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The Morel–Voevodsky localization theorem
in spectral algebraic geometry

ADEEL A KHAN

We prove an analogue of the Morel–Voevodsky localization theorem over spectral
algebraic spaces. As a corollary we deduce a “derived nilpotent-invariance” re-
sult which, informally speaking, says that A1–homotopy-invariance kills all higher
homotopy groups of a connective commutative ring spectrum.

14F05, 14F42, 55P43; 55P42

1 Introduction

Let R be a connective E1–ring spectrum, and denote by CAlgKet
R the 1–category

of étale E1–algebras over R . The starting point for this paper is the following
fundamental result of J Lurie, which says that the small étale topos of R is equivalent
to the small étale topos of �0.R/ (see [12, Theorem 7.5.0.6] and [13, Remark B.6.2.7]):

Theorem 1.0.1 (Lurie) For any connective E1–ring R , let �0.R/ denote its 0–
truncation (viewed as a discrete E1–ring). Then restriction along the canonical functor
CAlgKet

R! CAlgKet
�0.R/

induces an equivalence from the 1–category of étale sheaves of
spaces CAlgKet

�0.R/
! Spc to the 1–category of étale sheaves of spaces CAlgKet

R! Spc.

Theorem 1.0.1 can be viewed as a special case of the following result (see [13, Propo-
sition 3.1.4.1]):

Theorem 1.0.2 (Lurie) Let R!R0 be a homomorphism of connective E1–rings
that is surjective on �0 . Then restriction along the canonical functor CAlgKet

R!CAlgKet
R0

defines a fully faithful embedding of the 1–category of étale sheaves CAlgKet
R0! Spc

into the 1–category of étale sheaves CAlgKet
R! Spc. Moreover , a sheaf F belongs to

the essential image if and only if its restriction to the complement of the closed subset
Spec.R0/� Spec.R/ is (weakly) contractible.
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Theorems 1.0.1 and 1.0.2 are particular to small sites: for example, they do not hold for
sheaves on the big site CAlgsm

R of smooth R–algebras. Our main objective in this paper
is to show that, if we restrict to sheaves that are A1–homotopy-invariant, then these
results do have analogues on the big sites (and we can even replace the étale topology
by the coarser Nisnevich topology). To be precise, we have (see Corollary 3.2.9 and
Theorem 3.2.4):

Theorem A For any connective E1–ring R , restriction along the canonical functor
CAlgsm

R !CAlgsm
�0.R/

induces an equivalence from the1–category of A1–homotopy-
invariant Nisnevich sheaves CAlgsm

�0.R/
! Spc to the 1–category of A1–homotopy-

invariant Nisnevich sheaves CAlgsm
R ! Spc.

Theorem B Let i W Z! S be a closed immersion of quasicompact quasiseparated
spectral algebraic spaces, with quasicompact open complement j W U ,! S. Denote by
Sm=S and Sm=Z the 1–categories of smooth spectral algebraic spaces over S and Z ,
respectively. Then the direct image functor i� defines a fully faithful embedding of
the 1–category of A1–invariant Nisnevich sheaves on Sm=Z into the 1–category
of A1–invariant Nisnevich sheaves on Sm=S . Moreover, an object F belongs to the
essential image if and only if its inverse image j �.F/ is (weakly) contractible.

Theorem B can also be viewed as an analogue of Kashiwara’s lemma in D–modules (as
generalized by Gaitsgory and Rozenblyum [5] to the setting of spectral algebraic geome-
try over fields of characteristic zero). It is essentially a reformulation of our main result,
an analogue of the localization theorem of Morel and Voevodsky [14, Theorem 3.2.21]
in the setting of spectral algebraic geometry. By analogy with loc. cit., we define a
motivic space over a spectral algebraic space S as an A1–invariant Nisnevich sheaf of
spaces on Sm=S . Then we have (see Theorem 3.2.2):

Theorem C (localization) Let i W Z ! S be a closed immersion of quasicom-
pact quasiseparated spectral algebraic spaces, with quasicompact open complement
j W U ,! S. Let j] denote the “extension by zero” functor, left adjoint to j � . Then, for
any motivic space over S, there is a cocartesian square

j]j
�.F/ F

j].ptU / i�i
�.F/

of motivic spaces over S.
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The Morel–Voevodsky localization theorem in spectral algebraic geometry 3649

1.1 Outline

In order to make sense of Theorem A, we need to define the notions of smoothness and
of A1–homotopy-invariance in the world of E1–ring spectra. There are two natural
ways to define smoothness for a homomorphism of connective E1–rings A! B :

� One can require that B is flat as an A–module, and that the induced homomor-
phism of ordinary commutative rings �0.A/! �0.B/ is smooth.

� One can require that B is locally of finite presentation as an A–algebra, and
that the relative cotangent complex LB=A is a finitely generated projective
B –module.

There are also two candidate “affine lines” over a connective E1–ring R :

� The “flat affine line” A1
[;Spec.R/ (Remark 2.1.5), whose E1–ring of functions is

the polynomial E1–algebra RŒT �D R˝†1
C
.N /. This affine line is smooth

in the first sense, and is compatible with the affine line in classical algebraic
geometry. That is, when R is discrete, A1

[;Spec.R/ is the classical affine line
over R .

� The “spectral affine line” A1
Spec.R/ (Example 2.1.2), whose E1–ring of functions

is the free E1–algebra RfT g on one generator T (in degree zero). This spectral
algebraic space is smooth in the second sense, and represents the functor sending
an R–algebra A to its underlying space �1.A/.

In this paper we work with the second definition of smoothness, and with the “intrinsic”
spectral affine line A1

Spec.R/ . We review the appropriate definitions in detail in Section 2.
In the setting of derived algebraic geometry (formed out of simplicial commutative
rings), the two affine lines collapse into one, so that the resulting A1–homotopy
theory is a much simpler version of the theory developed here (see the author’s PhD
thesis [9]). When R is of characteristic zero (an E1 -Q–algebra), the theory of spectral
algebraic geometry over R is equivalent to derived algebraic geometry over R , and
the A1–homotopy theory constructed here recovers the construction of loc. cit. Over
a general R , we have two different affine lines and two a priori different versions of
A1–homotopy theory (see Warning 2.4.7).

In Section 3 we turn to our main results, which are all centred around the functor i� of
direct image along a closed immersion i . We begin by proving that i� commutes with
almost all colimits (Theorem 3.1.1). We then state the localization theorem (Theorem C
above) as Theorem 3.2.2, postponing its proof to Section 4. We first explain how it
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implies Theorem B (Theorem 3.2.4) and Theorem A (Corollary 3.2.9). As another
application, we then proceed to develop part of the formalism of Grothendieck’s six
operations: the proper base change and projection formulas in the case of closed
immersions (Propositions 3.3.2 and 3.4.2) and a smooth-closed base change formula
(Proposition 3.5.2).

Finally, Section 4 is dedicated to the proof of Theorem C. Aside from generalizing the
theorem of Morel and Voevodsky [14] to the spectral setting, our statement also differs
in a couple other (mutually orthogonal) ways:

� We do not impose noetherian hypotheses. For this reason, we give a proof
of Theorem C that avoids the use of “points” and therefore applies to sheaves
satisfying Čech descent, as opposed to the (a priori) stronger condition of hyper-
descent (see Remark 2.2.10). An alternative approach to removing noetherian
hypotheses is to use continuity arguments to reduce to the noetherian case, as
described in the classical setting in Hoyois [7, Appendix C].

� We generalize the result from (spectral) schemes to (spectral) algebraic spaces.
The key point is that every quasicompact quasiseparated algebraic space is
Nisnevich-locally affine (see Knutson [10, Chapter II, Theorem 6.4]). To be
precise, one needs a little more than this: see the proof of Proposition 2.2.13.
Repeating the proof of Theorem C in the setting of classical algebraic geometry,
one can similarly generalize the statement of [14, Theorem 3.2.21] to algebraic
spaces.

Our proof follows the same general strategy as the original proof of Morel and
Voevodsky, but differs in some details. Let i W Z ,! S be a closed immersion as
in the statement. The first step is to use Proposition 2.2.13 and Theorem 3.1.1 to reduce
to the case of (the motivic localization of) a sheaf represented by a smooth spectral
algebraic space X over the base S. Then, given a partially defined section t W Z ,!X

over S, we have to show that a certain presheaf hS .X; t/ is motivically contractible.
We achieve this in a few steps:

� Nisnevich-locally on X, we can lift the partially defined section t W Z ,!X to a
section sW S ,!X (Lemma 4.2.4).

� Nisnevich-locally on X, the section s can be approximated by the zero section
of a trivial vector bundle on S, up to some étale morphism that induces an
isomorphism over S (Lemma 4.2.3). Moreover, the construction hS .X; t/ is
invariant under such approximations (Lemma 4.2.6).
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The Morel–Voevodsky localization theorem in spectral algebraic geometry 3651

� If X is a vector bundle over S (and t is the restriction of the zero section), then
hS .X; t/ is A1–contractible (Lemma 4.2.5).

1.2 Notation and conventions

We will use the language of 1–categories freely throughout the text. Our main
references are Lurie [11; 12]. The 1–category of spaces will be denoted by Spc, and
a morphism in an 1–category will be called an isomorphism if it is invertible (= an
equivalence in the language of [11]).

