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Higher-order representation stability
and ordered configuration spaces of manifolds

JEREMY MILLER

JENNIFER C H WILSON

Using the language of twisted skew-commutative algebras, we define secondary
representation stability, a stability pattern in the unstable homology of spaces that
are representation stable in the sense of Church, Ellenberg and Farb (2015). We show
that the rational homology of configuration spaces of ordered points in noncompact
manifolds satisfies secondary representation stability. While representation stability
for the homology of configuration spaces involves stabilizing by introducing a point
“near infinity”, secondary representation stability involves stabilizing by introducing
a pair of orbiting points — an operation that relates homology groups in different
homological degrees. This result can be thought of as a representation-theoretic
analogue of secondary homological stability in the sense of Galatius, Kupers and
Randal-Williams (2018). In the course of the proof we establish some additional
results: we give a new characterization of the homology of the complex of injective
words, and we give a new proof of integral representation stability for configura-
tion spaces of noncompact manifolds, extending previous results to nonorientable
manifolds.
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1 Introduction

The objective of this paper is to introduce the concept of secondary representation
stability and prove that this phenomenon is present in the homology of the ordered
configuration spaces of a connected noncompact manifold. Church–Ellenberg–Farb [9]
proved that, in each fixed homological degree i , these homology groups are repre-
sentation stable: up to the action of the symmetric groups, the homology classes
stabilize under the operation of adding a point “near infinity”. In this paper, we exhibit
patterns between unstable homology groups in different homological degrees. We show
that certain sequences of unstable rational homology groups stabilize under the new
operation of adding pairs of points orbiting each other “near infinity”. We formalize
this secondary representation stability phenomenon using the theory of twisted skew-
commutative algebras.

1.1 Stability for configuration spaces

For a manifold M , let Fk.M / WD f.m1; : : : ;mk/ jmi 2M; mi ¤mj if i ¤ j g�M k

be the configuration space of k distinct ordered points in M . The symmetric group Sk

acts on Fk.M / by permuting the terms, and so induces a ZŒSk �–module structure on
the homology groups Hi.Fk.M //. Although these homology groups do not exhibit
classical homological stability as k increases, Church–Ellenberg–Farb [7; 9] showed
that they do stabilize in a certain sense as Sk –representations. To make this statement
of representation stability precise, we recall the definition of the stabilization map.
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Rn
M M

Figure 1: The embedding eW M tRn ,!M

Assume throughout that M is a connected noncompact n–manifold with n� 2. Since
M is not compact, there is an embedding eW M tRn ,!M such that ejM is isotopic
to the identity, as in Figure 1. Such an embedding exists, for example, by Kupers–Miller
[23, Lemma 2.4]. Using this embedding, we construct a map

t W Fk�1.M /! Fk.M /

which maps a configuration in M to its image in e.M /, and then adds a point labeled
by k in e.Rn/. This map is illustrated in Figure 2.

11
3 3

22
4

Figure 2: The stabilization map t W F3.M /! F4.M /

The following stability result is a consequence of work of Church–Ellenberg–Farb.

Theorem 1.1 (Church–Ellenberg–Farb [9, Theorem 6.4.3]) Let M be a connected,
orientable, noncompact n–manifold with n� 2. For i � 1

2
.k � 1/,

ZŒSk � � t�.Hi.Fk�1.M /IZ//DHi.Fk.M /IZ/:

In this paper, we consider a higher-order stabilization map, t 0 . Using the embedding e

we can also construct a map Fk�2.M /�F2.R
n/! Fk.M / which places two points

in e.Rn/, labeled by k�1 and k . This induces a map Ha.Fk�2.M //˝Hb.F2.R
n//!

HaCb.Fk.M //. We then define the stabilization map

t 0W Hi�1.Fk�2.M //!Hi.Fk.M //

by pairing a class in Hi�1.Fk�2.M // with the class in H1.F2.R
n// of the point

labeled by k orbiting the point labeled by k�1 counterclockwise, as in Figure 3. This
class is zero for n� 3, but is nonzero for nD 2. Note that this operation is symmetric
in k and k�1. While the classical stabilization map t� raises the number of points by
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Figure 3: The secondary stabilization map t 0W H1.F3.M //!H2.F5.M //

one and keeps homological degree constant, the map t 0 increases the number of points
by two and homological degree by one.

With the definition of t 0 , we can state the following version of our main theorem,
secondary representation stability for the rational homology of configuration spaces.
For this theorem we do not need to assume M is orientable, but we assume that our
manifold M is finite type (that is, the homotopy type of a finite CW complex) to ensure
that the rational homology groups of the configuration spaces are finite-dimensional.
Let N0 denote the set of nonnegative integers.

Theorem 1.2 Let M be a connected noncompact finite type n–manifold with n� 2.
There is a function r W N0!N0 tending to infinity such that for i � 1

2
.k � 1/C r.k/,

QŒSk � �
�
t�
�
Hi.Fk�1.M /IQ/

�
C t 0

�
Hi�1.Fk�2.M /IQ/

��
DHi.Fk.M /IQ/:

Up to the action of Sk , the homology group Hi.Fk.M /IQ/ is generated by the images
of t� and t 0 in a range. In other words, Theorem 1.1 says that when the homological
degree i is small enough relative to the number k of points, the group Hi.Fk.M /IQ/

is spanned by classes where at least one point is stationary “near infinity”. Theorem 1.2
says that there is a larger range in which the homology group is spanned by classes
where at least one point is stationary, or two points are orbiting each other “near
infinity”.

When dim.M /� 3, we will see that Theorem 1.2 implies an improved representation
stability range for the groups Hi.Fk.M /IQ/. For 2–manifolds, however, this result
is a novel form of stability among these homology groups.

Remark 1.3 The idea to study homological degree-shifting stabilization maps origi-
nated with the work of Galatius–Kupers–Randal-Williams [14; 15]. Their work gener-
alizes classical homological stability, whereas we generalize representation stability.
See also Hepworth [21, Theorems B and C] for a related result.

Geometry & Topology, Volume 23 (2019)
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1.2 Categorical reformulation

In order to prove Theorem 1.2, and interpret it within the broader field of representation
stability, we will reformulate the result in terms of finite generation of a module
over a certain enriched category (or equivalently as a module over a certain twisted
skew-commutative algebra). From this perspective, Theorem 1.2 becomes a structural
algebraic result on the homology of configuration spaces. We now review elements of
the theory of FI–modules.

FI–modules Let FI denote the category of finite sets and injective maps. An FI–
module (over a commutative unital ring R) is a covariant functor V from FI to the
category of R–modules.

Given an FI–module V , we write VS to denote the image of V on a set S , or for
k 2 N0 we let Vk denote the value of V on the standard set Œk� WD f1; : : : ; kg or
Œ0� WD¿. The endomorphisms EndFI.Œk�/ŠSk induce an action of Sk on Vk . The
FI–module structure on V is completely determined by these Sk –actions and the maps
Vk ! VkC1 induced by the standard inclusions Œk�� ŒkC 1�.

Given an FI–module V , the minimal generators H FI
0
.V/ of V are a sequence of Sk –

representations that we think of as encoding the “unstable” elements of V . In degree k ,
the Sk –representation H FI

0
.V/k is defined to be the cokernel

H FI
0 .V/k WD cokernel

� M
a2Œk�

VŒk�nfag! Vk

�
;

where the maps are induced by the natural inclusions Œk� n fag ,! Œk�. Minimal
generators should not necessarily be viewed as FI–module generators; in general they
are a quotient and not a subobject. They do, however, give a lower bound on the size
of a generating set. They are analogous to the indecomposable elements of an algebra
with respect to an augmentation. All morphisms that are not isomorphisms act by zero.

We say an FI–module V is generated in degree � d (or has generation degree � d ) if

H FI
0 .V/k Š 0 for k > d:

We say that V is finitely generated if
L

k�0 H FI
0
.V/k is finitely generated as an R–

module. Finite generation is equivalent to the condition that there is a finite subset ofL
k�0 Vk whose images under the FI morphisms generate

L
k�0 Vk as an R–module.

Geometry & Topology, Volume 23 (2019)
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The FI–modules central to this paper have additional structure: they are free FI–
modules in the sense of Definition 2.13. A free FI–module V admits natural splittings
H FI

0
.V/k ,!Vk , and in this case the images of minimal generators under these splittings

do give a canonical generating set for V . Free FI–modules are highly constrained;
all FI morphisms act by injective maps, and they are completely determined by their
minimal generators; see Theorem 2.16, quoting [9, Theorem 4.1.5].

Stability in the homology of configuration spaces Given a noncompact manifold M

of dimension at least 2 and i 2N0 , the i th homology groups fHi.Fk.M //g1
kD0

of the
configuration spaces have the structure of an FI–module, denoted Hi.F.M //, which
we now describe. We take homology with coefficients in a fixed commutative, unital
ring R unless otherwise stated. Given a finite set S , let FS .M / denote the space of
embeddings of S into M .

If jS j D k , a choice of bijection S Š Œk� gives a homeomorphism FS .M /Š Fk.M /.
Every injective map of sets f W S ,! T defines a map xf W FS .M /! FT .M /, as in
Figure 4. We use the injection S ,! T to relabel the configuration, and insert points
labeled by the elements of T nf .S/ in the image e.Rn/ of the embedding e .

1

3

21
2
3

a
b
cc
d

1

3

2

a

c
d

b
f W S ,! T

xf

Figure 4: The FI–module structure on Hi.F.M /IR/

Although the map xf depends on many choices, up to homotopy it only depends on
the isotopy class of the embedding e and the injection S ,! T , and so for a fixed
choice of embedding we obtain a well-defined FI–module structure on the homology
groups Hi.F.M //. In the language of FI–modules, Theorem 1.1 is the statement that
H FI

0
.Hi.F.M ///S vanishes when jS j> 2i . If M has finite type then the FI–module

Hi.F.M // is finitely generated. For k � 2i , every homology class in Hi.Fk.M // is
an R–linear combination of homology classes of the form of Figure 5: there are at
most 2i points moving around M in an i –parameter family, and the remaining points
remain fixed “near infinity”.

Church–Ellenberg–Farb showed that the homology groups of configuration spaces
Hi.F.M // are free FI–modules when M is noncompact [9, Definition 4.1.1 and
Section 6.4]. The Sk –representations H FI

0
.Hi.F.M ///k therefore determine all

Geometry & Topology, Volume 23 (2019)
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Figure 5: A stable homology class in H2.F.M //fa;b;c;d;e;f g

homology groups of Fk.M /; the objective of this paper is to achieve a better under-
standing of these groups.

Secondary representation stability In general there are no natural nonzero maps
from H FI

0
.Hi.F.M ///k to H FI

0
.Hi.F.M ///kC1 . However, t 0 induces a map

H FI
0 .Hi.F.M ///k !H FI

0 .HiC1.F.M ///kC2;

and our main result is a stability result with respect to this operation.

Given i � 0 and a finite set S , let WM
i .S/ be the sequence of minimal generators

WM
i .S/ WDH FI

0 .H 1
2
.jS jCi/.F.M /IR//S :

By convention, fractional homology groups are zero. Any injection S ,! T with
jT j � jS j D 2 induces a map WM

i .S/!WM
i .T /, as shown in Figure 6.

1

3

2
1
2
3

a
b
cc
d 3

2

a

c

d

b

e

e

gW S ,! T

g�

Figure 6: Stabilization by orbiting points

If jT j � jS j D 2d for d > 1, the data of the injection is not enough to define a map
WM

i .S/!WM
i .T /. In addition to the injection f W S ,! T , we choose a perfect

matching on the complement T n f .S/, that is, a partition of T n f .S/ into d sets of
size 2. This matching determines how the points will be paired. To specify the sign of
the resultant homology class, we then choose an orientation on the perfect matching;
see Definition 2.8. We define a stabilization map on the homology of FS .M / by
introducing these d pairs of orbiting points “near infinity”, as in Figure 7.

These operations and the Sk –actions give the sequences WM
i the structure of modules

over the twisted skew-commutative algebra
V
.Sym2 R/, or, equivalently, a module

over the enriched category FIMC of Definition 2.8. See work of Sam–Snowden [39; 40]
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Figure 7: The
V
.Sym2 R/–module structure on WM

i

and Nagpal–Sam–Snowden [29; 30] and Section 2.1 for more information on twisted
(skew-)commutative algebras. In this language, Theorem 1.2 can be formulated as
follows.

Theorem 1.4 If R is a field of characteristic zero and M is a connected noncompact
manifold of finite type and dimension at least two, then for each i � 0 the sequence of
minimal generators

WM
i .k/DH FI

0 .H 1
2
.kCi/.F.M /IR//k

is finitely generated as a
V
.Sym2 R/–module.

We call this finite generation result secondary representation stability. This im-
plies that there is some number Ni such that for any k the minimal generators
H FI

0
.H 1

2
.iCk/.F.M ///k are spanned by classes of the form given in Figure 8, where

all but at most Ni many points move in orbiting pairs “near infinity”. For connected,
noncompact surfaces, representation stability is shown graphically in Figure 9, and
secondary representation stability in Figure 10.

c
e

d a

b f

Figure 8: A secondary stable class in H FI
0
.H4.F.M ///fa;b;c;d;e;f g

Viewing these homology groups as a
V
.Sym2 R/–module and drawing on the theory

of twisted skew-commutative algebras, we can prove a version of the main theorem
that establishes isomorphisms instead of just surjections.

Corollary 1.5 Let R be a field of characteristic zero. For k sufficiently large com-
pared to i , WM

i .k/ is isomorphic to the quotient of IndSk

Sk�2�S2
WM

i .k � 2/�R by

Geometry & Topology, Volume 23 (2019)
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homological
degree i

FI degree k

i D k
i D 1

2
k

homology
vanishes

FI–module Hi.F.M /IR/
stable range

Figure 9: The FI–modules Hi.F.M /IR/ for a noncompact connected sur-
face M

homological
degree i

FI degree k

i D k

i D 1
2
k

homology vanishes
(above homological

dimension)

minimal generators vanish
(rep stability range)

module H FI
0
.H 1

2
.kCj/

.F.M /IR//k

secondary rep stability range
(precise bounds not known)

Figure 10: The minimal generators H FI
0 .Hi.F.M ///k for a noncompact

connected surface M

the image of the sum of the two natural maps

IndSk

Sk�4�S2�S2
.WM

i .k � 4//�R�R � IndSk

Sk�2�S2
.WM

i .k � 2//�R:

Here R represents the trivial S2 –representation.

Concretely, this says that, in the stable range, H FI
0
.H 1

2
.kCi/.F.M /IR//k is the co-

equalizer of the (appropriately signed) maps

IndSk

Sk�4�S2�S2
H FI

0 .H 1
2
.kCi/�2.F.M /IR//k�4�R�R

� IndSk

Sk�2�S2
H FI

0 .H 1
2
.kCi/�1.F.M /IR//k�2�R:

In particular, the representations WM
i .k � 4/ and WM

i .k � 2/ together with the maps
WM

i .k � 2/!WM
i .k � 4/ completely determine the representations WM

i .k/ in the
stable range. This corollary can be viewed as a secondary version of central stability in

Geometry & Topology, Volume 23 (2019)



2528 Jeremy Miller and Jennifer C H Wilson

the sense of Putman [33]. The stability range where the isomorphisms of Corollary 1.5
hold is typically smaller than the surjectivity range of Theorem 1.4.

If M is at least three-dimensional, then the maps

IndSk

Sk�2�S2
WM

i .k � 2/�R ! WM
i .k/

are both zero and surjective in a range. Hence, WM
i .k/ vanishes for k sufficiently

large, and secondary representation stability is the statement that Hi.Fk.M // is
representation stable in an improved range. In Theorem 3.27 we prove explicit stability
bounds for these homology groups with integral coefficients.

For surfaces, however, the groups WM
i .k/ are generally nonzero as k tends to infinity.

For example, WR2

i .2kC i/ is a sequence of free abelian groups whose ranks grows
superexponentially in k ; see Proposition 3.33. In Section 3.6, we formulate some
conjectures for tertiary and higher-order stability.

Since it was first observed that FI–modules could be interpreted in the language of TCAs
(Definition 2.4), it has been an open question (see Part 4 of Motivation 1.2 of [29]) if
algebraic properties of more general (skew-)TCAs would have applications to topology
in a similar fashion to the theory of FI–modules. Our paper represents one of the first
examples of such an application.

The proof of secondary representation stability The proof of Theorem 1.4 involves
the analysis of a semisimplicial space, the arc resolution of Fk.M /, described in
Section 3.2. In Section 3.3, we compute certain differentials in spectral sequences
associated to the arc resolutions, which we use to prove the desired finiteness properties
of the sequences WM

i in Section 3.4. The algebraic underpinnings of our proof of
secondary representation stability is developed in Section 2, and draws on the theory
of FI–modules introduced by Church–Ellenberg–Farb [9], the central stability complex
introduced by Putman in [33], and the theory of twisted skew-commutative algebras.
In particular, our proof relies on the Noetherian property for

V
.Sym2 R/–modules

established by Nagpal–Sam–Snowden [30, Theorem 1.1].

This Noetherian property for
V
.Sym2 R/–modules is currently only known when R

is a field of characteristic zero. If it were possible to prove this result over more general
commutative unital rings R, then (with a modification of our Proposition 3.23) our
proof would establish our main results, Theorem 1.2, Theorem 1.4, and Corollary 1.5,
over these rings. Some conjectural generalizations and strengthenings of Theorem 1.4
are discussed in Section 3.6.

Geometry & Topology, Volume 23 (2019)
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1.3 Other results

In the process of establishing secondary representation stability for configuration spaces,
we prove some other results which may be of independent interest. In particular, we
prove new representation stability results for the homology of configuration spaces,
and we give a new Lie-theoretic description of the top homology group of the complex
of injective words.

The homology of the complex of injective words The complex of injective words
Inj
�
.k/ on the set Œk� is a semisimplicial set which was used by Kerz [22] to give

a new proof of homological stability for the symmetric groups; see Definition 2.17.
It has found application in algebraic topology, representation theory, and algebraic
combinatorics. The complex of injective words has only one nonvanishing reduced
homology group, a subgroup of the free abelian group on the set of k –letter words on
the set Œk�. In Section 2.3, we describe an explicit basis for this group that resembles
the Poincaré–Birkhoff–Witt basis for the free Lie superalgebra on Œk�. The following
result may be viewed as an analogue of the Solomon–Tits theorem [43] for the complex
of injective words.

Theorem 2.40 The reduced integral homology group zHk�1.kInj
�
.k/k/ is the sub-

module of the free associative algebra on the set Œk� generated by products of iterated
graded commutators where every element of Œk� appears exactly once. An explicit
Z–module basis for this group is given in Lemma 2.38.

Primary representation stability for configuration spaces The work of Church,
Ellenberg, Farb and Nagpal [7; 9; 10] on representation stability for configuration spaces
uses Totaro’s spectral sequence [45], which assumes that the manifold is orientable. We
remove this assumption by giving an entirely different proof of representation stability
for configuration spaces; see also Palmer [31, Remark 1.8] and Casto [6, Corollary 3.3].
Following methods of Putman [33] on congruence subgroups, we adapt Quillen’s
approach to homological stability to prove representation stability.

