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Some finiteness results for groups
of automorphisms of manifolds

ALEXANDER KUPERS

We prove that in dimension ¤ 4; 5; 7 the homology and homotopy groups of the
classifying space of the topological group of diffeomorphisms of a disk fixing the
boundary are finitely generated in each degree. The proof uses homological sta-
bility, embedding calculus and the arithmeticity of mapping class groups. From
this we deduce similar results for the homeomorphisms of Rn and various types of
automorphisms of 2–connected manifolds.
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1 Introduction

Inspired by work of Weiss on Pontryagin classes of topological manifolds [88], we use
several recent advances in the study of high-dimensional manifolds to prove a structural
result about diffeomorphism groups. We prove the classifying spaces of such groups
are often “small” in one of the following two algebrotopological senses:

Definition 1.1 Let X be a path-connected space.

� X is said to be of homologically finite type if for all ZŒ�1.X /�–modules M

that are finitely generated as abelian groups, H�.X IM / is finitely generated in
each degree.

� X is said to be of finite type if �1.X / is finite and �i.X / is finitely generated
for i � 2.

Being of finite type implies being of homologically finite type; see Lemma 2.15.
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Let Diff.�/ denote the topological group of diffeomorphisms in the C1–topology,
PL.�/ the simplicial group of PL–homeomorphisms, Top.�/ the topological group
of homeomorphisms in the compact–open topology. A subscript @ means we restrict
to the subgroup of those automorphisms that are the identity on the boundary, and
a superscript C means we restrict to orientation-preserving automorphisms. The
following solves Problems 1(b) and 1(d) of Burghelea in [51]:

Theorem A Let n¤ 4; 5; 7; then BDiff@.Dn/ is of finite type.

Corollary B Let n¤ 4; 5; 7; then BDiff.Sn/ is of finite type.

Corollary C Let n ¤ 4; 5; 7. Suppose that M is a closed , 2–connected , oriented ,
smooth manifold of dimension n; then BDiffC.M / is of homologically finite type.

It is convention to denote PL.Rn/ by PL.n/ and Top.Rn/ by Top.n/.

Corollary D Let n¤ 4; 5; 7; then BTop.n/ and BPL.n/ are of finite type.

Corollary E Let n¤ 4; 5; 7; then BTop.Sn/ and BPL.Sn/ are of finite type.

Corollary F Let n ¤ 4; 5; 7. Suppose that M is a closed , 2–connected , oriented ,
smoothable manifold of dimension n; then BPLC.M / and BTopC.M / are of homo-
logically finite type.

For completeness, Propositions 5.20 and 5.22 give similar results for homotopy au-
tomorphisms, block automorphisms and the quotient of block automorphisms by
automorphisms. Furthermore, using the relationship between diffeomorphisms and
algebraic K–theory, we deduce finiteness properties of the spectra WhDiff.�/ and A.�/.

The input to our proofs is a number of deep theorems in manifold theory: the homo-
logical stability results of Galatius and Randal-Williams [26; 24] and Botvinnik and
Perlmutter [7; 66], the embedding calculus of Weiss [87; 8], the excision estimates
of Goodwillie and Klein [28], and the arithmeticity results of Sullivan [80]; see also
Triantafillou [81].

These are combined with a fiber sequence we call the Weiss fiber sequence, as it
underlies the work of Weiss in [88]. This fiber sequence expresses the diffeomorphisms
of a disk as the difference between the diffeomorphisms of a manifold and certain
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self-embeddings of that manifold. The setup is as follows: let M be an n–dimensional
smooth manifold with nonempty boundary @M and an embedded disk Dn�1 � @M ;
then EmbŠ@=2.M / is the space of embeddings M ,! M that are the identity on
@M n int.Dn�1/ and isotopic fixing @M n int.Dn�1/ to a diffeomorphism that fixes
the boundary. In Section 4 we construct a fiber sequence

(1) BDiff@.D
n/! BDiff@.M /! BEmbŠ@=2.M /

and show it deloops once to a fiber sequence

(2) BDiff@.M /! BEmbŠ@=2.M /! B.BDiff@.D
n/; \/

with \ denoting boundary connected sum. The advantage of (2) is that the base
is 1–connected, so we can use technical input about spaces of homologically and
homotopically finite type discussed in Section 2.

The aforementioned deep theorems tells us there are manifolds Wg;1 and Hg such that
the group of the diffeomorphisms of a disk is the only unknown term in (2). Thus we
can solve for BDiff@.Dn/. This insight is due to Weiss, and was used by him in [88] to
study the rational cohomology of BTop.n/, related to Diff@.Dn/ by smoothing theory.
We instead use it to study finiteness properties of Diff@.Dn/.

1.1 Historical remarks

We discuss related results in the literature. This discussion is not complete and does
not cover the results used in our argument, eg [24; 26; 88; 7; 66]. We start with
diffeomorphisms of a disk. As often in smooth manifold theory, there is the following
trichotomy: (i) low dimensions � 3, (ii) dimension 4, (iii) high dimensions n� 5.

(i) In low dimensions � 3, the diffeomorphisms of a disk are contractible. For nD 1

this is folklore, for nD 2 this is due to Smale [78], and for nD 3 to Hatcher [35].

(ii) In dimension 4, nothing is known.

(iii) In high dimensions � 5, the homotopy groups of diffeomorphisms of a disk are
only understood in low degrees.

The connected components are known: the group �0.Diff@.Dn// is isomorphic to the
group ‚nC1 of diffeomorphism classes of homotopy .nC1/–spheres under connected
sum; see Levine [56]. The h–cobordism theorem proves surjectivity and Cerf’s theorem
proves injectivity [14]. This group is known to be finite abelian and is related to the
stable homotopy groups of spheres; see Kervaire and Milnor [48].
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The higher homotopy groups can be determined in a range using the pseudoisotopy
stability theorem of Igusa [44] and algebraic K–theory of Waldhausen [82]. In [22],
Farrell and Hsiang proved that, in the so-called concordance stable range 0< i < n

6
�7�

improved to 0< i <min
�

n�7
2
; n�4

3

�
by Igusa, and recently Randal-Williams gave an

upper bound [69]
�
,

�i.Diff@.D
n//˝QŠ

�
0 if n is even,
KiC2.Z/˝Q if n is odd.

The latter is given by Q if i � 3 .mod 4/ and 0 otherwise; see Borel [6]. Igusa’s work
on higher torsion invariants gives an alternative proof [45, Section 6.5].

There are known examples of nonzero homotopy groups. Rationally, Watanabe showed
that �2n�2.BDiff@.D2nC1// ˝ Q ¤ 0 for many n [85], giving lower bounds on
the dimension of �kn�k.BDiff@.D2nC1//˝Q for any k � 2 [86]. Novikov found
torsion elements in �i.BDiff@.Dn// [65]. Burghelea and Lashof proved that there is
an infinite sequence .pi ; ki ; ni/ with pi an odd prime and limi!1 ni=ki D 0 such
that �ki

.Diff@.Dni //˝Z=piZ¤ 0 [12, Section 7], improving on an earlier result by
Miller [61]. Crowley, Schick and Steimle proved that for n � 6, there are infinitely
many i such that �i.Diff@.Dn// is nonzero, containing an element of order 2 [15; 16].

Next we discuss results about the homotopy type of automorphism groups of manifolds.

(i) In low dimensions � 3, any topological or PL–manifold admits a unique smooth
structure and for any smooth manifold M (possibly with nonempty boundary) we have

Diff@.M /' PL@.M /' Top@.M /:

In dimension nD 1, the only path-connected manifolds are D1 and S1 , with

Diff@.D
1/' � and Diff.S1/'O.2/:

In dimension n D 2, BDiff@.†/ of homologically finite type for all †. This can
be proven using analysis (of quadratic differentials, as in Strebel [79], or harmonic
functions, as in Bödigheimer [5]) or using homotopy theory (using Gramain [30] for
the identity components and an induction using arc complexes for the mapping class
groups due to Hatcher [36]).

In dimension n D 3, using Hendriks and Laudenbach [40] one reduces to studying
a space related to outer-space (which can be approached using the techniques of
Hatcher and Vogtmann [38]) and the case of prime 3–manifolds. For the latter, the
diffeomorphisms groups of nearly all prime 3–manifolds are understood. We will only
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give a selection of relevant references: the case of Haken manifolds was settled by
Hatcher [33] and Ivanov [46] (which also shows how to reduce from prime 3–manifolds
to atoroidal 3–manifolds), and the case of irreducible M with nonempty boundary
was settled in Hatcher and McCullough [37]. Kalliongis and McCullough showed that
for many 3–manifolds M, �1.Diff.M // is not finitely generated [47].

(ii) In dimension 4, the best results concern mapping class groups of topological
4–manifolds with good fundamental groups; see Quinn [68]. For smooth 4–manifolds,
the same result holds stably, ie after taking a connected sum with some number of
S2 �S2 (such stabilizations are known to be necessary; see Ruberman [71]).

(iii) In high dimensions � 5, Farrell and Hsiang also did computations for spheres
and aspherical manifolds [22], which were extended by Burghelea to simply connected
manifolds. In particular, he proved the higher rational homotopy groups of the identity
component of Diff.M / are finite-dimensional in the concordance stable range [10]. For
the latest results concerning homeomorphisms of aspherical manifolds, see Enkelmann,
Lück, Pieper, Ullmann and Winges [21]. Sullivan proved that �0 differs by finite
groups from an arithmetic group if M is simply connected [80]. This fails if the
manifold is not simply connected: for n� 5, �0.Diff.T n// is not finitely generated;
see Antonelli, Burghelea and Kahn [3] and Hatcher [34]. This was generalized to
higher homotopy groups of Diff.T n/ by Hsiang and Sharpe [43] (see Corollary II.4.6
of Hatcher and Wagoner [39] for a similar example). In general the identity component
of Diff.M / does not have the homotopy type of a finite CW complex; see Hirsch [42],
Lawson [54] and Antonelli, Burghelea and Kahn [2].
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2 Homologically and homotopically finite type spaces

In this section we recall some basic technical results for proving that homology groups
or homotopy groups of spaces are finitely generated. These are elementary and similar
to results in the literature, eg [73; 59], so our proofs will be succinct.

2.1 Homologically finite type spaces

We start with finiteness conditions that one can impose on the homology groups of a
space.

Definition 2.1 � A path-connected space X is said to be of homologically finite
type if for all ZŒ�1.X /�–modules M that are finitely generated as an abelian
group, H�.X IM / is finitely generated in each degree.

� A space X is said to be of homologically finite type if it has finitely many path
components and each of these path components is of homologically finite type.
We use the notation X 2 HFin.

Using cellular homology, one sees that a CW complex with finitely many cells in each
dimension has finitely generated homology groups. The following lemma generalizes
this:

Lemma 2.2 A CW complex X with finitely many cells in each dimension is in HFin.