The term spectral algebraic space will mean a quasicompact quasiseparated spectral
algebraic space as defined in [13]. An affine spectral scheme is a spectral algebraic
space of the form Spec.R/, where R is a connective E1–ring (see eg [12]). Any
spectral algebraic space S admits a finite Nisnevich covering by affine spectral schemes
[13, Example 3.7.1.5]; it is a (quasicompact quasiseparated) spectral scheme in the sense
of [13] if and only if it moreover admits a Zariski covering by finitely many affines. It
is a (quasicompact, quasiseparated) classical algebraic space if and only if it admits a
Nisnevich covering by finitely many classical affines (of the form Spec.R/ with R
discrete). Given a spectral algebraic space S, we write Scl for its underlying classical
algebraic space, so that Spec.R/cl D Spec.�0.R// for any connective E1–ring R .

Acknowledgements

The author would like to thank Benjamin Antieau, Denis-Charles Cisinski, David
Gepner, Marc Hoyois and Marc Levine for many helpful discussions, encouragement
and feedback on previous versions of this paper.

2 Motivic spaces

2.1 Sm–fibred spaces

Definition 2.1.1 Let f W X ! S be a morphism of spectral algebraic spaces. We say
that f is smooth if it is of finite presentation and the relative cotangent complex LX=S

is locally free of finite rank. If moreover the cotangent complex vanishes, then we say
that f is étale.

Example 2.1.2 Let S denote the sphere spectrum, and S fT1; : : : ; Tng the free E1–
algebra on n generators (in degree zero). Given a spectral algebraic space S, consider
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for any n> 0 the n–dimensional spectral affine space

An
S D S �Spec.S fT1; : : : ; Tng/:

Then the projection An
S ! S has cotangent complex free of rank n, and is smooth.

More generally, if E is a locally free sheaf of finite rank on S, then the associated
vector bundle � W SpecS .SymOS

.E//! S has relative cotangent complex ��.E/, and
is again smooth.

Remark 2.1.3 Nisnevich-locally on X, any smooth morphism of spectral algebraic
spaces f W X ! S can be factored through an étale morphism X ! An

S and the
projection An

S ! S (see [13, Proposition 11.2.2.1]).

Warning 2.1.4 Unlike in classical algebraic geometry, smooth morphisms in spectral
algebraic geometry are generally not flat: étale morphisms are flat, but An

S ! S is flat
if and only if nD 0 or S is of characteristic zero. In particular, if S is classical, the
spectral algebraic space An

S is classical if and only if nD 0 or S is of characteristic
zero (see Warning 2.4.7).

Remark 2.1.5 There is a variant of the construction An
S that is flat over S (but

usually not smooth). Namely, let S ŒT1; : : : ; Tn� denote the polynomial E1–algebra
on n generators over S (in degree zero); this is by definition the suspension spectrum
†1
C
.N n/, where the (additive) commutative monoid N n is viewed as a discrete

E1–space. If we set

An
[;S D S �Spec.S ŒT1; : : : ; Tn�/;

then the projection An
[;S
! S is flat.

Definition 2.1.6 Let S be a spectral algebraic space. An Sm–fibred space over S,
or simply a fibred space over S, is a presheaf of spaces on the 1–category Sm=S of
smooth spectral algebraic spaces over S. We write Spc.S/ for the 1–category of
Sm–fibred spaces over S, and denote the Yoneda embedding by X 7! hS .X/.

2.2 Nisnevich descent

In this subsection we discuss the property of Nisnevich descent for an Sm–fibred space.
One very pleasant feature of the Nisnevich topology, compared to the étale topology, is
that the sheaf condition can be described using finite limits (see Theorem 2.2.6).
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Definition 2.2.1 Let S be a spectral algebraic space and X 2 Sm=S . A Nisnevich
square over X is a cartesian square of spectral algebraic spaces

(2-1)
W V

U X

p

j

where j is an open immersion, p is étale and there exists a closed immersion Z ,!X

complementary to j such that the induced morphism p�1.Z/!Z is invertible.

Definition 2.2.2 Let F 2 Spc.S/ be a fibred space over S. We say that F satisfies
Nisnevich excision if it is reduced, ie the space �.¿;F/ is contractible, and for any
Nisnevich square over X of the form (2-1), the induced square of spaces

�.X;F/ �.U;F/

�.V;F/ �.W;F/

j�

p�

is cartesian.

Remark 2.2.3 Being defined by finite limits, the property of Nisnevich excision is
stable under filtered colimits and small limits in Spc.S/.

Definition 2.2.4 Let F 2 Spc.S/ be a fibred space over S. We say that F satisfies
Nisnevich descent if it is reduced and, for any Nisnevich square (2-1), the canonical
morphism of spaces

�.X;F/! Tot
�
�.Č. zX=X/�;F/

�
is invertible, where zX D U tV , the simplicial object Č. zX=X/� is the Čech nerve of
the morphism zX !X, and “Tot” denotes totalization of a cosimplicial diagram.

Construction 2.2.5 Consider the Grothendieck pretopology on Sm=S generated by
the following covering families: (a) the empty family, covering the empty scheme ¿;
(b) for any X 2 Sm=S and for any Nisnevich square over X of the form (2-1), the
family fU !X; V !Xg, covering X. We call the associated Grothendieck topology
the Nisnevich topology. Then F 2 Spc.S/ satisfies Nisnevich descent in the sense of
Definition 2.2.4 if and only if it is a sheaf with respect to the Nisnevich topology (in
the sense of [11]).
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Theorem 2.2.6 Let S be a spectral algebraic space and F a Sm–fibred space over S.
Then F satisfies Nisnevich excision if and only if it satisfies Nisnevich descent.

Theorem 2.2.6 follows from a general result of Voevodsky [17, Corollary 5.10] (see
also [2, Theorem 3.2.5]).

Theorem 2.2.7 (Voevodsky) Let C be an 1–category admitting fibred products.
Let E be a set of cartesian squares which is closed under isomorphism and satisfies the
following properties:

(a) The set E is closed under base change. More precisely, suppose that Q is a
cartesian square in C of the form

(2-2)
Q.1; 1/ Q.0; 1/

Q.1; 0/ Q.0; 0/

that belongs to E. Then its base change along any morphism c!Q.0; 0/ in C

also belongs to E.

(b) For every square Q in E of the form (2-2), the lower horizontal arrow Q.1; 0/!

Q.0;0/ is a monomorphism (ie its diagonal �WQ.1;0/!Q.1;1/�Q.0;0/Q.1;0/

is invertible).

(c) For every square Q in E of the form (2-2), the right-hand vertical arrow
Q.0; 1/!Q.0; 0/ is k–truncated for some k > 0.

(d) For every square Q in E of the form (2-2), the induced square

Q.1; 1/ Q.0; 1/

Q.1; 1/�Q.1;0/Q.1; 1/ Q.0; 1/�Q.0;0/Q.0; 1/

� �

also belongs to E.

Then , for any presheaf FW .C /op! Spc, the following two conditions are equivalent :

(i) The presheaf F sends every square in E to a cartesian square of spaces.

(ii) For any square Q 2 E, write Č.Q/� for the Čech nerve of the morphism
Q.1; 0/tQ.0; 1/!Q.0; 0/. Then the canonical map of spaces

F.Q.0; 0//! Tot.F.Č.Q/�//

is invertible.
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Notation 2.2.8 Given a square Q 2 E of the form (2-2), it will be useful to generalize
the notation as follows: for each pair of integers i; j > 0, let Q.i; j / denote the object

Q.i; j / WDQ.1; 0/�i �Q.0;0/Q.0; 1/
�j

in C, where Q.1; 0/�i denotes the i –fold fibred product of Q.1; 0/ with itself over
Q.0; 0/ (and similarly for Q.0; 1/�j ).

Proof of Theorem 2.2.7 The proof is essentially the same as in the case where C

is a 1–category, but we reproduce it here for the reader’s convenience. Given a
square Q 2 E, let KQ denote the colimit of the diagram h.Q.0; 1// h.Q.1; 1//!
h.Q.1; 0// (formed in the 1–category of presheaves), and let KE denote the set of
canonical morphisms kQW KQ! h.Q.0; 0// for all Q 2 E. Note that a presheaf F

satisfies condition (i) if and only if it is KE–local. Similarly, let CQ denote the
geometric realization of the Čech nerve Č.Q/� , and CE the set of canonical morphisms
cQW Č.Q/�! h.Q.0; 0// for all Q 2 E. Then a presheaf F satisfies condition (ii) if
and only if it is CE–local. For any Q 2 E as in (2-2), form the cartesian square of
presheaves

(2-3)

KQ �h.Q.0;0// CQ KQ

CQ h.Q.0; 0//

p.Q/

q.Q/ kQ

cQ

We will show that (1) the morphism p.Q/ is invertible, and (2) q.Q/ is both a KE–
local equivalence and a CE–local equivalence. Since any class of local equivalences
is strongly saturated [11, Lemma 5.5.4.11] and in particular satisfies the two-of-three
property, it will follow that the classes of KE–local and CE–local equivalences coincide,
and therefore that conditions (i) and (ii) are equivalent.

For (1), it suffices by universality of colimits to show that cQ becomes invertible after
base change along any of the morphisms Q.0; 1/!Q.1; 1/, Q.1; 0/!Q.0; 0/ or
Q.1; 1/!Q.0; 0/. Since the morphism Q.0; 1/tQ.1; 0/!Q.0; 0/ splits after any of
these base changes, it follows that the augmented simplicial object Č.Q/�!h.Q.1; 1//
also becomes split after any of these base changes.