Theorems 3.12 and 3.27 Let M be a connected noncompact manifold of dimension
n� 2. Then:

(a) H FI
0
.Hi.F.M /IZ//k Š 0 for k > 2i .

(b) Suppose M has dimension at least 3. Then H FI
0
.Hi.F.M /IZ//k Š 0 for k > i .

Geometry & Topology, Volume 23 (2019)
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2 Algebraic foundations

The goal of this section is to lay the algebraic groundwork necessary to state and prove
the main theorem. We begin, in Section 2.1, with a review of FI–modules and their
generalizations, modules over a twisted (skew-)commutative algebra. This provides
a very general context for formulating representation stability for sequences of Sk –
representations. We then discuss the relationship between Putman’s central stability
chain complex [33] and Farmer’s complex of injective words [13] in Section 2.2. In
Section 2.3, we give a new description of the homology of the complex of injective
words. In Section 2.4, we conclude with an analysis of a generalization of the central
stability chain complex for FIMC–modules. These chain complexes will appear in
Section 3 on the pages of the arc resolution spectral sequence, a spectral sequence we
use to prove secondary representation stability for configurations spaces.

2.1 Review of twisted (skew-)commutative algebras

Throughout this paper, we fix a commutative unital ring R. All homology groups will
be assumed to have coefficients in R, all tensor products will be taken over R, and so
forth, unless otherwise specified.

Definition 2.1 Let FI be the category whose objects are finite (possibly empty) sets
and whose morphisms are injective maps. Let FB be the category of finite sets and
bijective maps.

Geometry & Topology, Volume 23 (2019)
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Definition 2.2 Let C be a category. A C–module .over the ring R / is a covariant
functor from C to R–Mod, the category of R–modules. A C–space is a covariant
functor from C to the category of topological spaces and a homotopy C–space is
a covariant functor from C to the homotopy category of topological spaces. Co-C–
modules and (homotopy) co-C–spaces are the corresponding contravariant functors.

Recall that we denote the value of an FB– or FI–module V on a set S by VS (or possibly
V.S/ in instances where V has other subscripts). When S is the set Œk�Df1; 2; : : : ; kg,
we write Vk or V.k/.

The category of FI–modules studied by Church–Ellenberg–Farb [9] was later understood
to be an example of a category of modules over a twisted commutative algebra (TCA).
We will use the theory of (skew-)TCAs to define secondary representation stability,
and we summarize the relevant aspects of this theory here.

Definition 2.3 Let V and W be FB–modules. The Day convolution of two FB–
modules V and W is the FB–module defined by the formula

.V˝FB W/S WD
M

AtBDS

VA˝VB:

This product is symmetric monoidal with symmetry � W V˝FB W!W˝FB V induced
by the canonical bijection AtB! B tA.

Definition 2.4 A (skew-)twisted commutative algebra is a (skew-)commutative unital
monoid object in the category of FB–modules with Day convolution. A module over
a twisted (skew-)commutative algebra is a module object over the associated monoid
object.

See Sam–Snowden [39, Section 8] for more details.

Definition 2.5 Let
T W FB–Mod! FB–Mod

be given by the formula
.T V/ WD

M
k

.V˝FB k/:

For the same reasons that tensor algebras are unital rings, this is a unital monoid object
with respect to the Day convolution. In particular, there is a natural multiplication map
�W T V˝FB T V! T V:

Geometry & Topology, Volume 23 (2019)



2532 Jeremy Miller and Jennifer C H Wilson

Definition 2.6 Let TCA denote the category of twisted commutative algebras over R,
and let STCA denote the category twisted skew-commutative algebras over R. Let
SymW FB–Mod! TCA be given by the formula

SymV WD cokernel.�� � ı�W T V˝FB T V! T V/;

and let
V
W FB–Mod! STCA be given by the formulaV

V WD cokernel.�C � ı�W T V˝FB T V! T V/;

where the multiplication is induced by the monoid structure on T V . Let Symk V
or
VkV denote the image of V˝FB k in SymV or

V
V , respectively.

The TCA Sym.Sym1R/ is the FB–module with a rank-1 trivial Sk –representation
R in every degree, and all multiplication maps given by the canonical isomorphisms
R˝RŠR. The data of a module over Sym.Sym1R/ is equivalent to an FI–module V
over R. See Sam–Snowden [39, Section 10.2].

The TCA Sym.Sym2R/ is generated by

Sym.Sym2R/fa;bg ŠRhxa;b j xa;b D xb;ai:

The multiplication map is given by multiplication of (commutative) monomials in the
variables xa;b , with the caveat that by definition we must take the disjoint union of
the indices of each factor. For this reason Sym .Sym2R/S is not simply a polynomial
algebra on variables of the form xa;b ; the indices of any monomial are all distinct
by construction. Modules over Sym .Sym2R/ are equivalent to modules over the
combinatorial category FIM we now define; see also Sam–Snowden [40, Section 4.3].

Definition 2.7 A matching of a set B is a set of disjoint 2–element subsets of B ,
and a matching is a perfect matching if the union of these subsets is B . Let FIM be
the category whose objects are finite sets and whose morphisms are injective maps
f W S ,! T together with the data of a perfect matching of the complement T nf .S/

of the image. Composition of morphisms is defined by composing injective maps and
taking the union of one matching with the image of the other.

The skew-TCA
V
.Sym2R/ is generated by

V
.Sym2R/fa;bg . In general, for sets S

of even parity the group
V
.Sym2R/S is spanned by anticommutative monomials with

distinct indices

xa1;b1
� � �xad ;bd

such that S D fa1; b1; : : : ; ad ; bdg:
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The category of modules over
V
.Sym2R/ cannot be encoded as a functor category to

R–Mod; however,
V
.Sym2R/–modules are equivalent to modules over an enriched

category which we denote by FIMC .

Definition 2.8 Let FIMC be the following category enriched over R–Mod. The
objects are finite sets. The module of morphisms between sets of different parity is the
R–module 0. Between sets Œa�2b� and Œa�, the module of morphisms is the following
quotient:

R
˝
.f W Œa� 2b�! Œa�;A1;A2; : : : ;Ab/

ˇ̌
f is injective; jAi j D 2; Œa�D im.f /tA1 t � � � tAb

so fAig is an ordered perfect matching on Œa� n im.f /
˛

h.f;A1;A2; : : :Ab/D sign.�/.f;A�.1/;A�.2/; : : : ;A�.b// for all � 2Sbi

.

In other words, when k � m .mod 2/, the morphisms from Œk� to Œm� are the free
R–module on the set of all injective maps Œk� ,! Œm� along with a perfect matching on
the complement of the image. These perfect matchings are oriented and reversing the
orientation gives a sign. We denote a free generator of the morphisms by

F D .f;A1 ^A2 ^ � � � ^Ab/:

The composition of the maps

F D .f;A1 ^A2 ^ � � � ^Ab/ and G D .g;C1 ^C2 ^ � � � ^Cd /

is given by the map

G ıF WD .g ıf;C1 ^C2 ^ � � � ^Cd ^g.A1/^g.A2/^ � � � ^g.Ab//:

Definition 2.9 Let C be a category enriched over R–Mod. We define a C–module to
be an enriched functor from C to R–Mod.

We now extend the definition of H FI
0

to modules over a general (skew-)TCA.

Definition 2.10 Let V be a module over a (skew-)TCA A. Let HA
0
.V/S be the

quotient

HA
0 .V/S WD cokernel

� M
SDPtQ;P¤¿

AP ˝VQ! VS

�
:

The R–modules HA
0
.V/S assemble to form an FB–module. We say that V is finitely

generated if
L1

kD0 HA
0
.V/k is finitely generated as an R–module.
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We often replace the superscript A in the notation HA
0
.V/ with the corresponding

category. Following Church–Ellenberg [8], we use the following terminology.

Definition 2.11 Let V be an A–module with A a (skew-)TCA. We say that degV � d

if Vk D 0 for all k > d . We say V is generated in degrees � d if deg HA
0
.V/� d .

The following Noetherianity result of Nagpal–Sam–Snowden [30, Theorem 1.1] is key
to our understanding of FIMC–modules, and, equivalently, of

V
.Sym2R/–modules.

Theorem 2.12 (Nagpal–Sam–Snowden [30, Theorem 1.1]) Let R be a field of
characteristic zero. Any submodule of a finitely generated module over

V
.Sym2R/ is

finitely generated.

A similar Noetherian property holds for FI–modules; see Snowden [42, Theorem 2.3],
Church–Ellenberg–Farb [9, Theorem 1.3] and Church–Ellenberg–Farb–Nagpal [10,
Theorem A].

Definition 2.13 Let A be a (skew-)TCA. We define

M A
W FB–Mod!A–Mod

via the formula
M A.V/ WDA˝FB V:

The A–module structure on M A.V/ is induced by the map A˝FB A!A. We call
modules of the form M A.V/ free A–modules. Given an RŒSd �–module W , we
define M A.W / by viewing W as the FB–module with module W in degree d and
0 in all other degrees. We let M A.d/ WD M A.RŒSd �/. We will often replace the
superscript A with its corresponding category, and (following Church–Ellenberg–Farb
[9, Definition 2.2.2]) simply write M for M FI .

We now give another description of M A.d/ for the (skew)-TCAs of interest.

Proposition 2.14 There is a natural isomorphism of functors

M FIMC.d/ and RŒHomFIMC.Œd �;�/�:

Similarly, there is a natural isomorphism of functors

M FI.d/ and RŒHomFIMC.Œd �;�/�:
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Proof Both pairs of functors are left adjoint to the forgetful functor A–Mod !
FB–Mod for AD

V
Sym2R or AD Sym Sym1R.

See Proposition 3.38 for an explicit description of M FIMC.W / as induced representa-
tions. Using the fact that M.W / is a left Kan extension, Church, Ellenberg and Farb
observed that, given an Sd –representation W , the free FI–module M.W / satisfies

M.W /k Š
M

A�Œk�; jAjDd

W Š IndSk

Sd�Sk�d
W �R;

where R denotes the trivial Sk�d –representation. These authors prove that the free
FI–modules M.W / can be promoted to modules over the larger category FI], which
we define as follows.

Definition 2.15 Define a based injection f W S0 ! T0 between two based sets S0

and T0 to be a based map such that jf �1.fag/j � 1 for all elements a 2 T0 except
possibly the basepoint. Let FI] be the category whose objects are finite based sets and
whose morphisms are based injections.

The category defined in Definition 2.15 is isomorphic to the category called FI] by
Church–Ellenberg–Farb [9, Definition 4.1.1]. The operation of adding a basepoint
gives an embedding of categories FI� FI]. Hence an FI]–module is an FI–module
with additional structure and constraints; notably, the FI morphisms have one-sided
inverses and so must act by injective maps. These backwards maps give FI]–modules
the structure of co-FI–modules, and we may view FI]–modules as co-FI–modules with
a compatible FI–module structure. The following result of Church, Ellenberg and Farb
gives a classification of FI]–modules: they are precisely the free FI–modules. They
show moreover that the functors M W FB–Mod! FI]–Mod and H FI

0
W FI]–Mod!

FB–Mod are inverses, and define an equivalence of categories.

Theorem 2.16 (Church–Ellenberg–Farb [9, Theorem 4.1.5]) An FI–module V is the
restriction of an FI]–module if and only if it is free, in which case it is the restriction of a
unique FI]–module. In particular, for an FI]–module V , there is a natural isomorphism

V Š
1M

kD0

M.H FI
0 .V/k/:

Theorem 2.16 implies that an FI]–module V is completely determined by its minimal
generators.
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2.2 Twisted injective word complexes

Putman [33] defined a chain complex associated to a sequence of Sk –representations
called the central stability chain complex. This chain complex arises as the E1 –page
of a certain spectral sequence, and its homology is the E2 –page. Natural analogues of
the chain complex exist when the symmetric groups are replaced by other families of
groups such as general linear groups. See for example Putman–Sam [34, Section 5.3].
In the context of FI–modules, we show that this chain complex is closely related to
the complex of injective words and accordingly we will denote the complex using the
notation Inj. We first recall the definition of the complex of injective words.

Definition 2.17 For a set S and an integer i��1, let Inji.S/ WDHomFI.f0; : : : ; ig;S/.

For a fixed set S , Inj
�
.S/ has the structure of an augmented semisimplicial set. The face

map dj acts by precomposition with the order-preserving injective map f0; : : : ; i�1g!

f0; : : : ; ig that misses the element j . Farmer [13] proved the following result on the
connectivity of kInj

�
.S/k.

Theorem 2.18 (Farmer [13]) The geometric realization kInj
�
.S/k is .jS j�2/–con-

nected.

Since kInj
�
.S/k has dimension jS j�1, the reduced homology of kInj

�
.S/k is concen-

trated in dimension jS j � 1. We now recall Putman’s central stability chain complex,
which we view as a twisted version of the complex of injective words.

Definition 2.19 For a set S , an FI–module V and an integer i � �1, let

Inji.V/S WD
M

f W f0;:::;ig,!S

VSnim.f /:

These groups assemble into an augmented semisimplicial FI–module Inj
�
.V/. Let

Inj�.V/ denote the associated FI–chain complex. When V is the FI–module M.0/,
for a set S the complex Inj�.V/S is precisely the chain complex associated to the
augmented semisimplicial set Inj

�
.S/.

Remark 2.20 Given an FI–module V , the chain complex Inj�.V/ has appeared in the
literature under a variety of different notations, and frequently with a shift in indexing.
It is closely related to Putman’s chain complex IA�C1.Vn���1/ [33, Section 4], and
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the complexes computing FI–homology in work of Church, Ellenberg, Farb and Nagpal
[9; 10; 8] and Gan and Li [16; 17]. The complex Inj�.V/ itself is denoted by B�C1.V/
in Church–Ellenberg–Farb–Nagpal [10, Definition 2.16], by †�C1.V/ in Putman–Sam
[34, Section 3], by zC FV

�C1
in Church–Ellenberg [8, Section 5.1], and by zC 1

�V in Patzt
[32, Definition 2.5]. We apologize for adding yet another name for this chain complex.

The goal of this subsection is to compute the homology of this chain complex on
FI]–modules.

Remark 2.21 Suppose that V is an FI–module such that Vk D 0 for all k < d .
By Definition 2.19, Inji.V/S D 0 whenever jS j � i � 1< d .

Remark 2.22 It follows from the definition of Inji.V/k that there is an isomorphism
of Sk –representations

Inji.V/k Š IndSk

Sk�i�1
Vk�i�1:

In particular, for the FI–module M.d/ there is an isomorphism of Sk –representations

Inji.M.d//k ŠM.d C i C 1/k :

Given an Sd –representation W , there is an isomorphism of Sk –representations

Inji.M.W //k ŠM.IndSdCiC1

Sd
W /k :

Lemma 2.23 There is an isomorphism of Sn –representations

H�.Inj�.M.d///n Š zH�

�W
g2HomFI.Œd �;Œn�/kInj

�
.Œn�� im.g//k

�
:

Proof This follows from the existence of a natural isomorphism of chain complexes
between Inj�.M.d//n and the direct sum over g 2 HomFI.Œd �; Œn�/ of the reduced
cellular chains of kInj

�
.Œn�� im.g//k.

Theorem 2.24 Let W be an integral representation of Sd . There is an isomorphism

Hi.Inj�.M.W ///S Š
�
Hi.Inj�.M.d///˝ZŒSd �W

�
S
:

In general, given an FI]–module V ,

Hp.Inj�.V//k D IndSk

SpC1�Sk�p�1
Hp.Inj�.pC 1//� .H FI

0 .V//k�p�1:
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Proof Recall that M.W /ŠM.d/˝ZŒSd �W . Then

Inj�.M.W //S Š Inj�.M.d//S ˝ZŒSd �W:

The homological Künneth spectral sequence (see Rotman [38, Theorem 10.90], for
example) is a first-quadrant spectral sequence

E2
p;q D TorZŒSd �

p

�
Hq.Inj�.M.d///S ;W

�
:

Since the ZŒSd �–modules Injq.M.d//S are flat, the spectral sequence converges to
HpCq.Inj�.M.W ///S . Theorem 2.18 and Lemma 2.23 imply that E2

p;qD 0 except for
q D jS j � 1� d . Since the E2

p;q –page has only a single nonzero column, the spectral
sequence collapses on this page. The limit is nonzero only when i � .jS j � 1� d/,
and in this case we see that

Hi.Inj�.M.W ///S Š TorZŒSd �

i�.jS j�1�d/

�
HjS j�1�d .Inj�.M.d///S ;W

�
:

On the other hand, M.W /kD0 for k<d , so by Remark 2.21, Hi.Inj�.M.W ///S D0

whenever i > jS j � d � 1.

Thus this spectral sequence has a single nonzero entry. The homology groups

Hi.Inj�.M.W ///S

are nonzero only in degree i D jS j � 1� d , in which case we have

HjS j�1�d .Inj�.M.W ///S Š TorZŒSd �
0

�
HjS j�1�d .Inj�.M.d///S ;W

�
Š
�
HjS j�1�d .Inj�.M.d///˝ZŒSd �W

�
S
:

Theorem 4.1.5 of [9] (here Theorem 2.16) implies that every FI]–module is a direct
sum of modules of the form M.W /. Additionally, for an Sd –representation W ,
H FI

0
.M.W //d Š W and H FI

0
.M.W //i Š 0 for i ¤ d . These two facts imply the

general result.

We obtain the following corollary.

Corollary 2.25 Let V be an FI]–module with generation degree � d . Then for
i � jS j � 2� d , Hi.Inj�.V//S D 0.

Unwinding definitions gives the following.

Proposition 2.26 For any FI–module V , H�1.Inj�.V//S ŠH FI
0
.V/S .
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2.3 Homology of the complex of injective words

In the previous subsection, we computed the homology of the injective words chain
complex of an FI]–module in terms of the top homology group of the complex of
injective words. We now will show that this top homology group is a certain space of
products of graded Lie polynomials, and compute a basis.

Throughout this section we let C
.k/
� denote the reduced cellular chains on the semisim-

plicial space Inj
�
.k/. In the language of the previous subsection, C

.k/
� WD Inj�.M.0//k .

For q ��1, the group C
.k/
q is the free abelian group on words of qC1 distinct letters

in Œk�. By Theorem 2.18, this chain complex has only one nonvanishing homology
group, in homological degree k � 1.

Definition 2.27 Let Tk WDHk�1.C
.k/
� /Š zHk�1.kInj

�
.k/k/.

The symbol T stands for “top homology group”. Since C
.k/

k
D 0, the homology group

Tk is a submodule of C
.k/

k�1
, the kernel of the differential

D WD

k�1X
jD0

.�1/j dj W C
.k/

k�1
! C

.k/

k�2
;

where dj is the face map that forgets the j th letter of each word. The top chain group
C
.k/

k�1
is naturally isomorphic to the regular representation ZŒSk �, with a Z–basis

given by all injective words on k letters in Œk�. The main objective of this section
is to compute an alternate Z–basis for C

.k/

k�1
in the style of the Poincaré–Birkhoff–

Witt theorem (Theorem 2.35), and identify a subbasis that spans the kernel of D

(Lemma 2.38 and Theorem 2.40). The result of this calculation is shown explicitly for
k D 2; 3; 4 in the Example 2.31.

