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Appearance of stable minimal spheres along
the Ricci flow in positive scalar curvature

ANTOINE SONG

We construct spherical space forms .S3=�;g/ with positive scalar curvature and
containing no stable embedded minimal surfaces such that the following happens
along the Ricci flow starting at .S3=�;g/: a stable embedded minimal 2–sphere
appears and a nontrivial singularity occurs. We also give in dimension 3 a general con-
struction of Type I neckpinching and clarify the relationship between stable spheres
and nontrivial Type I singularities of the Ricci flow. Some symmetry assumptions
prevent the appearance of stable spheres, and this has consequences on the types of
singularities which can occur for metrics with these symmetries.

53A10, 53C44

For quotients of the spheres of dimension 2 and 3, endowed with an arbitrary metric, the
Ricci flow eventually makes the metric converge to a round metric. In dimension 2, it
was proved by Hamilton [25] and B Chow [12] that any initial metric evolves smoothly
under the Ricci flow until a trivial singularity, where the whole surface disappears
at a point and after rescaling becomes asymptotically round. The situation is much
more complicated in dimension 3 because nontrivial singularities can occur. In a series
of papers, Perelman [37; 39; 38], was able to analyze and control the singularities
by a surgery process initially proposed by Hamilton which enables continuation of
the flow. One simple consequence of this breakthrough is that for quotients of the
3–sphere, after a finite number of surgeries, the manifold disappears in finite time, and
also becomes asymptotically round. From a related point of view, if the initial metric is
already known to be round enough, then it becomes even more so during the flow: this
is the theorem of Hamilton [24] which states that if a closed 3–manifold has positive
Ricci curvature then this property is preserved and after rescaling the metric converges
smoothly to a round metric. Besides, it is well known that the positivity condition
Ric> 0 prevents the existence of two-sided closed stable minimal surfaces. Hence it
seems natural to expect that the absence of such stable minimal surfaces would also be
preserved along the flow.

The study of stable minimal surfaces in the context of the Ricci flow is relevant for
understanding singularity formation. For instance the heuristic picture for the Ricci
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flow on a 3–sphere is that a nondegenerate singularity which is nontrivial should be a
neckpinching, and thus there should be small stable minimal spheres just before the
singularity time. To our knowledge, the only rigorously proved examples of initial
metrics on the 3–sphere eventually producing a nontrivial singularity (see Angenent
and Knopf [2; 3]) contain a stable minimal sphere. Thus one might hope to avoid
nontrivial singularities if the initial metric does not contain stable minimal surfaces.

It will be enough for us to focus on the case where the scalar curvature is positive.
This condition R> 0 is considerably weaker than Ric> 0 but nevertheless conveys an
idea of roundness and is preserved along the flow. Notice that if R> 0, any two-sided
oriented closed stable minimal surface is a 2–sphere. Let us reformulate the two
previous questions:

Q1 Suppose that .M;g/ is a closed oriented 3–manifold with positive scalar cur-
vature and containing no stable minimal spheres. Can a stable minimal sphere
appear along the Ricci flow starting at .M;g/?

Q2 Let .M;g/ be as in Q1. Can a nontrivial singularity occur along the Ricci flow
starting at .M;g/?

It turns out that the answer to both questions is yes and the counterexamples are the
subject of our main theorem (see Theorems 14 and 17):

Theorem 1 There exists a metric g on S3 with positive scalar curvature such that

(i) .S3;g/ contains no stable minimal 2–spheres,

(ii) a stable minimal 2–sphere appears along the Ricci flow starting at .S3;g/,

(iii) a nontrivial singularity occurs in finite time.

These counterexamples show that, even when R > 0, the absence of stable spheres
at the beginning cannot prevent nontrivial singularities. It means that the analysis
of Bamler [4; 5; 6; 7; 8] to get finitely many surgeries is necessary and cannot be
replaced by a geometric argument using stable spheres. Actually the appearance of
stable geodesics is also true for some 2–spheres (see Theorem 13), but of course we
cannot impose a curvature positivity condition in that case since it would be preserved
by the flow and this would prevent the existence of stable closed geodesics.

Several authors previously studied the evolution of minimal surfaces along the Ricci flow
in different contexts. Hamilton was the first to use that interaction for stable geodesics
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or minimal surfaces; see Hamilton [26] and Chow [12]. Colding and Minicozzi [16]
exploited it with branched immersed minimal spheres for bounding the extinction time
of some 3–manifolds. Marques and Neves [32] proved rigidity results for min–max
minimal surfaces in some 3–manifolds using similar methods. Let us point out how Q1
is related to [32, Theorem 1.3]. Assuming Ric > 0 and R � 6 on a quotient S3=�

and by controlling the evolution of a min–max width along the Ricci flow, Marques
and Neves are able to produce a small area minimal surface in the initial metric. While
in [44] we proved using a different method that this result remains true without any
assumption on the Ricci curvature, it would be desirable to understand to what extent
their combination of Ricci flow and min–max theory can be realized when Ric is
not necessarily positive. The reason for the assumption Ric > 0 in [32] is twofold.
First they are making use of Hamilton’s theorem so that they do not have to deal with
surgeries. The second and most serious reason for this assumption is the following: as
recalled previously, it excludes the existence of two-sided stable minimal surfaces so
in particular it enables the construction of optimal sweepouts from a given unstable
two-sided minimal surface. The examples that we construct to answer Q1 suggest that
combining min–max theory with the Ricci flow when R> 0 is not as natural as in the
more restrictive case Ric> 0.

After answering Q1 and Q2, we clarify the link between small stable spheres and
Type I singularities in dimension 3, without curvature assumptions (see Theorem 22):

Theorem 2 If a nontrivial Type I singularity occurs at time T , then there are stable
immersed minimal spheres with embedded image near time T whose area decreases
linearly to zero, and a local converse holds true.

Moreover, we construct in Proposition 21 general examples of Type I neckpinching by
joining any two closed 3–manifolds with a sufficiently thin neck, which generalizes
in dimension 3 the rotationally symmetric metrics on SnC1 constructed by Angenent
and Knopf [2].

Finally, one can ensure that no stable spheres appear if the initial metric is symmetric
enough (see Theorem 24):

Theorem 3 Let M be a closed connected oriented 3–manifold with a d–dimensional
Lie group of isometries acting on M such that d > 1, or d D 1 and the action is free.
Then along the Ricci flow, no stable immersed minimal spheres with embedded image
can appear if there were none at the beginning.
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In fact, there is a nonfree S1–action on the examples constructed previously to an-
swer Q1. Hence these examples essentially have a maximal amount of symmetry
among 3–manifolds such that new stable spheres appear along the Ricci flow. Since
we have seen that stable spheres are linked to nontrivial Type I singularities, we get as
a corollary (see Corollary 27):

Corollary 4 Suppose that M is as in the previous theorem. If M is not rotationally
symmetric and if a singularity occurs along the Ricci flow, then it is a Type I trivial
singularity.

The paper is organized as follows. In Section 1, some preliminaries on the Ricci flow
and min–max theory are presented. In Section 2, which constitutes the main part of the
article, we construct certain “thin hooks”, enabling us to give explicit examples that
answer simultaneously Q1 and Q2. In Section 3, after showing a general procedure
to get Type I neckpinching, we prove a relation between stable spheres and nontrivial
Type I singularities. Finally, we propose in Section 4 optimal symmetry assumptions
preventing the appearance of new stable spheres, and we derive a corollary concerning
singularities which can possibly occur.
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1 Preliminaries

1.1 Ricci flow, singularities, canonical neighborhoods and geometric
limits

Let .M;g/ be a closed oriented Riemannian 3–manifold. A standard Ricci flow starting
at .M;g/, defined on Œ0;T /, is a smooth solution of8<:

@

@t
g.t/D�2 Ricg.t/; t 2 Œ0;T /;

g.0/D g:
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The flow is said to develop a singularity at time T if the norm of the curvature tensor
becomes unbounded as t ! T . The singularity is said to be

� trivial when

fx 2M W lim
t!T
jRm.x; t/j D1g DM;

� a Type I singularity when there is a constant C such that for all t 2 Œ0;T /,

sup
M

jRmg.t/ j �
C

T �t
;

� a Type II singularity when

lim sup
t"T

sup
M

jRmg.t/ j.T � t/D1:

As Perelman showed, the regions where the scalar curvature is large are modeled
by the so-called canonical neighborhoods. In this subsection we will explain some
of their properties. We refer the reader to B Kleiner and J Lott [29], J Morgan and
G Tian [34] and H-D Cao and X-P Zhu [9] for more details. Our presentation will
follow [34]. First let us recall the definition of .C; �/–canonical neighborhoods. Fix
two positive constants C and � . An open neighborhood U of x 2 .M;g.t// is a
strong .C; �/–canonical neighborhood if one of the following holds (see [34, Section 8
in Chapter 9 and Definition 14.18]):

(i) U is a strong �–neck in .M;g/ centered at x .

(ii) U is a .C; �/–cap in .M;g/ whose core contains x .

(iii) U is a C –component of .M;g/ satisfying Condition (8) of [34, Definition 9.72].

(iv) U is an �–round component of .M;g/.