For (2), write Qij for the base change of the square Q along Q.i; j / ! Q.0; 0/

for i; j > 0. By universality of colimits, it will suffice to show that each kQij is a
KE–local and CE–local equivalence (for i C j > 1). The former claim follows from
assumption (a). For i > 1, assumption (b) implies that the lower horizontal arrow in
the square Qij is invertible; in this case it is clear that the morphism kQij is invertible.
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Therefore we may set i D 0 and consider the squares Q0j for j > 1; it will suffice
to show that kQij is invertible for sufficiently large j . Note that in the commutative
diagram

Q.1; j / Q.0; j /

Q.1; j C 1/ Q.0; j C 1/

Q.1; j / Q.0; j /

� �

both squares are cartesian, the vertical composites are identities and the lower square is
canonically identified with Q0j . Since the class of CE–local equivalences is closed
under retracts and cobase change, it will suffice to show that kQ0 is a CE–local
equivalence, where Q0 denotes the upper square. Note that by assumptions (a) and (d),
the square Q0 belongs to E. By assumption (b), its lower horizontal arrow is a
monomorphism, and by (c) its right-hand vertical arrow is .k�1/–truncated (where k
is such that Q.0; 1/!Q.0; 0/ is k–truncated). Therefore we may replace Q by Q0

and assume that the vertical arrow Q.1; 0/!Q.0; 0/ is .k�1/–truncated. Repeating
the above argument recursively we eventually reduce to the case where both horizontal
and vertical legs of the square Q are .�1/–truncated (= monomorphisms). For such Q ,
observe that in each of the squares Qij (i C j > 1), one of the legs is invertible. Then
it is obvious that kQij is invertible, so that q.Q/ is invertible. Then the square (2-3)
shows that kQ is a CE–local equivalence.

Proof of Theorem 2.2.6 Apply Theorem 2.2.7 to the set of Nisnevich squares. It is
easy to see that the assumptions hold (recall that étale morphisms are 0–truncated).

Remark 2.2.9 From [13, Theorem 3.7.5.1] and Theorem 2.2.6 it follows that the
topology defined in Construction 2.2.5 coincides with Lurie’s version of the Nisnevich
topology constructed in [13, Section 3.7.4].

Remark 2.2.10 In our definition of the Nisnevich descent property we consider only
Čech covers as opposed to arbitrary hypercovers (see [11, Section 6.5.4]). If S is
noetherian and of finite dimension, then there is no difference [13, Corollary 3.7.7.3].

Construction 2.2.11 Let SpcNis.S/ denote the full subcategory of Spc.S/ spanned
by Nisnevich excisive fibred spaces. By Theorem 2.2.6 this is an exact left localization,
and we denote the localization functor by F 7! LNis.F/. We say that a morphism in
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Spc.S/ is a Nisnevich-local equivalence if it induces an isomorphism after Nisnevich
localization.

Example 2.2.12 Given a spectral algebraic space X, let K.X/ denote the nonconnec-
tive algebraic K–theory spectrum of the stable 1–category of perfect complexes on X.
Then the assignment X 7!�1K.X/, viewed as an Sm–fibred space over a spectral
algebraic space S, is Nisnevich excisive. This follows from compact generation of
quasicoherent sheaves on spectral algebraic spaces1 as in [13, Theorem 9.6.1.1 and
Corollary 9.6.3.2; 1, Proposition 6.9 and Theorem 6.11] (see eg [4, Proposition A.13]).

Proposition 2.2.13 For any spectral algebraic space S, the 1–category SpcNis.S/

is generated under sifted colimits by objects of the form hS .X/, where X 2 Sm=S is
affine and X ! S factors through an étale morphism to a spectral affine space An

S for
some n> 0.

Proof Say that X 2 Sm=S is good if it admits an étale S –morphism to An
S for

some n > 0. Let C denote the full subcategory of SpcNis.S/ generated under
sifted colimits by representables of the form hS .X/ with X affine and good. From
[11, Lemma 5.5.8.14] it follows that SpcNis.S/ is generated under sifted colimits by
the representables, so it will suffice to show that every representable space hS .X/ with
X 2 Sm=S belongs to C. Using Remark 2.1.3 we may write hS .X/ as the colimit of a
simplicial diagram where each term is good (namely, take the Čech nerve of a suitable
Nisnevich covering family of X ). We may assume therefore that X is good.

Choose a scallop decomposition2 ¿ D U0 ,! U1 ,! � � � ,! Un D X [13, Theorem
3.5.2.1], ie a sequence of open immersions such that for each 16 i 6 n there exists an
affine Vi fitting in a commutative square

Wi Vi

Ui�1 Ui

which is cartesian and cocartesian (in the 1–category of spectral algebraic spaces),
with Vi ! Ui étale.

For each i the morphisms Ui�1 ,! Ui and Vi ! Ui generate a Nisnevich covering,
so hS .Ui / is the colimit of the Čech nerve of Ui�1 tVi ! Ui . Moreover, every term

1Recall that for us, all spectral algebraic spaces are implicitly quasicompact and quasiseparated.
2If X admits a Zariski covering by affines, then one can take Vi ! Ui to be open immersions, with

Ui D V1 [V2 [ � � � [Vi .
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of this simplicial diagram is separated, because Ui�1 �Ui Vi DWi is separated (being
an open subspace in Vi ). By induction we may therefore assume that X is separated
and good. For this case, choose again a scallop decomposition as above. Since each Ui
is now separated and good, the cartesian squares

Wi D Ui�1 �Ui Vi Ui�1 �Vi

Ui Ui �Ui
�

show that the Wi are affine. The Čech nerve of Ui�1tVi!Ui is therefore a simplicial
diagram with all terms affine and good, so we conclude by induction.

Proposition 2.2.14 Let S be a spectral algebraic space. Denote by Smsch
=S

and Smaff
=S

the full subcategories of Sm=S spanned by smooth spectral schemes and affine smooth
spectral schemes, respectively, over S.

(i) If S is a spectral scheme, then restriction along the inclusion Smsch
=S
,! Sm=S in-

duces an equivalence on1–categories of Nisnevich sheaves. In particular, every
Nisnevich sheaf on Sm=S is a right Kan extension of its restriction to Smsch

=S
.

(ii) If S is affine, then restriction along the inclusion Smaff
=S
,! Sm=S induces

an equivalence on 1–categories of Nisnevich sheaves. In particular, every
Nisnevich sheaf on Sm=S is a right Kan extension of its restriction to Smaff

=S
.

Proof For claim (i), let � denote the inclusion functor and �� the functor of restriction
of presheaves along �. This admits fully faithful left and right adjoints �Š and �� ,
given respectively by left and right Kan extension. Since � is topologically continuous
(preserves Nisnevich covering families), the functor �� preserves Nisnevich sheaves.
It is also topologically cocontinuous (see before Definition 3.1.5), so �� preserves
Nisnevich sheaves. Therefore at the level of Nisnevich sheaves the functor �� is
left adjoint to �� and right adjoint to LNis �Š . It follows formally that LNis �Š is also
fully faithful. Since its essential image is generated under colimits by objects of
the form LNis �Š.hS .X// ' LNis hS .X/ ' hS .X/ for X 2 Smsch

=S
, it follows from

Proposition 2.2.13 that it is essentially surjective. The proof of claim (ii) is the same.

2.3 A1–homotopy-invariance

Definition 2.3.1 Let S be a spectral algebraic space and F 2 Spc.S/ a fibred space
over S. We say that F 2 Spc.S/ satisfies A1–homotopy-invariance if for every
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X 2 Sm=S , the canonical map of spaces

p�W �.X;F/! �.A1
X ;F/

is invertible, where pW A1
X ! X is the projection of the spectral affine line over X

(Example 2.1.2). Let SpcA1.S/ denote the full subcategory of Spc.S/ spanned by
A1–homotopy-invariant fibred spaces.

Remark 2.3.2 The full subcategory SpcA1.S/�Spc.S/ is stable under small colimits
and limits.

Definition 2.3.3 Note that SpcA1.S/ can be described as the (accessible) left local-
ization of Spc.S/ at the set of canonical projections A1

X !X for X 2 Sm=S . Since
this set is essentially small, there is a localization functor F 7! LA1.F/. We say
that a morphism in Spc.S/ is an A1–local equivalence if it induces an isomorphism
in SpcA1.S/ after A1–localization.

Example 2.3.4 The Sm–fibred space X 7! �1K.X/ of Example 2.2.12 is rarely
A1–homotopy-invariant, and its A1–localization no longer satisfies Nisnevich descent.
There is however a variant of K–theory, studied in [3], which is both A1–invariant and
Nisnevich excisive.

Remark 2.3.5 The fact that A1–projections are stable under base change implies
that the A1–localization functor commutes with finite products, and in fact admits the
following description: for any fibred space F 2 Spc.S/, the space of sections over any
X 2 Sm=S is computed by a sifted colimit:

(2-4) �.X;LA1.F//' lim
��!

.Y!X/2.AX /op

�.Y;F/;

where AX is the full subcategory of Sm=X spanned by composites of A1–projections.
Moreover, the 1–category SpcA1.S/ has universality of colimits. See Proposition 3.4
of [8].

Definition 2.3.6 Let S denote the sphere spectrum and S fT g the free E1–algebra
on one generator T (in degree zero). The two morphisms S fT g ! S sending T to 0
and 1, respectively, induce, for any X 2 Sm=S , two sections i0 and i1 of the projection
pW A1

X ! X. Given two morphisms '0; '1W F� G in Spc.S/, an elementary A1–
homotopy from '0 to '1 is a morphism hS .A1

S / � F ! G whose restrictions to
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hS .S/�FDF along i0 and i1 are isomorphic to '0 and '1 , respectively. We say that
'0 and '1 are A1–homotopic if there exists a sequence of elementary A1–homotopies
connecting them; in this case the induced morphisms LA1.F/� LA1.G/ coincide.
A morphism 'W F ! G in Spc.S/ is called a strict A1–homotopy equivalence if
there exists a morphism  W G! F such that the composites ' ı  and  ı ' are
A1–homotopic to the identities. Any strict A1–homotopy equivalence is an A1–local
equivalence.