We adopt the following notational conventions. If a is a word in the alphabet Œk�, then
in this section we write jaj to mean the word-length of a. If p is an integer linear
combination of words, we call p a (noncommutative) polynomial in Œk�, and define
its degree jpj to be the length of the longest word occurring in p . Polynomials are
assumed to be homogeneous unless otherwise stated. For words a and b , we write ab

to denote their concatenation; this operation extends linearly to a multiplication on the
additive group of polynomials in Œk�. A word is injective if each letter appears at most
once. We introduce a graded Lie bracket on polynomials in Œk�.
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Definition 2.28 Define a graded Lie bracket on words in Œk� by

Œa; b� WD ab� .�1/jajjbjba

and extend bilinearly to a bracket on the free abelian group on words in Œk�.

On homogeneous polynomials a, b and c , the Lie bracket satisfies the graded anti-
symmetry rule

Œa; b�D�.�1/jajjbjŒb; a�

and the graded Jacobi identity

.�1/jajjcjŒa; Œb; c� �C .�1/jajjbjŒb; Œc; a� � �C .�1/jbjjcjŒc; Œa; b� �D 0:

Definition 2.29 A Lie polynomial is any element of the smallest submodule of the
free abelian group on words in Œk� that contains the elements of Œk� and is closed under
the Lie bracket.

The space of Lie polynomials is isomorphic to the free Lie superalgebra on Œk�. This
space naturally embeds into the free abelian group of words on Œk�, which, by a graded-
commutative version of the Poincaré–Birkhoff–Witt theorem, we can identify with its
universal enveloping algebra. The following result appears in Ross [37, Theorem 2.1];
see also Musson [28, Theorem 6.1.1].

Theorem 2.30 (see eg Ross [37, Theorem 2.1]) Let R be a commutative ring with
unit such that 2 is invertible. Let L be a homogeneously free Lie superalgebra over R

with homogeneous bases X0 for its even-graded part and X1 for its odd-graded part. If
� is a total order on X DX0[X1 , then the set of monomials

fb1b2 � � � bm j bi 2X; bi � biC1; and bi ¤ biC1 if bi 2X1g

and 1 form a free R–basis for the universal enveloping algebra U.L/.

We remark that this set of monomials is not a basis when R is Z. In the case of the
free Lie superalgebra on Œk�, this failure is in some sense due to factors of two that
appear with (nested) brackets involving repeated letters; for example, Œ1; 1�D 11C 11.
Fortunately for our purposes, we will show in Theorem 2.35 that those basis elements
for which every letter is distinct do form an integer basis for C

.k/

k�1
. The following

example illustrates the main result of this subsection, the bases for C
.k/

k�1
and the top

homology group for small k .
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Example 2.31 When k D 2; 3 or 4, Theorems 2.35 and 2.40 give the following
Z–bases for the chain group C

.k/

k�1
and the top homology group Hk�1.C

.k/
� /. (Here

we have taken the graded lexicographical ordering on the set B of Theorem 2.35.)

The Z–basis for the rank-2 group C
.2/
1

is fŒ1; 2�; 12g, and H1.C
.2/
� / is the rank-one

subgroup spanned by Œ1; 2�D 12C 21. This is the trivial S2 –representation.

The basis for C
.3/
2

is

ŒŒ1; 2�; 3�; ŒŒ1; 3�; 2�; 1Œ2; 3�; 2Œ1; 3�; 3Œ1; 2�; 123;

and H2.C
.3/
� / is the rank–two subgroup spanned by

ŒŒ1; 2�; 3�D 123C 213� 312� 321; ŒŒ1; 3�; 2�D 132C 312� 213� 231;

isomorphic to the standard S3 –representation.

The basis for C
.4/
3

is

ŒŒŒ1; 2�; 3�; 4�; ŒŒŒ1; 2�; 4�; 3�; ŒŒŒ1; 3�; 2�; 4�; ŒŒŒ1; 3�; 4�; 2�; ŒŒŒ1; 4�; 2�; 3�; ŒŒŒ1; 4�; 3�; 2�;

Œ1; 2�Œ3; 4�; Œ1; 3�Œ2; 4�; Œ1; 4�Œ2; 3�;

1ŒŒ2; 3�; 4�; 1ŒŒ2; 4�; 3��; 2ŒŒ1; 3�; 4�; 2ŒŒ1; 4�; 3�; 3ŒŒ1; 2�; 4�; 3ŒŒ1; 4�; 2�;

4ŒŒ1; 2�; 3�; 4ŒŒ1; 3�; 2�;

12Œ3; 4�; 13Œ2; 4�; 14Œ2; 3�; 23Œ1; 4�; 24Œ1; 3�; 34Œ1; 2�;

1234:

The top homology group H3.C
.4/
� / is the rank-nine free abelian group on the elements

ŒŒŒ1; 2�; 3�; 4�; ŒŒŒ1; 2�; 4�; 3�; ŒŒŒ1; 3�; 2�; 4�; ŒŒŒ1; 3�; 4�; 2�; ŒŒŒ1; 4�; 2�; 3�; ŒŒŒ1; 4�; 3�; 2�;

Œ1; 2�Œ3; 4�; Œ1; 3�Œ2; 4�; Œ1; 4�Œ2; 3�:

In general, the homology group will consist of all the basis elements that consist of a
product of brackets, that is, the basis elements that contain no singleton factors.

We now introduce notation for the free Lie superalgebra, which we will view as a
submodule of C

.k/

k�1
.

Definition 2.32 For a finite set S with jS j � 2, let LS denote the subset of homoge-
neous degree-jS j Lie polynomials whose terms are all injective words in S . We write
Lk when S D Œk�. It is spanned by .k�1/–fold iterated brackets such that each letter
in Œk� appears exactly once. We define LS D 0 if S has one or zero elements.
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For example, L2 Š T2 is the rank-1 abelian group with basis Œ1; 2� D 12C 21, and
L3 Š T3 is the rank-2 abelian group spanned by the elements Œ1; Œ2; 3��; Œ2; Œ1; 3�� and
Œ3; Œ1; 2��, which (by the Jacobi identity) sum to zero. The group L4 ¨ T4 is the rank-6
abelian group spanned by the Lie polynomials

ŒŒŒ1; 2�; 3�; 4�; ŒŒŒ1; 2�; 4�; 3�; ŒŒŒ1; 3�; 2�; 4�; ŒŒŒ1; 3�; 4�; 2�; ŒŒŒ1; 4�; 2�; 3�; ŒŒŒ1; 4�; 3�; 2�:

We give a basis for Lk using a graded-commutative variation on an argument appearing
in Reutenauer [36, Section 5.6.2].

Theorem 2.33 (compare to Reutenauer [36, Section 5.6.2]) The abelian group Lk is
free of rank .k � 1/! with a Z–basis given by all elements of the form

Œ Œ Œ Œ � � � Œ1; a2�; a3�; : : : �; ak�1�; ak �

for any ordering .a2; a3; : : : ; ak/ of the set f2; 3; : : : kg.

More generally, for S � Œk�, we define the Reutenauer basis for LS to be the .jS j�1/!

elements as above with the letter 1 replaced by the smallest element of S under the
natural ordering on Œk�.

Proof As in Reutenauer’s proof, we may inductively apply the antisymmetry and
Jacobi relations

Œ1; ŒP;Q��D .�1/jQjjP jC1ŒŒ1;Q�;P �C ŒŒ1;P �;Q�

to write any element in Lk as a linear combination of these generators. The generators
must be linearly independent over Z, since ŒŒŒŒ� � � Œ1; a2�; a3�; : : :�; ak�1�; ak � is the only
Lie polynomial in the list whose expansion includes the word 1a2a3 : : : ak . We note
that this last observation also implies that these elements span a direct summand
of C

.k/

k�1
, and not a higher-index subgroup of a direct summand.

Corollary 2.34 The exponential generating function for the sequence `k WD rank.Lk/

is

L.x/D�log.1�x/�xD 1!
x2

2!
C 2!

x3

3!
C 3!

x4

4!
C 4!

x5

5!
C � � � :

In the spirit of the PBW theorem, we will now construct a new basis for the free
Z–module C

.k/

k�1
using the bases defined in Theorem 2.33. Our eventual goal is to

prove that a certain subset of this basis spans the top homology group of the complex
of injective words.
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Theorem 2.35 Fix k � 2. For each subset S � Œk� with jS j � 2, let BS be the basis
of LS of Theorem 2.33. For each singleton subset S D fag � Œk�, let BS D fag. Put a
total order � on B D

F
S�Œk�BS . Then the set … of polynomials

fP1P2 � � �Pm j Œk�D S1 tS2 t � � � tSm; Pi 2 BSi
; and P1 < P2 < : : : < Pm 2 Bg

is a Z–basis for C
.k/

k�1
.

Proof The set … is a subset of the basis given in Ross [37, Theorem 2.311]; the
elements of … are linearly independent over Z

�
1
2

�
and therefore over Z. We must

show that they span C
.k/

k�1
. Assume without loss of generality that 1<2< � � �<k in our

total order on B . Observe that the one element of … associated with the decomposition
Œk�D f1g t f2g t � � � t fkg is the single word P D P1P2 � � �Pk D 123 � � � k . We wish
to show all permutations of this word are also contained in the span of …. We proceed
by induction.

Let …m � … be the subset of polynomials in … associated to a decomposition
Œk�D S1 tS2 t � � � tSq with q �m. We prove by induction on m that elements in
the subset …m span the space of all products of elements of B (in any order) with m

or fewer factors. This is trivial when mD 1; suppose m > 1. Observe that, given a
polynomial P D P1P2 � � �Pm 2… and a transposition .i iC1/ 2 Sm , we have

(1) .P1P2 � � �PiC1Pi � � �Pm/

D .�1/jPi jjPiC1j
�
.P1P2 � � �PiPiC1 � � �Pm/� .P1P2 � � � ŒPi ;PiC1� � � �Pm/

�
:

We may re-express ŒPi ;PiC1� as a linear combination of Reutenauer basis elements for
LSi[SiC1

, and by induction .P1P2 � � � ŒPi ;PiC1� � � �Pm/ is in the span of polynomials
in …m�1 . Since transpositions of the form .i iC1/ generate Sm , this implies that all
Sm –permutations of the factors of P D P1P2 � � �Pm are in the span of …m , which
concludes our induction. In particular, when m D k all permutations of our word
P D 123 � � � k of length k are contained in the span of …k D…, so C

.k/

k�1
is contained

in the span of …, as claimed.

Our next goal is to identify Hk�1.C
.k/
� /� C

.k/

k�1
. We will show that the top homology

group is spanned by certain polynomials we call L–products.

Definition 2.36 We call an element P of C
.k/

k�1
an L–product if it has the following

form. For some partition of Œk� D S1 t S2 t � � � t Sm , we can decompose P as a
product

P D P1P2 � � �Pm with Pi 2 LSi
:
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Note that, in contrast to the elements of the basis … in Theorem 2.35, L–products
exclude factors Pi that are a single letter. For example, the polynomial

Œ1; 2�Œ3; 4�D .12C 21/.34C 43/D .1234C 1243C 2134C 2143/

is an L–product in C
.4/
3

, but

Œ1; Œ2; 3��4D .1.23C 32/� .23C 32/1/4D .1234C 1324� 2314� 3214/

is not an L–product. The following proposition shows that all L–products are in the
kernel of the differential D .

Proposition 2.37 Any L–product in C
.k/

k�1
is a cycle.

Since the homology group Hk�1.C
.k/
� / is the subgroup of cycles in C

.k/

k�1
, we may

view elements in the span of the L–products as homology classes.

Proof of Proposition 2.37 We will verify that elements of Lk are contained in ker.D/.
Since the differential D satisfies the Leibniz rule on elements of C

.k/

k�1
,

D.ac/DD.a/cC .�1/jajaD.c/;

it follows that products of these Lie polynomials are in the kernel of D . We will
proceed by induction on k . When k D 2 we have L2 D ZŒ1; 2� and

D.Œ1; 2�/DD.12C 21/D 2� 1C 1� 2D 0:

Now fix k and suppose that any Lie polynomial of degree less than k is mapped to
zero by D . To show that Lk � ker.D/, it suffices to check Lie polynomials of the
form ŒP; ak � of Reutenauer’s basis (Theorem 2.33). We have

D.ŒP; ak �/DD.Pak � .�1/jP jakP /

D .D.P /ak C .�1/jP jPD.ak//� .�1/jP j.D.ak/P � akD.P //

D 0C .�1/jP jPD.ak/� .�1/jP jD.ak/P C 0

D .�1/jP j.P �P /

D 0;

where the third line holds since DP D 0 by the inductive hypothesis. Thus the Lie
polynomials in Lk and their products are cycles, as claimed.
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The next result gives a basis for the subgroup of C
.k/

k�1
spanned by L–products.

Theorem 2.40 will then show us that this subgroup is, in fact, precisely the top homology
group Tk .

Lemma 2.38 Fix a finite set Œk� with k � 2. As in Theorem 2.35, for each subset
S � Œk�, let BS be the basis of LS of Theorem 2.33. Put a total order � on B WDS

S�Œk�; jS j�2 BS . The set …� of polynomials

fP1P2 � � �Pm j Œk�D S1 tS2 t � � � tSm; Pi 2 BSi
; and P1 < P2 < � � �< Pm 2 Bg

forms a basis for the subgroup of C
.k/

k�1
spanned by L–products. Moreover, this

subgroup is a direct summand of C
.k/

k�1
.

Note that, in contrast to Theorem 2.35, our generating set B excludes all words of
length 1.

Proof Because …� is a subset of the basis … for C
.k/

k�1
of Theorem 2.35, the polyno-

mials in …� must be linearly independent, and their span must be a direct summand
of C

.k/

k�1
. Each polynomial in …� is an L–product, so it remains to show that they

span. As in the proof of Theorem 2.35, we need to show that any permutation of the
factors of an element P1P2 � � �Pm of …� is in the span of …� , and we may use the
same induction argument from Theorem 2.35. Again let …�m �…

� be the subset of
polynomials of … with at most m factors; we prove by induction that …�m spans the
space of L–products with m or fewer factors. When m D 1, the polynomials P1

are precisely the elements in Reutenauer’s basis for Lk (Theorem 2.33). For m> 1,
equation (1) in the proof of Theorem 2.35 again completes the inductive step, which
concludes our proof.

To prove that the subgroup of the chains C
.k/

k�1
given in Lemma 2.38 is in fact the entire

top homology group, we will compare their ranks. We now use an Euler characteristic
argument to compute the rank of Tk .

Proposition 2.39 The top homology group of the complex of injective words is a free
abelian group with rank

rank Tk D
k!

0!
�

k!

1!
C

k!

2!
�

k!

3!
C� � �C.�1/k�2 k!

.k � 2/!
C.�1/k�1 k!

.k � 1/!
C.�1/k

k!

k!
:

The exponential generating function for the ranks of these groups is

H.x/D
e�x

1�x
:
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Proof Since the group C
.k/
q has rank ŒSk W Sk�q�1� D k!=.k � q� 1/!, the Euler

characteristic of the chain complex C
.k/
� is

�D�
k!

k!
C

k!

.k � 1/!
�

k!

.k � 2/!
C � � �C .�1/k�3 k!

2!
C .�1/k�2 k!

1!
C .�1/k�1 k!

0!
:

Farmer’s results imply that the homology of the complex C
.k/
� is a free abelian group

concentrated in degree k � 1; see Theorem 2.18. It follows that its Euler characteristic
is .�1/k�1hk . Thus,

hk D
k!

0!
�

k!

1!
C

k!

2!
� � � �C .�1/k�2 k!

.k � 2/!
C .�1/k�1 k!

.k � 1/!
C .�1/k

k!

k!
:

By inspection, the sequence fhkg satisfies the relation hk D khk�1C .�1/k for k � 1.

Since h0 D 1, we infer that its exponential generating function H.x/ satisfies the
relation

H.x/� 1D
X
k�1

hk

xk

k!
D

X
k�1

khk�1

xk

k!
C

X
k�1

.�1/k
xk

k!
D xH.x/C e�x

� 1:

Solving for H.x/ gives

H.x/D
e�x

1�x

D 1C 0
x

1!
C 1

x2

2!
C 2

x3

3!
C 9

x4

4!
C 44

x5

5!
C 265

x6

6!
C 1854

x7

7!
C � � � :

Theorem 2.40 Tk is equal to the subgroup of C
.k/

k�1
spanned by L–products. It has a

Z–module basis given by Lemma 2.38.

Proof Because the subgroup spanned by the L–products is a direct summand of C
.k/

k�1

by Lemma 2.38, to prove the theorem it is enough to prove that its rank is equal to the
rank of Hk�1.C

.k/
� /. Recall for k � 2 the basis given in Lemma 2.38,

fP1P2 � � �Pm j Œk�D S1 tS2 t � � � tSm; Pi 2 BSi
and P1 < P2 < � � �< Pm 2 Bg:

In Theorem 2.33 we saw that jBaj has order `a D .a� 1/!. The number of ways to
decompose Œk� into subsets of orders a1; a2; : : : ; am is

�
k

a1;a2;:::;am

�
, and the number

of products of Reutenauer basis elements for these subsets (where factors can appear
in any order) is � k

a1; a2; : : : ; am

�
`a1
`a2
� � � `am

:
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The number of products with factors in ascending order is

1

m!

� k

a1; a2; : : : ; am

�
`a1
`a2
� � � `am

:

Hence the basis …� for the space of L–products given in Lemma 2.38 has cardinality

`k C
1

2!

X
aCbDk

� k

a; b

�
`a`bC

1

3!

X
aCbCcDk

� k

a; b; c

�
`a`b`c

C
1

4!

X
aCbCcCdDk

� k

a; b; c; d

�
`a`b`c`d C � � �

This implies that the exponential generating function for the rank of this space is given
by exponentiating the generating function L.x/D �log.1� x/� x for `k found in
Corollary 2.34. But

eL.x/
D

e�x

1�x
DH.x/;

where H.x/ is the exponential generating function found in Proposition 2.39, and
so we conclude that for k � 1 the cardinality of the basis …� is equal to the rank
of Hk�1.C

.k/
� /. Hence Hk�1.C

.k/
� / is equal to the subgroup of C

.k/

k�1
spanned by

L–products.

Remark 2.41 Theorem 2.40 and the basis for Tk given in Lemma 2.38 make it
apparent that the rank of Tk will be equal to the number of derangements of Sk .
The Reutenauer basis for LS , jS j D k , of Theorem 2.33 are the .k � 1/! elements
fŒ Œ Œ� � � Œa; a2�; a3�; : : :�; ak�1�; ak �g, where a denotes the lexicographically first element
of S and all permutations of the remaining elements ai of S appear. Then the map

Œ Œ Œ� � � Œa; a2�; a3�; : : :�; ak�1�; ak � 7! .a a2 a3 � � � ak/

identifies the Reutenauer basis elements with the set of k –cycles on S . Extending
this map to the basis in Lemma 2.38 identifies each basis element with a permutation
without 1–cycles, written in cycle notation, with cycles ordered lexicographically. We
have a naturally defined bijection between our basis for Tk and the set of derangements
on k letters. This bijection, however, is not Sk –equivariant.

2.4 Secondary injective word complexes

In this subsection, we define a chain complex called the secondary injective words
chain complex of a

V
.Sym2R/–module. This chain complex should be thought of as
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a central stability complex for
V
.Sym2R/–modules, and this complex will appear on

the E2 –page of a certain spectral sequence.