A strong �–neck centered at x 2 .M;g.t// is a submanifold N �M and a diffeomor-
phism x N W S

2�.�1=�; 1=�/!N with x 2 x N .S
2�f0g/ such that t�R.x; t/�1� 0

and the evolving metric R.x; t/ x �
�
g.t C s=R.x; t//

�
with �1< s � 0 is �–close in

the C Œ1=��–topology to the evolving cylindrical metric ds2C d�2 with �1 < s � 0,
where d�2 denotes the round metric of scalar curvature 1=.1�s/ on S2 . A .C; �/–cap
is a noncompact submanifold C �M diffeomorphic to a 3–ball or RP3 minus a ball,
with a neck N � C such that Y D CnN is a compact submanifold. The boundary @Y
of the so-called core (the interior of CnN ) is required to be the central sphere of a
strong �–neck in C . After rescaling the metric to have R.x/ D 1 at some point x

in the cap, the diameter, volume and scalar curvature ratios at any two points are
bounded by C. A C –component is a compact manifold diffeomorphic to S3 or RP3 ,
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of positive sectional curvature and of bounded geometry controlled by C after rescaling
(we added Condition (8) of [34, Definition 9.72] since the next theorem is actually
true with this definition). An �–round component is a compact connected manifold
such that, after rescaling to make R.x/D 1 at some point x 2M, the metric is close
in the C Œ1=��–topology to a round metric. The definition of strong .C; �/–canonical
neighborhoods is hence scale invariant.

We say that a (standard) Ricci flow .M;g.t//t2Œa;b/ satisfies the .C; �/–canonical
neighborhood assumption with parameter r if every point .x; t/ 2M � Œa; b/ with
Rg.t/.x/ � r�2 has a .C; �/–canonical neighborhood. When � and 1=C are small
enough, one has the following canonical neighborhood theorem (see for instance
[34, Chapter 9, Chapter 17 and Theorem 15.9]):

Theorem 5 Let T > 0. Then there exists an r0 > 0 depending only on T such that
the following holds. Suppose that .M;g/ is a closed oriented 3–manifold endowed
with a normalized metric, ie for all x 2M ,

max
M
jRm.x; 0/jg.0/ � 1 and volg.0/B.x; 0; 1/� 1

2
!;

where ! is the volume of the unit ball in R3 . Assume the Ricci flow .Mt ;g.t//t2Œ0;t1/

is well defined until a time t1 � T . Then .Mt ;g.t//t2Œ0;t1/ satisfies the strong .C; �/–
canonical neighborhood assumption with parameter r0 .

The relationship between the Type I/II classification and the canonical neighborhoods
was given in [18]: a singularity at time T is of Type II if and only if there is a
sequence .xk ; tk/ with xk 2M and tk ! T such that the scalar curvature at .xk ; tk/

goes to infinity and .xk ; tk/ is contained in a .C; �/–cap diffeomorphic to a 3–ball (it
corresponds to item iv in [18, Proposition 1.3]). This geometric characterization of
Type II singularities will be useful. We note that the other kind of .C; �/–caps, those
diffeomorphic to RP3 minus a point, have a double cover which is a strong �–neck.

The scalar curvature evolves according to

@R

@t
D�RC 2jRic j2:

Thus when x is in a strong �–neck at time t or a .C; �/–cap diffeomorphic to RP3

minus a point, there is a positive constant C1 such that

(1) 1

C1
R.x; t/2 �

@R.x; t/

@t
� C1R.x; t/2;
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and there is a positive constant C2 such that whenever x is in a strong canonical
neighborhood,

(2)
ˇ̌̌
@R.x; t/

@t

ˇ̌̌
� C2R.x; t/2:

Along the Ricci flow, as the scalar curvature gets large it controls the whole curvature
tensor. Let .M;g.t//t2Œ0;T / be a Ricci flow such that for all x 2M the smallest eigen-
value of Rm.x; 0/, denoted by �.x; 0/, is at least �1. Set X.x; t/Dmax.��.x; t/; 0/.
Then Ivey [28] and Hamilton [27] showed the following “pinching towards positive”
property:

Theorem 6 We have the following properties:

(i) R.x; t/� �6=.4t C 1/.

(ii) For all .x; t/ for which 0<X.x; t/,

R.x; t/� 2X.x; t/.log X.x; t/C log.1C t/� 3/:

The notion of geometric convergence [34, Chapter 5] describes the convergence of
based Ricci flows, and can be extended to any time interval (ie to intervals not of the
form .�T; 0�). We will need the following convergence property of the Ricci flow.

Lemma 7 Let T > 0, and let .Mk ;gk/ be a sequence of closed normalized 3–
manifolds. Suppose that for any sequence of points s D fxkgk where xk 2 Mk ,
the following holds. Subsequentially, the sequence of based manifolds .Mk ;gk ;xk/

converges geometrically to a complete based manifold .M s
1;g

s
1;x1/ such that

(i) the Ricci flow .M s
1;g

s
1.t// with initial metric gs

1.0/D gs
1 exists, is unique,

and is defined for 0� t < T ,

(ii) for each t < T there is a constant C0 D C0.t/ independent of the sequence s

so that the norm of the curvature tensor of .M s
1;g

s
1.t
0// is bounded by C0 for

all t 0 � t .

Then for any sequence s D fxkg with xk 2Mk , the sequence of based Ricci flows
.Mk ;gk.t/;xk/ starting at gk.0/ D gk subsequentially converges geometrically to
.M s
1;g

s
1.t/;x1/ on Œ0;T /.

Proof Define

� D sup
˚
t 2 Œ0;T � W 9C.t/ > 0 8t 0 2 Œ0; t � lim supk maxMk

jRm. � ; t 0/j � C.t/
	
:

By (7.4a) and (7.4b) in [13] and the argument in [14, Lemma 6.1], we check that �
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is positive and that for any integer m, there is a positive time tm for which jrj Rm j
(0 � j � m) are bounded on Œ0; tm� uniformly in k . It follows from Shi’s deriv-
ative estimates (see [14, Chapter 6] and [34, Chapter 5] for instance) that for all
sD fxkg with xk 2Mk , .Mk ;gk.t/;xk/ subsequentially converges geometrically to
.M s
1;g

s
1.t/;x1/ on Œ0; �/ because of the first item in the assumptions. Hence it re-

mains to show �DT . Suppose by contradiction that � <T . Then, by Theorem 5 and (2),
for all C 0 > 0 there is a ı > 0 such that there are subsequences Mk.l/ and xl 2Mk.l/

with the following property: the curvature at .xl ; � � ı/ in .Mk.l/;gk.l/.� � ı// has
norm larger than C 0. But by the geometric convergence on Œ0; �/ that was just explained
and the second item in the assumptions, it is absurd when C 0 > C0.�/. Thus � D T

and the lemma is proved.

1.2 Some min–max theory

In this subsection, we present a variation of the min–max theorem in the continuous
setting as described by De Lellis and Tasnady in [17].

Let .M nC1;g/ be a closed Riemannian manifold. In what follows, the topological
boundary of a subset of M will be denoted by @. Consider two open subsets X and N

of M possibly with smooth boundaries such that .X [ @X /�N . The notation for the
m–dimensional Hausdorff measure will be Hm . Take a< b and k 2N .

Definition 8 A family of Hn–measurable closed subsets f�tgt2Œa;b�k in N with finite
Hn–measure is called a generalized smooth family if

� for each t there is a finite subset Pt � N such that �t \ N is a smooth
hypersurface in N nPt ,

� t 7!Hn.�t / is continuous and t 7! �t is continuous in the Hausdorff topology,

� for each t0 , �t ! �t0
smoothly in any compact U b N nPt0

as t ! t0 .

A generalized smooth family f†tgt2Œa;b� is called a continuous sweepout in N associ-
ated to X if there exists a family of open subsets f�tgt2Œa;b� of N such that

(i) .�t [ @�t /�N for all t 2 Œa; b�,

(ii) .†tn@�t /� Pt for any t 2 Œa; b�,

(iii) HnC1.�tn�s/CHnC1.�sn�t /! 0 as s! t 2 Œa; b�,

(iv) �a DX and �b D¿.
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Still following [17], we define a notion of homotopy equivalence:

Definition 9 Two continuous sweepouts f†1
t gt2Œa;b� and f†2

t gt2Œa;b� associated with X

are homotopic if

� there is a generalized smooth family f�.s;t/g.s;t/2Œa;b�2 such that �.a;t/ D †1
t

and �.b;t/ D†2
t for all t 2 Œa; b�,

� �.s;t/ �N for t 2 Œa; b� and there exists a small ˛ > 0 such that �.s;t/ D �.a;t/
for .s; t/ 2 Œa; b�� Œa; aC˛�.

A family ƒ of continuous sweepouts in N associated to X is said to be homotopically
closed if it contains the homotopy class of each of its element.

