otimes v_{2} \otimes w^{\otimes n-3}\right)\right. \\
=l_{n-1}\left(v_{1} \otimes w^{\otimes n-2}\right)-(n-2) l_{n-1}\left(w \otimes v_{2} \otimes w^{\otimes n-3}\right) \\
=0+(n-2) l_{n-1}\left(v_{2} \otimes w^{\otimes n-2}\right)=(n-2) C_{n-2} w . \\
l_{n} l_{1}\left(v_{1} \otimes v_{2} \otimes w^{\otimes n-2}\right)=l_{n}\left(w \otimes v_{2} \otimes w^{\otimes n-2}\right)-l_{n}\left(w \otimes v_{1} \otimes w^{\otimes n-2}\right)=-C_{n} w .
\end{gathered}
$$

Consequently, the nth Jacobi expression is satisfied if and only if

$$
\begin{gathered}
\sum_{p=1}^{n}(-1)^{p(n-p)} l_{n-p+1} l_{p}\left(\left(v_{1} \otimes v_{2} \otimes w^{\otimes n-2}\right)=0\right. \\
\Leftrightarrow(-1)^{(n-1)(1)}(-1)^{n} C_{n-1} w+(-1)^{2(n-2)}(n-2) C_{n-1} w+(-1)^{1(n-1)}(-1) C_{n} w=0 \\
\Leftrightarrow(-1) C_{n-1}+(n-2) C_{n-1}+(-1)^{n} C_{n}=0 \\
\Leftrightarrow C_{n}=(-1)^{n-1}(n-3) C_{n-1}
\end{gathered}
$$

3. The L_{∞} Structure of a Gauge Algebra

Berends, Burgers, and van Dam [1] have described an algebraic framework for analyzing the action of field dependent gauge parameters on the space of fields for massless particles of high spin. In the classical setting, this action is usually that of the Lie algebra of vector fields acting on the Lie module of fields. However, the field dependence of the parameters in this case usually results in the loss of the strict Lie structure. This algebraic data was recast in [6] and was shown to lead to an L_{∞} algebra structure on the space of parameters together with the space of fields. We may summarize this situation in the following manner. Let Ξ be the vector space of gauge parameters and Φ the vector space of fields. The "action" is given by a gauge transformation which may be interpreted as a linear $\operatorname{map} \delta: \Xi \rightarrow \operatorname{Hom}\left(\Lambda^{*} \Phi, \Phi\right)$ where $\Lambda^{*} \Phi$ is the cocommutative coalgebra generated by Φ. The map δ is then extended to a map $\hat{\delta}: \operatorname{Hom}\left(\Lambda^{*} \Phi, \Xi\right) \rightarrow \operatorname{Hom}\left(\Lambda^{*} \Phi, \Phi\right)$ via $\hat{\delta}(\pi)=e v \circ((\delta \circ \pi) \otimes 1) \circ \Delta$ where $e v$ is the evaluation map and Δ is the unshuffle comultiplication on $\Lambda^{*} \Phi$. Recall that the vector space $\operatorname{Hom}\left(\Lambda^{*} \Phi, \Phi\right)$ has a canonical Lie bracket given by $[f, g]=f \circ \bar{g}-g \circ \bar{f}$ where \bar{f} denotes the extension of a linear map $f \in \operatorname{Hom}\left(\Lambda^{*} \Phi, \Phi\right)$ to a coderivation on $\Lambda^{*} \Phi$; recall that $\bar{f}=m \circ(f \otimes 1) \circ \Delta$ with m the product in the graded commutative algebra $\Lambda^{*} \Phi$.

Another ingredient in this scenario is the assumed existence of a map $\mathcal{C}: \Xi \otimes \Xi \rightarrow$ $\operatorname{Hom}\left(\Lambda^{*} \Phi, \Xi\right)$ that satisfies the (BBvD) hypothesis

$$
[\delta(\xi), \delta(\eta)]=\hat{\delta} \mathcal{C}(\xi, \eta) \in \operatorname{Hom}\left(\Lambda^{*} \Phi, \Phi\right)
$$

for all $\xi, \eta \in \Xi$. After this map is extended to a map

$$
\hat{\mathcal{C}}: \operatorname{Hom}\left(\Lambda^{*} \Phi, \Xi\right) \otimes \operatorname{Hom}\left(\Lambda^{*} \Phi, \Xi\right) \rightarrow \operatorname{Hom}\left(\Lambda^{*} \Phi, \Xi\right)
$$