Recall that if ADfa; bg is a 2–element set, then LAŠR is the free R–module on the
graded Lie bracket Œa; b�D abCba, that is, LA is a rank-one trivial S2 –representation.

Definition 2.42 Let V be a FIMC–module, S a set of cardinality k . Let

Inj2p.V/S WD IndSk

.S2/pC1�Sk�2p�2
L�.pC1/

2
�Vk�2p�2

D

M
ordered partitions

SDA0tA1t���tAptB
jAi jD2; jBjDk�2p�2

LA0
˝LA1

˝ � � �˝LAp
˝VB:

These groups assemble to form a chain complex as follows. For i D 0; : : : ;p , define
maps

di W Inj2p.V/S ! Inj2p�1.V/S ;

LA0
˝LA1

˝ � � �˝LAp
˝VB! LA0

˝LA1
˝ � � �˝bLAi

˝ � � �˝LAp�1
˝VBtAi

as follows: let di act by the identity on the tensor factors LA0
, LA1

; : : : ; bLAi
; : : :LAp�1

,
and act on the factor V by the map VB ! VBtAi

induced by the FIMC morphism
associated to the inclusion (B ,! B tAi , Ai ).

Because the composition of maps VB ! VBtAi
! VBtAitAj

is the negative of
the composition VB ! VBtAj

! VBtAjtAi
, we must take the sum of the maps di

(instead of the alternating sum) to obtain a chain complex. Let Inj2�.V/S denote the
chain complex with differentials given by the sum of the maps di .

Proposition 2.43 There is an isomorphism of chain complexes (which is nonequivari-
ant with respect to the permutation group of S )

‚W
M

f 2HomFI.Œd �;S/
Z a perfect matching on Snim.f /

Inj�.M.0//Z ! Inj2�.M
FIMC.d//S :

Proposition 2.43 and Theorem 2.18 imply that Inj2�.M
FIMC.d//S is highly acyclic.

Corollary 2.44 The homology groups satisfy Hi.Inj2�.M
FIMC.d///S Š 0 if i �

1
2
.jS j � d/� 2.
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Proof of Proposition 2.43 Let kD jS j; we may assume k� d (mod 2) or both chain
complexes are zero. By an order on a matching ffx1;y1g; : : : ; fxl ;ylgg, we mean a
bijection to Œl �. Choose an order on every perfect matching of every .k�d/–element
subset of S . The map ‚ that we will construct will not be equivariant with respect to
the Sk –action and will depend on these choices of orderings, but only up to sign.

Fix a homological degree p and let f 2 HomFI.Œd �;S/. Let Z be a perfect matching
on S n im.f / and let z be an injective word in Z of length .pC1/. The data .f;Z; z/
specifies a generator of the domain of ‚. Let faj ; bj g denote the 2–element set that is
the j th letter of z . Let

z0 D Œa0; b0�˝ � � �˝ Œap; bp � 2 Lfa0;b0g
˝ � � �˝Lfap;bpg:

Let

w D fapC1; bpC1g ^ � � � ^ fa 1
2
.k�d�2/; b 1

2
.k�d�2/g

be an oriented perfect matching of the set of elements of Z not appearing in z , written
in an arbitrary order (see Definition 2.8). Up to sign, this depends on the choice of
ordering on the set ˚

fapC1; bpC1g; : : : ; fa 1
2
.k�d�2/; b 1

2
.k�d�2/g

	
:

Our construction will ultimately be independent of this choice of order, in contrast to
the choices of orders made in the first paragraph. Let Q D S n fa0; b0; : : : ; ap; bpg

and let F D .f; w/. Using the isomorphism

M FIMC.d/Q Š HomFIMC.Œd �;Q/

described in Proposition 2.14, we may view F as an element of M FIMC.d/Q . Let
� W Z!Z be the permutation from our preselected order on Z to the order

fa0; b0g; : : : ; fa 1
2
.k�d�2/; b 1

2
.k�d�2/g

defined by .z0; w/. Define ‚ via the formula

‚.f;Z; z/ WD .�1/
1
2
.pC1/.p/ sign.�/.z0�F /;

and extend linearly. We will check that this map is well-defined, an isomorphism of
abelian groups and a map of chain complexes.
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To see that ‚ is well-defined, it suffices to check that it does not depend on the choice
of order on the set ˚

fapC1; bpC1g; : : : ; fa 1
2
.k�d�2/; b 1

2
.k�d�2/g

	
:

This is the reason that we included a sign.�/ term in the definition of ‚; permuting two
terms of the oriented matching fapC1; bpC1g ^ � � � ^ fa 1

2
.k�d�2/; b 1

2
.k�d�2/g gives a

minus sign which exactly cancels the sign change in the sign.�/ term.

We now check that this map is an isomorphism of abelian groups. BothM
f 2HomFI.Œd �;S/

Z a perfect matching on Snim.f /

Injp.M.0//Z and Inj2p.M
FIMC.d//S

are isomorphic as abelian groups to the free abelian group on the set˚
.f;Z; z/ j f W Œd � ,! S; Z a perfect matching on S n im.f /;

z an injective word of length pC 1 in Z
	
:

This gives bases of the domain and the codomain of ‚. Up to sign, ‚ maps one basis
to the other basis and so it is an isomorphism of abelian groups.

All that remains is to check that ‚ is a map of chain complexes. The differential on
the domain of ‚ is an alternating sum of maps which we called di and the differential
on the codomain is a (nonalternating) sum of maps which we also called di . Thus, it
suffices to check that di ı‚D .�1/i‚ ı di . We will continue to use the notation of
the second paragraph. We have

di.f;Z; z/D .f;Z; fa0; b0g; : : : ; 2fai ; big; : : : ; fap; bpg/ 2 Injp�1.M.0//Z :

Let

z0i D Œa0; b0�˝ � � �˝ 1Œai ; bi �˝ � � �˝ ŒapC1; bpC1�

2 Lfa0;b0g
˝ � � �˝2Lfai ;bi g

˝ � � �˝Lfap;bpg;

wi D fai ; big ^ fapC1; bpC1g ^ � � � ^ fa 1
2
.k�d�2/; b 1

2
.k�d�2/g;

and Fi D .f; wi/ 2M FIMC
Q[fai ;bi g

. Let �i W Z ! Z be the permutation from our pre-
selected order on Z to the order

fa0; b0g; : : : ;2fai ; big; : : : ; fap; bpg; fai ; big; fapC1; bpC1g; : : : ;

fa 1
2
.k�d�2/; b 1

2
.k�d�2/g:
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We have
‚.di.f;Z; z//D .�1/

1
2
.p/.p�1/ sign.�i/.z

0
i �Fi/:

In contrast,
di.‚.f;Z; z//D .�1/

1
2
.pC1/.p/ sign.�/.z0i �Fi/:

Since �i can be obtained from � by composing with p� i simple transpositions, we
see that sign.�i/D .�1/p�i sign.�/, and the claim follows.

Using Theorem 2.12, we will prove a vanishing result for H�.Inj2�.V// for V finitely
generated and R a field of characteristic zero.

Proposition 2.45 Let R be a field of characteristic zero and let V be a finitely gener-
ated

V
.Sym2R/–module. For each p , there is a number N V

p such that if jS j>N V
p ,

the homology group Hp.Inj2�.V//S vanishes.

Proof First we will use Theorem 2.12 to construct a free resolution of V . That is,
we will show there are integers di , ei , mij and maps making the following an exact
sequence of

V
.Sym2R/–modules:

� � � !

e1M
jDd1

.M FIMC.j //m1j !

e0M
jDd0

.M FIMC.j //m0j ! V! 0:

Suppose for the purposes of induction that we have constructed the first k stages of a
resolution by modules of the form

Lei

jDdi
.M FIMC.j //mij . The kernel of the last map

is a submodule of a finitely generated FIMC–module. Hence it is finitely generated,
and so there exists a surjection onto it from an FIMC–module of this form. Using this
map, we construct the next term in the sequence.

Let C� be the chain complex obtained by replacing V in the above sequence with 0.
Note that the functor W 7! Inj2p.W/ is exact for all p . Consider the double complex
spectral sequences associated to the double complex Inj2�.C�/. One spectral sequence
has

E2
p;q DHp.Inj2�.Hq.C�///:

Since Hq.C�/ vanishes for q > 0, this spectral sequence collapses on the second
page. Since H0.C�/D V , this spectral sequence converges to Hp.Inj2�.V//. The other
spectral sequence has

0E1
p;q DHp.Inj2�.Cq//:
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Since

Cq D

eqM
jDdq

.M FIMC.j //mqj ;

Corollary 2.44 implies that 0E1
p;q.S/ vanishes in range increasing with the size of S .

Thus, this spectral sequence converges to zero in a range increasing with the size of S .
This implies that Hp.Inj2�.V//S Š 0 for S sufficiently large compared with p .

The following corollary shows that Theorem 1.4 implies Corollary 1.5.

Corollary 2.46 Let R be a field of characteristic zero and V a finitely generatedV
.Sym2R/–module. For k sufficiently large, Vk is isomorphic to the quotient of

IndSk

Sk�2�S2
Vk�2 by the image of the sum of the two natural maps

IndSk

Sk�4�S2�S2
Vk�4� IndSk

Sk�2�S2
Vk�2:

Proof This statement is exactly the condition that

H0.Inj2�.V//k ŠH�1.Inj2�.V//k Š 0:

This is true for large k by Proposition 2.45.

3 Configuration spaces

In this section, we apply the tools of the previous section to prove secondary represen-
tation stability. We begin by recalling the definition of configuration spaces and their
stabilization maps in Section 3.1. Then, in Section 3.2, we define the arc resolution
and an associated spectral sequence, which we use to prove representation stability
for configuration spaces of (possibly nonorientable) manifolds. In Section 3.3, we
compute some differentials in this spectral sequence, and use this calculation to prove
secondary representation stability for configuration spaces of surfaces in Section 3.4,
as well as an improved range for representation stability for configuration spaces of
high-dimensional manifolds in Section 3.5. In Section 3.6, we give some computations
for specific manifolds, and some conjectures. For simplicity, we will assume that M

is a smooth manifold, although all results are true for general topological manifolds.
See Remark 3.11 for a discussion of the necessary modifications needed to address
nonsmoothable manifolds.
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3.1 Stabilization maps and homology operations

In this subsection, we define stabilization maps and an FI]–module structure on the
homology of the configuration spaces of a noncompact manifold. Throughout the
section M will always denote a connected manifold of dimension n� 2. Manifolds in
this paper are assumed to be without boundary, unless otherwise stated.

Definition 3.1 For M and N smooth manifolds possibly with boundary, denote by
Emb.N;M / the space of smooth embeddings topologized with the C1 topology.

Definition 3.2 Given a finite set S , let FS .M / WDEmb.S;M /. We write Fk.M / for
FŒk�.M /. Let Ck.M / denote the quotient of Fk.M / by the action of Sk DAut.Œk�/.
The space

Fk.M /Š f.m1; : : : ;mk/ 2M k
jmi ¤mj for i ¤ j g

is the configuration space of k ordered points in M , and the space Ck.M / is the
configuration space of k unordered points in M .

Given an embedding of smooth manifolds N tL!M and sets S and T , we get a
map of spaces

FS .N /�FT .L/! FStT .M /:

Recall n WD dim.M /. If M is not compact, there exists a smooth embedding

eW Rn
tM ,!M

with ejM isotopic to the identity, as described in Section 1 (see Figure 1). We fix
such an embedding for the duration of this paper. With this embedding we define the
following maps on the homology of configuration spaces.

Definition 3.3 Let M be a noncompact smooth manifold. Given a homology class
˛ 2Hi.FS .R

n//, let

t˛W H�.FT .M //!H�Ci.FTtS .M //

be the map on homology induced by the embedding eW Rn tM ,!M .

The sequence of Sk –representations Hi.Fk.M // assemble to form an FI–module as
follows. For a set P , let ŒP � be the class of a point in H0.FP .R

n//. Let f W S ! T

be an injective map of finite sets. The FI–module structure on Hi.F.M // is defined so
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that the map f is sent to the composition of the map induced by the diffeomorphism
FS .M /! Ff .S/.M / and tŒT nf .S/� . See Figure 4 for an illustration. This FI–module
structure on homology arises from a homotopy-FI–space structure on the functor
S 7! FS .M /.

The configuration spaces of M also admit a co-FI–space structure defined as follows.
View FS .M / as the spaces of embeddings Emb.S;M / and let injections act by
precomposition, as in Figure 11. The induced co-FI–module structure on Hi.F.M //

is compatible with the FI–module structure in such a way as to give Hi.F.M // the
structure of an FI]–module. Church–Ellenberg–Farb describe this structure in detail in
[9, Section 6].

1
2
3

a
b
cc
d

a

c
d

b

3

2
1

f W S ,! T
zf

Figure 11: The co-FI–space structure on F.M /

Generalizing the construction of the stabilization map, for smooth manifolds N , L

and M there is a natural map

Emb.N tL;M /�FS .N /�FT .L/! FStT .M /:

Define a map � W Sn�1! Emb.Rn tRn;Rn/ as follows: Let r W Rn!Rn be a map
which induces an orientation preserving homeomorphism between Rn and the open unit
ball around the origin. View Sn�1 as the unit vectors in Rn and let �.Ev/W RntRn!Rn

be the function mapping Ex in the first copy of Rn to r.Ex/C Ev , and mapping Ex in the
second copy of Rn to r.Ex/� Ev . By restricting to the class of a point in H0.S

n�1/,
this induces a product on the homology of ordered configuration space of Rn ,

� W Hi.FS .R
n//˝Hj .FT .R

n//!HiCj .FStT .R
n//:

By restricting to a fundamental class of Sn�1 , this induces a bracket

 n
W Hi.FS .R

n//˝Hj .FT .R
n//!HiCjCn�1.FStT .R

n//:

The map  n can be thought of as a version of the Browder operation for En –algebras
in the category of FB–spaces. See May [26, Definition 4.1] for the definition of En –
algebras and Browder [4, page 351] for the definition of Browder operations. The
operations � and  n are illustrated in Figure 12.
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˛
ˇ R2 ˇ

˛
R2

Figure 12: Chains representing the homology operations on H�.F.Rn//: the
homology class ˛ � ˇ , left, and the homology class  2.˛; ˇ/ , right.

In this paper, we are primarily interested in the operation  2 , which we simply call  .
The maps  n come from maps at the chain level which we will also call  n . We define
 in dimension n> 2 at the chain level as follows. Let � 0W S1! Emb.Rn tRn;Rn/

be the restriction of � to an equatorial circle. The (counterclockwise) fundamental
chain of S1 induces a map

 W Ci.FS .R
n//˝Cj .FT .R

n//! CiCjC1.FStT .R
n//:

Figure 13 shows the map  on H�.F.R3//.

˛

ˇ
R2

R3

Figure 13: The homology class  .˛; ˇ/ 2H�.F.R3//

Given a singleton set S D fsg, let s denote the class of a point in H0.FS .R
n//.

Figure 14 shows  .1; 2/ 2H1.F2.R
n//.

1

2

Figure 14: A chain representing  .1; 2/

Cohen [12, Chapter III, Theorem 1.2] described the algebraic structure on H�.Fk.R
n//

imposed by the operations  n and � : the groups H�.Fk.R
n// assemble to form the

n–Poisson operad. Cohen denoted the Browder operations by �n�1 and described
relations they satisfy; also see Sinha [41, Theorem 2.10].
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Theorem 3.4 (Cohen [12, Chapter III]) Fix n� 2. The product � is an associative
and graded commutative product and the Browder operation  n is a graded Lie bracket
of degree n� 1, which together satisfy the Gerstenhaber relations. Specifically, letting
j � j denote the degree of a homology class, these operations satisfy the following
identities:

Degrees of � and  n j˛ � ˇj D j˛jC jˇj, j n.˛; ˇ/j D j˛jC jˇjC .n� 1/.

Graded commutativity for � ˛ � ˇ D .�1/j˛jjˇjˇ � ˛ .

Graded antisymmetry law for  n

 n.˛; ˇ/D�.�1/j˛jjˇjC.n�1/.j˛jCjˇjC1/ n.ˇ; ˛/:

Graded Jacobi identity for  n

0D .�1/.j˛jCn�1/.j jCn�1/ n.˛;  n.ˇ;  //

C .�1/.jˇjCn�1/.j˛jCn�1/ n.ˇ;  n.; ˛//

C .�1/.j jCn�1/.jˇjCn�1/ n.;  n.˛; ˇ//:

The Browder operation  n is a derivation of the product � in each variable

 n.˛; ˇ �  /D  n.˛; ˇ/ �  C .�1/.j˛jCn�1/jˇjˇ �  n.˛;  /:

Remark 3.5 When we say that � is a commutative product, we do not mean thatL
i;k Hi.Fk.R

n// is a commutative ring. Instead, we mean that the associated FB–
module has the structure of a graded TCA. Similarly,  n gives an appropriate shift
of the FB–module associated to

˚L
i;k Hi.Fk.R

n//
	1

kD0
the structure of an algebra

over the Lie operad in FB–modules with Day convolution.

3.2 The arc resolution and representation stability

We now recall two related semisimplicial spaces. One was used by Kupers–Miller
[24, Appendix] to give a new proof of homological stability for unordered configuration
spaces. We will use the second to give a new proof of representation stability for ordered
configuration spaces. If M is a noncompact manifold, there exists a (not necessarily
compact) manifold with nonempty boundary M such that M is the interior of M ;
see for example Miller–Palmer [27, Section 3].
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Definition 3.6 Let M be the interior of a (not necessarily compact) smooth manifold
M with nonempty boundary @M . Fix an embedding  W Œ0; 1�! @M . Let

Arcj .Fk.M //� Fk.M /�Emb
�G

jC1

Œ0; 1�;M

�
be the subspace of points and arcs .x1; : : :xk I˛0; : : : j̨ / satisfying the following
conditions:

� ˛i.0/ 2  .Œ0; 1�/.
� ˛i.1/ 2 fx1; : : : ;xkg.
� ˛i.t/ 62 @M [fx1; : : : ;xkg for t 2 .0; 1/.
� �1. j̨1

.0// > �1. j̨2
.0// whenever j1 > j2 .

Let Arcj .Ck.M // denote the quotient of Arcj .Fk.M // by the action of Sk , as in
Figure 15.

Figure 15: An element of Arc3.C12.M //

As j varies, the spaces Arcj .Fk.M // assemble into an augmented semisimplicial
space. The i th face map di W Arcj .Fk.M //! Arcj�1.Fk.M // is given by forget-
ting the i th arc ˛i . The space Arc�1.Fk.M // is homeomorphic to Fk.M /, and
so the augmentation map induces a map kArc�.Fk.M //k ! Fk.M /. Similarly the
Arcj .Ck.M // assemble to form an augmented semisimplicial space and

Arc�1.Ck.M //Š Ck.M /:

We call the two augmented semisimplicial spaces Arc�.Fk.M // and Arc�.Ck.M //

the ordered and unordered arc resolutions, respectively.

Building on Hatcher–Wahl [19] and a lecture of Randal-Williams, Kupers–Miller
proved the following.

Theorem 3.7 (Kupers–Miller [24, Appendix]) Let M be a smooth noncompact
connected manifold of dimension at least two. The map kArc�.Ck.M //k! Ck.M /

is .k�1/–connected.