If ƒ is a homotopically closed family of continuous sweepouts in N associated with X,
the width of ƒ in N is defined as the min–max quantity

W .N; @N; ƒ/D inf
f†t g2ƒ

max
t

Hn.†t /:

A sequence ff†k
t gt2Œa;b�gk2N �ƒ is called a minimizing sequence if

max
t

Hn.†k
t /!W .N; @N; ƒ/ as k!1:

A sequence of slices f†k
tk
gk2N is called a min–max sequence if

Hn.†k
tk
/!W .N; @N; ƒ/ as k!1:

The following theorem is a slight extension of [45, Theorem 2.7]. It roughly says that
if the starting slice of sweepouts belonging to a homotopically closed family ƒ has
n–volume less than the width of ƒ, then the min–max theorem still holds as long as
all the sweepouts are contained in an open set with mean convex boundary. Note that
“mean convex” can be generalized to “piecewise smooth mean convex” (see [44]).

Theorem 10 Let .M;g/ be a closed .nC1/–manifold with 2 � n � 6, and let
N and X be open subsets of M. Suppose that @X ¤ ¿ and that .X [ @X / � N.
When @N ¤¿, assume that @N is mean convex. Then for any homotopically closed
family ƒ of sweepouts in N associated with X such that

W .N; @N; ƒ/ >Hn.@X /;

there exists a min–max sequence f†n
tn
g of ƒ converging in the varifold sense to an

embedded minimal hypersurface † (possibly disconnected) contained in N . Moreover
the n–volume of †, if counted with multiplicities, is equal to W .N; @N; ƒ/.

Geometry & Topology, Volume 23 (2019)



3510 Antoine Song

Proof We essentially reproduce the proof of [45, Theorem 2.7]. Recall that theorem
is an application to higher dimensions of an idea in [32], where the authors construct
a vector field V in N whose support is contained in a small neighborhood of @N
so that the corresponding flow is area-decreasing. Thanks to this flow, they show
that Proposition 4.1 in [15] still holds. What we modify here is that, in the proof
of this proposition, we restrict ourselves to the set X of varifolds whose mass is
bounded above by 4W .N; @N; ƒ/ and also bounded below by Hn.@X /C � , where
0 < � <W .N; @N; ƒ/�Hn.@X /. In this way the starting slice remains fixed. More
precisely, let V1 be the set of stationary varifolds contained in X. By choosing a
sufficiently fine locally finite covering of XnV1 , we construct for each varifold V

of mass less than 4W .N; @N; ƒ/ an ambient isotopy f‰V .s; � /gs2Œ0;1� satisfying the
properties listed in Step 3 of the proof of [15, Proposition 4.1] if V 2 X but such that
‰V .s; � /D Id for all s 2 Œ0; 1� if the mass of V is less than Hn.@X /C 1

2
� . Finally,

by modifying f‰V .s; � /gs2Œ0;1� with the vector field V if necessary, we can deform a
minimizing sequence ff†k

t gt2Œ0;1�g into another minimizing sequence ffz†k
t gt2Œ0;1�g

such that all z†k
t with area larger than Hn.@X /C � lie at bounded distance from @N .

Then the end of the proof remains unchanged compared to [45].

Remark 11 If nD 1, the following elementary version of Theorem 10 will be useful.
Suppose that N and X are diffeomorphic to the unit disk D in R2 , define fctgt2Œ0;1�

as the smooth sweepout of X obtained by the foliation fx 2R2 W kxkeucl D tgt2Œ0;1�

of D, where k � keucl is the Euclidean norm in R2 . Let C be the space of smooth
curves endowed with the C1–topology. Let ƒ be the homotopically closed family of
sweepouts fzctgt2Œ0;1� � C that continuously isotope to fctgt2Œ0;1� in N and such that
zc0D c0 . Define W .N; @N; ƒ/ as for the higher-dimensional case. If @N is convex and

W .N; @N; ƒ/ >H1.@X /;

then there is a simple closed geodesic in N of length W .N; @N; ƒ/. This can be
proved using the mean curvature flow fˆ.s; � /g where s is the time parameter. Define
� W R� C!R by

�.s; c/D sup
˚
s0 2 Œ0; s� Wˆ.s0; c/ has length at least 1

2
.W .N; @N; ƒ/CH1.@X //

	
;

where we use the convention sup ¿D 0. Then given a minimizing sequence of sweep-
outs ffcn

t gt2Œ0;1�g, we consider the new tightened sequence
˚
fˆ.�.s; cn

t /; c
n
t /gt2Œ0;1�

	
for each s � 0. By the maximum principle, the new sweepouts are entirely contained
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in N . Letting s!1, any min–max sequence converges subsequentially to a simple
closed geodesic inside N (see [20]).

2 Appearance of stable spheres and nontrivial singularities

2.1 Construction of thin hooks

We will construct a family of .nC1/–dimensional closed manifolds by defining embed-
ded hypersurfaces in RnC2 and using the metric induced by the Euclidean metric. As
we will see, they look like hook-shaped .nC1/–spheres, whose one branch is slightly
swollen. The properties of these hooks will be useful to prove the two appearance
theorems stated in the next subsection.

Consider a curve �W Œ0; 1�!R2 such that

�.s/D

8̂<̂
:

.1; s/ for s 2
�
0; 1

6

�
;�

cos.s�/; 1
6
C sin.s�/

�
for s 2

�
1
3
; 2

3

�
;

.�1; 1� s/ for s 2
�

5
6
; 1
�
;

and � is chosen on
�

1
6
; 1

3

�
[
�

2
3
; 5

6

�
so that it is a smooth curve. For each integer L> 0,

consider the smooth curve LW Œ0; 4�!R2 defined by

L.s/D

8̂̂̂̂
<̂
ˆ̂̂:
.1; .s� 1/L� 1/ for s 2 Œ0; 1/;

.1; s� 2/ for s 2 Œ1; 2/;

�.s� 2/ for s 2 Œ2; 3�;

.�1; .3� s/L/ for s 2 Œ3; 4�:

It will be convenient to introduce the following function f W
�
�

1
2
; 1

2

�
!R:

f .x/D exp
�
1C

1

4x2�1

�
for all x 2

�
�

1
2
; 1

2

�
:

Let d0 > 0 be smaller than half the focal radius of the curve �. Now, we identify R2

with R2 � f0g in RnC2 . At each point p 2 L , denote by H Œp� the normal hyper-
plane to L at p . For each L > 1 and N� D .�1; �2/ 2

�
0; 1

4

�2, we choose a function
�ŒL; N��W Œ0; 4�!RC such that

� �ŒL; N��.s/D 1C �1f .s� 1:5/ for s 2 Œ1C �2; 2� �2�,

� �ŒL; N��.1=L/D �ŒL; N��.4� 1=L/D 1,

� �ŒL; N�� is increasing on Œ0; 1:5� and decreasing on Œ1:5; 4�,

� �ŒL; N�� is strictly concave on Œ0; 1�.
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Define

�ŒL; N��D fx 2H ŒL.s/� W d.x; L.s//D d0�ŒL; N��.s/ for s 2 Œ0; 4�g:

We can further impose that �ŒL; N�� satisfy the following properties:

� �ŒL; N�� is a smooth closed hypersurface.

� For each L> 1 and �1 2
�
0; 1

4

�
fixed, �ŒL; N�� converges smoothly to a hypersur-

face �ŒL; .�1; 0/� and �ŒL; N�� converges uniformly to a function �ŒL; .�1; 0/�

when �2! 0.

� The domains �ŒL; �1� WD �ŒL; .�1; 0/�\ f.x1; : : : ;xnC2/ W x2 < �Lg are all
isometric to each other for L>1 and �12

�
0; 1

4

�
, and they have positive sectional

curvature.

In the following lemma, we list some useful properties of the manifold �ŒL; N�� for
any n� 1:

Lemma 12 (i) If n > 1 and if d0 , �1 and �2 are small enough, �ŒL; N�� has
(arbitrarily large) positive scalar curvature bounded below by a positive constant
independent of L.

(ii) The manifold �ŒL; N�� has positive sectional curvature on

�ŒL; N��\f.x1; : : : ;xnC2/ W x1 > 0 and x2 < �1g

and on the open neighborhood of

�ŒL; N��\
˚
.x1; : : : ;xnC2/ W x1 > 0 and x2 D�

1
2

	
consisting of all points in �ŒL; N�� at distance less than zı > 0 from the above set,
where zı is independent of L and N� .

(iii) Let Za D fx 2 H ŒL.a/� W d.x; L.a// D d0g and consider Z2 and Z2:5 as
hypersurfaces in �ŒL; .�1; 0/�. Then

�

Z
Z2:5

.R�Ric.�; �// > �
Z

Z2

.R�Ric.�; �//;

where � denotes a unit normal on these hypersurfaces and R (resp. Ric) is the
scalar curvature of �ŒL; .�1; 0/� (resp. its Ricci curvature) endowed with the
metric induced by RnC2 .
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Proof As �2! 0, �ŒL; N�� converges to �ŒL; .�1; 0/�, and as �1! 0, �ŒL; .�1; 0/�

converges to a manifold called �L . Hence to prove point (i), it is enough to show that
for d0 small enough, �L has arbitrarily large positive scalar curvature. Since the scalar
curvature on �L \ f.x1; : : : ;xnC2/ W x2 < 0g is positive and arbitrarily large as d0

goes to 0, we only have to study

�L\f.x1; : : : ;xnC2/ W x2 � 0g:

But the desired property is clear since when d0 goes to zero, the above subset converges
after rescaling to a subset of a neck Sn�R endowed with the product of a round metric
and the standard metric on R.