via

$$
\hat{\mathcal{C}}\left(\pi_{1}, \pi_{2}\right)=\mathcal{C} \circ\left(\left(\pi_{1} \otimes \pi_{2}\right) \otimes 1\right) \circ(\Delta \otimes 1) \circ \Delta
$$

a bracket that satisfies the Jacobi identity may be imposed on the space $\left.\operatorname{Hom} \Lambda^{*} \Phi, \Xi\right)$ via

$$
\left[\pi_{1}, \pi_{2}\right]=\pi_{1} \circ \overline{\hat{\delta}\left(\pi_{2}\right)}-\pi_{2} \circ \overline{\hat{\delta}\left(\pi_{1}\right)}+\hat{\mathcal{C}}\left(\pi_{1}, \pi_{2}\right)
$$

Now consider the graded vector space V with $V_{0}=\Xi, V_{1}=\Phi$, and $V_{n}=0$ for $n \neq 0,1$. By Theorem 2 of [6], an L_{∞} structure may be defined on V by constructing a linear map $D: \Lambda^{*}(\downarrow V) \rightarrow \downarrow V$ by piecing together the maps δ and \mathcal{C}. The (BBvD) hypothesis together with the Jacobi identity for the bracket on $\operatorname{Hom}\left(\Lambda^{*} \Phi, \Xi\right)$ imply that $D \circ \bar{D}=0$, the L_{∞} relations for V.

We note that in $[\mathbf{8}]$, a different approach that uses symmetric brace algebras to exhibit the link between gauge transformations and L_{∞} algebras is developed.

We now use the example presented in Section 2 to illustrate this gauge transformation point of view. Recall that the vector space under consideration is given by $V_{0}=<v_{1}, v_{2}>$ and $V_{1}=<w>$. It is necessary to desuspend V so that the vectors v_{0} and v_{1} have degree -1 and w has degree 0 . Define $\delta: V_{0} \rightarrow \operatorname{Hom}\left(\Lambda^{*} V_{1}, V_{1}\right)$ by

$$
\delta\left(v_{1}\right)\left(w_{1} \wedge \cdots \wedge w_{n}\right)= \begin{cases}-w, & \text { if } n=0 \\ w, & \text { if } n=1 \\ 0, & \text { otherwise }\end{cases}
$$

and

$$
\delta\left(v_{2}\right)\left(w_{1} \wedge \cdots \wedge w_{n}\right)= \begin{cases}-w & \text { if } n=0 \\ 0 & \text { if } n=1 \\ \bar{C}_{n+1} w & \text { if } n>1\end{cases}
$$

where

$$
\bar{C}_{n}= \begin{cases}(-1)^{\frac{n-2}{2}} C_{n} & \text { if } n \text { is even } \\ (-1)^{\frac{n+1}{2}} C_{n} & \text { if } n \text { is odd }\end{cases}
$$

and each $w_{i}=w$. We also define $\mathcal{C}: V_{0} \otimes V_{0} \rightarrow \operatorname{Hom}\left(\Lambda^{*} V_{1}, V_{0}\right)$ by $\mathcal{C}\left(v_{1} \otimes v_{2}\right)(1)=v_{1}$, and by setting it equal to 0 otherwise. Extend \mathcal{C} to all of $V_{0} \otimes V_{0}$ by skew symmetry.

Theorem 3. The maps δ and \mathcal{C} satisfy the (BBvD) hypothesis; i.e.

$$
\left[\delta\left(v_{1}\right), \delta\left(v_{2}\right)\right]=\hat{\delta} \mathcal{C}\left(v_{1}, v_{2}\right)
$$

Proof. In order to extend the image of the map δ to a coderivation on $\Lambda^{*} V_{1}$, we recall that the basis vector in V_{1} has degree 0 in the desuspended complex. As a
result, the unshuffle comultiplication on $\Lambda^{*} V_{1}$, has the form

$$
\Delta\left(w_{1} \wedge \cdots \wedge w_{n}\right)=\sum_{i=0}^{n}\binom{n}{i}\left(w_{1} \wedge \cdots \wedge w_{i}\right) \otimes\left(w_{i+1} \wedge \cdots \wedge w_{n}\right)
$$