2.4 Motivic spaces

Definition 2.4.1 A motivic space over S is an Sm–fibred space F 2 Spc.S/ that is
Nisnevich-local and A1–local. We write H .S/ for the full subcategory of Spc.S/
spanned by motivic spaces. This is an accessible left localization, and we write
F 7! Lmot.F/ for the localization functor. We say that a morphism in Spc.S/ is a
motivic equivalence if it induces an isomorphism in H .S/ after application of Lmot . We
write MS .X/ WDLmot hS .X/ for the motivic space represented by an object X 2 Sm=S .

Remark 2.4.2 The 1–category H .S/ has universality of colimits (since SpcNis.S/

and SpcA1.S/ do). Similarly, the functor Lmot commutes with finite products (since
LNis and LA1 do). By adjunction it follows that H .S/ is cartesian closed: for any
F 2H .S/ and G 2 Spc.S/, the internal hom object Hom.G;F/ 2 Spc.S/ is a motivic
space.

Remark 2.4.3 Since the conditions of Nisnevich and A1–locality are each stable
under filtered colimits (Remarks 2.2.3 and 2.3.2), it follows that motivic localization
can be described as the transfinite composite

(2-5) Lmot.F/D lim
��!
n>0

.LA1 ıLNis/
ın.F/

for any F 2 Spc.S/.

By Proposition 2.2.13 we get:

Proposition 2.4.4 The 1–category H .S/ is generated under sifted colimits by ob-
jects of the form MS .X/, where X 2 Sm=S is affine and X ! S factors through an
étale morphism to a spectral affine space An

S for some n> 0.

Corollary 2.4.5 Let S be a spectral algebraic space. Consider the full subcategories
Smsch

=S
and Smaff

=S
of Sm=S as defined in Proposition 2.2.14. Then:
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(i) If S is a spectral scheme, then restriction along the inclusion Smsch
=S
,! Sm=S

induces an equivalence on 1–categories of A1–homotopy-invariant Nisnevich
sheaves.

(ii) If S is an affine spectral scheme , then restriction along the inclusion Smaff
=S
,!

Sm=S induces an equivalence on 1–categories of A1–homotopy-invariant
Nisnevich sheaves.

Proof Let � denote either inclusion functor. The claim will follow by repeating the
proof of Proposition 2.2.14 and using the following assertion:

(�) The restriction functor �� preserves A1–invariant spaces, as does its right ad-
joint �� .

The first claim follows immediately from the fact that � preserves A1–projections
(so that the left Kan extension functor �Š preserves A1–local equivalences). The
second claim is equivalent by adjunction to the assertion that �� preserves A1–local
equivalences. For this it will suffice to show that, for any X 2 Sm=S , the canonical
morphism

�� hS .X �A1/! �� hS .X/

is an A1–local equivalence. By universality of colimits it suffices to show that, for any
Y 2 Sm=S and any morphism 'W hS .Y /! �� hS .X/, the base change

�� hS .X �A1/��� hS .X/ hS .Y /! hS .Y /

is an A1–local equivalence. Since ' factors as hS .Y /! ���Š hS .Y /' �� hS .Y /!
�� hS .X/, the morphism in question is a base change of the morphism

�� hS .X �A1/��� hS .X/ �
� hS .Y /! �� hS .Y /:

Since �� commutes with limits, this is identified with the canonical morphism

hS .Y �A1/! hS .Y /:

This is obviously an A1–local equivalence, so the claim follows.

Let S be a classical scheme. Then there is a parallel variant Hcl.S/ of the construction
H .S/ using the site of smooth classical schemes, imposing Nisnevich descent and
homotopy-invariance with respect to the classical affine line; see eg [7, Appendix C]
(where it is denoted by H .S/). This agrees with the original construction of Morel
and Voevodsky [14] when the latter is defined (that is, when S is noetherian and of
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finite dimension). If we assume that S is of characteristic zero, then it also agrees with
the spectral version H .S/:

Proposition 2.4.6 Let S be a classical scheme of characteristic zero. Then there is a
canonical equivalence of 1–categories

H .S/'Hcl.S/:

Proof This follows from Corollary 2.4.5 and the fact that, if S is of characteristic zero,
there is a canonical equivalence between Smsch

=S
and the category of smooth classical

S –schemes, which preserves and detects Nisnevich covers, and sends the spectral affine
line to the classical one.

Warning 2.4.7 The characteristic zero hypothesis in Proposition 2.4.6 is necessary
in the proof: For example, if S D Spec.Fp/, then the site Smsch

=S
is not equivalent to

the site of smooth classical S –schemes. Indeed the classical affine line Spec.FpŒT �/
is not smooth over S when viewed as a spectral scheme. On the other hand, the site
Smsch

=S
contains objects like the spectral affine line A1

S D Spec.FpfT g/, which is not a
classical scheme. See [16, Proposition 2.4.1.5].

We conclude this subsection by introducing the pointed variant of H .S/:

Construction 2.4.8 Given a spectral algebraic space S, write H .S/� for the 1–
category of pointed objects in H .S/. The forgetful functor H .S/�!H .S/ admits
a left adjoint F 7! FC which freely adjoins a basepoint. The 1–category H .S/� is
equivalent to the full subcategory of the1–category Spc.S/� of fibred pointed spaces F
whose underlying fibred space is motivic. It is an accessible left localization of Spc.S/�
and the localization functor satisfies Lmot.FC/' Lmot.F/C for any F 2H .S/. The
cartesian monoidal structure on H .S/ extends uniquely to a symmetric monoidal
structure on H .S/� with the property that the functor F 7! FC is symmetric monoidal
[15, Corollary 2.32]. We write ^ for the monoidal product; the monoidal unit is the
object .ptS /C 2H .S/� . It follows from Proposition 2.4.4 that H .S/� is generated
under sifted colimits by objects of the form MS .X/C for all affine X 2 Sm=S which
admit an étale S –morphism to An

S for some n> 0.

2.5 Functoriality

We now discuss the basic functorialities that the system of categories H .S/ enjoys
as S varies. For any morphism f W T ! S, we will define a pair of adjoint functors
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.f �
H
; f H
� /. If f happens to be smooth, there will be a further adjunction .f H

]
; f �

H
/.

When there is no risk of confusion we will usually omit the decorations H and H .

Construction 2.5.1 Let f W T ! S be a morphism of spectral algebraic spaces. Re-
striction along the base change functor Sm=S ! Sm=T defines a canonical functor

f
Spc
� W Spc.T /! Spc.S/:

It admits a left adjoint f �Spc which is uniquely characterized by commutativity with
small colimits and the formula f �Spc.hS .X//' hT .X �S T / for X 2 Sm=S .

Construction 2.5.2 The base change functor Sm=S ! Sm=T preserves Nisnevich
covering families and A1–projections, so the functor f �Spc preserves motivic equiva-
lences. By adjunction its right adjoint f Spc

� preserves motivic spaces and induces a
functor (“direct image”)

f H
� W H .T /!H .S/:

This is right adjoint to the functor f �
H
D Lmot f

�
Spc (“inverse image”), characterized

uniquely by commutativity with colimits and the formula f �
H
.MS .X//'MT .X�S T /

for X 2 Sm=S .

Remark 2.5.3 By Remark 2.4.2 it follows that f �
H

commutes with finite products.

When the morphism f is smooth, the inverse image functor f �
H

also admits a left
adjoint f] . When f is an open immersion, this is the functor of “extension by zero”.
More generally, when f is étale, it is the functor of “compactly support direct image”.

Construction 2.5.4 Let pW T !S be a smooth morphism of spectral algebraic spaces.
Then the base change functor admits a right adjoint Sm=T!Sm=S , the forgetful functor
.X!T / 7! .X!T

p
�!S/. It follows that the functor p�Spc coincides with restriction

along the forgetful functor, and admits a left adjoint

p
Spc
]
W Spc.T /! Spc.S/;

which is uniquely characterized by commutativity with colimits and the formula
p

Spc
]
.hT .X//' hS .X/ for X 2 Sm=T .

Construction 2.5.5 Since the forgetful functor Sm=T ! Sm=S preserves Nisnevich
covering families and A1–projections, it follows that pSpc

]
preserves motivic equiv-

alences. In particular, its right adjoint p�Spc preserves motivic spaces, and induces a
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functor
p�H W H .S/!H .T /:

This is right adjoint to the functor pH
]
.F/' Lmot.p

Spc
]
.F//, characterized by commu-

tativity with colimits and the formula pH
]
.MT .X//'MS .X/ for X 2 Sm=T .

Remark 2.5.6 The functor pH
]

commutes with binary products if and only if p is a
monomorphism, hence if and only if p is an open immersion.

Proposition 2.5.7 (Nisnevich separation) Let .p˛W S˛! S/˛ be a Nisnevich cov-
ering family of spectral algebraic spaces. Then the functors .p˛/�W H .S/!H .S˛/

form a conservative family.