Point (ii) follows readily from the concavity of the function �ŒL; N�� at the corresponding
values.

The last point can be checked by computing the curvature for warped products; see
[36, Chapter 7, Corollary 43] for instance (which holds for one-dimensional fibers).
Indeed locally around Z2 and Z2:5 , the metric is a warped product metric with base a
round n–sphere of sectional curvature d�2

0
and with fiber Œ0; 1�. Let fw > 0 be the

warping function for Z2:5 , the warping function for Z2 being constant. On one handZ
Z2

.R�Ric.�; �//D
Z

Z2

n.n� 1/

d2
0

;

while, on the other hand,Z
Z2:5

.R�Ric.�; �//D
Z

Z2:5

�
n.n� 1/

d2
0

�
�fw

fw

�
D

Z
Z2

n.n� 1/

d2
0

�

Z
Z2:5

jrfwj
2

f 2
w

<

Z
Z2

.R�Ric.�; �//:

2.2 Appearance of stable geodesics and stable spheres

In this subsection, we will use “stable sphere” (resp. “stable geodesic”) to denote a
closed stable embedded minimal 2–sphere (resp. a simple closed stable geodesic).

Theorem 13 There exists a 2–sphere .M;g/ such that

(i) .M;g/ does not contain stable geodesics,

(ii) a stable geodesic appears along the Ricci flow starting at .M;g/.
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Theorem 14 Let M be a spherical space form S3=� which is endowed with a
metric g of positive scalar curvature. Suppose that .M;g/ does not contain any stable
sphere or embedded minimal RP2 with stable oriented double cover. Then for any
point p 2M and radius r > 0, there is a metric zg on M coinciding with g outside
Bg.p; r/ such that

(i) zg has positive scalar curvature,

(ii) .M; zg/ does not contain any stable sphere or embedded minimal RP2 with
stable oriented double cover,

(iii) a stable sphere appears along the Ricci flow starting at .M; zg/.

In the case where M is two-dimensional, we clearly cannot assume its Gauss curvature
to be positive at time 0 since this property will be preserved along the Ricci flow and
this will prevent the existence of stable geodesics.

From now on, we assume d0 , �1 and �2 are small enough that by Lemma 12(i), R> 0

on �ŒL; N�� when nD 2. To prove Theorem 13, we will need the following lemma.

Lemma 15 Let nD 1. There exists a positive constant C0 such that if L> C0 and
�1 < 1=C0 , then for all �2 sufficiently small the surface �ŒL; N�� contains no stable
geodesics.

Proof Suppose by contradiction that there are two families

fLkgk2N and fN�k;l D .�1;k ; �2;k;l/g.k;l/2N2

such that
Lk !1 as k!1;

�1;k ! 0 as k!1;

�2;k;l ! 0 as l !1 for all k;

and a simple closed stable geodesic Sk;l in �ŒLk ; N�k;l � for all .k; l/ 2N2 . We orient
a curve in �ŒLk ; N�k;l � of the form

Zs
k;l D fx 2H ŒLk

.s/� W d.x; Lk
.s//D d0�ŒLk ; N�k;l �.s/g;

where s 2 .0; 4/, by imposing that the outward normal � satisfy h�;  0
Lk
.s/i> 0. By

construction, fZs
k;l
gs2.1:5;4/ (resp. fZs

k;l
gs2.0;1:5/ ) is a foliation of

AC
k;l
D �ŒLk ; N�k;l �\

˚
.x1;x2;x3/ W x1 < 0 or x2 > �

1
2

	�
resp. A�k;l D �ŒLk ; N�k;l �\

˚
.x1;x2;x3/ W x1 > 0 and x2 < �

1
2

	�
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by concave (resp. convex) curves. Hence by the maximum principle, Sk;l cannot be
entirely contained in AC

k;l
or in A�

k;l
. In other words, Sk;l must intersect the central

curve Z1:5
k;l

.

For a point p 2 R2 , we denote by x2.p/ its second coordinate. Let pk;l be a point
of Sk;l such that x2.pk;l/ D minp2Sk;l

x2.p/. We already know by the previous
paragraph that x2.pk;l/ � �

1
2

. By extracting a subsequence in k and then in l for
each n, one can distinguish two situations:

(i) There is a constant �0>0 independent of k and l such that x2.pk;l/<�Lk��0 .

(ii) lim infk!1Œinfl.x2.pk;l/CLk/�� 0.

Recall the notation

�ŒLk ; �1;k �D �ŒLk ; .�1;k ; 0/�\f.x1;x2;x3/ W x2 < �Lkg:

Suppose by contradiction that (i) holds. Using the limit surfaces �ŒLk ; .�1;k ; 0/� and
the fact that the �ŒLk ; �1;k � have positive Gauss curvature K and are isometric, we
infer that there is a constant �2 > 0 (independent of k ) such that for all k ,

lim sup
l!1

Z
zSk;l

K > �2;

where zSk;l D Sk;l \�ŒLk ; �1;k �. Since

�ŒLk ; N�k;l �\f.x1;x2;x3/ W x1 > 0 and x2 < �1g

has positive Gauss curvature and since we can choose k so that the length of

Sk;l \f.x1;x2;x3/ W x1 > 0 and x2 2 .�Lk ;�1/g

is arbitrarily large, we can find a function � on Sk;l having a support included in
Sk;l \f.x1;x2;x3/ W x1 > 0 and x2 < �1g such thatZ

Sk;l

.jr�j2�K�2/ < 0

for a k sufficiently large and l large in comparison. This contradicts the stability of
the geodesic Sk;l .

We have to rule out situation (ii) by using the embeddedness of Sk;l . Let us show
that the length of Sk;l is necessarily bounded, for example by 6�d0 , for k large
and l large in comparison. Consider the subset Ik;l of Sk;l consisting of all the points
in Sk;l at distance less than 3�d0 to pk;l , where the intrinsic distance of Sk;l is
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used. Let sk;l be such that x2.Lk
.sk;l//D x2.pk;l/. Since the tangent vector of Sk;l

at pk;l is orthogonal to .0; 1; 0/, and because of the geometry of the limit surfaces
�ŒLk ; .�1;k ; 0/�, the subset Ik;l is an embedded multivalued graph with small gradient
in �ŒLk ; N�k;l � over Z

sk;l

k;l
for k and l large. But this is close to a standard circle of

radius d0 for k and l large so situation (ii) is possible only if Ik;l actually contains the
whole geodesic Sk;l and is a one-valued graph. Now that we have bounded the length
of Sk;l independently of l for each k large, and since each Sk;l intersects Z1:5

k;l
, we

can extract a subsequence in l converging with multiplicity one to a stable geodesic Sk

in �ŒLk ; .�1;k ; 0/� of length less than 6�d0 . The sequence fSkg in turn converges
subsequentially in R3 to

Z1:5
D fx 2H ŒL.1:5/� W d.x; L.1:5//D d0g;

because �ŒLk ; .�1;k ; 0/�\f.x1;x2;x3/ Wx1> 0 and �1<x2< 0g becomes cylindrical
as k!1. This is a contradiction with the stability assumption since in a neighborhood
of Z1:5

k;l
independent of .k; l/ (see Lemma 12(ii)), the sectional curvature of �ŒLk ; N�k;l �

is positive.

The next lemma is true for 1� n� 6. We fix �1 2
�
0; 1

4

�
and L> 1. Let ı > 0 and

define
Y �2 D �ŒL; .�1; �2/�\f.x1; : : : ;xnC2/ W x1 < 0 or x2 > �ıg:

We choose ı 2
�
0; 1

2

�
so that the boundaries @Y �2 are isometric and convex for all

0< �2 < ı . Define also

X �2 D �ŒL; .�1; �2/�\f.x1; : : : ;xnC2/ W x1 < 0 or x2 > 0g:

Similarly, we define Y and X by replacing �ŒL; .�1; �2/� by �ŒL; .�1; 0/� in the above
formulas and we write Y 0 WD Y and X 0 WDX. Now for �2 2 Œ0; ı/, suppose that Y �2

is isometrically embedded in a closed .nC1/–manifold N �2 , in such a way that N �2

converges to N 0 as �2! 0. Let fN �2

t gt2Œ0;T / be a solution of the Ricci flow starting
at N �2 defined on a time interval Œ0;T /. If V is a subset of N �2 , let Vt denote the
Ricci flow at time t starting at V obtained by restriction of the original Ricci flow
solution on N �2 . By abuse of notation, we view Y �2 as a subset of N �2 in Lemma 16.

In the proof, we will consider currents and varifolds in the closure Y which is iso-
metrically embedded in RnC2 . If U is an open subset of Y , the corresponding
.nC1/–dimensional current will be called ŒjU j� and if C is an integral current, jC j
will be the name of the integer rectifiable varifold it determines by forgetting its
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Z2:5

@X
@Y

Figure 1: When �1 is small and L large, �ŒL; .�1; 0/� looks like a thin hook.

orientation. If k 2 Œj0; nC 1j�, the Grassmannian of k–planes in RnC2 is denoted
by Gr.k; nC 2/ and its restriction to Y is denoted by Gr.k; nC 2;Y /. The Hausdorff
measure Hk of a subset of Yt is computed using the metric on Yt .