Proof Without loss of generality, X is path-connected. A CW decomposition of X

induces a �1.X /–equivariant CW decomposition of its universal cover zX. Letting
zC� denote the cellular chains on zX, a finitely generated complex of free ZŒ�1.X /�–
modules. Then H�.X IM / is isomorphic to the homology of the chain complex
zC�˝ZŒ�1.X /�M, which is finitely generated in each degree if M is finitely generated
as an abelian group.

Example 2.3 Compact n–dimensional topological manifolds are in HFin, because
they have the homotopy type of finite CW complexes [62, Corollary 1].

We will next discuss the behavior of HFin under fiber sequences.

Notation 2.4 A fiber sequence with fiber taken over b 2 B is a pair of maps F i
�!

E
p
�! B and a null-homotopy from the composite p ı i W F ! B to the constant map

at b such that the induced map from F ! hofibb.E! B/ is a weak equivalence.
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Here the homotopy fiber is defined by replacing E! B with a fibration zpW zE! B

and taking hofibb.E! B/D zp�1.b/. Thus we have a Serre spectral sequence and
long exact sequence of homotopy groups for a fiber sequence. Given a fiber sequence
F !E! B with B path-connected and �1.B/ acting trivially on H�.F /, one may
use the Serre spectral sequence to prove that if two of F, E and B have finitely
generated homology in each degree, then so does the third. The following lemma
generalizes this:

Lemma 2.5 Let F i
�!E

p
�! B be a fiber sequence with B path-connected.

(i) Bases If H�.F / is finitely generated in each degree and H�.EIp
�M / is

finitely generated in each degree for all ZŒ�1.B/�–modules M that are finitely
generated as abelian groups, then B 2 HFin.

(ii) Total spaces If B 2 HFin, E is path-connected and H�.F I i
�M / is finitely

generated in each degree for all ZŒ�1.E/�–modules M that are finitely generated
as abelian groups, then E 2 HFin.

(iii) Fibers If F is simply connected, H�.B/ and H�.E/ are finitely generated in
each degree, and �1.B/ acts trivially on H�.F /, then F 2 HFin.

Proof (i) The ZŒ�1.B/�–module M may be pulled back along p to obtain a local
coefficient system p�M on E. Applying the equivariant local coefficient Serre spectral
sequence of [64, Theorem 3.1] with G D feg to the fiber sequence F !E! B with
local coefficient system p�M on E, we get a spectral sequence

E2
p;q DHp.BIHq.F I .p ı i/�M //)HpCq.EIp

�M /:

Suppose that M is finitely generated as an abelian group. Then, on the one hand,
HpCq.E;p

�M / is finitely generated and so are the entries on the E1–page. On the
other hand, we claim that Hq.F I .p ı i/�M / is finitely generated for all q . To see
this, note that the action of �1.F / on .p ı i/�M is trivial and the universal coefficient
theorem gives a short exact sequence

0!Hq.F /˝M !Hq.F I .p ı i/�M /! Tor.Hq�1.F /;M /! 0;

with both the left and right term finitely generated by our assumptions.

Using these two observations, we prove by induction over n that for all ZŒ�1.B/�–
modules M that are finitely generated as abelian groups, the groups Hp.B;M / for
p � n are finitely generated. The initial case is n D 0: H0.B;M / is given by the
coinvariants M�1.B/ , which are finitely generated if M is.

Geometry & Topology, Volume 23 (2019)



2284 Alexander Kupers

For the induction step, we assume the case n and prove the case n C 1. Since
the homology Hq.F I .p ı i/�M / is finitely generated for all q , the entries E2

p;q D

Hp.BIHq.F I .p ı i/�M // on the E2 –page of the Serre spectral sequence are finitely
generated for p � n by the inductive hypothesis. The entries on further pages are
obtained by taking homology, hence Ek

p;q is finitely generated for p � n and k � 2,
ie the first n columns are.

We next claim that for all k � 2, the entry Ek
nC1;0

on the first row is finitely generated
if and only if E2

nC1;0
is finitely generated. The proof is by induction over k , the case

k D 2 being obvious. For the induction step, we assume the case k and prove the
case kC 1. As EkC1

nC1;0
D ker.dk W Ek

nC1;0
!Ek

nC1�k;k�1
/ and the target is finitely

generated, EkC1
nC1;0

is finitely generated if and only if Ek
nC1;0

is. By the induction
hypothesis the latter happens if and only if E2

nC1;0
is finitely generated.

The Serre spectral sequence is first-quadrant, so that EnC2
nC1;0

Š E1
nC1;0

. The latter
is a subquotient of the finitely generated abelian group HnC1.EIp

�M /, and thus
EnC2

nC1;0
is finitely generated. Using the previous claim we conclude that E2

nC1;0
D

HnC1.BIM / is finitely generated as well.

(ii) This is similar to (i) but easier, using the Serre spectral sequence

E2
p;q DHp.BIHq.F I i

�M //)HpCq.EIM /:

By the hypothesis, all entries on the E2 –page are finitely generated. The entries on
further pages of the spectral sequence are obtained by taking homology, so Ek

p;q is
finitely generated for all k � 2, p and q . The entries on the line pC q stabilize after
the .nC1/–page of the Serre spectral sequence, and thus E1p;q is finitely generated
for all p and q . Since Hn.EIM / is an iterated extension of the entries E1p;q with
pC q D n, it also is finitely generated.

(iii) This is similar to (i), using the Serre spectral sequence

E2
p;q DHp.BIHq.F IA//)HpCq.EIA/

with A a finitely generated abelian group. We will not give a detailed proof, since this
case is not used in the paper.

2.2 Homologically finite type groups

We now apply the results of the previous subsection to classifying spaces of groups.
By applying Lemma 2.5(i) to the fiber sequence G!EG! BG, we see:
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Lemma 2.6 If G is a topological group with underlying space in HFin, then BG 2

HFin.

Example 2.7 Since the orthogonal group O.n/ is a compact manifold, Lemmas 2.2
and 2.6 imply that BO.n/ 2 HFin.

The following lemma applies Lemma 2.5 to classifying spaces of discrete groups:

Lemma 2.8 The class of groups with classifying space in HFin is closed under the
following operations:

(i) Quotients If 1!H !G!G0! 1 is a short exact sequence of groups and
BH;BG 2 HFin, then BG0 2 HFin.

(ii) Extensions If 1!H !G!G0! 1 is a short exact sequence of groups and
BH;BG0 2 HFin, then BG 2 HFin. This includes products as trivial extensions.

(iii) Finite-index subgroups If G0 � G has finite index then BG0 2 HFin if and
only if BG 2 HFin.

Proof (i) This follows from part (i) of Lemma 2.5, since a short exact sequence of
groups H!G!G0 induces a fiber sequence of classifying spaces BH!BG!BG0.

(ii) Similarly, this follows by applying part (ii) of Lemma 2.5 to BH ! BG! BG0.

(iii) The direction D)follows from part (ii) of Lemma 2.5 applied to G=G0 !

BG0! BG.

We first prove the direction D) when G0 is normal in G. As G=G0 is finite, from
Lemma 2.6 it follows that B.G=G0/ 2 HFin. The result then follows from part (ii) of
this lemma applied to 1!G0!G!G=G0! 1. To reduce the general case to G0

normal, use that for any finite-index subgroup G0 �G there is a finite-index subgroup
H �G0 such that H �G is normal. That BH 2HFin follows from the direction D).

In particular, whether BG 2 HFin is independent under changing G by finite groups.

Definition 2.9 Two groups G and G0 differ by finite groups (or are said to be virtually
isomorphic) if there is a finite zigzag of homomorphisms, with finite kernel and cokernel,

G G1! � � �  Gk !G0:
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Remark 2.10 Two groups G and G0 are said to be commensurable if there is a
group H and injective homomorphisms G  - H ,! G0, each with finite cokernel.
Commensurable groups differ by finite groups, and using the fact that an intersection
of two finite-index subgroups is a finite-index subgroup, we see that if G and G0 differ
by finite groups, they are commensurable.

A second class of groups with classifying space in HFin: arithmetic groups. We use
the definition in [74] (in particular, we do not assume the Q–algebraic group G is
reductive).

Definition 2.11 � A subgroup � of a Q–algebraic group G � GLn.Q/ is arith-
metic if the intersection �\GLn.Z/ has finite index in both � and G\GLn.Z/.

� A group � is arithmetic if it can be embedded in a Q–algebraic group G as an
arithmetic subgroup.

Examples of arithmetic groups include all finite groups and all finitely generated abelian
groups; see Section 1.2 of [74].

Theorem 2.12 (Borel and Serre) If G is an arithmetic group, then BG 2 HFin.

Proof By property (5) of Section 1.3 of [74], every torsion-free arithmetic group �
has a B� that is a finite CW complex and using Lemma 2.2 we conclude B� 2 HFin.
By property (4) of Section 1.3 of [74], every arithmetic group G has a finite-index
torsion-free subgroup � , so from part (iii) of Lemma 2.8 it follows that any arithmetic
group G has BG 2 HFin.

2.3 Homotopically finite type spaces

Alternatively we can impose finiteness conditions on the homotopy groups of a space.
The following distinction will be useful:

Definition 2.13 � We say X is of homotopically finite type if it has finitely
many path components and each of its path components has the property that
B�12HFin and �i is finitely generated for i �2. We use the notation X 2…Fin.

� We say X is of finite type if it has finitely many path components and each of its
path components has the property that �1 is finite and �i is finitely generated
for i � 2. We use the notation X 2 Fin.
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By Lemma 2.6, finite groups have classifying spaces in HFin, so that Fin�…Fin. Using
Postnikov towers, we shall prove that …Fin�HFin and that HFin\f�1 is finiteg�Fin.
If X is a path-connected space, it has a Postnikov tower with nth stage Pn.X / [27,
Section VI.2]. This has the following properties: firstly, the homotopy groups of Pn.X /

are given by

�i.Pn.X //D

�
�i.X / if i � n,
0 if i > n,

and secondly there are fiber sequences

(3) K.�n.X /; n/! Pn.X /! Pn�1.X /:

Lemma 2.14 If A is a finitely generated abelian group and n � 1, then K.A; n/ 2

HFin.

Proof The proof is by induction over n. In the initial case n D 1, we use that
K.A; 1/ D BA is well known to have a CW model with finitely many cells in
each dimension, and hence is in HFin by Lemma 2.2. For the induction step, apply
Lemma 2.5(i) to the fiber sequence K.A; n� 1/!�!K.A; n/.

Lemma 2.15 If X 2…Fin, then X 2 HFin.

Proof Without loss of generality X is path-connected. Because P0.X /'�, we have
P1.X /'K.�1.X /; 1/' B�1.X / 2 HFin by assumption. To finish the proof, apply
Lemmas 2.14 and 2.5(ii) inductively to the fiber sequence (3).