Proof Let 'W F1!F2 be a morphism in H .S/ and assume that .p˛/�.'/ is invertible
for each ˛ . It suffices to show that the map �.X;F1/! �.X;F2/ is invertible for
all X 2 Sm=S . Passing to the Čech nerve of the covering family, we may assume that
X 2 Sm=S˛ for some ˛ . Then the claim follows from the assumption because we have,
by adjunction, natural isomorphisms �.X˛;Fi /' �.X; .p˛/].p˛/�Fi / for each i .

Construction 2.5.8 Suppose we have a cartesian square

T 0 S 0

T S

f 0

p0 p

f

of spectral algebraic spaces. If p is smooth, then the square

H .S 0/ H .T 0/

H .S/ H .T /

.f 0/�

p] .p0/]

f �

commutes up to the canonical natural transformation

.p0/].f
0/�

unit
�! .p0/].f

0/�p�p] ' .p
0/].p

0/�f �p]
counit
��! f �p]:

Proposition 2.5.9 (smooth base change formula) Suppose given a cartesian square of
spectral algebraic spaces as above, with p smooth. Then there are canonical invertible
natural transformations

.p0/H] .f
0/�H ! f �Hp

H
] ; p�H f

H
� ! .f 0/H� .p

0/�H

of functors H .S 0/!H .T / and H .T /!H .S 0/, respectively.
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Proof The second transformation is obtained from the first by passage to right adjoints.
For the first, note that each of the functors involved commutes with colimits. Therefore
by Proposition 2.4.4 it suffices to show that the transformation induces an isomorphism
after evaluation at any object MS 0.X

0/ with X 0 2 Sm=S 0 , which is obvious.

Corollary 2.5.10 Let j W U ,! S be an open immersion of spectral algebraic spaces.
Then the functors jH

]
and jH

� are fully faithful.

Proof Applying Proposition 2.5.9 to the square

U U

U S

j

j

which is cartesian because j is a monomorphism, we deduce that the natural transfor-
mations id! j �j] and j �j�! id are invertible.

Corollary 2.5.11 Let i W Z ,! S be a closed immersion of spectral algebraic spaces
with quasicompact open complement j W U ,! S. Then the natural transformations

¿Z! i�H j
H
] ; j �H i

H
� ! ptU

are invertible.

Proof Apply Proposition 2.5.9 to the cartesian square

¿ Z

U S

i

j

Construction 2.5.12 Let pW S 0 ! S be a smooth morphism of spectral algebraic
spaces. Given motivic spaces F0 2 H .S 0/, F 2 H .S/ and G 2 H .S/, we get a
morphism

F0 �p�H .G/ p
�
H .F/

unit
�! p�Hp

H
] .F

0/�p�H .G/ p
�
H .F/' p

�
H .p

H
] .F

0/�G F/;

which corresponds by adjunction to a canonical morphism

pH
] .F

0
�p�H .G/ p

�
H .F//! pH

] .F
0/�G F:
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Proposition 2.5.13 (smooth projection formula) Let pW S 0! S be a smooth mor-
phism of spectral algebraic spaces. Given motivic spaces F0 2H .S 0/, F 2H .S/ and
G 2H .S/, we have canonical bifunctorial isomorphisms

pH
] .F

0
�p�H .G/ p

�
H .F//

��! pH
] .F

0/�G F;

p�H .Hom.F;G// ��! Hom.p�H .F/; p
�
H .G//;

Hom.pH
] .F

0/;F/ ��! pH
� Hom.F0; p�H .F//:

The functorialities under discussion extend freely to the setting of pointed motivic
spaces:

Construction 2.5.14 Given a spectral algebraic space S, let H .S/� denote the 1–
category of pointed motivic spaces over S (Construction 2.4.8). For any morphism
f W T ! S, the direct image functor f H

� preserves terminal objects and therefore
induces a functor f H�

� (which commutes with passage to underlying motivic spaces). Its
left adjoint f �

H�
is uniquely characterized by commutativity with sifted colimits and the

formula f �
H�
.FC/' f

�
H
.F/C for any F 2H .S/. Similarly, for any smooth morphism

pW T ! S, there is a functor pH�
]

left adjoint to p�
H�

which is uniquely characterized
by commutativity with sifted colimits and the formula pH�

]
.FC/' p

H
]
.F/C for any

F 2 H .T /. The smooth base change and projection formulas (Propositions 2.5.9
and 2.5.13) have obvious pointed analogues that we leave to the reader to formulate.

3 Results

3.1 Exactness of i�

Our first goal is to prove the following:

Theorem 3.1.1 Let i W Z ,! S be a closed immersion of spectral algebraic spaces.
Then the direct image functor iH� W H .Z/! H .S/ commutes with contractible co-
limits.

In other words, iH� commutes with colimits of diagrams indexed by contractible3

1–categories. At the level of pointed spaces, we get:

3An essentially small 1–category is called contractible if the 1–groupoid obtained by formally
adjoining inverses to all morphisms is (weakly) contractible.
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Corollary 3.1.2 The direct image functor iH�� W H .Z/� ! H .S/� commutes with
small colimits.

Proof It suffices to show that iH�� commutes with contractible colimits and preserves
the initial object.4 The former condition follows directly from the unpointed statement
(Theorem 3.1.1) and the fact that iH�� preserves the initial object (= terminal object) is
obvious.

Remark 3.1.3 It follows from Corollary 3.1.2 that the functor iH�� admits a right
adjoint i Š

H�
, called the exceptional inverse image functor. A concrete description of the

functor i Š
H�

can be given using the localization theorem; see Remark 3.2.5.

The geometric input into the proof of Theorem 3.1.1 is a spectral version of [6, Propo-
sition 18.1.1]:

Proposition 3.1.4 Let i W Z ,! S be a closed immersion of spectral algebraic spaces.
For any smooth (resp. étale) morphism qW Y !Z , there exists , Nisnevich-locally on Y ,
a smooth (resp. étale) morphism pW X ! S, and a cartesian square

Y X

Z S

q p

Proof The smooth case follows from the étale case by factoring qW Y !Z through an
étale morphism to an affine space An

Z (which can always be done Nisnevich-locally).
Therefore it will suffice to show the étale case. The question being Nisnevich-local, we
may assume that S, Z and Y are affine; let S D Spec.R/, Z D Spec.R0/ and Y D
Spec.A0/. The étale R0–algebra A0 induces an étale �0.R0/–algebra A0˝R0 �0.R0/'
�0.A

0/. Note that it will suffice to demonstrate the claim Zariski-locally on �0.A0/
(since any Zariski covering of �0.A0/ lifts uniquely to a Zariski covering of A0 ). By
[6, Proposition 18.1.1] the �0.R0/–algebra �0.A0/ lifts, Zariski-locally on �0.A0/, to
an étale �0.R/–algebra A0 . By [12, Theorem 7.5.0.6], the latter lifts uniquely to an
étale R–algebra A.

4Let D be a diagram indexed on an 1–category I. Then the initial object defines a cone over D,
which we may view as another diagram D0 with the same colimit but which is indexed on a contractible
1–category.
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In order to deduce Theorem 3.1.1 from Proposition 3.1.4, we will need to make a
small topos-theoretic digression. Let C and D be essentially small 1–categories,
equipped with Grothendieck topologies �C and �D , respectively. Recall that a functor
uW C !D is topologically cocontinuous if the following condition is satisfied:

.COC/ For every �D –covering sieve R0 ,!h.u.c//, the sieve R ,!h.c/, generated
by morphisms c0! c such that h.u.c0//! h.u.c// factors through R0, is
�C –covering.

Definition 3.1.5 Let C and D be essentially small 1–categories, equipped with
Grothendieck topologies �C and �D , respectively. Assume that D admits an initial
object ¿D . A functor uW C !D is topologically quasicocontinuous if it satisfies the
following condition:

.COC0/ For every �D –covering sieve R0 ,!h.u.c//, the sieve R ,!h.c/, generated
by morphisms c0! c such that either u.c0/ is initial or h.u.c0//! h.u.c//

factors through R0 ,! h.u.c//, is �C –covering.

Let PSh.D/ denote the 1–category of presheaves of spaces on C, Sh�D
.D/ the

full subcategory of PSh.D/ spanned by �D –sheaves. We write F 7! L�D
.F/ for the

(left-exact) localization functor.

Lemma 3.1.6 With notation as in Definition 3.1.5, let uW C !D be a topologically
quasicocontinuous functor. Assume that the initial object ¿D is strict in the sense that
for any object d 2D, any morphism d !¿D is invertible. Assume also that , for any
object d 2D, the sieve ¿PSh.D/ ,! h.d/ is �D –covering if and only if d is initial
(where ¿PSh.D/ denotes the initial object of PSh.D/). Then we have:

(i) The restriction functor u�W PSh.D/! PSh.C / sends �D –local equivalences
between reduced5 presheaves to �C –local equivalences.

(ii) The functor Sh�D
.D/! Sh�C

.C /, given by the assignment F 7! L�C
.u�.F//,

commutes with contractible colimits.

Proof Let PShred.D/ the full subcategory of PSh.D/ spanned by reduced presheaves.
This is a left localization, and the localization functor F 7! Lred.F/ has the effect of
forcing Lred.F/.¿/' pt (while F.d/! Lred.F/.d/ is an isomorphism whenever d
is not initial). Note also that the 1–category PShred.D/ is the free completion of D

by contractible colimits.