Lemma 16 Suppose 1� n� 6 and let �1 2
�
0; 1

4

�
. There exists a positive constant C1

such that if L> C1 , then the following holds. For each �2 2 Œ0; ı/ small enough, there
is a positive time t0 D t0.�2/ such that Y

�2

t0
contains an embedded stable minimal

hypersurface. Moreover, t0 can be chosen so that

t0.�2/! 0 as �2! 0:

Proof From the proof, it will be clear that lim�2!0 t0.�2/D 0.

The boundary @Y �2 is convex with respect to the outward normal. Let ƒ�2 be a
sweepout in Y

�2

t associated with X
�2

t (see Definition 8). We will show that when �2

is small enough, for a positive time t0 such that @Y �2

t0
is still convex, we have:

(3) W .Y
�2

t0
; @Y

�2

t0
; ƒ

�2

t0
/ >Hn.@X

�2

t0
/:

Applying Theorem 10 and Remark 11, we get an embedded minimal hypersurface S�2

in Y
�2

t0
. If it is stable then the lemma is verified. If S�2 is not stable, then by minimizing

its area in the connected open subset of Y
�2

t0
nS�2 whose boundary contains @Y �2

t0
, we

get an embedded stable hypersurface and the lemma is also verified in that case.

Hence to complete the proof, it remains to show (3). Actually since the Ricci flow
depends smoothly on the initial data, it is enough to check that if ƒ is the sweepout
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in Y associated with X, then for all small positive times t0 , @Yt0
is convex and

W .Yt0
; @Yt0

; ƒt0
/ >Hn.@Xt0

/:

For small times � , @Y� remains convex and subsequently we will only consider such
small times. Assume by contradiction that for all small � > 0, W .Y� ; @Y� ; ƒ� / D

Hn.@X� /, and for each small � > 0 let us choose a continuous sweepout f†�s gs2Œ0;1�
such that

(4) max
s

Hn.†�s /�Hn.@X� /C �.�/;

where �.�/ is an arbitrary positive function converging to 0 as � goes to 0 to be
determined later. Let f��s gs be the family of open subsets of Y� associated with f†�s gs
by Definition 8. For a 2 Œ2; 4� 1=L�, denote by U a the subset of Y whose boundary
(in N 0 ) is Za , where Za D fx 2H ŒL.a/� W d.x; L.a//D d0g. Let f�kg and fskg

be two sequences such that �k ! 0 and

HnC1.��k
sk
/DHnC1.U 2:5/:

We denote by V k the subset of Y such that V k
�k
D �

�k
sk

(ie the open set of N 0

which becomes ��k
sk

at time �k ). By [19], we can choose f�kg and fskg so that
@ŒjV k j� converges to an integral current C D @ŒjV1j� in the flat topology of Y , where
HnC1.V1/DHnC1.U 2:5/. We observe that (4) implies

(5) M .C /� !ndn
0 DM

�
@ŒjU 2:5

j�
�

where !n is the volume of the n–dimensional unit round sphere.

Claim If L was chosen large enough, then for b 2 Œ2; 3�, @ŒjU bj� is the unique
area-minimizing current among the currents C 0 D @ŒjU 0j� such that

HnC1.U 0/DHnC1.U b/;

where U 0 is an open subset relatively compact in Y , with a rectifiable boundary.

Let us prove this claim. Denote by ya the function defined on Y nU 4�1=L such
that ya.x/ D a if L.a/ is the nearest point of L to x . Define the projection
ypW Y nU 4�1=L ! Z4�1=L such that yp�1.y/ is exactly the line in Y orthogonal
to every Za and beginning at y 2Z4�1=L . This projection enjoys the useful property
of being area-decreasing in the sense that if R is a connected rectifiable boundary then

Hn. yp.R//�Hn.R/
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with equality if and only if R is included in a certain Za . Let b , C 0 and U 0 be as above.
To prove the claim, first note that when the support of C 0 is contained in Y nU 4�1=L ,
we have M .C 0/�M

�
@ŒjU bj�

�
with equality if and only if C 0 D @ŒjU bj�. Indeed, we

can project C 0 on Z4�1=L and get the current yp].C 0/. By the constancy theorem, it is
an integer multiple of @ŒjU 4�1=Lj�. If it is nonzero then M .C 0/�M

�
@ŒjU bj�

�
with

equality only when C 0 D @ŒjU bj�. If it is zero then the varifold yp].jC 0j/ has mass at
least twice Hn. yp.@U 0//, which has to be larger than 1

2
Hn.Z4�1=L/ for large L: this

is because if A �Z4�1=L has n–volume at most 1
2
Hn.Z4�1=L/, then yp�1.A/ has

.nC1/–volume strictly less than HnC1.U b/ (for L large). When the support of C 0 is
not contained in U 4�1=L , then by the coarea formula, there is a constant � independent
of L and an a 2 Œ3; 3:5� which depends on L such that spt.C 0/\Za is rectifiable,

M .hC 0; ya; ai/� �=L and M
�˝
ŒjY nU 0j�; ya; a

˛�
� �=L;

where the notation for slicing is the same as in [43, Chapter 2, Section 28]. Consider
the current yC D @ŒjU a[U 0j�. In fact, for L large enough,

(6) M . yC / <M .C 0/:

Indeed, by the monotonicity formula for minimal submanifolds, if L is large then
any area-minimizing hypersurface in Y with boundary hC; ya; ai must be contained
in Y nU 4�1=L and so is equal to hY nU 0; ya; ai by the constancy theorem. Since
spt yC � Y nU 4�1=L and HnC1.U a [ U 0/ � 1

2
HnC1.Y / for large L, the previous

argument shows that M . yC /�M
�
@ŒjU bj�

�
. But then C 0 has a bigger mass than @ŒjU bj�

by (6) as wished, and the claim is verified.

Consequently for L large enough, (5) implies that the limit C is actually @ŒjU 2:5j�

and that as k!1,
M
�
@ŒjV k

j�
�
!M

�
@ŒjU 2:5

j�
�
:

By [40, (18)(f) in Section 2.1], the sequence of varifolds
ˇ̌
@ŒjV k j�

ˇ̌
converges sub-

sequentially to
ˇ̌
@ŒjU 2:5j�

ˇ̌
. Applying the definition of varifolds convergence to the

function which sends .x;H / 2 Gr.n; nC 2;Y / to �RCRic.�; �/ where � is a unit
vector orthogonal to H in Tx� , we have

lim
k!1

Z
@V k

.�RCRic.�; �//D
Z

Z2:5

.�RCRic.�; �//;

which exactly means

(7) lim
k!1

@

@t

ˇ̌̌
tD0

Hn.@V k
t /D

@

@t

ˇ̌̌
tD0

Hn.Z2:5
t /:
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Gromov–Lawson surgery
�
!

Y 0

S3=�

Figure 2: Part of a thin hook, Y 0, is glued to S3=� via the Gromov–Lawson procedure.

To contradict inequality (4), we write the following Taylor expansions near t D 0:

Hn.@V k
t /DHn.@V k/C t �

@

@t

ˇ̌̌
tD0

Hn.@V k
t /C t2

�'k.t/;

Hn.@Xt /DHn.@X /C t �
@

@t

ˇ̌̌
tD0

Hn.@Xt /C t2
��.t/;

where 'k and � are functions bounded independently of k near t D 0. By Lemma 12(iii),

(8) @

@t

ˇ̌̌
tD0

Hn.Z2:5
t / >

@

@t

ˇ̌̌
tD0

Hn.@Xt /:

Besides, the previous claim implies

(9) Hn.@V k/�Hn.Z2:5/DHn.@X /:

Hence, recalling that
@V k
�k
D @��k

sk
D†�k

sk
;

we combine (7), (8) and (9) and the Taylor expansions to conclude for k large that

Hn.†�k
sk
/�Hn.@X�k

/ > 1
2
�k

�
@

@t

ˇ̌̌
tD0

Hn.Z2:5
t /�

@

@t

ˇ̌̌
tD0

Hn.@Xt /
�
:

This is indeed the desired contradiction since the function �. � / in (4) could converge
arbitrarily fast to 0, and this ends the proof.

Proof of Theorems 13 and 14 Theorem 13 follows from Lemmas 15 and 16, by
taking M D �ŒL; .�1; �2/�DN �2 with �1 > 0, �2 > 0 and 1=L sufficiently small.

To prove Theorem 14, let .M;g/ be as in the statement. Choose any p 2M and r > 0

smaller than the injectivity radius of .M;g/ so that @Bg.p; s/ is convex whenever
0< s< r . Let r0> 0 be smaller than r . Let �2 be positive, and consider a scaled-down
version of Y �2 (as defined just before Lemma 16) that we call Y 0 and glue it to M
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around p by applying the Gromov–Lawson construction in Bg.p; r0/ (see Figure 2).
We can modify the size of r0 , ı , �2 and Y 0. Analyzing how the forementioned
construction is defined in [21] and taking the previous parameters small enough, we
see that it can be done so as to get a new metric zg on M satisfying:

� zg coincides with g outside Bg.p; r0/.

� Y 0 is isometrically embedded in .Bg.p; r0/; zg/.

� .Bg.p; r/; zg/ is foliated by convex spheres.