This implies the same connectivity for the arc resolution of ordered configuration spaces.
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Proposition 3.8 Let M be a smooth noncompact connected manifold of dimension
at least two. The map kArc�.Fk.M //k! Fk.M / is .k�1/–connected.

Proof Since the map kArc�.Ck.M //k!Ck.M / is .k�1/–connected, its homotopy
fibers (the standard path space construction) are .k�2/–connected. The quotient
map Fk.M /! Ck.M / induces homeomorphisms between the homotopy fibers of
kArc�.Fk.M //k! Fk.M / and the homotopy fibers of kArc�.Ck.M //k! Ck.M /.
Thus the homotopy fibers of kArc�.Fk.M //k! Fk.M / are .k�2/–connected and
so the map kArc�.Fk.M //k! Fk.M / is .k�1/–connected as well.

If M is connected and of dimension at least two, then the connected components of
Arcj .Fk.M // are determined by which arc connects to which point. For example, a
connected component could be specified by saying that ˛0 connects to x3 , that ˛1

connects to x8 , and so forth. Thus Arcj .Fk.M // has k!=.k � j � 1/! connected
components. Kupers–Miller [24, Appendix] showed that Arcj .Ck.M // is homotopy
equivalent to Ck�j�1.M /, and their result implies that each connected component of
Arcj .Fk.M // is homotopy equivalent to Fk�j�1.M /. The face maps of the unordered
arc resolution are homotopic to the stabilization maps for unordered configuration
spaces; see [24, Appendix]. It follows that the face map on Arcj .Fk.M // that forgets
the arc attached to the point labeled by i has the effect of stabilizing by a point labeled
by i .

An augmented semisimplicial space A� gives rise to a homology spectral sequence;
see for example Randal-Williams [35, Section 2.3]. This spectral sequence satisfies

E1
p;q DHq.Ap/D)HpCqC1.A�1; kA�k/;

and the differentials on the E1 –page are given by the alternating sum of the face maps.

Definition 3.9 We call the spectral sequence associated to an (augmented) semisim-
plicial space A� the (augmented) geometric realization spectral sequence. We call the
augmented geometric realization spectral sequence for the ordered arc resolution the
arc resolution spectral sequence. We will denote the .p; q/th spot on the r th page by
Er

p;q ŒM �.S/ and will often drop the M or S from the notation.

Proposition 3.10 Let M be a noncompact connected smooth manifold of dimension
at least two. The arc resolution spectral sequence satisfies

E1
p;q.S/Š Injp.Hq.FS .M /// for q � 0 and p � �1:
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3 H3.FS .M //
M

f W f0g,!S

H3.FS�f .f0g/.M //
M

f W f0;1g,!S

H0.FS�f .f0;1g/.M // � � �

2 H2.FS .M //
M

f W f0g,!S

H2.FS�f .f0g/.M //
M

f W f0;1g,!S

H2.FS�f .f0;1g/.M // � � �

1 H1.FS .M //
M

f W f0g,!S

H1.FS�f .f0g/.M //
M

f W f0;1g,!S

H1.FS�f .f0;1g/.M // � � �

0 H0.FS .M //
M

f W f0g,!S

H0.FS�f .f0g/.M //
M

f W f0;1g,!S

H0.FS�f .f0;1g/.M // � � �

�1 0 1 2

Figure 16: E1
p;q.S/DHq.Arcp.FS .M ///Š Injp.Hq.F.M ///S

It converges to
HpCqC1.FS .M /; kArc�.FS .M //k/:

For jS j D k , the E2 –page satisfies

E2
p;q.S/Š

M
SDPtQ; jP jDpC1

zHp.kInj
�
.P /k/˝H FI

0 .Hq.F.M ///Q

Š IndSk

SpC1�Sk�p�1
TpC1�H FI

0 .Hq.F.M ///k�p�1;

where TpC1 WD
zHp.kInj

�
.pC 1/k/.

In particular, the leftmost E2 column p D�1 are the FI–homology groups

E2
�1;q.S/ŠH FI

0 .Hq.F.M ///S ;

and the bottom E2 row q D 0 are the reduced homology groups of the complex of
injective words

E2
p;0.S/Š

zHp.kInj
�
.S/k/;

which vanish except at p D k � 1.

The E1 –page and E2 –page of the arc resolution spectral sequence are shown in
Figures 16 and 17.

Proof of Proposition 3.10 By definition, the arc resolution spectral sequence satisfies

E1
p;q.S/DHq.Arcp.FS .M /// for q � 0 and p � �1:

Geometry & Topology, Volume 23 (2019)



2560 Jeremy Miller and Jennifer C H Wilson

4 H FI
0
.H4.F.M ///6 0 IndS6

S2�S4
T2�H FI

0
.H4.F.M ///4 IndS6

S3�S3
T3�H FI

0
.H4.F.M ///3

3 H FI
0
.H3.F.M ///6 0 IndS6

S2�S4
T2�H FI

0
.H3.F.M ///4 IndS6

S3�S3
T3�H FI

0
.H3.F.M ///3

2 H FI
0
.H2.F.M ///6 0 IndS6

S2�S4
T2�H FI

0
.H2.F.M ///4 IndS6

S3�S3
T3�H FI

0
.H2.F.M ///3

1 H FI
0
.H1.F.M ///6 0 IndS6

S2�S4
T2�H FI

0
.H1.F.M ///4 IndS6

S3�S3
T3�H FI

0
.H1.F.M ///3

0 H FI
0
.H0.F.M ///6 0 IndS6

S2�S4
T2�H FI

0
.H0.F.M ///4 IndS6

S3�S3
T3�H FI

0
.H0.F.M ///3

�1 0 1 2

Figure 17: E2
p;q.6/ Š IndS6

SpC1�S6�p�1
TpC1�H FI

0 .Hq.F.M ///6�p�1 . The
0th column is identically zero because T1D 0; see for example Proposition 2.39.

Since FS .M / is the space of .�1/–simplices, the spectral sequence converges to
HpCqC1.FS .M /; kArc�.M /k/.

By the above remarks on the structure of the space Arcp.FS .M //, the E1 –page
satisfies

E1
p;q.S/DHq.Arcp.FS .M ///Š

M
f W f0;1;:::;pg,!S

Hq.FSnim.f /.M //

and has d1 differentials induced by the alternating sum of face maps on Arc�.FS .M //

which are homotopic to stabilization maps. Hence each row of the E1 –page is precisely
the twisted complex of injective words

E1
p;q.S/Š Injp.Hq.F.M ///S

of Definition 2.19. It follows that

E2
p;q.S/ŠHp.Inj�.Hq.F.M ////S :

When p D�1, by Proposition 2.26,

E2
�1;q.S/ŠH FI

0 .Hq.F.M ///S :

Since n� 2 and M is connected, the configuration space Fk.M / is connected, and
there is an isomorphism of FI–modules H0.F.M //ŠM.0/. Therefore when q D 0,

E2
p;0.S/ŠHp.Inj�.H0.F.M ////S ŠHp.Inj�.M.0///S Š zHp.kInj

�
.S/k/;
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a group that is nonzero only when p D jS j � 1, by Theorem 2.18. When jS j D k , the
FI]–module structure on Hq.F.M // and Theorem 2.24 imply that the E2 –page has
the form

E2
p;q.k/ŠHp.Inj�.Hq.Fk.M ////

Š IndSk

SpC1�Sk�p�1

zHp.kInj
�
.pC 1/k/�H FI

0 .Hq.F.M ///k�p�1;

as claimed.

Before we discuss applications of the arc resolution, we describe modifications necessary
to deal with nonsmoothable manifolds.

Remark 3.11 If M or N does not have a smooth structure, then the space of smooth
embeddings of N into M is not defined. To modify the arguments of [24] to prove a
version of Theorem 3.7 which applies to topological manifolds, we need to consider
a space of embeddings that satisfies a parametrized isotopy extension theorem; see
Burghelea–Lashof [5, page 19]. One space of embeddings of topological manifolds
that is compatible with the proof in [24] is the following: Let Emblf

�
.N;M / denote

the simplicial set whose space of k –simplices is the set of locally flat embeddings of
�k �N into �k �M that commute with the projection to �k . Using kEmblf

�
.N;M /k

in the definition of the arc resolution allows us to apply the arguments of [24] to
topological manifolds without significant modifications. For ease of exposition, we
will only give proofs in the smooth case.

Theorem 3.12 Let M be a noncompact connected smooth manifold of dimension at
least two. Then

deg H FI
0 .Hi.F.M /IZ//� 2i:

When M is orientable, the above theorem is a result of Church–Ellenberg–Farb [9,
Theorem 6.4.3], proved by different methods.

Proof of Theorem 3.12 Consider the arc resolution spectral sequence described in
Proposition 3.10. For p C q � jS j � 2, Proposition 3.8 implies that the sequence
converges to zero:

E1p;q.S/ŠHpCqC1.FS .M /; kArc�.FS .M //k/Š 0 for pC q � jS j � 2:

We now prove Theorem 3.12 by induction on homological degree i . Observe that

deg H FI
0 .H0.F.M ///D 0
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since H0.F.M // Š M.0/. Assume that deg H FI
0
.Hq.F.M /// � 2q for all q < i .

Using Corollary 2.25 and our inductive hypothesis, we obtain

E2
p;q.S/D 0 for p � jS j � 2� 2q and q < i

(equivalently jS j � pC 2.qC 1/). This shows that there are no possible differentials
into (or out of) Er

�1;i
.S/ for r > 1 and jS j> 2i . See Figure 18.

Thus for jS j> 2i ,

H FI
0 .Hi.F.M ///S ŠE2

�1;i.S/ŠE1
�1;i.S/Š 0:

This shows that deg H FI
0
.Hi.F.M ///� 2i . The claim now follows by induction.

3 H FI
0
.H3.F.M ///S ? ? ? ? ? ?

2 H FI
0
.H2.F.M ///S ? ? ? ? ? ?

1 H FI
0
.H1.F.M ///S Š 0 0 0 ? ? ? ?

0 H FI
0
.H0.F.M ///S Š 0 0 0 0 0 ? ?

�1 0 1 2 3 4 5

d2

d3

Figure 18: E2
p;q.S/ in the inductive step, illustrated for jS j D 5 and i D 2

3.3 Differentials in the arc resolution spectral sequence

The goal of this subsection is to compute many of the differentials in the arc resolution
spectral sequence. This calculation will be used in the subsequent two subsections to
prove secondary representation stability for manifolds of dimension 2 and an improved
representation stability range for higher-dimensional manifolds. We begin by comparing
the geometric realization spectral sequence to a double complex spectral sequence.

In this subsection, the symbol Ci.X / will denote the i –dimensional singular chains
on a space X , as opposed to the configuration space of i unordered points. Let
@W Ci.X /! Ci�1.X / denote the usual boundary operator. Due to the abundance of
the letter d in this subsection, we will denote maps on singular chains induced by face
maps in the arc resolution by fi . The differential d1 of the arc resolution spectral
sequence is given by the alternating sum of the maps in homology induced by the face
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maps. We will denote the map on singular chains given by the alternating sum of the
face maps by d1 as well. See Bendersky–Gitler [2, proof of Proposition 1.2] for a
proof of the following.

Proposition 3.13 Let A� be a semisimplicial space. Beginning on the E1 –pages,
the geometric realization spectral sequence agrees with the spectral sequence for the
double complex C�.A�/ that has d0 differential induced by @ and d1 induced by the
alternating sum of the face maps.

In particular, we will redefine the E0 –page of the arc resolution spectral sequence to
be the complex E0

p;q.k/ Š Cq.Arcp.Fk.M /// shown in Figure 19. Since we have
reformulated the arc resolution spectral sequence as a double complex spectral sequence,
we can use the standard formula for the differentials in a double complex spectral
sequence; see for example Bott–Tu [3, formula 14.12, page 164].

3 C3.Arc�1.Fk.M /// C3.Arc0.Fk.M /// C3.Arc1.Fk.M /// C3.Arc2.Fk.M ///

2 C2.Arc�1.Fk.M /// C2.Arc0.Fk.M /// C2.Arc1.Fk.M /// C2.Arc2.Fk.M ///

1 C1.Arc�1.Fk.M /// C1.Arc0.Fk.M /// C1.Arc1.Fk.M /// C1.Arc2.Fk.M ///

0 C0.Arc�1.Fk.M /// C0.Arc0.Fk.M /// C0.Arc1.Fk.M /// C0.Arc2.Fk.M ///

0 1 2 3

d1

f0

d1

f0

d1

f0

d1

f0

d1

f0 �f1

d1

f0 �f1

d1

f0 �f1

d1

f0 �f1

d1

f0 �f1Cf2

d1

f0 �f1Cf2

d1

f0 �f1Cf2

d1

f0 �f1Cf2

@

@

@

@

@

@

@

@

@

@

@

@

Figure 19: E0
p;q.k/Š Cq.Arcp.Fk.M /// . The d1 differentials are equal to

the alternating sum of the maps fi induced by the face maps.

We will now describe some functoriality properties of the arc resolution spectral
sequence and then calculate some differentials emanating from the bottom row.

Definition 3.14 Let M be the interior of a smooth n–manifold M with an embedding
Œ0; 1� ,! @M . Choose an interval in the boundary of Rn�1 � .�1; 0�, the half-closed
disk. Fix an embedding

xeW M t .Rn�1
� .�1; 0�/ ,!M
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such that

� on the interior of the domain, xe restricts to an embedding of M tRn into M

such that xejM is isotopic to the identity;

� the embedding e restricts to an embedding of the two boundary intervals of M

and Rn�1 � .�1; 0� into the boundary interval of M .

Then the embedding xe induces a map of spaces

ep;p0 W Arcp.FS .R
n//�Arcp0.FT .M //! ArcpCp0C1.FStT .M //

as in Figure 20.

, 7!5

5

1
1

2
2

3 34
4

Figure 20: The map e2;0W Arc2.Ff1;2;3;4g.R
n//�Arc0.Ff5g.M //! Arc3.Ff1;2;3;4;5g.M //

Lemma 3.15 The maps ep;p0 of Definition 3.14 induce maps

tr
W Er

p;q ŒR
n�.S/˝Er

p0q0 ŒM �.T /!Er
pCp0C1;qCq0 ŒM �.S tT /:

These maps satisfy the following Leibniz rule with respect to the differentials: if
a 2Er

p;q ŒR
n�.S/ and b 2Er

p0q0 ŒM �.S/, then

dr .tr .a˝ b//D tr .dr .a/˝ b/C .�1/pCqtr .a˝ dr .b//:

Proof Let F ŒM �.S/� denote the filtered chain complex given by filtering the double
complex E0

�;�ŒM �.S/ in the simplicial direction. The maps ep;p0 assemble to form a
filtered chain map

ep;p0�W F ŒRn�.S/�˝F ŒM �.T /�! F ŒM �.S tT /�C1:

Filtered chain maps induce pairings of filtered chain complex spectral sequences
which satisfy the Leibniz rule with respect to the differentials; see for example Helle
[20, Lemma 3.5.2] or Massey [25, Section 8].

In this subsection, we will not use the full strength of Lemma 3.15 and will only use it
to produce maps of spectral sequences. However, in the next two subsections, we will
use the pairing to compute differentials.
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1

4

3 5

2

Figure 21: A map Œ0; 1�2 ! Arc0.F5M / . As the first factor Œ0; 1� ranges
from 0 to 1 , point 3 moves from bottom to top while simultaneously point 2
moves from top to bottom. As the second factor Œ0; 1� ranges from 0 to 1 ,
point 5 moves in a closed loop around point 1.

Convention 3.16 We can produce chains in E0
p;q.k/Š Cq.Arcp.Fk.M /// from q–

parameter families of points in Arcp.Fk.M //. For example, Figure 21 shows a map
Œ0; 1�2! Arc0.F5.M //. Given any subdivision of the product Œ0; 1�2 into triangles,
we can express this map as a linear combination of singular chains. We interpret
Figure 21 to represent the associated chain in C2.Arc0.F5M // or its homology class
in H2.Arc0.F5M //. To view a map sW Œ0; 1�q ! Arcp.Fk.M // as a sum of chains,
we need to choose an order on the q factors ei W Œ0; 1�! Arcp.Fk.M // of the domain.
To compute its boundary, we use the formula

@s D
X

j

.�1/jC1e1 � e2 � � � � � @.ej /� � � � � eq; where @ei D ei.1/� ei.0/:

For example, if we order the two singular 1–simplices in Figure 21 as they appear left
to right, and observe that the second singular 1–simplex is a cycle, we find that the
boundary is the chain shown in Figure 22.

1

4
3

52
1

4

3 5

2–
Figure 22: The boundary of Figure 21

More generally, consider eW Œ0; 1�! Arcp.Fk.M // and

y D
X
˛

m˛�˛ 2 Cq�1.Arcp.Fk.M ///

with �˛W �q�1! Arcp.Fk.M // and m˛ 2 Z. Let .e � y/ 2 Cq.Arcp.Fk.M /// be
a chain obtained by functorially subdividing Œ0; 1���q�1 into copies of �q ; see for
example Hatcher [18, Theorem 2.10]. To clarify how we orient the simplices in the
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subdivision of Œ0; 1���q�1 , note that the desired construction satisfies

@.e�y/D ..@e�y/� .e� @y//D
�
.e.1/�y/� .e.0/�y/� .e� @y/

�
:

For example, in Figure 23, the product chain shown on the left has boundary given by
the chain depicted on the right. These conventions will feature in the computations
carried out below and are important for determining signs.

3

y 3 x–
3 3–y

y @y

Figure 23: The boundary of a product of chains: (ordered) product of chains,
left, and boundary of a product of chains, right.

The main result of this section is the values of the differentials computed in the following
lemma. This result, combined with the Leibniz rule stated in Lemma 3.15, determines
a large portion of the differentials in the arc resolution spectral sequence.

Lemma 3.17 Let Er
p;q.S/ be the arc resolution spectral sequence and let k D jS j.

Consider an element

LD ŒŒŒ � � � Œa1; a2�; a3�; : : : �; ak�1�; ak � 2E1
k�1;0.S/

of Reutenauer’s basis for LS (Theorem 2.33). Then dr .L/D 0 for r < k and dk.L/

is the image of the class t .��� . . .a1;a2/;a3/;a4/;:::;ak/.y0/ in Ek
�1;k�1

.S/. Here y0

denotes the class of a point in H0.F0.M //.

The image of the element ŒŒŒ1; 2�; 3�; 4� 2E1
3;0
.4/ is shown in Figure 24.

4
3
2
1

Figure 24: d4.ŒŒŒ1; 2�; 3�; 4�/ . The points labeled 2, 3 and 4 orbit counter-
clockwise around the point labeled 1 in concentric circles.

From now on, we will simply write statements such as the above as

dk.L/D t .��� . . .a1;a2/;a3/;a4/;:::;ak/.y0/;

as we will implicitly identify elements that survive to later pages of spectral sequences
with their images.
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Proof of Lemma 3.17 The statement of the theorem involves two numbers k D jS j

and r , the page of the spectral sequence. Our proof will involve a nested induction,
first inducting on k and then inducting on r . Throughout our inductive argument, any
assumption we make will be understood to apply to all manifolds as opposed to just
one particular fixed manifold.