5We say that a presheaf F is reduced if it sends the initial object to a contractible space.
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Let A denote the set of morphisms in PSh.D/ containing all isomorphisms, the
canonical morphism eW ¿PSh.D/ ,! h.¿D/ and all �D –covering sieves R0 ,! h.d/

of a noninitial object d 2 D. Then the set of �D –local equivalences in PSh.D/ is
the closure of A under small colimits, cobase change and the two-of-three property.
It follows that the set of �D –local equivalences in PShred.D/ is the closure of the
set Lred.A/ under contractible colimits, cobase change and the two-of-three property.
Therefore, for the first claim it will suffice to show that u� sends every morphism
in Lred.A/ to a �C –local equivalence (since the subcategory PShred.D/ is closed under
contractible colimits). This is clear for the morphism Lred.e/, as it is already invertible.

Now let sW R0 ,! h.d/ be a �D –covering sieve of a noninitial object d 2D. Note that
we have Lred.s/D s , as h.d/ is reduced and hence so is R0 (since s is a monomorphism
and R0 is by assumption nonempty). Thus we need to show that u�.s/ is a �C –local
equivalence. By universality of colimits it is sufficient to show that, for every object c
of C and every morphism 'W h.c/! u�h.d/, the base change

u�R0 �u�h.d/ h.c/ ,! h.c/

is a �C –covering sieve. By adjunction, ' factors through the unit h.c/! u�uŠh.c/D

u�h.u.c// and the morphism u�.'[/W u�h.u.c// ! u�h.d/, where '[ is the left
transpose of ' . The base change of ' by u�h.u.c//! u�h.d/ is identified, since u�

commutes with limits, with the canonical morphism

u�
�
R0 �h.d/ h.u.c//

�
! u�h.u.c//:

Since the sieve R0 �h.d/ h.u.c// ,! h.u.c// is �D –covering, as the base change of a
�D –covering sieve, the conclusion now follows from the condition (COC0).

The second assertion is a formal consequence of the first, using the fact that every
�D –sheaf is reduced (by assumption).

Lemma 3.1.7 Let i W Z ,! S be a closed immersion of spectral algebraic spaces.
Then the base change functor Sm=S ! Sm=Z is topologically quasicocontinuous (with
respect to the Nisnevich topology).

Proof Unravelling the definition, this amounts to the following assertion:

.�/ For any X 2 Sm=S and any Nisnevich covering sieve R0 of X �S Z , let
R ,! hS .X/ denote the sieve generated by morphisms X 0!X such that either
(i) the empty sieve on X 0�SZ is Nisnevich-covering, or (ii) X 0�SZ!X�SZ

factors through R0. Then R ,! hS .X/ is Nisnevich-covering.
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This follows directly from Proposition 3.1.4, which says that étale morphisms can be
lifted (Nisnevich-locally) along i .

Proof of Theorem 3.1.1 This follows from Lemmas 3.1.6 and 3.1.7.

3.2 The localization theorem

We now state the main result of this paper, and explain some of its immediate conse-
quences.

Construction 3.2.1 Let i W Z ,!S be a closed immersion of spectral algebraic spaces
with quasicompact open complement j W U ,! S. Given a motivic space F 2H .S/,
consider the tautologically commuting square

jH
]
j �

H
.F/ F

jH
]
j �

H
iH� i

�
H
.F/ iH� i

�
H
.F/

counit

unit unit

counit

Up to the canonical identification j �
H
iH� ' ptU (Corollary 2.5.11), this square is

identified with a canonical commutative square

(3-1)

jH
]
j �

H
.F/ F

jH
]
.ptU / iH� i

�
H
.F/

that we call the localization square associated to i .

Theorem 3.2.2 (localization) Let i W Z ,! S be a closed immersion of spectral
algebraic spaces with quasicompact open complement j W U ,! S. Then, for every
motivic space F 2H .S/, the localization square (3-1) is cocartesian.

The proof of Theorem 3.2.2 will be carried out in Section 4. Here we record a few of
its consequences.

Corollary 3.2.3 Let i W Z ,! S be a closed immersion of spectral algebraic spaces
with quasicompact open complement j W U ,! S. For any pointed motivic space
F 2H .S/� , there is a cofibre sequence

(3-2) j]j
�.F/! F! i�i

�.F/
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and a fibre sequence

(3-3) i�i
Š.F/! F! j�j

�.F/

in H .S/� .

Proof The claim is that the commutative square

j
H�
]
j �

H�
.F/ F

ptS i
H�
� i�

H�
.F/

is cocartesian in H .S/� . Since the forgetful functor H .S/� ! H .S/ reflects con-
tractible colimits, it will suffice to show that the induced square of underlying motivic
spaces

jH
]
j �

H
.F/tjH

]
j�H .ptS /

ptS F

ptS iH� i
�
H
.F/

is cocartesian. By Theorem 3.2.2, the composite square

jH
]
j �

H
F .jH

]
j �

H
F/tjH

]
j�H .ptS /

ptS F

jH
]
j �

H
.ptS / ptS iH� i

�
H
F

is cocartesian. Since the left-hand square is evidently cocartesian, it follows that the
right-hand square is also cocartesian.

The following reformulation of the localization theorem is an analogue of Kashiwara’s
lemma in the setting of D–modules:

Theorem 3.2.4 Let i W Z ,!S be a closed immersion of spectral algebraic spaces with
quasicompact open complement. Then the direct image functor iH� is fully faithful, and
its essential image is spanned by objects F 2H .S/ whose restriction j �

H
.F/ 2H .U /

is contractible.
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Proof First we show that i� is fully faithful. An application of Theorem 3.2.2 to the
motivic space i�.F/2H .S/ shows that the counit induces an isomorphism i�i

�i�! i� .
By a standard argument it therefore suffices to show that i� is conservative. For this
let 'W F1! F2 be a morphism in H .Z/ such that i�.'/ is invertible. To show that '
is invertible, it will suffice to show that

�.X;F1/! �.X;F2/

is invertible for each X 2 Sm=Z . By Proposition 3.1.4, we may assume that X is the
base change of some Y 2 Sm=S . Then we have natural isomorphisms �.X;Fk/ '
�.Y; i�.Fk// for each k , so the claim follows.

Next we identify the essential image of i� . Suppose that F 2 H .S/ with j �.F/

contractible. Then Theorem 3.2.2 yields that the unit map F! i�i
�.F/ is invertible,

so that F belongs to the essential image of i� . The other inclusion follows from
Corollary 2.5.11.

Remark 3.2.5 We can use the localization theorem to give a concrete description of
the abstractly defined functor i Š

H�
. Namely, it is given by

i ŠH�.F/' Fib.i�.F/! i�j�j
�.F//

for any F 2H .Z/� .

Corollary 3.2.6 (nilpotent-invariance) Let i W S0 ,! S be a closed immersion of
spectral algebraic spaces. Suppose that i induces an isomorphism .S0/cl;red' Scl;red of
reduced classical algebraic spaces. Then the functors i�

H
and iH� are mutually inverse

equivalences.

Proof Since the complement of i is empty, this follows from Theorem 3.2.4.

Corollary 3.2.7 Let S be a spectral algebraic space, and let i W Scl ,! S denote the
inclusion of its underlying classical algebraic space (viewed as a discrete spectral
algebraic space). Then the functors i�

H
and iH� define mutually inverse equivalences

H .S/'H .Scl/.

Warning 3.2.8 Corollary 3.2.7 does not assert that H .S/ is equivalent to the classical
motivic homotopy category over Scl , denoted by Hcl.S/ in Proposition 2.4.6.
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Corollary 3.2.9 Let R be a connective E1–ring and consider the affine spectral
scheme S D Spec.R/. Denote by i W Scl! S the inclusion of the underlying classical
scheme. Then the functor iH� induces an equivalence from the 1–category of A1–
homotopy-invariant Nisnevich sheaves on Smaff

=Scl
to the1–category of A1–homotopy-

invariant Nisnevich sheaves of spaces on Smaff
=S

.

Proof Combine Corollary 3.2.7 with Corollary 2.4.5.

3.3 Closed base change formula

Construction 3.3.1 Consider a cartesian square

Y X

Z S

k

g f

i

of spectral algebraic spaces, where i and k are closed immersions with quasicompact
open complements. Then the square

H .Z/ H .S/

H .Y / H .X/

i�

g� f �

k�

commutes up to a natural transformation

f �i�
unit
�! k�k

�f �i� ' k�g
�i�i�

counit
��! k�g

�:

Proposition 3.3.2 Suppose given a cartesian square of spectral algebraic spaces as
above, with i and k closed immersions with quasicompact open complements. Then
the canonical natural transformation

f �H i
H
� ! kH

� g
�
H

is invertible.

Proof Since i� is fully faithful (Theorem 3.2.4) it suffices to show that the natural
transformation

f �i�i
�
! k�g

�i�

is invertible. This follows by a straightforward application of the localization theorem
(Theorem 3.2.2) for the closed immersions i and k , respectively, using the smooth
base change formula (Proposition 2.5.9) for the open complements.
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Recall that in the pointed setting, the functor iH�� W H .Z/�!H .S/� admits a right
adjoint i Š

H�
(Corollary 3.1.2).

Corollary 3.3.3 Suppose given a cartesian square of spectral algebraic spaces as
above, with i and k closed immersions with quasicompact open complements. Then
the natural transformations

kH�
� g�H� ! f �H�i

H�
� ; i ŠH�f

H�
� ! gH�

� kŠH�

are invertible.

Proof The first follows immediately from the unpointed version (Proposition 3.3.2),
and the second follows from the first by passing to right adjoints.