� The scalar curvature of .M; zg/ is bounded below by a positive constant inde-
pendent of the parameters as they go to zero.

If the parameters are all small enough, then .M; zg/ contains no stable embedded
minimal 2–sphere or minimal RP2 with stable oriented double cover. Otherwise
we could take the limit (subsequentially by [41]) and get a nontrivial oriented stable
embedded minimal surface S in .M nfpg;g/ with finite area by the fourth item above
(see [32, Proposition A.1] for instance). By curvature estimates for stable surfaces [41],
the embedding is then proper, S has finite Euler characteristic and the singularity at p

is removable (see [30, Lemma 2.5; 11, Proposition C.1; 23] for instance). Hence the
closure S is a smooth stable minimal 2–sphere or a minimal RP2 with stable oriented
double cover in .M;g/, contradicting our assumption. Finally, Lemma 16 ensures that
a stable sphere appears along the Ricci flow starting at .M; zg/ provided 1=L and �2

are small enough.

2.3 Appearance of nontrivial singularities

Theorem 17 Let M be a closed 3–manifold satisfying the hypotheses of Theorem 14.
Then for any point p 2M and radius r > 0, there is a metric yg on M coinciding
with g outside Bg.p; r/ such that

(i) yg has positive scalar curvature,

(ii) .M; yg/ does not contain any stable sphere or embedded minimal RP2 with
stable oriented double cover,

(iii) a nontrivial singularity occurs along the Ricci flow starting at .M; yg/.

For the appearance of stable spheres described in the previous subsection, a first-order
argument on the evolution of the thin hooks was enough. However we now want to
study the long-time behavior, and to prove that a nontrivial singularity occurs, we need
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to modify the metric of the hooks. We twist and stretch the bent part as follows. For
each N� and L, using the previous notation, we consider the subsets

ZaŒL; N��D fs 2H ŒL.a/� W d.x; L.a//D d0�ŒL; N��.a/g for all a 2 Œ2; 3�:

Let ˇW Œ2; 3�! Œ0; 1� be a bump function equal to zero in a neighborhood of f2; 3g
and equal to one in

�
2C 1

12
; 3� 1

12

�
. Denote by geucl the Euclidean metric in RnC2 .

For any x 2ZaŒL; N�� (with a 2 Œ2; 3�), let V .x/ be a unit vector based at x tangent
to �ŒL; N�� but normal to the hypersurface ZaŒL; N��, in the metric induced by geucl .
Then for any stretching factor Lst � 0, we define a new metric g.Lst/ on �ŒL; N��
such that it only differs from the metric induced by geucl in

S
a2Œ2;3�Z

aŒL; N�� and for
all x 2

S
a2Œ2;3�Z

aŒL; N�� and u; v 2 Tx�ŒL; N��� TxRnC2 ,

g.Lst/.u; v/D geucl.u; v/Cˇ.a/Lstgeucl.u;V .x//geucl.v;V .x//:

Hence the modified metric g.Lst/ is similar to the metric induced by geucl , but strongly
twisted and stretched between Z2 and Z3 when Lst is large. The choice of ˇ guaran-
tees that when Lst goes to infinity and �2 goes to zero, with the other parameters fixed,

� .�ŒL; N��;g.Lst// converges locally around Z2C 1
12 to S2�R endowed with the

product metric d2
0

h1Cd�2 , where h1 is the round metric of Gauss curvature 1,

� .�ŒL; N��;g.Lst// converges locally around Z2:5 to a warped product metric gtw

on S2 �R different from a product metric.

Note nevertheless that in the second limit any slice S2 � f�g is also endowed with the
round metric d2

0
h1 . The Ricci flow for warped product metrics on S2 �R which are

R–invariant (and hence with base S2 ) has a well-controlled behavior and was studied
in [31]. For a metric g on a 3–manifold, let Text.g/ 2 .0;1/ be its extinction time
when well defined: when it exists it is defined as the time where a trivial singularity
occurs. The following is a key lemma explaining why we consider these twisted hooks.

Lemma 18 Let ginv be an R–invariant warped product metric on S2 �R. Suppose
that ginv is not a product metric and that any slice S2 � f�g � S2 �R has area 4�d2

0

computed with ginv . Then

Text.ginv/ > Text.d
2
0 h1C d�2/:

Proof Note that this lemma is the long-time counterpart of Lemma 12(iii), which is a
first-order property. The proof is essentially the same computation.
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Let fginv.t/gt2Œ0;Text.ginv// be the maximal solution starting at ginv . We observe that
the slices S2�f�g remain totally geodesic for all times. Hence by the Gauss equation,
their area A.t/ evolves according to

(10) dA

dt
D�

Z
S2�f�g

.R�Ric.�; �//D�8� �

Z
S2�f�g

Ric.�; �/;

where � is a unit normal. Suppose now that ginv.t/D k.t/C e2u.t/d�2 , where k.t/

and u.t/ are respectively a metric and a function on S2 . Then according to [31, (2.4)],
the integral in the right-hand side of (10) is equal toZ

S2

�jru.t/j2 dvolk.t/

where r and j � j are computed using k.t/. Since u.0/ is not constant by hypothesis,
u.t/ remains so and we obtain dA=dt > �8� . Since the analogue derivative for a
product metric is equal to �8� , and since the extinction time coincides with the time
when the area of the slices S2 � f�g converges to 0, we conclude that

Text.ginv/ > Text.d
2
0 h1C d�2/:

Heuristically, to make a singularity appear, we will choose the stretching factor Lst

very large so that there are two regions evolving locally like two R–invariant S2 �R,
one of them being endowed with a product metric and separating the other one from a
large region (to which we glued the twisted hook). Since the previous lemma suggests
that the neck S2 �R with a product metric should disappear first while the other
regions stay large, a nontrivial singularity should occur. Let us make this reasoning
rigorous with the following lemma.

Lemma 19 There exists a constant yC > 0 and a time yT > 0 such that the following
holds. Let .N;g.t// for 0� t � t1 be a solution of the Ricci flow, and assume that the
initial metric g.0/ is normalized and that N is a closed oriented connected 3–manifold.
Suppose at t1 that x 2N is in the center of a strong �–neck. Suppose that the center
sphere of this strong �–neck separates N into two components N1 and N2 such that
there are xi 2Ni (i D 1; 2) with

R.x; t1/ > yC
�
1CjR.xi ; t1/j

�
;

where R. � ; t1/ is the scalar curvature function at time t1 . Then, along the Ricci flow
starting at .N;g.0//, a nontrivial singularity occurs before time t1C yT .
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Proof We can suppose that R.x; t1/ � r�2
0

, where r0 comes from the canonical
neighborhood theorem (Theorem 5). Consider the Ricci flow defined on a maximal time
interval Œ0;T / where t1 <T �1; we want to show that a nontrivial singularity occurs
at some t2 larger than t1 . By definition of strong canonical neighborhoods, and by (1)
and (2), since � is small, there is a positive constant C1 only depending on � such that

(i) @R.x; t/=@t �R.x; t/2=C1 as long as x is in a strong �–neck,

(ii) either R.xi ; t/� r�2
0

or @R.xi ; t/=@t � C2R.xi ; t/
2 .

The second item means that there is a time t3 > t1 such that if the flow runs into a
trivial singularity, then it does not occur before t3 . If the condition in the first item
is verified as long as the classical Ricci flow is defined then R.x; t/ goes to infinity
before a time t4 . Choose yC large enough that t4 < t3 . Suppose by contradiction that
the point x ceases to be in a strong �–neck at time t 0 2 Œt1;T /. Then .x; t 0/ is in one
of the following canonical neighborhoods:

� a .C; �/–cap (where in particular the scalar curvature is comparable at every
point),

� a C –component,

� an �–round component.

Since t 0 is the first time after t1 such that x is not in a strong �–neck, .x; t 0/ is
actually in a .C; �/–cap. Either x1 or x2 is also in this cap. Now if yC is large
enough, then by (2) again each R.xi ; t

0/ cannot be comparable to R.x; t 0/, so this is a
contradiction. Hence either the scalar curvature R.x; t/ goes to infinity before t4 or a
singularity happens elsewhere before t4 . Because t4 < t3 , this singularity is not trivial.
Taking yT D t4 finishes the proof.

Proof of Theorem 17 First, we glue a small twisted hook to M around a point p

as in the proof of Theorem 14. If �1 , �2 , 1=L and the size of the twisted hook are
sufficiently small, then the new metric zg on M does not contain any stable sphere
or minimal RP2 with stable oriented double cover and has positive scalar curvature.
We take care of rescaling the new metric so that it becomes normalized. Let .Mk ;gk/

be a sequence of such rescalings, where the parameters �1 , �2 and 1=L and the size
of the hook go to 0. It is also possible to guarantee that for any sequence sD fxkg

with xk 2Mk , the based manifolds .Mk ;gk ;xk/ converge to one of the following
geometric limits:
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(a) The flat R3 (corresponding to points xk not near the hook).

(b) A rotationally symmetric noncompact 3–manifold with two ends, one being a
standard product metric on S2 � Œ0;1/ with scalar curvature 1 and the other
one being a flat R3nB.0; 1/ (corresponding to xk near the part where the hook
is glued).