As a result,

$$
\overline{\delta\left(v_{1}\right)}\left(w_{1} \wedge \cdots \wedge w_{n}\right)=-w \wedge w_{1} \wedge \cdots \wedge w_{n}+n\left(w_{1} \wedge \cdots \wedge w_{n}\right)
$$

and

$$
\overline{\delta\left(v_{2}\right)}\left(w_{1} \wedge \cdots \wedge w_{n}\right)= \begin{cases}-w \wedge w_{1} \wedge \cdots \wedge w_{n} & \text { for } i=0 \\ 0 & \text { for } i=1 \\ \sum_{i=2}^{n}\binom{n}{i} \bar{C}_{i+1} w \wedge w_{i+1} \wedge \cdots \wedge w_{n} & \text { for } i>1\end{cases}
$$

Consequently, we have

$$
\delta\left(v_{1}\right) \circ \overline{\delta\left(v_{2}\right)}\left(w_{1} \wedge \cdots \wedge w_{n}\right)= \begin{cases}-w & \text { if } n=0 \\ 0 & \text { if } n=1 \\ \bar{C}_{n+1} w & \text { if } n>1\end{cases}
$$

and

$$
\delta\left(v_{2}\right) \circ \overline{\delta\left(v_{1}\right)}\left(w_{1} \wedge \cdots \wedge w_{n}\right)= \begin{cases}0 & \text { if } n=0 \\ -w & \text { if } n=1 \\ \left(-\bar{C}_{n+2}+n \bar{C}_{n+1}\right) w & \text { if } n>1\end{cases}
$$

When $n>1$, $\left[\delta\left(v_{1}\right), \delta\left(v_{2}\right)\right]\left(w_{1} \wedge \cdots \wedge w_{n}\right)$

$$
\begin{gathered}
=\left(\delta\left(v_{1}\right) \circ \overline{\delta\left(v_{2}\right)}-\delta\left(v_{2}\right) \circ \overline{\delta\left(v_{1}\right)}\right)\left(w_{1} \wedge \cdots \wedge w_{n}\right) \\
=\bar{C}_{n+1} w-\left(\left(-\bar{C}_{n+2}+n \bar{C}_{n+1}\right) w\right)
\end{gathered}
$$

But,

$$
\begin{gathered}
\bar{C}_{n+1}+-\bar{C}_{n+2}-n \bar{C}_{n+1} \\
= \begin{cases}(1-n)(-1)^{\frac{n+2}{2}} C_{n+1}+(-1)^{\frac{n}{2}} C_{n+2} & \text { if } n \text { is even } \\
(1-n)(-1)^{\frac{n-1}{2}} C_{n+1}+(-1)^{\frac{n+3}{2}} C_{n+2} & \text { if } n \text { is odd }\end{cases} \\
= \begin{cases}(1-n)(-1)^{\frac{n+2}{2}} C_{n+1}+(-1)^{\frac{n}{2}}(-1)^{n+1}(n-1) C_{n+1} & \text { if } n \text { is even } \\
(1-n)(-1)^{\frac{n-1}{2}} C_{n+1}+(-1)^{\frac{n+3}{2}}(-1)^{n+1}(n-1) C_{n+1} & \text { if } n \text { is odd. } .\end{cases}
\end{gathered}
$$

We note that $(-1)^{\frac{n+2}{2}}-(-1)^{\frac{n}{2}}(-1)^{n+1}=0$ when n is even, and that $(-1)^{\frac{n-1}{2}}-$ $(-1)^{\frac{n+3}{2}}(-1)^{n+1}=0$ when n is odd.

In summary, we obtain

$$
\left[\delta\left(v_{1}\right), \delta\left(v_{2}\right)\right]\left(w_{1} \wedge \cdots \wedge w_{n}\right)= \begin{cases}-w & \text { when } n=0 \tag{1}\\ w & \text { when } n=1 \\ 0 & \text { when } n>1\end{cases}
$$