We begin with the base case k D 1, S D f1g, observing that the d1 differential maps
the singleton word 12E1

0;0
ŒM �.S/ to the class of the point in H0.Arc�1.F1.M ///D

H0.F1.M //. This result, shown in Figure 25, follows from the description of the
spectral sequence in Proposition 3.10.

d1

7�!1 1

Figure 25: d1.1/

Now suppose that k > 1, and let xk�1 be the class

Œ Œ Œ � � � Œa1; a2�; a3�; : : : �; ak�1� 2E1
k�2;0ŒM �.Snfakg/:

Suppose by induction that xk�1 survives to Ek�1
k�2;0

ŒM �.Snfakg/, and

dk�1.xk�1/D t .��� . . .a1;a2/;a3/;a4/;:::;ak�1/.y0/:

This implies that there exist chains xk�2; : : : ;x1 with xi 2E0
i�1;k�i�1

ŒM �.Snfakg/,
such that d1.xi/ D .�1/i�1@.xi�1/, as in Figure 26 (compare to formula 14.12 of
Bott–Tu [3, page 164]).

By plugging in the class of a point in E0
�1;0

ŒRn�.fakg/ and considering the map from
Lemma 3.15, we get a map Er

p;q ŒM �.Snfakg/! Er
p;q ŒM �.S/. We will use this to

view the classes xi as elements of E0
i�1;k�i�1

ŒM �.S/. Similarly, by plugging in
the class of a point in E0

�1;0
ŒM �.¿/ and considering the map from Lemma 3.15, we

get a map Er
p;q ŒR

n�.S/! Er
p;q ŒM �.S/ which will allow us to associate classes in

Er
p;q ŒR

n�.S/ with classes in Er
p;q ŒM �.S/. The chain xi can be taken to be in the image

of E0
i�1;k�i�1

ŒRn�.S/! E0
i�1;k�i�1

ŒM �.S/. This uses our inductive assumptions
applied to the case that the manifold is Rn and the fact that

LD Œ Œ Œ Œ� � � Œa1; a2�; a3�; : : : �; ak�1�; ak � 2E1
k�1;0ŒM �.S/

is in the image of E1
k�1;0

ŒRn�.S/. In other words, xi can be represented as in Figure 27.
Remember that the class xi is a chain on a space with i arcs.
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k � 1 � � � � � � � � �

k � 2 dk�1.xk�1/ x1 � � � � � � �

k � 3 � �@x1 x2 � � � � � �

:::
:::

:::
:::

: : :
:::

:::
:::

2 � � � � � � xk�3 � �

1 � � � � � � .�1/k�3@xk�3 xk�2 �

0 � � � � � � � .�1/k�2@xk�2 xk�1

�1 0 1 � � � k � 4 k � 3 k � 2

d1

f0

d1

f0 �f1

�@

@

d1

d1

d1

.�1/k�3@

.�1/k�2@

dk

Figure 26: Computing dk�1.xk�1/D t .��� . . .a1;a2/;a3/;a4/;:::;ak�1/
.y0/

xi

Figure 27: The points of the chain xi can be taken to be in the shaded box.

We may assume without loss of generality that the label ak is the letter k . Now
consider the class

LD Œxk�1; k� 2E1
k�1;0ŒM �.S/;

as shown in Figure 28.

x
� .�1/k�1

k

xk�1
k

xk�1

Figure 28: A chain representing Œxk�1; k�
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Our goal is to show that dr .Œxk�1; k�/D 0 for r < k , and to compute dk.Œxk�1; k�/.
To do this, we will compute a zigzag of chains �i 2 E0

i;k�i�1
ŒM �.S/ satisfying

.�1/i@.�i�1/D d1.�i/, beginning with �k�1 DL. The image

d1.Œxk�1; k�/D
X

.�1/ifi.Œxk�1; k�/

is shown in Figure 29.

Σ fi(x)(–1)iΣ(–1)i
x

� �� .�1/k�1
k k

k k
xk�1

xk�1
d1.xk�1/

d1.xk�1/

Figure 29: A chain representing
P
.�1/ifi.Œxk�1; k�/

Then
P
.�1/ifi.Œxk�1; k�/ is equal to the boundary .�1/k�1@.�k�2/, where �k�2 is

the chain shown in Figure 30. Recall that xk�2 is defined such that .�1/k�2@.xk�2/D

d1.xk�1/D
P
.�1/ifi.xk�1/, and that @.xk�1/D 0. In Figure 30, and in the images

throughout this proof, we will order the simplices with the simplex designated by
the dotted line first, and the class xi in the shaded region second, so the boundary is
computed as in Figure 23. We have shown that d1.Œxk�1; k�/ is zero in homology, and
Œxk�1; k� survives to E2 .

.�1/k�1 C .�1/k�1C
k

k

k

xk�1
xk�2

xk�2

Figure 30: The chain �k�2

We now prove by induction on r that dr�1.Œxk�1; k�/ D 0 for r < k . Suppose by
induction that dr�1.Œxk�1; k�/ is represented by the boundary .�1/k�r�1@.�k�r /,
where the chain �k�r is as shown in Figure 31.

C .�1/k�rC1C.�1/k�rC1

k

k

k

xk�rC1
xk�r

xk�r

Figure 31: The chain �k�r

Then dr .Œxk�1; k�/D
P
.�1/ifi.�k�r / is shown in Figure 32. If r � k � 2, then by

inductive hypothesis there is a chain xk�r�1 with

.�1/k�r�1@xk�r�1 D

X
.�1/ifi.xk�r /:
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�C.�1/k�rC1

C .�1/k�rC1 �

k

k k

k k

d1.xk�rC1/
xk�r

xk�rd1.xk�r /

d1.xk�r /

Figure 32: The chain d r .Œxk�1; k�/D
P
.�1/ifi.�k�r / for r � k � 1

In this case, the chain �k�r�1 in Figure 33 is such that .�1/k�r�1@.�k�r�1/ equals
the chain representing dr .Œxk�1; k�/ in Figure 32, and so dr .Œxk�1; k�/ D 0 on
Er

k�1�r;r
ŒM �.S/. By comparing Figure 33 to Figure 31, we see we have completed

the inductive step in the induction on r .

C .�1/k�rC.�1/k�r

k

k

k

xk�r
xk�r�1

xk�r�1

Figure 33: A chain �k�r�1 with .�1/k�r�1@.�k�r�1/D
P
.�1/ifi.�k�r /

for r � k � 2

Now consider Figure 32 when r D k � 1. There are no arcs attached in the chain

d1.x1/D
X

.�1/ifi.x1/D f0.x1/;

and by induction d1.x1/ D dk�1.xk�1/ is a @–cycle. It follows that the chainP
.�1/ifi.Œxk�1; k�/ is the boundary of the chain in Figure 34. Again, we conclude

that dk�1.Œxk�1; k�/D 0.

��

k

kx1

d1.x1/

Figure 34: A chain �0 with boundary �dk�1.Œxk�1; k�/D�
P
.�1/ifi.�1/

We can compute dk.Œxk�1; k�/ by applying the map induced by the alternating sum of
face maps to Figure 34, with the result shown in Figure 35.
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��

k

k
d1.x1/

d1.x1/

Figure 35: The image dk.Œxk�1; k�/

By construction,

d1.x1/D dk�1.xk�1/D t .��� . . .a1;a2/;a3/;a4/;��� ;ak�1/.y0/:

Hence the chain in Figure 35 is homologous to the chain in Figure 36. In this figure
we have negated the chain by reversing the direction of the arrow from clockwise to
counterclockwise. Figure 36 concludes the induction on k , and the proof.

k

dk�1.xk�1/

Figure 36: The image dk.Œxk�1; k�/

3.4 Proof of secondary representation stability

In this subsection, we prove Theorem 1.4, secondary representation stability for the
homology of configuration spaces. For this result we need to assume R is a field
of characteristic zero. The reason for this assumption is so that we can apply corol-
laries of Theorem 2.12. Assuming that R is a field also makes the formulation of
Proposition 3.23 easier, although workarounds do exist for general rings. We will
also assume that the manifold M has finite type. This implies that the homology
groups of the ordered configuration spaces are finitely generated as abelian groups. TheV
.Sym2R/–modules which we will show exhibit secondary representation stability

are defined as follows.

Definition 3.18 Let WM
i .S/ WD H FI

0
.H 1

2
.jS jCi/.F.M ///S . We use the convention

that fractional homology groups are 0.

The collection of Sk –representations WM
i .k/ assemble to form a

V
.Sym2R/–module

as follows. Let .f;Q/ 2HomFIMC.S;T / be a standard generator, with f W S ! T an
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injective map and QD f.x1;y1/; : : : ; .xd ;yd /g an oriented matching of the comple-
ment of the image. Let f 0W S ! f .S/ be the bijective map defined by f and let

f 0�W HiC 1
2
jS j.F.M //S !HiC 1

2
jS j.F.M //f .S/

be the map on homology induced by the FI–modules structure. The element .f;Q/
acts on a homology class in H FI

0
.HiCjS j=2.F.M ///S by t .xd ;yd /ı� � �ı t .x1;y1/ıf

0
� ,

as shown in Figure 7. Although this map is defined on the homology of configuration
spaces, it descends to a map on minimal generators H FI

0
.H�.F.M ///. The order of

the composition factors t .xi ;yi / only affects the sign of the homology class: this sign
is exactly what differentiates the category FIMC from the linearization of FIM.

To prove secondary representation stability we will need to better understand the
algebraic structure on the E2 –page of the arc resolution spectral sequence. To that
end, we now define a filtration on the top homology of the complex of injective words.

Definition 3.19 For d and b of the same parity, let T b
d

be the image of the natural map

IndSd

Sb�S2�����S2
Tb�L2� � � ��L2! Td :

By Proposition 3.20 below, we can identify the groups T b
d

with the groups

IndSd

Sb�S2�����S2
Tb�L2� � � ��L2:

For example, T 3
7

is the span of the elements˚
ŒŒa; b�; c� Œd; e� Œf;g�; ŒŒa; c�; b� Œd; e� Œf;g�

ˇ̌
decompositions Œ7�D fa; b; cg t fd; eg t ff;gg

	
:

Proposition 3.20 The map IndSd

Sb�S2�����S2
Tb �L2� � � ��L2! Td defining the

group T b
d

is injective.

Proof We must show that the module

IndSd

Sb�S2�����S2
Tb�L2�� � ��L2Š

M
Œd �DBtA1tA2t���tA 1

2
.d�b/

jBjDb; jAi jD2

TB˝LA1
˝� � �˝LA1

2
.d�b/

injects into Td . The summand indexed by the set decomposition Œd �DB tA1 tA2 t

� � � tA 1
2
.d�b/ embeds as the span of injective words

fLŒa1; b1� Œa2; b2� � � � Œa 1
2
.d�b/; b 1

2
.d�b/� jAi D fai ; big; L 2 TBg:
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Given any element in the image of this summand — viewed as a linear combination of
injective words — and given any word w appearing as a term in this element, we can
uniquely recover the decomposition Œd �DBtA1tA2t� � �tA 1

2
.d�b/ by observing the

order of the letters Œd � in w . Hence the intersection of the image of distinct summands
is zero, and the map is injective, as claimed.

Proposition 3.21 There is a short exact sequence

0! T b
d ! T bC2

d
! IndSd

SbC2�S2�����S2
.TbC2=T b

bC2/�L2� � � ��L2! 0:

Proof By Proposition 3.20, we may identify

T b
d Š IndSd

Sb�S2�����S2
Tb�L2� � � ��L2

Š IndSd

SbC2�S2�����S2
.IndSbC2

Sb�S2
Tb�L2/�L2� � � ��L2

Š IndSd

SbC2�S2�����S2
.T b

bC2/�L2� � � ��L2:

Moreover,
T bC2

d
Š IndSd

SbC2�S2�����S2
TbC2�L2� � � ��L2:

Under these identifications, the map T b
d
! T bC2

d
is induced by the map T b

bC2
! TbC2 .

Tensor product and induction are right-exact operations, so from the short exact sequence

0! T b
bC2! TbC2! .TbC2=T b

bC2/! 0 (exact by Proposition 3.20)

we can conclude that the sequence in question is exact at each point except possibly T b
d

.
But Proposition 3.20 implies that the composition of the maps T b

d
! T bC2

d
! Td is

injective. This implies that the map T b
d
! T bC2

d
is injective, hence the sequence

0! T b
d ! T bC2

d
! IndSd

SbC2�S2�����S2
.TbC2=T b

bC2/�L2� � � ��L2! 0

is exact.

Definition 3.22 Let Er
p;q.k/ denote entry .p; q/ on the r th page of the arc resolution

spectral sequence for the set Œk�. For i � 0, let

Ai
j .k/ WDE2

2j�1;i�jCdk=2e.k/:

The groups Ai
�.k/ with the d2 differential form a chain complex which we call the

i th even diagonal. For i � 0, let

Bi
j .k/ WDE2

2j ;i�jCdk=2e.k/:

Call the chain complex Bi
�.k/ the i th odd diagonal.
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Some examples of these complexes on E2
p;q.6/ and are illustrated in Figure 37. A3

�.k/

will always be the third (counting from i D 0) diagonal above the triangle of zeroes,
and similarly B1

�.k/ is the first (counting from i D 0) offset diagonal above the triangle
of zeroes.

6 E2
�1;6 E2

0;6 E2
1;6 E2

2;6 E2
3;6 E2

4;6 E2
5;6 E2

6;6 E2
7;6

5 E2
�1;5

E2
0;5

E2
1;5

E2
2;5

E2
3;5

E2
4;5

E2
5;5

E2
6;5

E2
7;5

4 E2
�1;4

E2
0;4

E2
1;4

E2
2;4

E2
3;4

E2
4;4

E2
5;4

E2
6;4

E2
7;4

3 E2
�1;3

E2
0;3

E2
1;3

E2
2;3

E2
3;3

E2
4;3

E2
5;3

E2
6;3

E2
7;3

2 0 0 E2
1;2 E2

2;2 E2
3;2 E2

4;2 E2
5;2 E2

6;2 E2
7;2

1 0 0 0 0 E2
3;1

E2
4;1

E2
5;1

E2
6;1

E2
7;1

0 0 0 0 0 0 0 E2
5;0

E2
6;0

E2
7;0

�1 0 1 2 3 4 5 6 7

Figure 37: The complexes A3
�.6/ (differentials in red) and B1

�.6/ (in blue
bold) on E2

p;q.6/

We will now relate the chain complexes Ai
�.k/ and Bi

�.k/ to the chain complexes
Inj2�.WM

j /. Note that Ai
�.k/ and Bi

�.k/ are 0 for � < 0, in contrast to Inj2�.WM
j /,

which is potentially nonzero for � D �1. To simplify indexing in the following
proposition, we introduce two

V
.Sym2R/–modules,

Vi WDWM
2i ˚WM

2iC1 and Ui WDWM
2iC1˚WM

2iC2:

Concretely,

Vi.k/DH FI
0 .HiCd 1

2
ke.F.M ///k and Ui.k/DH FI

0 .HiCd 1
2
.kC1/e.F.M ///k :

Proposition 3.23 Suppose R is a field. The chain complex Ai
�.k/ has a filtration by

chain complexes such that the filtration quotients are isomorphic to

IndSk

S2b�Sk�2b
.T2b=T 2b�2

2b /� .Inj2
��b�1Vi/k�2b:
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The chain complex Bi
�.k/ has a filtration such that the filtration differences are isomor-

phic to

IndSk

S2bC1�Sk�2b�1
.T2bC1=T 2b�1

2bC1 /� .Inj2
��b�1Ui/k�2b�1:

These groups are chain complexes with the differential induced by the second factor,
and these isomorphism are isomorphisms of chain complexes.

Proof By Proposition 3.21, there is a filtration of Td given by�
0 ,! T 0

d
,! � � � ,! T d�4

d
,! T d�2

d
,! T d

d
D Td when d is even,

0D T 1
d
,! T 3

d
,! � � � ,! T d�4

d
,! T d�2

d
,! T d

d
D Td when d is odd,

whose quotients are the groups

T b
d =T

b�2
d Š IndSd

Sb�S2�����S2
.Tb=T b�2

b /�L2� � � ��L2:

Since R is a field, it follows that

E2
p;q.k/ Š

M
Œk�DPtR; jP jDpC1

TpC1.P /˝H FI
0 .Hq.F.M ///k�p�1

is filtered by the modulesM
Œk�DPtR; jP jDpC1

T b
pC1.P /˝H FI

0 .Hq.F.M ///k�p�1 for b � pC 1 .mod 2/

with filtration quotientsM
Œk�DPtR;
jP jDpC1

.IndSpC1

Sb�S2�����S2
.Tb=T b�2

b /�L2� � � ��L2/˝H FI
0 .Hq.F.M ///k�p�1

D IndSk

Sb�S2�����S2�Sk�p�1
.Tb=T b�2

b /�L2� � � ��L2�H FI
0 .Hq.F.M ///k�p�1

D IndSk

Sb�Sk�b
.Tb=T b�2

b /

�
�
IndSk�b

S2�����S2�Sk�p�1
L2� � � ��L2�H FI

0 .Hq.F.M ///k�p�1

�
:

This means that the filtration differences for Ai
j .k/DE2

2j�1;i�jCdk=2e
.k/ are given,

for b even, by

IndSk

Sb�Sk�b
.Tb=T b�2

b /

�
�
IndSk�b

S2�����S2�Sk�2j
L2� � � ��L2�H FI

0 .Hi�jCdk=2e.F.M ///k�2j

�
D IndSk

Sb�Sk�b
.Tb=T b�2

b /� .Inj2
j� 1

2
b�1

Vi/k�b:
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Similarly, the filtration differences for Bi
j .k/DE2

2j ;i�jCdk=2e
.k/ are given, for b odd,

by

IndSk

Sb�Sk�b
.Tb=T b�2

b /

�
�
IndSk�b

S2�����S2�Sk�2j�1
L2� � � ��L2�H FI

0 .Hi�jCd 1
2

ke.F.M ///k�2j�1

�
D IndSk

Sb�Sk�b
.Tb=T b�2

b /� .Inj2
j� 1

2
b� 1

2

Ui/k�b:

For simplicity, we will reindex these filtrations by replacing odd values of b with
2bC 1 and even values of b with 2b .