(c) A warped product on S2 �R with base a round S2 with scalar curvature 1

(corresponding to xk inside the hook far from the tip).

(d) An R3 endowed with the standard initial metric (see [34, Chapter 12]) (corre-
sponding to xk near the tip of the hook).

Let T be the maximum of the maximal times for which the Ricci flows starting at
one of these four metrics are smoothly defined. By [10] and [42], the hypotheses of
Lemma 7 are satisfied. Notice that if xk 2 Z2C 1

12 (resp. Z2:5 ) for all k then the
geometric limit is a product metric (resp. nontrivial warped product metric) on S2�R,
whose life span under the Ricci flow is equal (resp. strictly longer) than that of the
standard initial metric by [34, Theorem 12.5] (resp. Lemma 18).

Suppose by contradiction that no nontrivial singularity occurs along the Ricci flow
starting at .M; zg/. Two cases are a priori possible: T D 1, the life span of the standard
initial metric, or T < 1. The latter situation corresponds to the maximum of the scalar
curvature being reached around the gluing part near T , namely it means that T is
the maximal existence time for the second geometric limit in the previous list. Note
that since this Ricci flow is rotationally symmetric with two ends, the only canonical
neighborhood that can appear is a strong �–neck. By the above remarks and Lemma 7,
in both cases one finds ı > 0 so that for all k large, the Ricci flows .Mk ;gk.t// have
no singularity until at least yt WD T � ı , the time at which for some q; q1 2Mk , and
for any q2 2Z2:5 :

� R.q; yt/ > yC .1CR.qi ; yt// for i D 1; 2. ( yC is the constant in Lemma 19.)

� q is in a strong �–neck whose central sphere separates q1 and q2 .

Actually, q1 is chosen to be a point of M far from p where the gluing is realized in the
original metric g . The hypothesis of Lemma 19 are satisfied and a nontrivial singularity
occurs, which contradicts our assumption that only a trivial singularity occurs.

Remark 20 (i) In the proof of Theorem 14, we used hooks with a stretching factor
Lst D 0 for simplicity. However, it is not difficult to check that N� and L can be
chosen so that for any stretching factor Lst , Lemma 16 remains true. Hence putting
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Theorems 14 and 17 together, we conclude that there are 3–manifolds with positive
scalar curvature such that along the Ricci flow, a stable sphere appears and some time
later, a nontrivial singularity occurs. In particular Theorem 1 is proved.

(ii) Although according to Theorem 17, a nontrivial singularity occurs in certain
cases, it does not provide information on where it happens: intuitively one expects the
singularity to occur at the neck with a product metric or at the tip of the twisted hook
or at both places, depending on the shape of the tip.

3 Stable spheres and Type I singularities

In [2], examples of rotationally symmetric SnC1 developing a Type I neckpinching
are constructed. Actually, in dimension 3, this is part of a much more general fact. By
joining any two oriented 3–manifolds with a thin neck, we obtain initial data which
will produce a nontrivial Type I singularity under the Ricci flow.

Proposition 21 Let .M1;g1/ and .M2;g2/ be two closed oriented 3–manifolds. For
any pair of points pi 2Mi (iD1; 2), radius yr >0 small enough, length l �0 and ı >0,
there exists a metric g on the connected sum M DM1 # M2 such that:

(i) There is a subset N �M diffeomorphic to S2�.0; 1/, so that M nN is isometric
to .M1nB.p1; yr//[ .M2nB.p2; yr//.

(ii) M is ı–close in the Hausdorff–Gromov distance to the union of M1 and M2

and a curve of length l joining p1 to p2 ,

(iii) A nontrivial singularity of Type I occurs along the Ricci flow starting at .M;g/.

Proof As previously the proof is a limiting argument. We can glue an arbitrarily thin
neck joining M1 and M2 so that M is ı–close in the Hausdorff–Gromov distance to
the union of M1 and M2 and a curve of length l joining p1 to p2 . We can ensure
that this gluing is done locally around pi , which does not affect the original metric
in .M1nB.p1; yr//[ .M2nB.p2; yr//. Let hk be a sequence of metrics corresponding
to thinner and thinner such necks. Let Qk be the maximum of the scalar curvature
on .M; hk/, which we assume is achieved at the middle of the neck. Denote by zhk

the rescaling Qkhk , and let zhk.t/ for 0 � t � Tk be a maximal solution for the
Ricci flow. We choose the sequence of metrics so that for any sequence of points
xk 2 M, the rescalings .M; zhk.0/;xk/ subsequentially converge geometrically to
either a flat R3 or a product metric on S2 �R or a limit of type (b) described in the
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proof of Theorem 17. Then by Lemma 7, for k large, there is a point x which was
in the neck at time 0 that is in a strong �–neck with arbitrarily large scalar curvature
(in particular at least r�2

0
) at a certain time t 0 independent of k . Notice that the

rescalings at points in .M1nB.p1; yr//[ .M2nB.p2; yr// converge geometrically to a
static flat R3 . Hence by Lemma 19, for every large k a nontrivial singularity occurs at
time Tk 2 .t

0; t 0C yT /.

Claim If k is large enough, a .C; �/–cap with scalar curvature at least 2r�2
0

cannot
appear during the Ricci flow .M; zhk.t// for 0� t � Tk .

Suppose the claim to be true. Then the singularity is of Type I according to [18]. The
theorem is thus proved modulo the claim.

To verify the claim, let us consider a sequence f.M; zhk.l/.t//gl of counterexamples.
For each l , let tl (resp. sl ) be the infimum of the times at which there is a .C; �/–
cap with scalar curvature at least 2r�2

0
(resp. r�2

0
), for the metric zhk.l/.tl/. We can

suppose that Tk.l/ (resp. tk.l/ , sl ) converges to T1 (resp. t1 , s1 ). Actually we have
s1 < t1 � T1 . Indeed note that the only kinds of canonical neighborhoods with large
scalar curvature that can appear are �–necks which are diffeomorphic to S2 � .0; 1/

and .C; �/–caps which are diffeomorphic to a ball or RP3 minus a point. For this
reason, there is a .C; �/–cap at time tl with scalar curvature at least 2r�2

0
and by

tracking this region we can go back in time to find a .C; �/–cap with scalar curvature
at least r�2

0
at time tl � ı . In view of the derivative estimate (2) this delta can be

chosen independent of l , and we get s1 < t1 as desired. Next we pick pl to be a
point in a .C; �/–cap at time sl . By definition of tl and by (1), the curvature tensor
is uniformly bounded on

�
0; 1

2
.sl C tl/

�
. Recall that the pointed zero-time time slices

.M; zhk.l/.0/;pl/ converge to a limit .M1; zh1.0/;p1/ with bounded curvature, so
the flow starting at this limit exists and is unique [42; 10]. Let S > 0 such that
.M1; zh1.t/;p1/ is maximally defined on Œ0;S/. By construction this limit flow is
rotationally symmetric noncompact with two ends when nonflat, so the only canonical
neighborhoods with large curvature which could appear are strong �–necks. Actually
by Lemma 7, S � 1

2
.s1C t1/. Indeed otherwise for l large and t 00 close to S there

should be an arbitrarily thin �–neck for the metric zhk.l/.t
00/ but then (1) and (2) would

contradict 1
2
.slCtl/>S. So S � 1

2
.s1Ct1/ and by Lemma 7 again, .M1; zh1.s1//

should then contain a .C; �/–cap, which is impossible and our claim is proved.

From the proof of Proposition 21, it can be shown for the examples where a Type I
singularity appears at some time t1 that for all t 2 Œ0; t1/ there is an embedded stable
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minimal sphere S.t/ whose area goes to 0 as t ! t1 . These spheres correspond to
the neckpinching. One can wonder if this is a general phenomenon. The next theorem
confirms that indeed small stable spheres or RP2 with stable oriented double cover
are closely related to Type I singularities. When a minimal surface is an embedded
stable sphere or an embedded RP2 with stable oriented double cover, we will call it a
stable immersed sphere with embedded image.

Theorem 22 Let M be an oriented closed connected 3–manifold. Consider a Ricci
flow .M;g.t// for 0� t < T and suppose that there is a nontrivial Type I singularity
at time T . Then, for all time t close to T , .M;g.t// contains a stable immersed sphere
with embedded image S.t/ such that

C 0.T � t/�H2.S.t//� C 00.T � t/;

where C 0 and C 00 are constants independent of t .

Conversely, suppose that there is a sequence of times sk converging to T and a sequence
of stable immersed spheres with embedded image Sk in .M;g.sk//. Suppose also that
the area of Sk goes to zero and

H2.Sk/� C 0.T � sk/;

where C 0 is a constant independent of k . Then there is a singularity at time T which
is locally of Type I in the sense that for all A > 0 there exists a C D C .C 0;A;C; �/

such that

sup
˚
jRm.x; sk/j W .maxSk

R/ � d.x;Sk/
2
�A

	
�

C

T �sk
for all k > C :

Proof Without loss of generality we assume .M;g.0// to be normalized. Suppose
that .M;g.t// for 0� t < T develops a Type I singularity at T . Since the singularity
is nontrivial, for all times close to T , say for t 2 .t0;T /, there is a constant A > 0

independent of t such that the points of scalar curvature larger than A are in strong
�–necks or in .C; �/–caps diffeomorphic to RP3 minus a point according to [18]. By
[34, Proposition A.21], this means that at time t 2 Œt0;T / two situations can happen:

� M is covered by the previous canonical neighborhoods and is diffeomorphic
to S2 � S1 or RP3 # RP3 . The existence of a stable immersed sphere with
embedded image S.t/ is obtained by –reduction [33]; furthermore, S.t/ has
area going to zero as t goes to T .
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� .M;g.t// contains T .t/, an �–tube or a C –capped �–tube (diffeomorphic
to RP3 minus a point), whose curvature at the end(s) is at most A but which
contains points whose scalar curvature goes to infinity as t approaches T .