3.4 Closed projection formula

Construction 3.4.1 Let i W Z ,! S be a closed immersion with quasicompact open
complement. Given pointed motivic spaces F0 2H .Z/� and F 2H .S/� , we get a
morphism

i�H�.i
H�
� .F0/^F/' i�H�i

H�
� .F0/^ i�H�.F/

counit
��! F0 ^ i�H�.F/;

which corresponds by adjunction to a canonical morphism

iH�� .F0/^F! iH�� .F0 ^ i�H�.F//:

Proposition 3.4.2 Let i W Z ,! S be a closed immersion with quasicompact open
complement. Given pointed motivic spaces F0 2H .Z/� , F 2H .S/� , and G 2H .S/� ,
there are canonical bifunctorial isomorphisms

iH�� .F0/^F! iH�� .F0 ^ i�H�.F//; i ŠH�HomS .G;F/! HomZ.i�H�.G/; i
Š
H�
.F//:

Proof The second statement follows from the first by passing to right adjoints. For the
first, it suffices by fully faithfulness of i� (Theorem 3.2.4) to show that the morphism

i�.i
�F/^G! i�.i

�F^ i�G/

is invertible for all pointed motivic spaces F;G2H .S/� . This follows from the localiza-
tion theorem (Corollary 3.2.3), using the smooth projection formula (Proposition 2.5.13)
for the open complement j W U ,! S.
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3.5 Smooth-closed base change formula

Construction 3.5.1 Consider a cartesian square of spectral algebraic spaces

Y X

Z S

k

q p

i

where i and k are closed immersions with quasicompact open complements, and p
and q are smooth. Then by Proposition 2.5.9 it follows that the square

H .Y /� H .X/�

H .Z/� H .S/�

k�

q] p]

i�

commutes up to a natural transformation

p]k�
unit
�! i�i

�p]k� ' i�q]k
�k�

counit
��! i�q]:

Proposition 3.5.2 Suppose given a cartesian square of spectral algebraic spaces as
above, where i and k are closed immersions with quasicompact open complements,
and p and q are smooth. Then the canonical natural transformations

p
H�
]
kH�
� ! iH�� q

H�
]
; q�H�i

Š
H�
! kŠH�p

�
H�

are invertible.

Proof The second transformation is obtained from the first by passing to right adjoints.
Since the direct image functor k� is fully faithful (Theorem 3.2.4), it suffices to show
that the transformation p]k�k�! i�q]k

� , obtained by precomposition with k� , is
invertible. This follows directly from the localization theorem (Corollary 3.2.3) and
the smooth base change formula (Proposition 2.5.9).

4 Proof of the localization theorem

This section is dedicated to the proof of our main result, Theorem 3.2.2. For the duration
of the section, we fix a closed immersion of spectral algebraic spaces i W Z ,! S with
quasicompact open complement j W U ,!S. Given X 2Sm=S , we will use the notation
XU WDX �S U 2 Sm=U and XZ WDX �S Z 2 Sm=Z .

Geometry & Topology, Volume 23 (2019)



3676 Adeel A Khan

4.1 The space of Z –trivialized maps

In this subsection we formulate Proposition 4.1.6, which aside from Theorem 3.1.1 is
the main input that goes into the proof of the localization theorem; Section 4.2 will be
dedicated to its proof.

Construction 4.1.1 Let X 2 Sm=S and denote by hZS .X/ 2 Spc.S/ the fibred space

hZS .X/ WD hS .X/thS .XU / hS .U /:

Note that for Y 2 Sm=S , the space �.Y; hS .U // is either empty or contractible
depending on whether YZ 2 Sm=Z is empty. It follows that the space of sections
�.Y; hZS .X// is contractible when YZ is empty, and otherwise is given by the mapping
space MapsS .Y;X/.

Remark 4.1.2 There is a canonical identification i�Spc.h
Z
S .X//' hZ.XZ/ (since i�Spc

commutes with colimits).

Construction 4.1.3 Let X 2 Sm=S and t W Z ,! X an S –morphism, ie a partially
defined section of X ! S. Then t corresponds by adjunction to a canonical morphism
� W ptS D hS .S/! i

Spc
� .hS .XZ//, and we define the fibred space hS .X; t/ 2 Spc.S/

as the fibre of the unit map

(4-1) hZS .X/! i
Spc
� i�Spc.h

Z
S .X//' i

Spc
� .hZ.XZ//

at the point � . Thus for any Y 2 Sm=S , the space �.Y; hS .X; t// is contractible when
YZ is empty, and otherwise is given by the fibre of the restriction map

MapsS .Y;X/!MapsZ.YZ ; XZ/

at the point defined by the composite YZ!Z
t

,�!XZ .

Remark 4.1.4 Informally speaking, points of the space �.Y; hS .X; t// (when YZ is
nonempty) are pairs .f; ˛/, with f W Y !X an S –morphism and ˛ a commutative
triangle

YZ XZ

Z

fZ

t

We refer to ˛ informally as a Z–trivialization of f .
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Remark 4.1.5 For a smooth morphism pW T ! S, there is a canonical isomorphism

p�Spc.hS .X; t//' hT .XT ; tT /;

where tT W ZT ,!XT is the base change of t along p . This follows from the fact that
the functor p�Spc commutes with limits and colimits.

We will deduce Theorem 3.2.2 from the following result:

Proposition 4.1.6 Let Z ,! S be a closed immersion of spectral algebraic spaces
with quasicompact open complement. Let pW X!S be a smooth morphism of spectral
algebraic spaces, and t W Z ,!X an S –morphism. Then Nisnevich-locally on X, the
space hS .X; t/ is motivically contractible. That is, the morphism hS .X; t/! ptS is a
motivic equivalence.

The proof will be completed in Section 4.2.

4.2 Motivic contractibility of hS .X; t/

In this subsection we prove Proposition 4.1.6. We will need the local structure theory
of quasismooth closed immersions.

Proposition 4.2.1 Let kW Y ,!X be a closed immersion of spectral algebraic spaces.
Let LY=X denote the relative cotangent complex. Then the following are equivalent :

(i) The morphism k is locally of finite presentation, and the quasicoherent OY –
module LY=X Œ�1� is locally free of finite rank.

(ii) The morphism k is almost of finite presentation, and the quasicoherent OY –
module LY=X Œ�1� is locally free of finite rank.

(iii) The morphism of underlying classical schemes kclW Ycl ,! Xcl is of finite pre-
sentation , and the quasicoherent OY –module LY=X Œ�1� is locally free of finite
rank.

(iv) Nisnevich-locally on X, there exists a morphism f W X ! An
S

fitting in a
cartesian square

Y X

Spec.S / An
S

k

f

f0g

where the lower horizontal arrow is the inclusion of the origin in spectral affine
space.
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Definition 4.2.2 If kW Y ,!X satisfies one of the equivalent conditions of Proposition
4.2.1, then we say that it is quasismooth, and write NY=X WDLY=X Œ�1� for its conormal
sheaf.

Proof of Proposition 4.2.1 The claim being local, we may assume that X is affine
and that LY=X Œ�1� is free of rank n > 0. The equivalence between the first three
conditions follows from [12, Theorem 7.4.3.18]. The implication (iv)D) (i) is obvious.
Suppose that (i) holds and choose a basis df1; : : : ; dfn for �.Y;LY=X Œ�1�/. If I

denotes the fibre of the morphism OX ! k�OY , then there is a canonical isomor-
phism �0.k

�I/' �1.LY=X / of �0.OY /–modules [12, Theorem 7.4.3.1]. The global
sections dfi correspond to global sections xfi of k�.I/, which we can lift along the
surjection I! k�k

�.I/ to global sections fi of I. By Nakayama’s lemma we may
assume that these fi generate �0.I/ as a �0.OX /–module. Therefore, they determine
a morphism f W X !An

S
and a commutative square

Y X

Spec.S / An
S

k

f

f0g

which is cartesian on underlying classical schemes. To show that it is cartesian itself, it
will suffice by [12, Corollary 7.4.3.4] to show that the relative cotangent complex LY=V

of the morphism Y ! V WDX �AnS
Spec.S / vanishes. But this follows immediately

from an inspection of the exact triangle

LV=X jY ! LY=X ! LY=V ;

where both first terms are isomorphic to a shifted free module O˚nY Œ1�.

We will actually use a slight variant of Proposition 4.2.1, which concerns the case of a
smooth morphism admitting a globally defined section (such a section is automatically
quasismooth).

Lemma 4.2.3 Let pW X! S be a smooth morphism of spectral algebraic spaces, and
suppose it admits a section sW S ,!X. Then, Nisnevich-locally on X, there exists an
S –morphism f W X !An

S fitting in a cartesian square

S X

S An
S

s

f

f0g

Moreover, the morphism f is étale on some Zariski neighbourhood of s .
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Proof There is a canonical isomorphism LS=X Œ�1�' LX=S jS. By the assumption,
LX=S is free of rank n, so the same holds for the OS –module NS=X D LS=X Œ�1�.
Then the first claim is proven exactly as the implication (i)D) (iv) of Proposition 4.2.1.
For the second, note that the canonical isomorphism s�LX=AnS ' LS=S ' 0 shows
that f is étale on the image of s (since f is of finite presentation). In other words,
s factors through the étale locus of f .

Next we apply the structure theory to lift partially defined sections (in a weak sense).