We continue with the proof that HFin\f�1 is finiteg � Fin.

Lemma 2.16 If X 2 HFin and each component is simply connected, then X 2 Fin.

Proof Without loss of generality X is path-connected. Our proof is by induction
over n of the statement that �i with i � n is finitely generated. The initial case nD 1

follows from the fact that X is simply connected.

Suppose we have proven the case n; then we will prove the case nC 1. We claim that
H�.PnC1.X // is finitely generated for �� nC2. We start with �D nC1; nC2: The
map X!PnC1.X / is .nC2/–connected (ie an isomorphism on �i for i �nC1 and a
surjection for �DnC2). Thus H�.X / surjects onto H�.PnC1.X // for �DnC1; nC2

and the latter are finitely generated. For ��n, note that PnC1.X /!Pn.X / is .nC1/–
connected so H�.PnC1.X //ŠH�.Pn.X // for � � n. By the inductive hypothesis,
Pn.X / is simply connected with finitely generated higher homotopy groups, so in HFin
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by Lemma 2.15. The long exact sequence for homology of a pair then tells us that
HnC2.Pn.X /;PnC1.X // is also finitely generated. The relative Hurewicz theorem
completes the proof:

HnC2.Pn.X /;PnC1.X //Š �nC2.Pn.X /;PnC1.X //Š �nC1.X /:

Lemma 2.17 If X 2 HFin and �1 of each component is finite, then X 2 Fin.

Proof Without loss of generality X is path-connected. Let zX denote the universal
cover of X. We start by proving zX 2 HFin. We have

H�. zX IM /ŠH�.X IZŒ�1.X /�˝M /;

so zX 2 HFin follows from the assumptions that X 2 HFin and that �1.X / is finite.
The higher homotopy groups of zX are those of X, so it suffices to show that �i. zX / is
finitely generated, which follows from Lemma 2.16.

If X is path-connected, let X hni denote the n–connective cover, the homotopy fiber
of X ! Pn.X /. This is well defined up to homotopy, and has the property

�i.X hni/D

�
0 if i � n,
�i.X / if i > n.

Lemma 2.18 If X is path-connected, �1.X / is finite and X 2HFin, then X hni 2 Fin

for all n� 0.

Proof By Lemma 2.17 we can replace HFin by Fin and in particular the homotopy
groups of X are finitely generated. Since �i.X hni/ is given by 0 for i � n and �i.X /

for i > n, it is finitely generated.

Example 2.19 Since �0.O.n// Š Z=2Z, from Example 2.7 and Lemma 2.17 we
conclude that BO.n/ 2 Fin. Using Lemma 2.18 we conclude that BO.2n/hni 2 Fin

as well.

For …Fin or Fin, the long exact sequence of homotopy groups is useful: if pW E!B

is a Serre fibration with basepoint e0 2E and F the fiber of p over p.e0/, then there
is a long exact sequence

(4) � � � ! �1.F; e0/! �1.E; e0/! �1.B;p.e0//! �0.F /! �0.E/! �0.B/;

where the right-most three entries are pointed sets, with path components containing e0

and p.e0/ providing the basepoints, the next three entries are groups and the remaining
entries are abelian groups.

Geometry & Topology, Volume 23 (2019)



Some finiteness results for groups of automorphisms of manifolds 2289

Lemma 2.20 Let pW E ! B be a Serre fibration, e0 2 E a basepoint and F D

p�1.p.e0//. Let F0 , E0 and B0 denote the path components of F, E and B

containing e0 , e0 and p.e0/, respectively. Then the following holds for �i for i � 2:

(i) Bases If F0 has finitely generated �i for i � 2 and E0 has finitely generated
�i for i � 3, then B0 has finitely generated �i for i � 3. Also �2.B0/ is
finitely generated if additionally �2.E0/ is finitely generated and either

(a) �1.F0/ is finite,

(b) �1.F0/ is a finitely generated abelian group, or

(c) �1.F0/ is finitely generated and �1.E0/ is finite.

(ii) Total spaces If F0 and B0 have finitely generated �i for i � 2 then so does
E0 .

(iii) Fibers If E0 has finitely generated �i for i � 2 and B0 has finitely generated
�i for i � 3, then F0 has finitely generated �i for i � 2.

Furthermore , the following holds for �1 :

(i0) Bases If �1.E0/ is finitely generated and �0.F / is finite, then �1.B0/ is
finitely generated.

(ii0) Total spaces �1.E0/ is finitely generated, if �1.F0/ and �1.B0/ are finitely
generated and either

(a) �1.B0/ is finite,

(b) �1.B0/ is abelian, or

(c) �0.F / is finite.

(iii0) Fibers �1.F0/ is finitely generated, if �2.B0/ and �1.E0/ are finitely gener-
ated and either

(a) �1.E0/ is finite,

(b) �1.E0/ is abelian, or

(c) �1.B0/ is finite.

Proof Since �i for i � 1 depends only the component containing the basepoint, (4)
equals

� � � ! �2.B0;p.e0//! �1.F0; e0/! �1.E0; e0/! �1.B0;p.e0//! �0.F /:

Parts (ii)–(iii) and the first claim in (i) follow from this and the fact that in the category
of abelian groups, the class of finitely generated abelian groups is closed under taking
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subgroups, quotients and extensions. This argument fails for the second claim in
part (i), ie for �2.B0/, because it only says that �2.B0/ is an extension of a subgroup
of �1.F0/ by a quotient of �2.E0/, but subgroups of finitely generated nonabelian
groups need not be finitely generated. The remainder of (i) gives conditions to guarantee
this problem does not occur, using the following facts:

(a) a subgroup of a finite group is finite,

(b) a subgroup of a finitely generated abelian group is a finitely generated abelian
group,

(c) a group is finitely generated if and only if a finite-index subgroup is finitely
generated.

Parts .i0/, .ii0/ and .iii0/ are obtained by applying these same facts and using that finitely
generated groups are closed under extensions.

2.4 Section spaces

We continue with examples of spaces that can be proven to be in Fin or …Fin. If
E! B is a Serre fibration, let �.E;B/ denote the space of sections in the compact–
open topology. Given a section s and a subspace A�B, then �.E;BIA/� �.E;B/
denotes the subspace of sections that are equal to s on A.

Lemma 2.21 Let E ! B be a Serre fibration with fiber F and section sW B ! E.
Suppose that B is a path-connected finite CW complex, A � B is a nonempty sub-
complex of B and each component of F has finitely generated homotopy groups. Then
each component of �.E;BIA/ has finitely generated homotopy groups. The condition
that A¤ ¿ can be dropped if �1 of each component of F is finite or abelian, or F

has finitely many components.

Proof We prove the first part by induction over the number k of cells in B that are
not in A. In the initial case k D 0, �.E;BIB/D fsg. For the induction step, suppose
we have proven the case k ; then we will prove the case k C 1. That is, we have
A0 DA[Sd�1 Dd , where there are k cells of B not in A0. The induction hypothesis
says the claim is true for A0, and we want to prove it for A.

There are two cases, the first of which is d � 1. Restriction of sections to Dd fits into
a fiber sequence

�.E;BIA[Dd /! �.E;BIA/! �.EjDd ;Dd
ISd�1/;
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with fiber taken over sjDd 2 �.EjDd ;Dd ISd�1/. We apply the induction hypothesis
to the fiber, which says each component of �.E;BIA[Dd / has finitely generated �i

for i � 1. The base �.EjDd ;Dd ISd�1/ is equivalent to �dF, whose components
have finitely generated �i for i � 1 by our hypothesis. The result now follows from
parts (ii) and .ii0/ of Lemma 2.20. For part .ii0/ we use that condition (b) is satisfied:
�1.�

dF / is abelian if d � 1.

The second case is d D 0, so that A0DAtD0 . Since B is path-connected, by adding
some 1–cells to A0 we can obtain a subcomplex A00 of B containing A0 such that the
inclusion A ,! A00 is a homotopy equivalence. This implies that the inclusion map
�.E;BIA00/! �.E;B;A/ is a weak equivalence, which completes the proof since
A00 has more cells than A and hence we can apply the inductive hypothesis.

For the second claim, we consider the fiber sequence

�.E;BID0/! �.E;B/!EjD0 ;

with fiber taken over s 2EjD0
. By the first part, each component of �.E;BID0/ has

finitely generated homotopy groups. Furthermore, the base is equivalent to F. Thus
the result follows parts (ii) and .ii0/ of Lemma 2.20, using that condition (a), (b) or (c)
holds by assumption.

3 Self-embeddings

In this section we study spaces of self-embeddings. Let M be a smooth n–dimensional
connected manifold with nonempty boundary @M and an embedded disk Dn�1 � @M.
Let Emb@=2.M / be the space of embeddings M ,!M that are the identity on @M n
int.Dn�1/. They do not need to take the entire boundary to itself. There is an inclusion
Diff@.M / ,! Emb@=2.M / and its image is contained in the following subspace:

Definition 3.1 We let EmbŠ@=2.M / denote the subspace of Emb@=2.M / consisting of
those embeddings e that are isotopic through embeddings et that are the identity on
@M n int.Dn�1/ to a diffeomorphism e1 of M which is the identity on @M.

That is, EmbŠ@=2.M / is the union of the path components of Emb@=2.M / in the
image of �0.Diff@.M //. Composition gives EmbŠ@=2.M / the structure of a topo-
logical monoid, and hence its connected components are a monoid. However, since
every path component is represented by a diffeomorphism and hence has an inverse,
�0.EmbŠ@=2.M // is in fact a group. The main result of this section is the following:
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Theorem 3.2 If n� 6, M is 2–connected and @M D Sn�1 , then BEmbŠ@=2.M / 2

…Fin and hence HFin.

Proof Proposition 3.11 says that the classifying space of the group of components is in
HFin and Proposition 3.15 that the identity component is in …Fin; thus BEmbŠ@=2.M /2

…Fin.

3.1 Variations of the definitions

Depending on the result to be proven, it may useful to work with alternative models
for Emb@=2.M /.

3.1.1 Embeddings rel boundary In an embedding space we may change the domain
or target up to isotopy equivalence rel boundary without changing its homotopy type.
Let M and N be n–dimensional manifolds with codimension zero submanifold K

contained in both @M and @N, then we define EmbK .M;N / to be the space of
embeddings M ,! N that are the identity on K . Thus Emb@=2.M / is the case
M DN and K D @M n int.Dn�1/. If M 0 is another n–dimensional manifold such
that K is a codimension zero submanifold of @M, then we say that M 0 is isotopy
equivalent to M rel K if there are embeddings M 0 ,!M and M ,!M 0 rel K which
are inverse up to isotopy rel K .