In the second case, choose a sphere Z.t/ in T .t/, which is the central sphere of a strong
�–neck and has area going to zero if t is close to T . We can try to minimize its area
in T .t/ because the boundary component(s) of T .t/ have large area in comparison.
Actually Z.t/ is homologically nontrivial in T .t/ and one cannot reduce its area
to zero by isotopies. By deforming slightly the boundaries of T .t/ to make them
strictly mean convex, we can use –reduction again to find a stable immersed sphere
with embedded image S.t/. For times close to T , this minimal surface is far from
the boundaries where we deformed the metric by the monotonicity formula and the
geometry of the necks, so it is in fact minimal for the original metric g.t/ and

H2.S.t//�H2.Z.t//! 0 as t ! T:

Choose S.t/ to be of least area among stable immersed spheres with embedded image
at time t close to T . Notice that the scalar curvature on S.t/ is comparable everywhere
to the maximum of the scalar curvature on .M;g.t// by the choice of S.t/ and the
canonical neighborhood theorem. But it is known that for a Type I singularity the scalar
curvature blows up in 1=.T � t/ hence the area of S.t/ decreases to zero linearly and
the first part of the theorem is proved.

For the second part, we can argue as follows. Let pk 2 Sk be a point where the
scalar curvature achieves its minimum on Sk . Then, by [34, Theorem 11.19] and the
monotonicity formula, since the area of Sk converges to 0, R.pk ; sk/ goes to infinity.
By the area upper bound (depending on the scalar curvature) [32, Proposition A.1] and
curvature bound for stable spheres [41], by the classification of canonical neighborhoods
and their properties, for k large, Sk has to be a sphere or RP2 entirely contained in a
strong �–neck or in a .C; �/–cap diffeomorphic to RP3 minus a point. The area bound
from below for Sk implies that the scalar curvature on Sk is smaller than C 00=.T �sk/

for a certain constant C 00. The conclusion now follows from the “bounded curvature at
bounded distance” property [34, Chapter 10].

Remark 23 From the proof of the previous theorem, it becomes clear that when there
is a sequence of stable immersed spheres with embedded image Sk at times sk going
to T , with area converging to 0, then the minimum of the scalar curvature on these
spheres, minSk

R, goes to infinity and maxSk
R=minSk

R is bounded.
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4 Symmetry and nonappearance of stable spheres

In this section, we study under which symmetry assumptions one can rule out the
appearance of stable immersed spheres with embedded image along the Ricci flow. In
the case of a finite group G acting effectively by isometries on a 3–manifold, there is a
point p which is fixed only by the identity, and one can glue disjoint thin hooks at the
images of p under the elements of G, in an equivariant way. This gives a G–invariant
metric for which stable spheres appear along the Ricci flow. Hence, we will only focus
on positive-dimensional compact Lie groups. Consider .M;g/, an oriented connected
closed 3–manifold on which a d–dimensional compact Lie group G of isometries acts
effectively. Assume that

(i) d > 1, or

(ii) d D 1 and the action is free.

We will say that .M;g/ (as above) is rotationally symmetric if a subgroup G0 of G

is isomorphic to SO.3/ and there is a G0–invariant 2–sphere or RP2 embedded
in .M;g/. This amounts to saying that a cover of .M;g/ is a warped product I �S2

with fiber S2 , where I D R or I D Œ0; 1� (the warped product is then degenerate
at 0 and 1). In that case, M is diffeomorphic to S3 , RP3 , RP3 # RP3 or S2 �S1 .

Theorem 24 Let .M;g/ be as above. Suppose that it contains no stable immersed
spheres with embedded image. Then, along the Ricci flow starting at .M;g/, stable
immersed spheres with embedded image cannot appear.

Proof Let .M;g.t// for 0 � t � T with g.0/ D g be a solution of the Ricci flow
and suppose by contradiction that there is a stable immersed sphere with embedded
image S.t1/ in .M;g.t1//. By uniqueness of the Ricci flow, G still acts by isometries
on .M;g.t1//. For all V 2 g a vector in the Lie algebra of G, we define �V .s/ to be
the 1–parameter family of diffeomorphisms of G generated by the left-invariant vector
field corresponding to V . Note that for any V 2 g, the projection of

d.�V .s/:x/

ds
2 TxM; x 2 S.t1/;

on the normal bundle of S.t1/ is a Jacobi field JV . By stability either it is identically
zero or it does not vanish. Let us show that JV has to be zero. In the case where
S.t1/ is an RP2 it is clear since its normal bundle is nontrivial (M is oriented).
If S.t1/ is an embedded sphere and JV ¤ 0, then in a neighborhood of S.t1/,
f�V .s/:.S.t1//gs2Œ0;s0� foliates one side of S.t1/ as long as �V .s0/:.S.t1// does not
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touch �V .0/:.S.t1// from the other side. When it does so at s0 , by minimality, the two
surfaces coincide: �V .0/:.S.t1//D �V .s0/:.S.t1//. Since such an s0 > 0 exists in the
case where Jv is not identically zero, we deduce by connectedness and orientability
of M that M is an S2 �S1 , a contradiction since for topological reasons it always
contains a stable sphere.

We just proved that for all x 2 S.t1/, the vector X D d.�V .s/:x/=ds is tangent to
the sphere S.t1/ for all V 2 g. This means that G acts on S.t1/. Since any compact
1–dimensional group of isometries acting on a 2–sphere or RP2 fixes a point, G is of
dimension d > 1, so case (ii) is proved. For case (i), since G is of dimension greater
than 1 and acts effectively by isometries on a 2–sphere, the connected component G0

containing Id is isomorphic to the rotation group SO.3/. In other words, M is
rotationally symmetric and then the nonappearance of stable spheres along the Ricci
flow is reduced to an ODE argument. By [1, Theorem A], stable spheres invariant
under G0 cannot appear if there were none at the beginning and we can check that any
stable sphere, if it exists, is G0–invariant. The assumption that a stable sphere appears
is thus absurd. The situation for RP2 with stable oriented double cover is similar.

Remark 25 (i) The 3–dimensional (twisted) hooks defined in Section 2 have an
effective S1–action which is not free, so according to Theorem 24 these examples
where stable spheres appear have in some sense a maximal amount of symmetry.

(ii) A byproduct of the proof of Theorem 24 is that if .M;g/ (as above) contains
a stable immersed sphere with embedded image S and if .M;g/ is not rotationally
symmetric, then it is an S2 � S1 foliated by stable spheres which are images of S

under a family of isometries.

Lemma 26 Let .M;g/ be as above. If a Type II singularity occurs then .M;g/ is a
rotationally symmetric sphere or RP3 .

Proof Let t1 be the time of a Type II singularity. By [18], just before t1 , there is a
region of high scalar curvature which is a .C; �/–cap diffeomorphic to a 3–ball. By
[35, Lemma 14.3.11, Proposition 14.3.12], the action of H is equivariant to a linear
action and there is a fixed point. Consequently, H cannot be 1–dimensional by our
assumption on G , and M is a rotationally symmetric sphere or RP3 .

Because of the link between Type I singularities and stable spheres described in
Section 3, we readily obtain the following corollary.
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Corollary 27 Let .M;g/ be as above. The following hold along the Ricci flow:

(i) When M is a rotationally symmetric 3–sphere and does not contain stable
spheres, no nontrivial Type I singularity occurs.

(ii) When M is a rotationally symmetric RP3 and does not contain stable immersed
spheres with embedded image, no nontrivial Type I singularity occurs.

(iii) When M is rotationally symmetric and neither a 3–sphere nor an RP3 , no
Type II singularity occurs.

(iv) When M is not rotationally symmetric and a singularity occurs, it is a Type I
trivial singularity.

Proof The first item comes from Theorems 22 and 24, the second item is proved
in the same way considering a double cover. Lemma 26 yields the third item. For
the fourth item, a singularity must be of Type I by Lemma 26 and [18]. Let T be a
time of singularity. Suppose that the singularity is nontrivial, then by Theorem 22 and
Remark 25(ii), .M;g.t// is an S2 �S1 foliated by small spheres for all t close to T .
The curvature blows up everywhere in that case (see Remark 23), contradicting our
assumption and the corollary is verified.

A question still left unanswered is whether a Type II singularity can appear in the
case of item (i). In item (iii), the other kinds of singularities can occur. The first item
was proved in [22] for all dimensions. In the case of a free S1–action, it was already
suggested in [31, Remark 2.6] to combine the singularity analysis with the symmetry.
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