Lemma 4.2.4 Let i W Z ,! S be a closed immersion of spectral algebraic spaces,
pW X ! S a smooth morphism of spectral algebraic spaces, and t W Z ,! X an S –
morphism. Then, Nisnevich-locally on X, there exists a spectral algebraic space Y
over X such that the composite Y ! S is étale , and induces an isomorphism YZ!Z :

Z Y

XZ X

Z S

t

i 0

p

i

Proof Applying Lemma 4.2.3 to the smooth morphism XZ ! Z with section
Z ,!XZ induced by t , we obtain a cartesian square

Z XZ

Z An
Z

t

f

f0g

The morphism f is determined by a set of global sections f1; : : : ; fn of OXZ ; lifting
them along the surjection OX ! i 0�.OXZ /, we obtain global sections gi of OX which
determine a morphism gW X ! An

S . We define Y0 WD X �AnS
S so that we have a

commutative square
Z Y0

XZ X

i 00

i 0

where the morphism Z! .Y0/Z is an isomorphism on underlying classical schemes.
The exact triangle

L.Y0/Z=Y0 jZ! LZ=Y0 ! LZ=.Y0/Z
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shows that LZ=.Y0/Z vanishes, so it follows from [12, Corollary 7.4.3.4] that the square
is cartesian. Then we have a canonical isomorphism .i 00/�LY0=S ' LZ=Z ' 0, which
shows that Y0! S is étale on the image of Z . Thus we may take Y ,! Y0 to be the
étale locus of Y0! S to conclude.

We are now ready to return to our study of the space of Z–trivialized maps. We first
deal with the case of vector bundles:

Lemma 4.2.5 Let E be a vector bundle over S with zero section sW S ,! E. Then
the space hS .E; sZ/ is motivically contractible, where sZ W Z ,! EZ denotes the base
change of s along i W Z ,! S.

Proof The map 'W hS .E; sZ/! ptS admits a section � W ptS ! hS .E; sZ/, induced
by the composite hS .S/

s
�! hS .E/ ! hZS .E/. It will suffice to exhibit an A1–

homotopy

 W hS .A1

S /� hS .E; sZ/! hS .E; sZ/

between � ı ' and the identity. The canonical action of A1
S on E gives rise to the

vertical maps in the commutative square

hS .A1
S /� hZS .E/ hS .A1

S /� i
Spc
� .hZ.EZ//

hZS .E/ i
Spc
� .hZ.EZ//

The homotopy 
 is the map induced on fibres (given informally by the assignment
.�W Y !A1

S ; f W Y !E/ 7! .� �f W Y !E/ on Y –sections).

Our final ingredient is a certain invariance property for the construction hS .X; t/:

Lemma 4.2.6 Let X and X 0 be smooth spectral algebraic spaces over S, and let
t W Z ,! X and t 0W Z ,! X 0 be S –morphisms. Suppose f W X 0 ! X is an étale
S –morphism such that the square

Z X 0Z

Z XZ

t 0

fZ

t
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is cartesian. Then the induced morphism of fibred spaces

'W hS .X 0; t 0/! hS .X; t/

is a Nisnevich-local equivalence.

Proof The claim is that the induced morphism of Nisnevich sheaves LNis.'/ is invert-
ible, so it will suffice to show that it is 0–truncated (ie its diagonal is a monomorphism)
and 0–connected (ie it is an effective epimorphism and so is its diagonal).

Step 1 To show that LNis.'/ is 0–truncated, it suffices to show that ' is already
0–truncated (since LNis is exact). For this, it suffices to show that for every Y 2 Sm=S ,
the induced morphism of spaces of Y –sections

�.Y; '/W �.Y; hZS .X
0; t 0//! �.Y; hZS .X; t//

is 0–truncated. We may assume YZ is not empty; then this is the morphism induced
on fibres in the diagram

�.Y; hZS .X
0; t 0// MapsS .Y;X

0/ MapsZ.YZ ; X
0
Z/

�.Y; hZS .X; t// MapsS .Y;X/ MapsZ.YZ ; XZ/

Note that the two right-hand vertical morphisms are 0–truncated: p is itself 0–truncated
since it is étale, and since the Yoneda embedding commutes with limits, the induced
morphism hS .X 0/! hS .X/ is also 0–truncated. It follows that the left-hand vertical
morphism is also 0–truncated for each Y .

Step 2 To show that LNis.'/ is an effective epimorphism, it suffices to show that
for every Y 2 Sm=S (with YZ not empty), any Y –section of hZS .X; t/ can be lifted
Nisnevich-locally along ' . Let f be a Y –section of hZS .X; t/, ie a Z–trivialized
morphism f W Y !X. Let qW Y 0! Y denote the base change of pW X 0!X along f :

Y 0 Y

X 0 X

q

g f

p

Then note that
q�1.YU / Y 0

YU Y

q
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is a Nisnevich square. Indeed, the closed immersion YZ ,! Y is complementary to
YU ,! Y , and it is clear that q�1.YZ/! YZ is invertible because in the diagram

q�1.YZ/ YZ

Z Z

X 0Z XZ

idZ

t t 0

pZ

the lower square and the composite square are cartesian, and hence so is the upper square.
It now suffices to show that the restriction of f to either component of this Nisnevich
cover lifts to hZS .X

0; t 0/. The restriction f jY 0 lifts to a section of hZS .X
0; t 0/ given by

gW Y 0!X 0. The restriction f jYU admits a lift tautologically: since .YU /�S Z D¿,
the spaces hZS .X; t/.YU / and hZS .X

0; t 0/.YU / are both contractible.

Step 3 It remains to show that the diagonal �LNis.'/ of LNis.'/ is an effective epimor-
phism, or equivalently that LNis.�'/ is. For every Y 2 Sm=S , the diagonal induces a
morphism of spaces

�.Y; hZS .X
0; t 0//! �.Y; hZS .X

0; t 0//��.Y;hZS .X;t//
�.Y; hZS .X

0; t 0//:

It suffices to show that for each Y (with YZ not empty), any point of the target
lifts Nisnevich-locally to a point of the source. Choose a point of the target, given
by two Z–trivialized morphisms f W Y ! X 0 and gW Y ! X 0, and an identification
˛W p ıf ' p ıg . Let Y0 ,! Y denote the open immersion defined as the equalizer of
the pair .f; g/; note that the closed immersion YZ ,! Y factors through Y0 . Thus the
open immersions Y0 ,! Y and YU ,! Y form a Zariski cover of Y . It is clear that
the point .f; g; ˛/ lifts after restriction to Y0 by definition, and after restriction to YU
since YU �S Z D¿, so the claim follows.

We are now ready to conclude the proof of Proposition 4.1.6.

Proof of Proposition 4.1.6 The question being local on X, we may assume by
Lemma 4.2.4 that there exists a Nisnevich square

(4-2)
YU Y

U S

q

j
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where j W U ,! S is the complement of i , and q factors through pW X ! S. By
the Nisnevich separation property (Proposition 2.5.7), it will suffice to show that
j � hS .X; t/ and q� hS .X; t/ are motivically contractible. By Remark 4.1.5, we have
j � hS .X; t/' hU .XU ; tU /. But, since U is complementary to Z , tU is the inclusion
of the empty scheme, so hU .XU ; tU / is contractible by construction. Next consider
q� hS .X; t/' hY .Y �S X; t 0/, where t 0W YZ ,! .Y �S X/Z is the base change of t .
By construction there exists a section t 00W Y ,! Y �S X which lifts t 0 (since q factors
through X ). Hence, by Lemmas 4.2.3 and 4.2.6, we have a motivic equivalence

hY .Y �S X; t 0/' hY .An
Y ; z/;

where zW YZ ,!An
YZ

is the zero section. Now the claim follows from Lemma 4.2.5.

4.3 The proof

We conclude this section by proving the localization theorem (Theorem 3.2.2). Let
i W Z ,! S be a closed immersion of spectral algebraic spaces with quasicompact open
complement j W U ,! S. We wish to show that for every motivic space F 2H .S/, the
canonical morphism

(4-3) FtjH
]
j�H .F/ MS .U /! iH� i

�
H .F/

is invertible. In what follows below, we will omit the decorations H .

Using Proposition 2.4.4 we may reduce to the case where F is the motivic localization
MS .X/ of some affine X 2 Sm=S that admits an étale morphism X !An

S for some
n> 0, since all functors involved commute with sifted colimits (Theorem 3.1.1). In
this case the morphism (4-3) is canonically identified with the morphism

MS .X/tMS .XU / MS .U /! iH� MZ.XZ/;

where we write XU D X �S U and XZ D X �S Z . Note that the source of this
morphism is the motivic localization of the space hZS .X/ (Construction 4.1.1). Hence
it suffices to show that the morphism of fibred spaces

hZS .X/! i
Spc
� hZ.XZ/

is a motivic equivalence. By universality of colimits, it suffices to show that for
every Y 2 Sm=S and every morphism hS .Y /! i

Spc
� hZ.XZ/, corresponding to an

S –morphism t W Z!X, the base change

hZS .X/�iSpc
� hZ.XZ/

hS .Y /! hS .Y /

Geometry & Topology, Volume 23 (2019)
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is invertible. If pW Y ! S denotes the structural morphism, we have hS .Y / '
p

Spc
]

hY .Y /, so that this morphism is identified, by the smooth projection formula
(Proposition 2.5.13), with a morphism

p
Spc
]
.p�Spc hZS .X/�p�Spci

Spc
� hZ.XZ/

hY .Y //! p
Spc
]

hY .Y /:

If k (resp. q ) denotes the base change of i (resp. p ) along p (resp. i ), then by
Remark 4.1.5 and the smooth base change formula p�i� ' k�q� (Proposition 2.5.9),
we see that this morphism is the image by p] of the morphism

(4-4) hYZY .X �S Y /�kSpc
� hYZ ..X�SY /Z/

hY .Y /! hY .Y /:

Now the source is nothing but the space hY .X�S Y; tY /, where tY W Z�S Y !X�S Y

is the base change of t along p . Hence we conclude by Proposition 4.1.6.
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