Lemma 3.3 If M 0 is isotopy equivalent to M rel K , and N 0 is isotopy equivalent to
N rel K , then EmbK .M;N /' EmbK .M

0;N 0/.

Proof We give the proof for replacing M by M 0, leaving the similar proof for
replacing N by N 0 to the reader. Let f W M ,!M 0 and gW M 0 ,!M denote the
embeddings; then precomposition gives two maps

f �W EmbK .M
0;N /! EmbK .M;N / and g�W EmbK .M;N /! EmbK .M

0;N /;

and the isotopies g ı f � idM and f ı g � idM 0 induce homotopies f � ı g� �

idEmbK .M;N / and g� ıf � � idEmbK .M 0;N / .

Using this we may replace Emb@=2.M / by a space of embeddings rel the entire
boundary: let M � WDM n int.Dn�1/, which has boundary @M � D @M n int.Dn�1/.

Lemma 3.4 M and M � are isotopy equivalent rel @M n int.Dn�1/.

Proof One of the embeddings is given by the inclusion M � ,!M. For the other we
pick a collar @M � Œ0; 1/ ,!M, a smooth function �W @M ! Œ0; 1/ which equals 0 on
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M
@M

@M � Œ0;1/

M/

Dn�1

M
@M

M 0
/

Figure 1: The manifolds M 0
/ �M/ .

@M n int.Dn�1/ and is strictly positive on int.Dn�1/, and a family �sW Œ0; 1/! Œ0; 1/

for s 2 Œ0; 1/ of embeddings such that �s.Œ0; 1//D Œs; 1/ and �s is the identity near 1.
Then there is an embedding M ,!M � given by

m 7!

�
.m0; ��.m0/.t// if mD .m0; t 0/ 2 @M � Œ0; 1/,
m otherwise.

By linearly interpolating � to the function that is constant equal to 0 one obtains the
desired isotopies.

Using the previous lemma we conclude that:

Lemma 3.5 There is a weak equivalence Emb@=2.M /' Emb@.M �;M �/.

3.1.2 Adding semi-infinite collars Let M/ be the noncompact manifold (the sym-
bol / is meant to evoke a half-open 1) obtained by gluing a semi-infinite collar
to @M :

M/ WDM [.@M�f0g/ .@M � Œ0;1//:

It has a submanifold with corners (see Figure 1)

M 0
/ WDM [.@Mnint.Dn�1//�f0g .@M n int.Dn�1//� Œ0;1/:

We describe two variants of EmbŠ@=2.M /,

EmbŠ@=2.M / ,! EmbŠ;im
@=2

.M 0
/;M// ,! EmbŠ@=2.M

0
/;M//;

such that the first inclusion is a homeomorphism and the second is a weak equivalence.

Definition 3.6 Let EmbŠ@=2.M
0
/;M// be the space of embeddings eW M 0

/ ,!M/

that are the identity on .@M nint.Dn�1//� Œ0;1/ and are isotopic through embeddings
et that are the identity on .@M n int.Dn�1//� Œ0;1/ to an embedding e1 which is
the identity on M 0

/ n int.M /.
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Remark 3.7 An equivalent definition of EmbŠ@=2.M
0
/;M// uses complements in-

stead of isotopies; it equals those embeddings eW M 0
/ ,!M/ that are the identity on

.@M n int.Dn�1//� Œ0;1/ and have the property that the closure of the complement
of their image admits a compactly supported diffeomorphism to Dn�1 � Œ0;1/ rel
boundary.

Definition 3.8 Let EmbŠ;im
@=2

.M 0
/;M// be the subspace of EmbŠ@=2.M

0
/;M// con-

sisting of embeddings e that satisfy e.M /�M.

Lemma 3.9 The inclusion EmbŠ;im
@=2

.M 0
/;M// ,! EmbŠ@=2.M

0
/;M// is a weak

equivalence.

Proof Suppose we are given a commutative diagram

S i EmbŠ;im
@=2

.M 0
/;M//

DiC1 EmbŠ@=2.M
0
/;M//f

then we must provide a dotted lift making the diagram commute, possibly after changing
it through a homotopy of commutative diagrams.

It suffices to push the image of M under fs out of int.Dn�1/ � .0;1/ for each
s 2DiC1 . To do this, let EmbŠ@=2.M

0
/;M//

0 be the subspace of EmbŠ@=2.M
0
/;M//

consisting of those e that satisfy the property that

e.M 0
//�M 0

/[
�
Dn�1

n
1
2
Dn�1

�
� Œ0; 1/:

The inclusion EmbŠ@=2.M
0
/;M//

0 ,! EmbŠ@=2.M
0
/;M// is a weak equivalence by a

collar-sliding argument, so we may assume fs 2 EmbŠ@=2.M
0
/;M//

0.

Using a collar @M �Œ0; 1/ ,!M, we construct a family of diffeomorphisms  r W M/!

M/ for r 2 Œ0; 1� with the following properties:

(i)  r is the identity on M 0
/ .

(ii)  0 D id.

(iii)  r

�
M [

�
1
2
Dn�1 � Œ0; t �

��
�M.

Then the formula

DiC1
� Œ0; 1�! EmbŠ@=2.M

0
/;M//

0; .s; r/ 7!  rfs;
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gives us a homotopy that starts at rD0 with fs by (ii), and sends DiC1�f1g[S i�Œ0; 1�

into EmbŠ;im
@=2

.M 0
/;M// by (i) and (iii). After this homotopy through commutative

diagrams, an evident lift exists.

We can extend an embedding e 2Emb@=2.M / to an embedding xe 2Emb@=2.M 0
/;M//

by defining it to be the identity on .@M n int.Dn�1//� Œ0;1/.

Lemma 3.10 Extension induces a homeomorphism

EmbŠ@=2.M / ,! EmbŠ;id
@=2

.M 0
/;M//:

Proof We need to verify that eW M ,!M is isotopic to a diffeomorphism if and only
if xe is isotopic to an embedding that is the identity on M 0

/ n int.M /. The direction
D) is obvious. For D), given xet W M

0
/ ,!M/ we may use the proof of Lemma 3.9

to modify it to an isotopy which always maps M into M and thus induces the desired
isotopy of e .

3.2 The group of path components

We start by studying the group of path components using a result of Sullivan.

Proposition 3.11 Let n� 5 and suppose we have an n–dimensional, oriented, smooth
manifold M with finite fundamental group and @M D Sn�1 . Then B�0.Diff@.M //

and B�0.EmbŠ@=2.M // are in HFin.

Proof Let N DM [Sn�1 Dn and EmbC.Dn;M / denote the orientation-preserving
embeddings. Then there is a fiber sequence

Diff@.M /! DiffC.N /! EmbC.Dn;N /

with fiber taken over the standard embedding Dn ,!N . Using the hypothesis on M,
the space EmbC.Dn;N / is path-connected and has finite �1 . Thus �0.Diff@.M //

differs by finite groups from �0.DiffC.N //. Sullivan proved that for closed, oriented,
1–connected N of dimension � 5, �0.DiffC.N // differs by finite groups from an
arithmetic group [80, Theorem 13.3] and Triantafillou generalized this to oriented
manifolds with finite fundamental groups [81]. We conclude �0.Diff@.M // differs by
finite groups from an arithmetic group, and thus Theorem 2.12 implies the first part.
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For �0.EmbŠ@=2.M //, note that Theorem 4.17 implies there is an exact sequence of
groups

�0.Diff@.D
n//! �0.Diff@.M //! �0.EmbŠ@=2.M //! 1:

Since �0.Diff@.Dn//Š‚nC1 is finite, �0.Diff@.M // and �0.EmbŠ@=2.M // differ by
finite groups and the first part suffices.

3.3 Embedding calculus

Embedding calculus is the “pointillistic” study of embeddings [88, Remark 4.5.4]. An
embedding is an immersion that is injective when evaluated on any finite subset. If
we replace this condition with homotopy-theoretic data, we get an object accessible
to homotopy theory. The multiple disjunction theory results of [28] imply that the
space of these homotopy-theoretic alternatives is weakly equivalent to the space of
embeddings when the codimension is at least 3. Our references for embedding calculus
are [87; 8] (see [9] for a different perspective).

3.3.1 Manifolds without boundary Fix manifolds M and N. Then Emb.M;N /

is the value on M of a continuous functor Emb.�;N /W Mfd
op
n ! Top. Here Mfdn is

the topological category with objects given by n–dimensional smooth manifolds and
morphism spaces given by spaces of embeddings, and Top is the topological category
with objects given by CGWH spaces and morphism spaces given by spaces of continuous
maps. The category Mfdn admits a collection of Grothendieck topologies Jk for k � 1;
in Jk a collection fUig of open subsets of M is a cover if every subset of M of
cardinality � k is contained in some Ui .

The k th Taylor approximation Tk.Emb.�;N // is the homotopy sheafification of
Emb.�;N / with respect to Jk . This means it is, up to homotopy, the best approxi-
mation to Emb.M;N / built out of the restrictions of embeddings to � k disks in M,
and hence is explicitly given a right homotopy Kan extension; see [8, Definition 4.2]:

Lemma 3.12 The k th Taylor approximation Tk.Emb.M;N // is the derived mapping
space

RMapPSh.Disck/
.Emb.�;M /;Emb.�;N //

between the objects Emb.�;M / and Emb.�;N / of the topological category of space-
valued presheaves on the full subcategory Disck �Mfdn on n–dimensional manifolds
diffeomorphic to a disjoint union of � k disks.
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Since every Jk –cover is a Jk�1 –cover, we have a Taylor tower, as in [8, Section 3.1],

:::

Emb.M;N / Tk.Emb.M;N //

Tk�1.Emb.M;N //

:::

starting at T1.Emb.M;N //. By [8, Proposition 8.3], this tower coincides with the one
obtained in [87, page 84], and hence has the following properties:

� Suppose M has handle dimension h; then Emb.M;N /! Tk.Emb.M;N //

is .�.n�1/Ck.n�2�h//–connected [29, Corollary 2.6] (which depends on the
results of [28]).

� T1.Emb.M;N // is weakly equivalent to the space Bun.TM;TN / of bundle
maps, which by Smale–Hirsch [77] is weakly equivalent to the space Imm.M;N /

of immersions when M has no closed components [87, page 97].

� Fix an embedding �W M ,!N . For a finite set I, let FI .M /DEmb.I;M / be the
ordered configuration space. Let Ck.M /D Ff1;:::;kg.M /=Sk be the unordered
configuration space. Then, for k� 2, the homotopy fiber of Tk.Emb.M;N //!

Tk�1.Emb.M;N // over the image � is weakly equivalent to a relative section
space: the space of sections of the bundle over Ck.M / with fiber over a config-
uration c 2 Ck.M / given by tohofibI�c.FI .N // that are equal to a section s�

near the fat diagonal. We describe the section s� by giving a basepoint in each
FI .N /; recall that I is a collection of points in M, then it is the inclusion of I

into N by �. This description appears as [87, Theorem 9.2].