Let Fb.A
i
�/ be the portion of the filtration of Ai

� constructed above containing elements
of the form IndSk

S2b�Sk�2b
T2b� .Inj2j�b�1Vi/k�2b and similarly define Fb.B

i
�/. We

have constructed filtrations on the groups Ai
� and Bi

� , and now it remains to check
that these are filtrations of chain complexes. We must also verify that the boundary
maps on the filtration quotients induced by the d2 differential in the spectral sequence
agree with the boundary maps of

IndSk

S2b�Sk�2b
.T2b=T 2b�2

2b /� .Inj2�Vi/k�2b

and
IndSk

S2bC1�Sk�2b�1
.T2bC1=T 2b�1

2bC1 /� .Inj2� Ui/k�2b�1:

First we will show that the subgroups Fb.A
i
�/ are in fact subchain complexes. An

element of Fb.A
i
j /.k/ can be written as a sum of elements of the form

t�l0�� � ��lj�b�v with t 2T2b; lq 2L2 and v2H FI
0 .Hi�jCdk�1

2
e.F.M ///2j�1:

Moreover, we may assume that t is a product of Lie polynomials (and not a linear
combination of products of Lie polynomials). By the Leibniz rule (Lemma 3.15)
and our calculations of the differentials in the arc resolution spectral sequence from
Lemma 3.17, it follows that the differential

d2.t � l0� � � �� lj�b� v/

is given by a signed sum of terms which remove one L2 factor and then stabilize v by
the appropriate Browder operation. Note there is no nonzero term involving applying d2

to v since v corresponds to an element of the �1st column of the arc resolution spectral
sequence. Since all of the terms in the sum are in Fb.A

i
j�1

/.k/, this establishes that
Fb.A

i
�/ is a filtration of chain complexes. There are two types of terms in the signed

sum, the first involves removing an L2 factor from t and the second involves deleting
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one of the lq factors. The portion of the sum involving terms of the second type is
exactly the boundary map of the chain complex

IndSk

S2b�Sk�2b
T2b� .Inj2� Vi/k�2b:

Thus, it suffices to show that the portion of the sum involving terms of the first type
are in Fb�1.A

i
j�1

/.k/, and hence zero in the quotient. But removing an L2 factor
from t yields a Lie polynomial that is two letters shorter and hence in T2b�2 . A similar
argument works for Bi

� .

The following result shows that vanishing on the E3 –page of the arc resolution spectral
sequence implies secondary representation stability.

Proposition 3.24 There are isomorphisms of FB–modules

H0.A
i
�/ŠH FIMC

0 .Vi/:

There are isomorphisms of symmetric group representations

H0.A
i
�/.2k/ŠH FIMC

0 .WM
2i /.2k/ and H0.A

i
�/.2kC1/ŠH FIMC

0 .WM
2iC1/.2kC1/:

Proof Let Q be a
V
.Sym2R/–module. In analogy to Proposition 2.26, there is an

isomorphism
H�1.Inj2�.Q//ŠH FIMC

0 .Q/:

By Proposition 3.23, the map Inj2
��1.Vi/!Ai

� is an isomorphism for � D 0; 1. Thus,

H�1.Inj2�.Vi//ŠH0.A
i
�/:

The second pair of isomorphisms follow from the fact that Vi ŠWM
2i
˚WM

2iC1
.

We now prove the main theorem: if M is a finite type noncompact connected manifold,
and R is a field of characteristic zero, then WM

i is a finitely generated
V
.Sym2R/–

module. For convenience, we will also assume M is smooth, but see Remark 3.11 for
a discussion of the case of general topological manifolds.

Proof of Theorem 1.4 We will prove by induction that the
V
.Sym2R/–modules WM

i

are finitely generated. Because the homology of configuration spaces of manifolds with
finite type homology is finitely generated (as abelian groups), it suffices to show that
these

V
.Sym2R/–modules have finite generation degree.
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Before we proceed, we make some preliminary observations. By Proposition 2.45
combined with Proposition 3.23 and considering the spectral sequence associated to a
filtered chain complex, we conclude the following results:

(a) If Ui is finitely generated for i � d , then for all j ,

Hj .B
i
�.k//Š 0

for all i � d , and all k sufficiently large (depending on i , j and M ).

(b) If Vi is finitely generated for i � d , then for all j ,

Hj .A
i
�.k//Š 0

for all i � d , and all k sufficiently large (depending on i , j and M ).

The proof of Theorem 3.12 implies that WM
i vanishes for i strictly negative. This will

be the base case of the following two-step induction argument. In the first part of the
induction argument, we will assume that WM

i is finitely generated for i � 2m and
then prove that WM

2mC1
is finitely generated. This induction hypothesis is equivalent to

the statement that Ui and Vi are finitely generated for i �m� 1. By Proposition 3.24,
the conclusion is equivalent to the statement that H0.A

m
� .k//Š 0 for sufficiently large

odd k . In the second part of the induction argument, we will assume that WM
i is

finitely generated for i � 2mC 1 and then prove that WM
2mC2

is finitely generated.
This induction hypothesis is equivalent to the statement that Vi is finitely generated for
i �m and Ui is finitely generated for i �m� 1, and the conclusion is equivalent to
the statement that H0.A

mC1
� .k//Š 0 for sufficiently large even k .

First induction step Assume WM
i is finitely generated for i � 2m. Our goal is to

show H0.A
m
� .k//Š 0 for odd k sufficiently large. By definition, when k is odd,

Am
0 .k/ŠE2

�1;mC 1
2
.kC1/

.k/ and H0.A
m
� .k//ŠE3

�1;mC 1
2
.kC1/

.k/:

Since the connectivity of the arc resolution is k � 1 by Proposition 3.8, we know that
for large k ,

E1
�1;mC 1

2
.kC1/

.k/Š 0:

There are no differentials out of Er
�1;mC 1

2
.kC1/.k/ so to prove that H0.A

i
�.k// van-

ishes we will show that there are no nonzero differentials dr into this group for r > 2.
The domains of such differentials are Er

�1Cr;m�rC1C 1
2
.kC1/.k/ for r > 2. When

r � 2mC 4, the proof of Theorem 3.12 implies E2
�1Cr;m�rC1C 1

2
.kC1/.k/Š 0. The

differentials are shown in the case mD 1, k D 7 in Figure 38.
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5 E2
�1;5

E2
0;5

E2
1;5

E2
2;5

E2
3;5

E2
4;5

E2
5;5

E2
6;5

E2
7;5

E2
8;5

4 E2
�1;4

E2
0;4

E2
1;4

E2
2;4

E2
3;4

E2
4;4

E2
5;4

E2
6;4

E2
7;4

E2
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3 0 E2
0;3

E2
1;3

E2
2;3

E2
3;3

E2
4;3

E2
5;3

E2
6;3

E2
7;3

E2
8;3

2 0 0 0 E2
2;2

E2
3;2

E2
4;2

E2
5;2

E2
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7;2

E2
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7;0
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8;0

�1 0 1 2 3 4 5 6 7 8

Figure 38: The complex A1
�.7/ and the differentials d3 , d4 , d5 , and d6

(shown in green).

For 2< r < 2mC4, the groups E3
�1Cr;m�rC1C 1

2
.kC1/.k/ are of the form Hj .A

i
�.k//

for i �m�1 and 2�j �mC1 or of the form Hj .B
i
�.k// for i �m and 1�j �mC1.

Thus by observations (a) and (b), there is some uniform bound K 2 Z such that these
groups are all zero for k >K . Hence for large k and r > 2, there cannot be nonzero
differentials with codomain Er

�1;mC 1
2
.kC1/.k/. It follows that, for k sufficiently large

and odd,

H0.A
m
� .k//ŠE3

�1;mC 1
2
.kC1/

.k/ŠE1
�1;mC 1

2
.kC1/

.k/Š 0:

This establishes the first induction step.

Second induction step Assume WM
i is finitely generated for i � 2mC 1. Our goal

is to show H0.A
mC1
� .k//Š 0 for even k sufficiently large. When k is even,

AmC1
0

.k/ŠE2

�1;mC1C 1
2

k
.k/ and H0.A

mC1
� .k//ŠE3

�1;mC1C 1
2

k
.k/:

Again, it suffices to show that E3
�1;mC1C 1

2
k.k/ is not the target of any nonzero

differentials dr , r > 2, once k is sufficiently large. The domains of the only possibly
nonzero differentials are Er

�1Cr;m�rC2C 1
2

k.k/ for 2 < r < 2mC 5. But for 2 <

r < 2mC 5 the groups E3
�1Cr;m�rC2C 1

2
k.k/ are one of Hj .A

i
�.k// for i �m and

2� j �mC2, or Hj .B
i
�.k// for i �mC1 and 1� j �mC1. By observations (a)

and (b) these groups vanish for large even k . This establishes the second induction
step and the theorem.
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Remark 3.25 To prove secondary representation stability, one only needs informa-
tion about d2 –differentials in the arc resolution spectral sequence. This information
can be obtained by using the Leibnitz rule if one can compute d2W E2

1;0
ŒRn�.2/!

E2
�1;1

ŒRn�.2/. This can be computed in the following alternative way. The map is surjec-
tive since E1

�1;1
ŒRn�.2/Š 0. Since H1.F1.R

n//Š 0, E2
�1;1

ŒRn�.2/ŠH1.F2.R
n//.

One can then compute this differential from the fact that F2.R
n/ ' Sn�1 with

Hn�1.F2.R
n// generated by the Browder operation applied to two copies of the

generator of H0.F1.R
n//. We included calculations of higher differentials since they

will be needed in the next subsection to establish an improved stable range in higher
dimensions and are suggestive of even higher-order stability for surfaces.

3.5 Improved range in higher dimensions

Although Theorem 1.4 holds for manifolds of dimension n � 3, the result in higher
dimensions is degenerate: the homology operation  is zero for n � 3, and the
isomorphism of Corollary 1.5 is also the zero map. Thus, in high dimensions, secondary
representation stability manifests itself as an improved range for representation stability.
We begin by showing that the arc resolution spectral sequence collapses at the E2 –page
if dim M > 2. In this subsection, we work with integral coefficients.

Proposition 3.26 If M is a noncompact connected smooth manifold of dimension
n� 3, the arc resolution spectral sequence collapses at the E2 –page.

Proof Since F2.R
n/'Sn�1 , the class  .1; 2/2H1.F2.R

n// is zero for n�3. Since
Browder operations are bilinear, the iterated product  .1;  .2; : : : ;  .k � 1; k/ � � � //

vanishes in Hk�1.Fk.R
n//. In particular, t .1; .2;:::; .k�1;k/���// is the zero map.

By Lemma 3.17, for L D Œ1; : : : Œk � 1; k�; : : :� 2 E1
k�1;0

.S/, the differential dr .L/

vanishes for r < k and

dk.L/D t .1; .:::; .k�1;k/���//.y0/;

where y0 is the class of a point in H0.F0.M //. Thus dk.L/D 0 as well. For degree
reasons, for r > k the codomain of the differential dr is zero, and so dr .L/D 0.

Now consider T 2E1
k�1;0

.S/. By Theorem 2.40, T DL1� � � ��Lm with Li Lie
polynomials. By Lemma 3.15, dr .T / is a signed sum of products of dr .Li/. These
terms vanish by the above paragraph so dr .T /D 0 for all r � 2.
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Consider r �2 and assume by induction that we have shown that d tD0 for all 2� t < r .
Thus E2

p;q Š Er
p;q . In the language of Lemma 3.15, Proposition 3.10 implies that

E2
p;q ŒM �.S/ is generated by classes of the form tr .T ˝˛/ with T 2E1

p;0
ŒRn�.U / and

˛ 2E2
�1;q

ŒM �.S nU / for U �S a subset of size pC1. Then dr .T /D 0 by the above
paragraph and dr .˛/D 0 since ˛ is in the �1st column. Thus, dr .tr .T ˝ ˛//D 0

and we have shown that dr D 0. The claim follows by induction.

Using Proposition 3.26, we can prove an improved stable range for the homology of con-
figuration spaces of higher-dimensional manifolds. This result was proven by Church,
Ellenberg and Farb for noncompact connected orientable manifolds [9, Theorem 6.4.3],
and we extend their result to all noncompact connected manifolds.

Theorem 3.27 Let M be a noncompact connected smooth manifold of dimension at
least three. Then deg H FI

0
.Hi.F.M /IZ//� i .

Proof Consider the spectral sequence described in Proposition 3.10. We proved in
Proposition 3.8 that E1p;q.S/Š 0 for pC q � jS j � 2. Proposition 3.26 implies that
E1p;q.S/ŠE2

p;q.S/ for all p and q . Since H FI
0
.Hi.F.M ///S ŠE2

�1;i
.S/, the claim

follows.

3.6 Conjectures and calculations

In this subsection, we make several conjectures. We give evidence for some of these
conjectures by proving them in special cases.

Higher-dimensional manifolds and higher-order stability We begin with some
questions concerning configuration spaces.

Question 3.28 (a) Is there a notion of tertiary and higher-order representation
stability that is present in the homology of configuration spaces?

(b) What is the stable range for secondary representation stability?

(c) Is there any form of nontrivial secondary representation stability for configuration
spaces of higher-dimensional manifolds?

We suggest a conjectural answer to all three questions. Its statement requires the
following definition.
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Definition 3.29 Define the following twisted (skew-)commutative algebras:

Ln
d WD

�
Sym H.d�1/.n�1/.Fd .R

n//; .d � 1/.n� 1/ even,V
H.d�1/.n�1/.Fd .R

n//; .d � 1/.n� 1/ odd.

Note that H.d�1/.n�1/.Fd .R
n// is Ld when .d�1/.n�1/ is odd. For .d�1/.n�1/

even, there is a similar description except with different signs. For d D 1 and n

arbitrary, Ln
d

–modules are precisely FI–modules. For d D 2, these Ln
d

–modules are
modules over

V
.Sym2R/ if n is even and modules over Sym

�V2
R
�

if n is odd.

For a noncompact n–manifold M , the embedding Rn tM ,!M induces maps

H.d�1/.n�1/.Fd .R
n//˝Hi.Fk.M //!HiC.n�1/.d�1/.FkCd .M //:

For d D 1, this gives the FI–module structure on Hi.F.M // and for d D nD 2, this
gives the

V
.Sym2R/–module structure on WM

i . In general these embeddings induce
Ln

d
–module structures on the groups W Œd �Mi .S/ defined as follows.

Definition 3.30 Let M be a noncompact connected manifold of dimension n and let

W Œd �Mi .S/ WDH
Ln

d�1

0
.� � � .H

Ln
1

0
.H 1

d
..n�1/.d�1/jS jCi/.F.M /IR/// � � � /S :

Note that we use the Ln
d

–module structure on W Œd �Mi to define W Œd C 1�Mi .S/.
For d D 1, W Œd �Mi is just the FI–module Hi.F.M //. For d D nD 2, W Œd �Mi is theV
.Sym2R/–module WM

i . We conjecture that these modules have finite generation
degree when M is sufficiently highly connected, and we conjecture an explicit stable
range.

Conjecture 3.31 Let M be a noncompact manifold of dimension n � 2. If M is
q–connected with q � b.n� 1/.d � 1/=dc, then HLn

d
0
.W Œd �Mi /.S/Š 0 for

jS j>max
�

i.d2C d/

n� 1
;

id

qd � .n� 1/.d � 1/

�
:

The above conjecture can be interpreted as three separate conjectures, addressing the
three parts of Question 3.28. Note that b.n� 1/.d � 1/=dc D 0 when nD 2 and thus
for surfaces we are only assuming that the manifold is connected. Our heuristic for
assuming that the manifold needs to be b.n�1/.d�1/=dc–connected is to bound the
slope of certain homology classes, that is, the ratio of homological degree to the number
of moving points. This condition seems to ensure that the slope of all homology classes
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in the configuration space that “come from the topology of the manifold” is higher
than those coming from Hd�1.Fd .R

n//. As support for Conjecture 3.31, we will
next prove the result in the case that the manifold is Rn . From now on, we work with
integral coefficients.

Configurations of (punctured) Euclidean space Cohen [12, Chapter III] proved that
the homology groups H�.Fk.R

n// are the submodule of the free graded commutative
algebra on the free graded lie algebra on the set Œk� such that in each product of
brackets, every element of Œk� appears exactly once. The bracket is the En –Browder
operation  n and the product is � ; see Theorem 3.4. For example, a typical element
of H3.n�1/.F6.R

n// is 2 �  n.1; 4/ �  n.3;  n.5; 6//.

Proposition 3.32 Conjecture 3.31 holds for M DRn with integral coefficients. Specif-
ically, for n> 1,

H
Ln

d

0
.W Œd �R

n

i /.S/Š 0 for all jS j>
i.d2C d/

n� 1
:

Proof Cohen’s description of H�.Fk.R
n// allows us to compute the groups W Œd �R

n

i

explicitly. The Ln
d

–module structure on W Œd �R
n

i is induced by stabilizing by d � 1

nested En –Browder operations. Thus, the Ln
d

generators HLn
d

0
.W Œd �R

n

i /.S/ are
spanned by products of d or more nested Browder operations. The ratio of homological
degree to number of points for these classes is at least .n�1/d=.dC1/; see Theorem 3.4.
The group HLn

d
0
.W Œd �R

n

i /.S/ is defined as a subquotient (and in fact, for M DRn , is
a submodule) of the homology group HiC.n�1/.d�1/jS j=d .FS .R

n//. Thus, elements
of HLn

d
0
.W Œd �R

n

i /.S/ have a ratio of homological degree to number of points given by
i=jS jC .n� 1/.d � 1/=d . If

i

jS j
C
.n� 1/.d � 1/

d
<
.n� 1/d

d C 1
;

then the set of abelian group generators for HLn
d

0
.W Œd �R

n

i /.S/ is empty, and so
HLn

d
0
.W Œd �R

n

i /.S/ vanishes in the indicated range.

Cohen’s calculation completely determine the modules WR2

i . We describe the case of
i D 0 in detail.

Proposition 3.33 For the plane M DR2 , WR2

0
ŠM FIMC.0/. Notably, WR2

0
.2k/D

H FI
0
.Hk.F.R

2///2k is a rank-..2k/!=.k!2k// free module.
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Proof For any k > 0, the generators H FI
0
.Hi.F.R2///k can be identified with a

subgroup of the free abelian group Hi.Fk.R
2// where the products of iterated brackets

have no degree-0 singleton factors. In particular, H FI
0
.Hk.F.R

2///2k has a basis
indexed by the set of perfect matchings on Œ2k�, where the matching fai ; big

k
iD1

corresponds (up to sign) to the homology class  .a1; b1/ � .a2; b2/ � � � � � .ak ; bk/,
as in Figure 39.

2

4

1

3

6

5

Figure 39: The basis element for H FI
0
.H3.F.R2///6 corresponding to the

matching ff4; 2g; f3; 1g; f5; 6gg

This description follows from the work of Cohen. As an S2k –representation, the
group H FI

0
.Hk.F.R

2///2k is precisely M FIMC.0/2k . Since t .a;b/ is the operation
x 7!  .a; b/ � x , this identification is compatible with the FIMC action.

The decomposition of the S2k –representation H FI
0
.Hk.F.R

2/IQ//2k into irreducible
constituents of is given explicitly in Proposition 3.37.

Remark 3.34 The methods used to prove Proposition 3.33 can be used for other
calculations. For example, if M is a punctured 2–disk, then WM

0
ŠM FIMC.0/ and

WM
1
ŠM FIMC.H1.M //˚M FIMC.L3/.

Computing WM
0

for some surfaces M

Proposition 3.35 Let M be a connected surface. If M is not orientable or of genus
greater than zero, then

WM
0 .0/Š Z and WM

0 .2i/Š 0 for i > 0:

Proof By definition, WM
0
.0/DH FI

0
.H0.F.M ///0 DH0.F0.M //. As claimed, this

is isomorphic to Z for any connected manifold M .