On the other hand,

$$
\begin{gathered}
\hat{\delta} \mathcal{C}\left(v_{1}, v_{2}\right)\left(w_{1} \wedge \cdots \wedge w_{n}\right)=e v \circ\left(\delta \circ \mathcal{C}\left(v_{1}, v_{2}\right) \otimes \mathbf{1}\right)\left(\sum_{i=0}^{n}\binom{n}{i}\left(w_{1} \wedge \cdots \wedge w_{i}\right) \otimes\left(w_{i+1} \wedge \cdots \wedge w_{n}\right)\right) \\
=e v \circ\left(\delta\left(v_{1}\right) \otimes \mathbb{1}\right)\left(\sum_{i=0}^{n}\binom{n}{i}\left(w_{1} \wedge \cdots \wedge w_{i}\right) \otimes\left(w_{i+1} \wedge \cdots \wedge w_{n}\right)\right) \\
=\delta\left(v_{1}\right)\left(w_{1} \wedge \cdots \wedge w_{n}\right)= \begin{cases}-w & \text { when } n=0 \\
w & \text { when } n=1 \\
0 & \text { when } n>1\end{cases}
\end{gathered}
$$

which agrees with equation 1.

Remark 4. The fact that the coefficients C_{n} and \bar{C}_{n} differ by only a sign that depends on n is due to the difference in the gradings of $V^{\otimes n}$ and $(\downarrow V)^{\otimes n}$. Details regarding this sign adjustment may be found in [7] and [9].

4. coda

As was shown in Section 2, it is possible for a "small" graded vector space to carry a rich L_{∞} algebra structure. Other similar examples have been constructed and will be discussed elsewhere. These examples in the 2-graded context include include the cases in which V_{0} is an abelian Lie algebra but V_{1} is not a V_{0} module, and V_{0} is a Lie algebra and V_{1} is a V_{0} module yet non trivial higher order operations l_{n} exist. These examples are interesting in their own right, but as seen in Section 3, the higher order operations can be used to construct the gauge transformations in the Berends, Burgers,van Dam theory. It is our hope that these algebra results may lead to new insights in the physical theories.

References

[1] F.A. Berends, G.J.H. Burgers, and H. van Dam, On the theoretical problems in constructing intereactions involving higher spin massless particles, Nucl.Phys.B 260 (1985), 295-322.
[2] D. Bodin, A. Fialowski, and M. Penkava, Classification and versal deformations of L_{∞} algebras on a $2 \mid 1$ dimensional space, preprint QA/041025.
[3] M. Daily, L_{∞} structures on spaces with 3 one-dimensional components, to appear in Communications in Algebra.
[4] A. Fialowski and M. Penkava, Strongly homotopy Lie algebras of one even and two odd dimension, preprint QA/0308016.
[5] A. Fialowski and M. Penkava, Examples of infinity and Lie algebras and their versal deformations, Geometry and Analysis on Lie Groups, Banach Center Publications 55, 2002, 27-42.
[6] R. Fulp, T. Lada, and J. Stasheff, Sh-Lie algebras induced by gauge transformations, Comm in Math Phys. 231 (2002), 25-43.
[7] T. Lada and M. Markl, Strongly homotopy Lie algebras, Comm. in Algebra (1995), 2147-2161.
[8] T. Lada and M. Markl, Symmetric brace algebras with applications to particles of high spin, preprint QA 0307054.
[9] T. Lada and J. Stasheff, Introduction to sh Lie algebras for physicists, International Journal of Theoretical Physics Vol. 32, No. 7 (1993), 1087-1103.
[10] B. Zwiebach, Closed string field theory: Quantum action and the BatalinVilkovisky master equation, Nucl. Phys. B 390 (1993), 33-152.

This article may be accessed via WWW at http://www.rmi.acnet.ge/hha/ or by anonymous ftp at
ftp://ftp.rmi.acnet.ge/pub/hha/volumes/2005/n2a4/v7n2a4.(dvi,ps,pdf)

Marilyn Daily medaily@unity.ncsu.edu
Department of Mathematics,
North Carolina State University, Raleigh NC 27695,
USA

Tom Lada lada@math.ncsu.edu
Department of Mathematics,
North Carolina State University, Raleigh NC 27695,
USA

[^0]: The research of the first author was supported in part by NSF grant INT-0203119 and by grant MŠMT ME 603
 The research of the second author was supported in part by NSF grant INT-0203119
 Received November 24, 2003, revised March 16, 2004; published on April 22, 2005.
 2000 Mathematics Subject Classification: 18G55, 81T13.
 Key words and phrases: Finite dimensional L-infinity algebra, gauge algebras.
 (c) 2005, Marilyn Daily and Tom Lada. Permission to copy for private use granted.