The last point uses total homotopy fibers, whose definition we recall. Let Œ1� be the
category 0! 1, so that a functor T W Œ1�k! Top� is a k –dimensional cube of pointed
spaces. The total homotopy fiber of T is given by

tohofib.T /D hofibŒT .0; : : : ; 0/! holimŒ1�kn.0;:::;0/T �:

It can also be computed by iteratively taking homotopy fibers in each of the k directions.
In the nonpointed setting, if T W Œ1�k ! Top has T .0; : : : ; 0/ path-connected, then
tohofib.T / is well defined up to homotopy.
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3.3.2 Manifolds with boundary Now suppose we are interested in manifolds with
fixed boundary Z . As in [8, Section 9], we replace Mfdn with the topological category
Mfdn;Z with objects given by n–dimensional smooth manifolds with boundary identi-
fied with Z and morphism spaces given by spaces of embeddings that are the identity
on Z . We can define Jk by letting a collection of open subsets fUig of M be an cover
if every subset in int.M / of cardinality �k is contained in some Ui . If we are given an
n–dimensional manifold N with an embedding Z ,! @N , we can homotopy sheafify
the continuous functor Emb@.�;N /W Mfd

op
n;Z
!Top with respect to these Grothendieck

topologies to obtain a Taylor tower. As before, an explicit model for TkEmb@.M;N /

is given by RMapPSh.Disck;Z/
.Emb@.�;M /;Emb@.�;N //. Here Disck;Z is the full

subcategory of Mfdn;Z on n–dimensional manifolds that are diffeomorphic rel bound-
ary to a disjoint union of � k disks and Z � Œ0; 1/. By [87, Section 10], this Taylor
tower has the same properties as above upon adding “rel boundary” where appropriate.

3.4 Identity component

We will study the identity component using embedding calculus. The following lemma
explains how to use towers to prove that a space is in …Fin:

Lemma 3.13 Suppose that a path-connected space X with basepoint x has the
following properties:

(i) There is a tower
:::

X TkX

Tk�1X

:::

starting at T0X such that the map from X to the path component of TkX

containing the image of x is f .k/–connected with lim supk!1 f .k/D1.

(ii) The path component of T0X containing the image of x has finitely generated
homotopy groups.

(iii) The path component of TkX containing the image of x has finite or abelian �1 .
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(iv) The homotopy fiber of TkX!Tk�1X over the image of x is weakly equivalent
to a relative section space �k D �.Ek ;Bk IAk/ of a fibration Ek ! Bk with
a section, where Bk is a path-connected finite CW complex, Ak � Bk is
a nonempty subcomplex and each component of Fk has finitely generated
homotopy groups.

Then X 2…Fin.

Proof Conditions (i) and (iii) imply that �1.X / will be finite or abelian. Finite groups
and finitely generated abelian groups have classifying spaces in HFin, so it suffices to
prove that �i.X / is finitely generated for i � 1.

Let xk 2 TkX denote the image of X. Using hypothesis (i), if we care about a
fixed homotopy group �i.X;x/, we can assume that the tower ends at some finite
stage TK X and do an induction over K of the statement that the component of TK X

containing xK has finitely generated homotopy groups. The initial case K D 0 is
provided by hypothesis (ii).

For the induction step we assume the case k and prove the case kC 1, using the long
exact sequence of homotopy groups for the fiber sequence in hypothesis (iv),

� � � ! �i.�kC1;xkC1/! �i.TkC1X;xkC1/! �i.TkX;xk/! � � � ;

where without loss of generality we may assume xkC1 2 TkC1X is the image of
xkC1 2 �kC1 . Using hypothesis (iii), Lemma 2.21 says each component of �kC1

has finitely generated homotopy groups. The induction hypothesis says that the path
component of TkX containing xk has finitely generated homotopy groups. We then
use Lemma 2.20(ii) and .ii0/ to finish the induction step (for .ii0/ use that condition (a)
or (b) holds by hypothesis (iii)).

By Lemma 3.5, Emb@=2.M / is weakly equivalent to the type of embedding space
to which we may apply embedding calculus, and to simplify notation we will write
Tk.Emb@=2.M // for the Taylor tower thus obtained. For convergence of the Taylor
tower we must verify certain bounds on the dimensions of the handles in a handle
decomposition of M :

Lemma 3.14 Suppose that n � 6, M is 2–connected and @M D Sn�1 . Then M

has a handle decomposition relative to @M n int.Dn�1/ with only handles of dimension
< n� 2.
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Proof Pick a disk Dn �M and write W DM n int.Dn/, V D @Dn Š Sn�1 and
V 0 D @M Š Sn�1 . It suffices to prove that W admits a Morse function with value 0

on V and value 1 on V 0 with no critical points of index 0, 1, 2, n� 2, n� 1 or n.

Pick a Morse function f on W with value 0 on V and value 1 on V 0. Remove
the critical points of f with index 0 and 1 using [63, Theorem 8.1]. Next remove
the critical points of index 2 using the proof of [63, Theorem 7.8], which requires
H2.W;V /D 0. This homology group equals H2.M;Dn/ŠH2.M /D 0. A similar
argument with V 0 works to remove the critical points of index n� 2, n� 1 or n.

Proposition 3.15 Suppose that n � 5 and that M has a handle decomposition rel
@M n int.Dn�1/ with handles of dimension h < n� 2. Then the identity component
Embid

@=2
.M / of Emb@=2.M / is in …Fin.

Proof We will verify that Lemma 3.13 applies to the embedding calculus tower,
extended once at the bottom by Smale and Hirsch,1

:::

Embid
@=2
.M / Tk.Emb@=2.M //

Tk�1.Emb@=2.M //

:::

(i) If M has handle dimension h, the map from Embid
@=2
.M / to the path component

of Tk.Emb@=2.M // containing the image of the identity is .�.n�1/Ck.n�2� h//–
connected. Since h< n� 2, this goes to 1 as k!1.

(ii) The identity path component of T0.Emb@=2.M // is the space Mapid
@=2
.M / of

maps M !M that are the identity on @M n int.Dn�1/ and homotopic to the identity

1The reader familiar with embedding calculus may note that our T0 is not the 0th Taylor approximation.
However, we find our notation convenient for this particular argument.
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rel @M n int.Dn�1/. Since a mapping space is an example of a section space and
simply connected compact manifolds are in Fin, by Lemma 2.21 Mapid

@=2
.M / has �i

for i � 1 finitely generated.

(iii) The identity path component of Tk.Emb@=2.M // is the identity component of
a derived mapping space by Lemma 3.12, which is a path-connected H –space and
hence has abelian �1 .

(iv) The cases k D 1 and k � 2 are different. We start with the former, and then
T1.Emb@=2.M // is the space Imm@=2.M / of immersions M #M that are the identity
on @M n int.Dn�1/. The map T1.Emb@=2.M //! T0.Emb@=2.M // is inclusion of
immersions into continuous maps. Smale–Hirsch [77] says that there is a fiber sequence,
with fiber taken over the identity,

�.Iso.TM /;M I @M n int.Dn�1//! Imm@=2.M /!Map@=2.M /:

The fiber given by the space of sections of the bundle over M with fiber over m 2M

given by Iso.TmM /'O.2n/. By Lemma 2.21 the components of the section space
�.Iso.TM /;M I @M n int.Dn�1// have finitely generated homotopy groups.

Next we discuss the case k � 2. Recall that for a finite set I, FI .M /D Emb.I;M /

is the ordered configuration space. There is also an unordered configuration space
Ck.M /DFf1;:::;kg.M /=Sk . For k � 2, there is a bundle over Ck.M / with fiber over
a configuration c 2 Ck.M / given by tohofibI�c.FI .M //. It has a section sid , which
can be described by giving compatible basepoints in the spaces FI .M /; these are given
by id 2 Emb.I;M / D FI .M /, after recalling that I is a collection of points in M.
Then the homotopy fiber of Tk.Emb@=2.M //! Tk�1.Emb@=2.M // is the space of
sections of this bundle that equal sid near the fat diagonal and @M n int.Dn�1/.

Firstly, we may replace Ck.M / with its homotopy equivalent Fulton–MacPherson
compactification Ck ŒM � [76]. This is a finite CW complex and the condition that
the sections are equal to sid near the fat diagonal and @M n int.Dn�1/ becomes that
the sections are equal to sid on a certain nonempty subcomplex. Next, we prove that
tohofibI�Œk�.FI .M // is in Fin. The Fulton–MacPherson compactification FI ŒM � of
FI .M / is a finite CW complex and 1–connected, so is in Fin by Lemmas 2.2 and 2.17.
By [28, Theorem B], tohofibI�Œk�.FI .M // is .�.n�3/Ck.n�2//–connected, so 1–
connected as k � 2. Since a total homotopy fiber is obtained by iterated homotopy
fibers and we can disregard the lower homotopy groups, Lemma 2.20(iii) suffices.
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4 The Weiss fiber sequence

In this section we construct the fiber sequence (1) and its delooping (2), as discussed
in the introduction. There the latter was informally described as

BDiff@.M /! BEmbŠ@=2.M /! B.BDiff@.D
n/; \/:

It will arise as the homotopy quotient of an action of a topological monoid on a module,

BM! BM==BD!�==BD:

Section 4.1 discusses the relevant background material on topological monoids and
Section 4.2 defines BD and BM. In Section 4.3 we then construct the fiber sequence
and identify its terms. In Section 4.4 we give several useful generalizations.

Remark 4.1 There is a choice whether Diff@.�/ consists of diffeomorphisms that
(a) are the identity on the boundary, (b) have jet equal to that of the identity on the
boundary, or (c) are the identity on a neighborhood of the boundary. The inclusions
.c/� .b/� .a/ are weak equivalences, so we will not distinguish between these.

Remark 4.2 There is a choice whether to model the classifying space BM for a unital
topological monoid M by the thin or thick geometric realization of the nerve N�M.
There is always a map kN�M k ! jN�M j, which by [72, Appendix A] is a weak
equivalence if the inclusion of the unit feg ,!M is a cofibration. This will always
be the case for us, as diffeomorphisms or embeddings are open subsets of infinite-
dimensional manifolds [60].

4.1 Classifying spaces of topological monoids

Though we will recall some notation and results below, we assume that the reader is
familiar with topological monoids, simplicial spaces, geometric realization and the
double bar construction. These results are well known, and the expository account [20]
provides proofs and references to the literature.

A topological monoid is a unital monoid object in the category of compactly generated
weakly Hausdorff spaces,2 ie a space A with maps mW A � A! A and uW � ! A

satisfying associativity and unit axioms. A left module B over a topological monoid A is
a left module object over A in the same category, ie a space B with a map mW A�B!B

satisfying associativity and unit axioms. There is a similar definition for right modules.