To prove the vanishing of WM
0
.2i/DH FI

0
.Hi.F.M ///2i for i > 0 we will first show,

by assembling known results, that the map

H FI
0 .H1.F.R

2///2!H FI
0 .H1.F.M ///2
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induced by embedding R2 ,! M is zero. We begin with the case that M is non-
orientable. Let M denote the Möbius strip. Since M is open, H1.F.M// is an
FI]–module. By Church–Ellenberg–Farb [9, Theorem 4.1.5] (here Theorem 2.16) it
follows that

H1.F2.M//Š

2M
`D0

IndS2

S`�S2�`
H FI

0 .H1.F.M///`�Z;

with Z the trivial S2�`–representation. Since H1.F1.M// Š H1.M/ Š Z and
H1.F0.M// Š 0, the component of H1.F2.M// generated in degrees ` D 0; 1 is
isomorphic to

IndS2

S1�S1
H FI

0 .H1.F.M///1�ZŠ IndS2

S1�S1
ZŠ Z2;

the canonical S2 permutation representation. By Theorem 2.16 this component is a di-
rect summand of H1.F2.M//. Wang [46, Lemma 1.6] showed that H 1.F2.M//ŠZ2

and that H 2.F2.M//ŠZ and hence is torsion-free. We deduce that H1.F2.M//ŠZ2

consists entirely of its `D 1 component: the component H FI
0
.H1.F.M///2 generated

in degree `D 2 is zero. Hence the map

H FI
0 .H1.F.R

2///2!H FI
0 .H1.F.M///2

is zero. For a general noncompact nonorientable surface M, the map

H FI
0 .H1.F.R

2///2!H FI
0 .H1.F.M ///2

factors through H FI
0
.H1.F.M///2 , and so is zero.

From a presentation of �1.Fk.M // for M a noncompact, orientable positive genus
surface (for example, Bellingeri [1, Theorem 6.1]) we see that the map H1.F2.R

2//!

H1.F2.M // is zero even before passing to the quotient module of minimal generators.

Consider the arc resolution spectral sequence described in Section 3.2. By the proof of
Theorem 3.12, the domain of any differentials dr

p;q with codomain Er
�1;i

.2i/ are zero
for r > 2. Since Er

p;q.2i/D 0 for p < �1, there are no nontrivial differentials out
of the group Er

�1;i
. High connectivity of the arc resolution (Proposition 3.8) implies

that E1
�1;i

.2i/Š 0 for i > 0. Thus the differentials d2W Er
1;i�1

.2i/!Er
�1;i

.2i/ are
surjective for i > 0. Equivalently, the maps

IndS2i

S2i�2�S2
WM

0 .2i � 2/�H1.F2.R
2//!WM

0 .2i/
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surject for all i > 0. We have shown that the map

H FI
0 .H1.F.R

2///2!H FI
0 .H1.F.M ///2

is zero if M is not orientable or has positive genus, and so for i D 1,

IndS2

S0�S2
WM

0 .0/�H1.F2.R
2//!WM

0 .2/

is the zero map. Since it is also surjective, WM
0
.2/Š 0. The claim for higher i then

follows inductively, using the fact that only the zero group can be the surjective image
of the zero group.

In Proposition 3.35 we saw that for nonorientable or positive genus surfaces M,

WM
0 .2i/DH FI

0 .Hi.F.M ///2i D 0 for i > 0;

and this gives the following small improvement on known stable ranges.

Corollary 3.36 Let M be a connected noncompact manifold which is not a (possibly
punctured) 2–disk, and let i > 0. Then Hi.F.M // is generated in degree � 2i � 1.

The combinatorics of FIMC–modules There has been considerable recent success in
characterizing the structure of finitely generated modules over the category FI and certain
relatives, and these results suggest a number of questions about what “representation
stability” should mean for modules over FIMC . In Proposition 3.38, we describe the
decomposition of free FIMC–modules over Q into irreducible Sk –representations,
using a calculation of M FIMC.0/ stated in Proposition 3.37. In Question 3.40, we pose
some questions about the structure of finitely generated rational FIMC–modules.

Let Bk Š S2 oSk � S2k denote the signed permutation group on k letters, the
Coxeter group in type Bk=Ck . Let V.1k ;¿/ denote the 1–dimensional rational Bk –
representation pulled back from the sign Sk –representation under the natural surjection
Bk !Sk . There are isomorphisms of S2k –representations

M FIMC.0/2k Š IndS2k

Bk
V.1k ;¿/:

The decompositions of these induced representations are described explicitly by Stem-
bridge [44, page 7], a result which he attributes to Littlewood. These decompositions
are as follows.
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Proposition 3.37 (Littlewood, Stembridge [44, page 7]) There are isomorphisms of
S2k –representations

M FIMC.0/2k Š

M
�2D2k

V�:

Here V� is the irreducible S2k –representation associated to the partition �. A partition
� ` 2k is in D2k if and only if it has the following symmetry: when the associated
Young diagram .in English notation/ is cut into two along the staircase shown in
Figure 40, then the resultant two skew subdiagrams are symmetric under reflection in
the line of slope �1.

Figure 40: Staircase dividing Young diagrams into two skew subdiagrams

Figure 41 illustrates this symmetry in the case 2k D 6.

Figure 41: The set D6 : partitions of 6 contained in D6 , left, and partitions
of 6 not in D6 , right.

Notably, identifying a partition in D2k with one of its skew subdiagrams puts D2k

in bijection with strict partitions of k , that is, partitions with distinct parts. This
computation of M FIMC.0/ allows us to use the Littlewood–Richardson rule to compute
the decomposition of any free rational FIMC–module.

Proposition 3.38 Given a rational Sd –representation W , the associated free FIMC–
module

M FIMC.W /ŠM FIMC.d/˝QŒSd �W

has the decomposition

M FIMC.W /k Š

�
IndSk

Sd�Sk�d
W �M FIMC.0/k�d for k � d .mod 2/;

0 for k 6� d .mod 2/:
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Example 3.39 The first five nonzero components of the rational module M FIMC.1/

decompose as follows:

M FIMC.1/1 Š V

M FIMC.1/3 Š V ˚V

M FIMC.1/5 Š V ˚V ˚V

M FIMC.1/7 Š V ˚V ˚V ˚V ˚V

M FIMC.1/9 Š

V ˚V ˚V ˚V ˚V ˚V ˚V :

In analogy to the other categories and (skew-)TCAs that have been studied under the
scope of “representation stability”, we pose the following questions.

Question 3.40 What constraints does finite generation put on the irreducible repre-
sentations appearing in a rational FIMC–module? Given a finitely generated ratio-
nal FIMC–module V , is there some operation on Young diagrams for constructing
VkC1 from Vk in the stable range in the spirit of Church–Farb’s multiplicity stability
[11, Definition 1.1]? Does Vk even determine VkC1 for large k ?

Algebraic finiteness properties for twisted (skew-)commutative algebras The fol-
lowing purely algebraic questions are suggested by Conjecture 3.31.

Question 3.41 Let R be a Noetherian ring. If W is a finitely generated Ln
d

–module
and V is a Ln

d
–submodule, is V necessarily finitely generated?

The main theorem of Church–Ellenberg–Farb–Nagpal [10] shows that the answer is
yes for d D 1. For R a field of characteristic zero, the answer is yes for d D 2. This is
due to Nagpal–Sam–Snowden who address the case when n is odd [29, Theorem 1.1]
and the case when n is even [30, Theorem 1.1]. The following question generalizes the
results of Church–Ellenberg [8] to the case of d > 1. For a (skew-)TCA A, let HA

i

denote the i th left derived functor of HA
0

.
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Question 3.42 Is there a function f W N0�N0�N0!N0 such that deg HLn
d

i .W /�

f .g; r; i/ for all Ln
d

–modules W with deg HLn
d

0
.W /D g and deg HLn

d
1
.W /D r ?

An affirmative answer to Question 3.42 for d D n D 2 would allow us to prove a
quantitative version of Theorem 1.4. An affirmative answer to either of these two ques-
tions for d > 2 seems relevant to establishing tertiary and higher-order representation
stability, though more ideas appear to be needed.

References
[1] P Bellingeri, On presentations of surface braid groups, J. Algebra 274 (2004) 543–563

MR

[2] M Bendersky, S Gitler, The cohomology of certain function spaces, Trans. Amer.
Math. Soc. 326 (1991) 423–440 MR

[3] R Bott, L W Tu, Differential forms in algebraic topology, Graduate Texts in Math. 82,
Springer (1982) MR

[4] W Browder, Homology operations and loop spaces, Illinois J. Math. 4 (1960) 347–357
MR

[5] D Burghelea, R Lashof, The homotopy type of the space of diffeomorphisms, I, Trans.
Amer. Math. Soc. 196 (1974) 1–36 MR

[6] K Casto, FIG –modules, orbit configuration spaces, and complex reflection groups,
preprint (2016) arXiv

[7] T Church, Homological stability for configuration spaces of manifolds, Invent. Math.
188 (2012) 465–504 MR

[8] T Church, J S Ellenberg, Homology of FI–modules, Geom. Topol. 21 (2017) 2373–
2418 MR

[9] T Church, J S Ellenberg, B Farb, FI–modules and stability for representations of
symmetric groups, Duke Math. J. 164 (2015) 1833–1910 MR

[10] T Church, J S Ellenberg, B Farb, R Nagpal, FI–modules over Noetherian rings,
Geom. Topol. 18 (2014) 2951–2984 MR

[11] T Church, B Farb, Representation theory and homological stability, Adv. Math. 245
(2013) 250–314 MR

[12] F R Cohen, T J Lada, J P May, The homology of iterated loop spaces, Lecture Notes
in Math. 533, Springer (1976) MR

[13] F D Farmer, Cellular homology for posets, Math. Japon. 23 (1979) 607–613 MR

[14] S Galatius, A Kupers, O Randal-Williams, Cellular Ek –algebras, preprint (2018)
arXiv

Geometry & Topology, Volume 23 (2019)

https://doi.org/10.1016/j.jalgebra.2003.12.009
http://msp.org/idx/mr/2043362
https://doi.org/10.2307/2001871
http://msp.org/idx/mr/1010881
http://dx.doi.org/10.1007/978-1-4757-3951-0
http://msp.org/idx/mr/658304
http://projecteuclid.org/euclid.ijm/1255456051
http://msp.org/idx/mr/0120646
https://doi.org/10.2307/1997010
http://msp.org/idx/mr/0356103
http://msp.org/idx/arx/1608.06317
https://doi.org/10.1007/s00222-011-0353-4
http://msp.org/idx/mr/2909770
https://doi.org/10.2140/gt.2017.21.2373
http://msp.org/idx/mr/3654111
https://doi.org/10.1215/00127094-3120274
https://doi.org/10.1215/00127094-3120274
http://msp.org/idx/mr/3357185
https://doi.org/10.2140/gt.2014.18.2951
http://msp.org/idx/mr/3285226
https://doi.org/10.1016/j.aim.2013.06.016
http://msp.org/idx/mr/3084430
http://dx.doi.org/10.1007/BFb0080464
http://msp.org/idx/mr/0436146
http://msp.org/idx/mr/529895
http://msp.org/idx/arx/1805.07184


2590 Jeremy Miller and Jennifer C H Wilson

[15] S Galatius, A Kupers, O Randal-Williams, E2 –cells and mapping class groups,
preprint (2018) arXiv To appear in Publ. Math. Inst. Hautes Études Sci

[16] W L Gan, A long exact sequence for homology of FI–modules, New York J. Math. 22
(2016) 1487–1502 MR

[17] W L Gan, L Li, On central stability, Bull. Lond. Math. Soc. 49 (2017) 449–462 MR

[18] A Hatcher, Algebraic topology, Cambridge Univ. Press (2002) MR

[19] A Hatcher, N Wahl, Stabilization for mapping class groups of 3–manifolds, Duke
Math. J. 155 (2010) 205–269 MR

[20] G O Helle, Pairings and convergence of spectral sequences, Master’s thesis, Univer-
sity of Oslo (2017) Available at https://www.duo.uio.no/bitstream/handle/
10852/57776/1/Helle-thesis.pdf

[21] R Hepworth, On the edge of the stable range, preprint (2016) arXiv

[22] M C Kerz, The complex of words and Nakaoka stability, Homology Homotopy Appl. 7
(2005) 77–85 MR

[23] A Kupers, J Miller, Improved homological stability for configuration spaces after
inverting 2 , Homology Homotopy Appl. 17 (2015) 255–266 MR

[24] A Kupers, J Miller, En –cell attachments and a local-to-global principle for homolog-
ical stability, Math. Ann. 370 (2018) 209–269 MR

[25] W S Massey, Products in exact couples, Ann. of Math. 59 (1954) 558–569 MR

[26] J P May, The geometry of iterated loop spaces, Lecture Notes in Math. 271, Springer
(1972) MR

[27] J Miller, M Palmer, Scanning for oriented configuration spaces, Homology Homotopy
Appl. 17 (2015) 35–66 MR

[28] I M Musson, Lie superalgebras and enveloping algebras, Graduate Studies in Math.
131, Amer. Math. Soc., Providence, RI (2012) MR

[29] R Nagpal, S V Sam, A Snowden, Noetherianity of some degree two twisted commuta-
tive algebras, Selecta Math. 22 (2016) 913–937 MR

[30] R Nagpal, S V Sam, A Snowden, Noetherianity of some degree two twisted skew-
commutative algebras, Selecta Math. 25 (2019) art. id. 4, 26 pages MR

[31] M Palmer, Twisted homological stability for configuration spaces, Homology Homo-
topy Appl. 20 (2018) 145–178 MR

[32] P Patzt, Central stability homology, preprint (2017) arXiv

[33] A Putman, Stability in the homology of congruence subgroups, Invent. Math. 202
(2015) 987–1027 MR

[34] A Putman, S V Sam, Representation stability and finite linear groups, Duke Math. J.
166 (2017) 2521–2598 MR

Geometry & Topology, Volume 23 (2019)

http://msp.org/idx/arx/1805.07187
http://nyjm.albany.edu:8000/j/2016/22_1487.html
http://msp.org/idx/mr/3603074
https://doi.org/10.1112/blms.12044
http://msp.org/idx/mr/3723630
http://pi.math.cornell.edu/~hatcher/AT/ATpage.html
http://msp.org/idx/mr/1867354
https://doi.org/10.1215/00127094-2010-055
http://msp.org/idx/mr/2736166
https://www.duo.uio.no/bitstream/handle/10852/57776/1/Helle-thesis.pdf
https://www.duo.uio.no/bitstream/handle/10852/57776/1/Helle-thesis.pdf
http://msp.org/idx/arx/1608.08834
http://projecteuclid.org/euclid.hha/1139839507
http://msp.org/idx/mr/2155519
https://doi.org/10.4310/HHA.2015.v17.n1.a12
https://doi.org/10.4310/HHA.2015.v17.n1.a12
http://msp.org/idx/mr/3344444
https://doi.org/10.1007/s00208-017-1533-3
https://doi.org/10.1007/s00208-017-1533-3
http://msp.org/idx/mr/3747486
https://doi.org/10.2307/1969719
http://msp.org/idx/mr/0060829
http://dx.doi.org/10.1007/BFb0067491
http://msp.org/idx/mr/0420610
https://doi.org/10.4310/HHA.2015.v17.n1.a2
http://msp.org/idx/mr/3338540
https://doi.org/10.1090/gsm/131
http://msp.org/idx/mr/2906817
https://doi.org/10.1007/s00029-015-0205-y
https://doi.org/10.1007/s00029-015-0205-y
http://msp.org/idx/mr/3477338
https://doi.org/10.1007/s00029-019-0461-3
https://doi.org/10.1007/s00029-019-0461-3
http://msp.org/idx/mr/3907946
https://doi.org/10.4310/HHA.2018.v20.n2.a8
http://msp.org/idx/mr/3806572
http://msp.org/idx/arx/1704.04128
https://doi.org/10.1007/s00222-015-0581-0
http://msp.org/idx/mr/3425385
https://doi.org/10.1215/00127094-2017-0008
http://msp.org/idx/mr/3703435


Higher-order representation stability and ordered configuration spaces 2591

[35] O Randal-Williams, Homological stability for unordered configuration spaces, Q. J.
Math. 64 (2013) 303–326 MR

[36] C Reutenauer, Free Lie algebras, London Math. Soc. Monographs 7, Oxford Univ.
Press (1993) MR

[37] L E Ross, Representations of graded Lie algebras, Trans. Amer. Math. Soc. 120 (1965)
17–23 MR

[38] J J Rotman, An introduction to homological algebra, 2nd edition, Springer (2009) MR

[39] S V Sam, A Snowden, Introduction to twisted commutative algebras, preprint (2012)
arXiv

[40] S V Sam, A Snowden, Stability patterns in representation theory, Forum Math. Sigma
3 (2015) art. id. e11, 108 pages MR

[41] D P Sinha, The (non-equivariant) homology of the little disks operad, from “OPERADS
2009” (J-L Loday, B Vallette, editors), Sémin. Congr. 26, Soc. Math. France, Paris
(2013) 253–279 MR

[42] A Snowden, Syzygies of Segre embeddings and �–modules, Duke Math. J. 162 (2013)
225–277 MR

[43] L Solomon, The Steinberg character of a finite group with BN –pair, from “The theory
of finite groups”, Benjamin, New York (1969) 213–221 MR

[44] J R Stembridge, A practical view of �W : a guide to working with Weyl group represen-
tations, with special emphasis on branching rules, workshop notes (2006) Available at
http://www.liegroups.org/papers/summer06/what.pdf

[45] B Totaro, Configuration spaces of algebraic varieties, Topology 35 (1996) 1057–1067
MR

[46] J H Wang, On the braid groups for the Möbius band, J. Pure Appl. Algebra 169 (2002)
91–107 MR

Department of Mathematics, Purdue University
West Lafayette, IN, United States

Department of Mathematics, University of Michigan
Ann Arbor, MI, United States

jeremykmiller@purdue.edu, jchw@umich.edu

Proposed: Jesper Grodal Received: 13 March 2018
Seconded: Anna Wienhard, Ralph Cohen Revised: 21 January 2019

Geometry & Topology Publications, an imprint of mathematical sciences publishers msp

https://doi.org/10.1093/qmath/har033
http://msp.org/idx/mr/3032101
http://msp.org/idx/mr/1231799
https://doi.org/10.2307/1994163
http://msp.org/idx/mr/0185043
https://doi.org/10.1007/b98977
http://msp.org/idx/mr/2455920
http://msp.org/idx/arx/1209.5122
https://doi.org/10.1017/fms.2015.10
http://msp.org/idx/mr/3376738
http://msp.org/idx/mr/3203375
https://doi.org/10.1215/00127094-1962767
http://msp.org/idx/mr/3018955
http://msp.org/idx/mr/0246951
http://www.liegroups.org/papers/summer06/what.pdf
https://doi.org/10.1016/0040-9383(95)00058-5
http://msp.org/idx/mr/1404924
https://doi.org/10.1016/S0022-4049(01)00072-X
http://msp.org/idx/mr/1890187
mailto:jeremykmiller@purdue.edu
mailto:jchw@umich.edu
http://msp.org
http://msp.org



	1. Introduction
	1.1. Stability for configuration spaces
	1.2. Categorical reformulation
	1.3. Other results

	2. Algebraic foundations
	2.1. Review of twisted (skew-)commutative algebras
	2.2. Twisted injective word complexes
	2.3. Homology of the complex of injective words
	2.4. Secondary injective word complexes

	3. Configuration spaces
	3.1. Stabilization maps and homology operations
	3.2. The arc resolution and representation stability
	3.3. Differentials in the arc resolution spectral sequence
	3.4. Proof of secondary representation stability
	3.5. Improved range in higher dimensions
	3.6. Conjectures and calculations

	References