2Our spaces are always implicitly replaced by their compactly generated weakly Hausdorff replacement
if they are not yet of this type.
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If A is a topological monoid, B is a right A–module and C is a left A–module, the bar
construction is the simplicial space B�.B;A;C/ with p–simplices given by

Bp.B;A;C/D B�Ap
�C:

The face maps are induced by the monoid multiplication and action maps, and the
degeneracy maps induced by the unit of A. Note that � is always a left and right A–
module; it is in fact both the terminal left A–module and the terminal right A–module.

Definition 4.3 Let A be a topological monoid and B be a right A–module. Then the
homotopy quotient B==A is defined to be the thick geometric realization of B�.B;A;�/.

The thick geometric realization k�k only makes identifications using the face maps,
not the degeneracy maps, and is homotopically more well behaved. In particular, we
have [20, Theorem 2.2]:

Lemma 4.4 If f�W X�! Y� is a levelwise weak equivalence of simplicial spaces, then
kf�kW kX�k! kY�k is a weak equivalence.

The following is a consequence of [20, Theorem 2.12] (it more generally holds when
the topological monoid A is grouplike, ie if �0.A/ is a group):

Theorem 4.5 Let A be a topological monoid and B be a right A–module. If A is
path-connected, then there is a fiber sequence

B! B==A!�==A:

An important special case is when B D A. Since A has a unit, an extra degeneracy
argument as in [20, Lemma 1.12] implies that the augmentation kB�.A;A;�/k! � is
a weak equivalence:

Lemma 4.6 If A is a topological monoid, then A==A' �.

Corollary 4.7 If A is a path-connected topological monoid, then the natural map
A!�.�==A/ is a weak equivalence.

We shall need a result about commuting homotopy limits and geometric realization.
If X� is a simplicial space with augmentation to X�1 , for x 2X�1 we can form the
levelwise homotopy fiber hofibx.X�! X�1/ by defining hofibx.Xp ! X�1/ to be
the space of pairs .y;  /2Xp�Map.Œ0; 1�;X�1/ such that  .0/D �.y/ and  .1/D x .
The following is a consequence of [20, Lemma 2.14]:
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Lemma 4.8 Let X� be a simplicial space with augmentation to X�1 ; then , for each
x 2X�1 , khofibx.X�!X�1/k ' hofibx.kX�k!X�1/.

Remark 4.9 The proofs of some of the results above rely on quasifibrations. However,
for topological and PL–manifolds one needs to work in simplicial sets. Since the
adjunction j�j a Sing is a Quillen equivalence between the category sSet of simplicial
sets and the category Top of CGWH spaces with the Quillen model structures, the
geometric realization of the homotopy fiber of a map in sSet is weakly equivalent to the
homotopy fiber in Top of its geometric realization. The same holds for thick geometric
realizations by [20, Lemma 1.7]. Thus the analogous theorems in sSet follow from
those in Top.

4.2 Moore versions of diffeomorphism groups

Using a Moore loop-type construction, we will define a topological monoid BD which
is a strict model for the H –space BDiff@.Dn/ under boundary connected sum \ and
a module BM over BD which is a strict model for BDiff@.M / under the action of
BDiff@.Dn/ by \.

4.2.1 Moore monoid of diffeomorphisms of a disk We start by defining a topolog-
ical monoid model for Diff@.Dn/ with boundary connected sum as multiplication. To
do this we add a real parameter to constrain the support, and use this parameter to define
boundary connected sum by juxtaposition. Hence we will think of our diffeomorphisms
as a subspace of Œ0;1/�Diff@.Dn�1 � Œ0;1//, with the latter having the topology
of C1–convergence on compacts. Even though Œ0;1/ � Diff@.Dn�1 � Œ0;1// is
contractible in this topology, our subspace is not.

Definition 4.10 D is the Moore monoid of diffeomorphisms of a disk, given by the sub-
space of pairs .t; �/2 Œ0;1/�Diff@.Dn�1�Œ0;1// such that supp.�/�Dn�1�Œ0; t �.

The multiplication map is given by D�D 3 ..t; �/; .t 0; �0// 7! .tC t 0; �t�0/ 2D with
� t�0 2 Diff@.Dn�1 � Œ0;1// given by

.� t�0/.x; s/ WD

�
�.x; s/ if s � t ,
.�0

1
.x; s� t/; �0

2
.x; s� t/C t/ otherwise,

and the element .0; id/ is the unit.

We check this has the desired homotopy type:

Lemma 4.11 The inclusion Diff@.Dn�1 � Œ0; 1�/ ,! D given by � 7! .1; �/ is a
homotopy equivalence.
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Proof We will homotope D onto f1g �Diff@.Dn�1 � Œ0; 1�/ in two steps. In the first
step we decrease the size of the support: the pair .t; �/ is sent to the path Œ0; 1� 3 r 7!�

t
1Ctr

; �r

�
2 D with �r given by

�r .x; s/ WD

��
�1.x; s.1C t r//; 1

1Ctr
�2.x; s.1C t r//

�
if s 2

�
0; t

1Ctr

�
,

.x; s/ otherwise.

Now that t < 1, in the second step we linearly increase t to 1:

Œ0; 1� 3 r 7! ..1� r/t C r; �/ 2 D:

It is clear that this is homotopic to the identity on f1g �Diff@.Dn�1 � Œ0; 1�/.

4.2.2 Moore monoid of classifying spaces of diffeomorphisms of a disk By [58,
Corollary 11.7], a unital monoid object in simplicial spaces geometrically realizes
to a topological monoid. The same holds for thick geometric realizations using [41,
Remark 2.23]. Using this and a variation of the nerve construction, we will produce a
topological monoid model for BDiff@.Dn/.

Definition 4.12 The simplicial space Œp� 7! NDp has p–simplices given by .pC1/–
tuples .t; �1; : : : ; �p/ in Œ0;1/ � Diff@.Dn�1 � Œ0;1//p such that

S
i supp.�i/ �

Dn�1 � Œ0; t �. The face maps compose diffeomorphisms and the degeneracy maps
insert identities. The operation t described before makes ND� a unital monoid object
in simplicial spaces.

We call its thick geometric realization BD WD kND�k the Moore monoid of classifying
spaces of diffeomorphisms of a disk.

We check this has the desired homotopy type:

Lemma 4.13 The inclusion BDiff@.Dn�1 � Œ0; 1�/ ,! BD given by x 7! .1;x/ is a
weak equivalence.

Proof There is a map of simplicial spaces N�.Diff@.Dn�1� Œ0; 1�//!ND� , which is
a levelwise weak equivalence by Lemma 4.11. Using Lemma 4.4, its thick geometric
realization is also a weak equivalence.

4.2.3 Moore modules of diffeomorphisms and classifying spaces of diffeomor-
phisms of a manifold We now generalize the definitions of D and BD to an n–
dimensional manifold M. To do so, we recall the manifold M/ , which shall serve as
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M
@M

@M � Œ0;1/

M/

Dn�1 t

M
@M

Mt

Figure 2: The manifolds Mt �M/ .

an analogue of Dn�1 � Œ0;1/ and Dn�1 � Œ0; t �:

M/ DM [.@M�f0g/ .@M � Œ0;1//:

For t 2 Œ0;1/ this contains a submanifold with corners (see Figure 2)

Mt WDM [.Dn�1�f0g/ .D
n�1
� Œ0; t �/:

Definition 4.14 M is the Moore module of diffeomorphisms of M . It is given by the
subspace of pairs .t; �/ 2 Œ0;1/�Diff.M// such that supp.�/�Mt .

The right action of D on M is given by M�D 3 ..t; �/; .t 0; �0// 7! .tC t 0; �t�0/ 2M

with � t�0 given by

.� t�0/.m/ WD

8<:
�.m/ if m 2Mt ,
.�0

1
.x; s� t/; �0

2
.x; s� t/C t/ if mD .x; s/ 2Dn�1 � Œt;1/,

m otherwise.

Similarly to above, the thick realization of a module object over a unital monoid object
in simplicial spaces is a module over the topological monoid.

Definition 4.15 The simplicial space Œp� 7! NMp has p–simplices given by .pC1/–
tuples .t; �1; : : : ; �p/ in Œ0;1/ � Diff.M//p such that

S
i supp.�i/ � Mt . The

operation t described before makes it a module object in simplicial spaces over the
unital monoid object ND� .

We call its thick geometric realization BM WD kNM�k the Moore module of classifying
spaces of diffeomorphisms of M .

A similar proof as for Lemmas 4.11 and 4.13 gives the following lemma:

Lemma 4.16 The maps Diff@.M /!M given by � 7! .0; �/ and BDiff@.M /!BM

given by x 7! .0;x/ are weak equivalences.
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4.3 A delooped fiber sequence

We now construct the fiber sequence (2),

BDiff@.M /! BEmbŠ@=2.M /! B.BDiff@.D
n/; \/:

The precise statement is as follows, and the proof is given in the remainder of this
subsection:

Theorem 4.17 There is a fiber sequence

BM! BM==BD!�==BD

with BM ' BDiff@.M /, BM==BD ' BEmbŠ@=2.M / and �.�==BD/ ' BDiff@.Dn/.
The map BM ! BM==BD is weakly equivalent to the inclusion BDiff@.M / ,!

BEmbŠ@=2.M /.

Proof This follows from Theorem 4.5, because the monoid BD is path-connected.
The identifications of fiber, total space and base are Lemma 4.16 and Propositions 4.25
and 4.18, respectively. The statement about the map BM!BM==BD is Lemma 4.24.

4.3.1 The base �==BD We start by describing the base, by showing that �==BD is
indeed a delooping of BDiff@.Dn/.

Proposition 4.18 We have a weak equivalence

BDiff@.D
n/'�.�==BD/:

Proof Since BD is path-connected, the map BD!�.�==BD/ is a weak equivalence
by Corollary 4.7. By Lemma 4.13 the map BDiff@.Dn�1 � Œ0; 1�/! BD is a weak
equivalence. Finally it is standard that BDiff@.Dn�1 � Œ0; 1�/' BDiff@.Dn/.

Remark 4.19 In fact, BDiff@.Dn/ is an n–fold loop space. This follows from May’s
recognition principle [58] after remarking it is a path-connected En –algebra. Smoothing
theory provides a particular n–fold delooping, BDiff@.Dn/ ' �n

0
PL.n/=O.n/; see

Theorem 5.12. One can replace PL.n/ with Top.n/ if n¤ 4.

4.3.2 Restrictions on images It will be useful to study diffeomorphisms and embed-
dings with a restriction on the images of certain submanifolds. We start with the case
of diffeomorphisms.
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Definition 4.20 Let Diff.im/.M// be the subspace of Diff.M// consisting of those
diffeomorphisms � such that �.M0/�M0 .

Using this we can define M.im/ as the subspace of M consisting of those .t; �/ 2
Œ0;1/�Diff.M// such that supp.�/�Mt and � 2 Diff.im/.M//. The D–module
structure on M restricts to a D–module structure on M.im/ .

Lemma 4.21 The inclusion M.im/ ,!M is a weak equivalence of D–modules.

Proof Since it is a map of D–modules, it suffices to prove the map of underlying
spaces is a weak equivalence in a manner similar to Lemma 3.9. Suppose we are given
a commutative diagram

S i M.im/

DiC1 M
f

then we must provide a dotted lift making the diagram commute, possibly after changing
it through a homotopy of commutative diagrams.

It suffices to push the image of M under fs out of int.Dn�1/ � .0;1/ for each
s 2DiC1 . To do this, let M0 be the subspace of M consisting of those pairs .t; �/ that
satisfy the properties that t � 1

2
and that � is the identity on

�
Dn�1n

1
2
Dn�1

�
�.0;1/.

Equivalently, these are the diffeomorphisms � supported in M0[
�

1
2
Dn�1 �

�
0; 1

2

��
.

In particular, �.M0/ �M0 [
�

1
2
Dn�1 �

�
0; 1

2

��
. The inclusion M0 ,! M is a weak

equivalence by a collar-sliding argument. Hence we may assume that fs 2M
0.

Now pick a family of compactly supported diffeomorphisms  t W M/ ! M/ for
t 2 Œ0; 1� with the following properties:

(i)  t is the identity on .@M n int.Dn�1//� Œ0;1/ and Dn�1 � Œ1;1/.

(ii)  0 D id.

(iii)  t

�
M0[

�
1
2
Dn�1 � Œ0; t �

��
�M0 .

The diffeomorphism  t� 
�1
t has support  t .supp.�//. Hence conjugating with  t

gives us a family DiC1� Œ0; 1�!M0 starting at fs and ending at diffeomorphisms with
support in M0 , by condition (iii) for t D 1. This implies they must send M0 into M0 ,
and hence lie in M.im/ . By condition (iii) for all t 2 Œ0; 1�, this homotopy preserves the
subspace M.im/ , so we conclude that M.im/ ,!M is a weak equivalence.
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Recall EmbŠ@=2.M
0
/;M// from Definition 3.6. Restriction to M and M 0

/ gives maps

�W M.im/! Emb@=2.M / and �0W M! Emb@=2.M
0
/;M//:

Lemma 4.22 The maps � and �0 have image in those components of Emb@=2.M /

and Emb@=2.M 0
/;M// consisting of embeddings that are isotopic to a diffeomorphism

and an embedding, respectively, which is the identity on @M (ie as indicated by the
superscript Š).

Proof We use a collaring trick, using the diffeomorphism itself to provide the iso-
topy. We give the proof in the second case only, the argument in the first case being
similar. As in Lemma 4.21, without loss of generality .t; �/ 2 M0, ie supp.�/ �
M0[

�
1
2
Dn�1�

�
0; 1

2

��
. Picking a collar @M �Œ0; 1/ ,!M, one may construct a family

of diffeomorphisms �sW M/!M/ that are identity on .@M n int.Dn�1//� Œ0;1/,
starting at the identity and such that �1 maps supp.�/ into M. Restricting the con-
jugation of � with this family to M 0

/ gives the desired isotopy from �jM 0/ to be an
embedding that is the identity on @M.

This describes the vertical maps in a commutative diagram

M.im/ M

EmbŠ@=2.M / EmbŠ@=2.M
0
/;M//

'

'

The top map is a weak equivalence by Lemma 4.21, and the bottom map is a weak
equivalence using Lemmas 3.9 and 3.10. The advantage of the left map is that if
both M.im/ and EmbŠ@=2.M / are given the topological monoid structure coming from
composition, it is a map of topological monoids. This will be used in the next subsection.

4.3.3 The total space We will now finish the proof that BM==BD' BEmbŠ@=2.M /.
To do so, we will construct a map BM.im/==BD! BEmbŠ@=2.M /. Here BM.im/ is
constructed as the thick geometric realization of the simplicial subspace NM.im/

�
of NM�

with p–simplices given by .pC1/–tuples .t; �1; : : : ; �p/ in Œ0;1/�Diff.im/.M//p .

Lemma 4.23 The inclusion BM.im/ ,! BM is a weak equivalence.

Proof Using Lemma 4.4, it suffices to show that NM.im/
�
! NM� is a levelwise

equivalence. The lemma follows by noting that the inclusion NM
.im/
p !Mp is weakly

equivalent to the p–fold product of the inclusion M.im/ ,! M, which is a weak
equivalence by Lemma 4.21.

Geometry & Topology, Volume 23 (2019)



2310 Alexander Kupers

Restriction to M induces a simplicial map NM.im/
�
!N�.EmbŠ@=2.M //, which geo-

metrically realizes to a map BM.im/ ! BEmbŠ@=2.M /. As before, the BD–module
structure on BM restricts to BM.im/ , and this is a map of BD–modules when we endow
BEmbŠ@=2.M / with the trivial BD–module structure. Taking the homotopy quotient
by BD and projecting, we obtain the map

�W BM.im/==BD! BEmbŠ@=2.M /��==BD! BEmbŠ@=2.M /:

We now establish two important properties of this map. The first follows by inspecting
the definitions.

Lemma 4.24 The composition

BDiff@.M / ,! BM.im/ ,! BM.im/==BD
�
�! BEmbŠ@=2.M /;

where the first map is as in Lemma 4.16 and the second is the inclusion of 0–simplices,
coincides with the inclusion BDiff@.M / ,! BEmbŠ@=2.M /.

An equivalent description of the map � is given by first interchanging the order of thick
geometric realization

BM.im/==BDŠ kŒp� 7! NM.im/p ==NDpk;

and then taking the thick geometric realization of a simplicial map NM
.im/
p ==NDp!

N�EmbŠ@=2.M / obtained as follows: we first map NM
.im/
p ==NDp to .M.im/==D/p by

projecting each of the p terms, and then map each of the p terms to EmbŠ@=2.M / by
restricting the element of M.im/ to M.

Proposition 4.25 The map

BM.im/==BD
�
�! BEmbŠ@=2.M /

is a weak equivalence.

Proof On p–simplices, the map NM
.im/
p ==NDp! .M.im/==D/p is obtained by taking

the thick geometric realization of a simplicial map

B�.NM
.im/
p ;NDp;�/! diag.B�.NM.im/;ND;�/� � � � �B�.NM

.im/;ND;�//;

which is a levelwise weak equivalence by adjusting the support constraints t on the
right-hand side. By Lemma 4.4 it is a weak equivalence. By [20, Theorem 7.2],
the thick geometric realization of the diagonal of k –fold simplicial space is weakly
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equivalent to the iterated thick geometric realization of its k simplicial directions, and
we conclude that the map NM

.im/
p ==NDp! .M.im/==D/p is a weak equivalence.

Again using Lemma 4.4, it suffices to prove that M.im/==D! EmbŠ@=2.M / is a weak
equivalence. This map fits into a commutative diagram

M.im/==D M==D

EmbŠ@=2.M / EmbŠ@=2.M
0
/;M//

'

� �

'

with top horizontal map a weak equivalence using Lemma 4.21, bottom horizontal
map a weak equivalence using Lemmas 3.9 and 3.10, and right vertical map a weak
equivalence by Lemma 4.26.

Lemma 4.26 The map �W M==D! EmbŠ@=2.M
0
/;M// is a weak equivalence.

Proof Consider the submodule M�1 of M consisting of pairs .t;x/ with t � 1. We
claim the inclusion M�1 ,!M is a weak equivalence. To see this, note that it is in fact
a deformation retract, with deformation retraction given by linearly increasing t of an
element .t; �/ 2M to a number � 1:

Œ0; 1� 3 r 7! .max.r; t/; �/ 2M:

The map induced by restriction to M 0
/ gives an augmentation

�W kB�.M�1;D;�/k! EmbŠ@=2.M
0
/;M//:

More precisely, this map is on p–simplices M�1 �D
p given by projecting away the

term Dp and then applying the map M�1! EmbŠ@=2.M
0
/;M// given by restriction

to M0 �M/ .

It suffices to show � has weakly contractible homotopy fibers. We start by identifying
the homotopy fibers using Lemma 4.8: for all e 2 EmbŠ@=2.M

0
/;M// we have

khofibe.B�.M�1;D;�/! EmbŠ@=2.M
0
/;M///k

hofibe.kB�.M�1;D;�/k! EmbŠ@=2.M
0
/;M///

'

Fixing p � 0, the map Bp.M�1;D;�/ D M�1 �Dp ! EmbŠ@=2.M
0
/;M// is given

by the composition of the projection map M�1 �D
p!M�1 and the restriction map
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M�1! EmbŠ@=2.M
0
/;M//. Projection is a fibration, so to prove the composite is a

fibration it suffices to prove the restriction map is a fibration. This will follow from
the parametrized isotopy extension theorem. Suppose we are given for i � 0 some
diagram

Di M�1

Di � Œ0; 1� EmbŠ@=2.M
0
/;M//

g

�

G

Write the top map as .�;  /W Di! Œ0;1/�Diff.M//. There is a continuous map

‚W EmbŠ@=2.M
0
/;M//! Œ0;1/;

recording for an embedding e the minimal value of t such that e has image contained
in Mt [M 0

/ . We remark that � > ‚ ıGjDi , because we used M�1 and so the image
of M0 is not only contained in M� but in fact has an open neighborhood in M�

(if we had used M, we only would have �). Since Di is compact, we can find a
ı > 0 and a continuous function T W Di � Œ0; 1�! Œ1;1/ such that (a) T jDi D � , and
(b) T >‚ ıGC ı on Di � Œ0; 1�.

Recall isotopy extension for embeddings is proven by an argument that in essence
amounts to taking the derivative of a family of embeddings, extending this to a time-
dependent vector field on the entire manifold and flowing along it. We bring this
up because it implies we can control the support of our isotopies and find a map
‰W Dn�Œ0; 1�!Diffc.M// such that (a) ‰.x; 0/D id and ‰.x; s/ıG.x; 0/DG.x; s/,
and (b) supp.‰.x; s//�M‚ıG.x;s/Cı .

Then our lift is given by

LW Di
� Œ0; 1�!M�1 � Œ0;1/�Diff.M//; .x; s/ 7! .T .x; s/; ‰.x; s/ ı  .x//:

Condition (a) implies this is a lift, and (b) implies that supp.‰.x; s/ı .x//�MT .x;s/ .

As a consequence of proving that these maps are fibrations, we can replace the level-
wise homotopy fiber hofibe.B�.M�1;D;�/! EmbŠ@=2.M

0
/;M/// with the levelwise

fiber ��1.e/� . This satisfies k��1.e/�k Š kB�.Me;�1;D;�/k with Me;�1 be the
subspace of M�1 of diffeomorphisms that agree with e on M0 .

Hence it suffices to prove that kB�.Me;�1;D;�/k is weakly contractible. Since homo-
topy fibers only depend on the path component of the basepoint, it suffices to check
this only for a particular point in each path component.
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Note that the image of any element of Diff@.M / in EmbŠ@=2.M
0
/;M// is the identity

on @M0 . By construction, Diff@.M / ! EmbŠ@=2.M
0
/;M// is surjective on path

components (this is the reason for including the superscript Š) and thus in each
component we can find an embedding e that is equal to the identity on @M0 , from
which it also follows that im.e/ DM0 . In that case, let D�1 denote the subspace
of D of pairs .t; �/ such that t � 1. Then kB�.Me;�1;D;�/k is homeomorphic
to kB�.D�1;D;�/k and thus weakly equivalent to kB�.D;D;�/k D D==D, which is
weakly contractible by Lemma 4.6.

4.4 Generalizations

We state three variations to Theorem 4.17 without proof, as the required modifications
are straightforward.

4.4.1 Identity components The set of isotopy classes of diffeomorphisms of a path-
connected manifold with boundary is acted upon by �0.Diff@.Dn//Š‚nC1 by taking
the boundary connected sum of representatives and reidentifying the resulting manifold
Dn \M with M. This operation is denoted by \, and using it we define the second
inertia group of M [56].

Definition 4.27 The second inertia group of M rel @M is the subgroup of the group
�0.Diff@.Dn//Š‚nC1 of isotopy classes h rel @Dn with the property that h \ idM

is isotopic to idM rel @M, ie the stabilizer of idM .

Definition 4.28 We now define variations on the various spaces defined earlier:

� Let Embid
@=2
.M / denote the identity component of Emb@=2.M / and Diffid

@
.M /

the identity component of Diff@.M /.

� Let BMid be the subspace of BM where all diffeomorphisms lie in the identity
component.

� If H is a subgroup of �0.Diff@.Dn//, let DiffH
@ .D

n/ denote the subgroup of
Diff@.Dn/ consisting of those connected components.

� If H is a subgroup of �0.Diff@.Dn//, let BDH denote the subspace of BD

where all diffeomorphisms lie in H.

The following modification of Theorem 4.17 is obtained by modifying the definitions
and statements appropriately. There are two places where these modifications seemingly
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impact the argument: Lemmas 4.22 and 4.26. Lemma 4.22 is now easier; � and �0

clearly map the path-connected spaces Mim;id and Mid into the identity components.
Lemma 4.26 is the only place the superscript Š plays a significant role: it is used
to show that for each e , kB�.Me;�1;D;�/k is homeomorphic to kB�.D�1;D;�/k

by proving that we may assume e is equal to the identity on @M0 , so that on the
complement of M0 a diffeomorphism of Dn�1 � Œ0; t � for some t � 1 remains. When
restricting to M id , this complement exactly carries a diffeomorphism of Dn�1 � Œ0; t �

whose isotopy class lies in the second inertia group.

Corollary 4.29 Let H � �0.Diff@.Dn// be the second inertia group of M. There is
a fiber sequence

BMid
! BMid==BDH

!�==BDH

with weak equivalences BMid
' BDiffid

@
.M /, BMid==BDH

' BEmbid
@=2
.M / and

�.�==BDH /' BDiffH
@ .D

n/.

4.4.2 Setwise fixed subsets of the boundary Our next generalization concerns dif-
feomorphisms and embeddings that fix a submanifold A of the boundary setwise,
instead of pointwise. Let M be an n–dimensional manifold with boundary @M,
A� @M a codimension zero submanifold and Dn�1� @M n int.A/ an embedded disk.

Definition 4.30 We now define some variations on the various spaces used before:

� Let Diff@;A.M / be the diffeomorphisms that are the identity on @M nA and
fix A setwise.

� Let Emb@=2;A.M / be the self-embeddings of M that are the identity on

@M n .int.A/[ int.Dn�1//

and fix A setwise.

� Let EmbŠ@=2;A.M / be the self-embeddings of M that are the identity on

@M n .int.A/[ int.Dn�1//;

fix A setwise and are isotopic through embeddings satisfying these conditions
to a diffeomorphism that is the identity on @M n int.A/ and fixes A setwise.

To adapt the proofs of Theorem 4.17 and Corollary 4.29 to include A as above, no
modifications is needed apart from the introduction of A’s in the definitions and
statements; in none of the proofs does the part of @M away from Dn�1 � @M play a
significant role.
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Corollary 4.31 There is a fiber sequence

BMA! BMA==BD!�==BD

with weak equivalences BMA ' BDiff@;A.M /, BMA==BD ' BEmbŠ@=2;A.M / and
�.�==BD/' BDiff@.Dn/.

Let H � �0.Diff@.Dn// be the second inertia group of M rel M nA. There is a fiber
sequence

BMid
A! BMid

A==BD
H
!�==BDH

with weak equivalences BMid
A
' BDiffid

@
.M /, BMid

A
==BDH

' BEmbid
@=2;A

.M / and
�.�==BDH /' BDiffH

@ .D
n/.

4.4.3 Homeomorphisms and PL–homeomorphisms The final generalization con-
cerns other categories of manifolds, CAT D Top;PL. In this case the Alexander
trick tells us that CAT@.Dn/' �, so the fiber sequences become weak equivalences.
Adapting the proof of Corollary 4.31 to CAT–manifolds is routine. Firstly, one needs
to work in simplicial sets and invoke Remark 4.9. The reason for using simplicial sets is
twofold: there is no reasonable topology on PL–homeomorphisms or PL–embeddings,
and in both PL and Top, all embeddings and families of embeddings should be locally
flat for the isotopy extension theorem to be true. Locally flatness for families is not a
pointwise condition, so requires the use of simplicial sets. Secondly, one needs to cite
the relevant collaring and parametrized isotopy extension theorems, most of which can
be found in [75].

Corollary 4.32 There are weak equivalences

BCAT@;A.M /' BEmbCAT
@=2;A.M / and BCATid

@;A.M /' BEmbCAT;id
@=2;A

.M /:

5 Proofs of the main results

In this section we prove the results announced in the introduction, summarized as
follows:

Section 5.1 (BDiff@.D2n/) This uses the fiber sequence (2). We understand the
total space using embedding calculus through Theorem 3.2 and the fiber using the
results of Galatius and Randal-Williams.
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Section 5.2 (BDiff@.M / for dim.M /D 2n) This uses the fiber sequence (1). We
understand the base using embedding calculus and the fiber using the information
obtained about BDiff@.D2n/.

Section 5.3 (BDiff@.D2nC1/ and BDiff@.M / for dim.M /D 2nC 1) These argu-
ments are similar to those in Sections 5.1 and 5.2. One replaces the results of Galatius
and Randal-Williams with those of Botvinnik and Perlmutter, but to apply Theorem 3.2
we shall also need some results for even-dimensional manifolds obtained in Section 5.2.

Section 5.4 (BTop.n/ and BPL.n/) Using smoothing theory, we relate Top.n/ and
PL.n/ to diffeomorphisms of disks and we apply the results obtained in Sections 5.1
and 5.3.

Section 5.5 (BTop@.M / and BPL@.M /) These are studied using smoothing theory
and the information obtained about BTop.n/ and BPL.n/ in Section 5.4.

Section 5.6 (BC.Dn/, WhDiff.�/ and A.�/) These follow from Sections 5.1 and 5.3.

Section 5.7 (Bhaut.M / and B eCAT.M /) These are studied independently of the
previous results. We also treat eCAT.M /=CAT.M /.

5.1 Diffeomorphisms of the even-dimensional disk

Let # denote connected sum. The manifolds

Wg;1 WD
�
#g Sn

�Sn
�
n int.D2n/

play an important role in the next proof.

Theorem 5.1 If 2n ¤ 4, then BDiff@.D2n/ is in Fin. It is thus in particular of
homotopically and homologically finite type.

Proof The case 2n D 2 follows from [78], so we restrict our attention to 2n � 6.
Let us prove that �==BD 2 HFin. Consider the fiber sequence of Theorem 4.17 for
M DWg;1 ,

BWg;1! BWg;1==BD!�==BD:

To apply Lemma 2.5(i), it suffices to prove that for fixed N, the homology groups
H�.BWg;1==BD/ and H�.BWg;1/ are finitely generated for � �N if g is sufficiently
large.
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On the one hand, in [24; 26] Galatius and Randal-Williams proved that if 2n� 6 and
��

g�3
2

, we have an isomorphism H�.BWg;1/ŠH�.BDiff@.Wg;1//ŠH�.�
1
0

MT �/.
Here MT � is the Thom spectrum of ��� , with � W BO.2n/hni !BO.2n/ the n–
connective cover,  the universal vector bundle over BO.2n/, and �1

0
denotes

a component of the infinite loop space. A component of an infinite loop space of a
spectrum is of homotopically finite type if the spectrum has finitely generated homotopy
groups in positive degrees. A bounded-below spectrum has finitely generated homotopy
groups if and only it has finitely generated homology groups. This is true for MT �

since the Thom isomorphism says that its homology is a shift of the homology of
BO.2n/hni, which is in Fin by Example 2.19.

On the other hand, by Proposition 4.25, BWg;1==BD' BEmbŠ@=2.Wg;1/ and thus by
Theorem 3.2, BWg;1==BD 2 HFin for all g . By Lemma 2.5(i) we conclude �==BD 2
HFin. Since BD is path-connected, �==BD is simply connected and using Lemma 2.17
we see �==BD2 Fin. Proposition 4.18 says �.�==BD/'BDiff@.D2n/, and the latter is
in …Fin. But because we know �0.Diff@.D2n// is finite abelian, in fact BDiff@.D2n/

is in Fin.

Rationally, the cohomological Serre spectral sequence associated to the fiber se-
quence in the previous proof collapses at E2 in a range. Theorem 1.1 of [24] de-
scribes H�.�1

0
MT � IQ/, so this proposition reduces the problem of computing

��.BDiff@.D2n/IQ/ to computing H�.BEmbŠ@=2.Wg;1/IQ/.

Proposition 5.2 If 2n� 6, then, for � � g�4
2

,

H�.BWg;1==BDIQ/Š
M

pCqD�

H p.�10 MT � IQ/˝H q.�==BDIQ/:

Proof By the homological stability results of Galatius and Randal-Williams [26; 24],
we may replace �1

0
MT � by BDiff@.Wg;1/ in the relevant range. Thus the statement

is a consequence of Leray–Hirsch, once we prove that BDiff@.Wg;1/! BWg;1==BD

induces a surjection in rational cohomology in the range � � g�4
2

.

By [88, Lemma 1.4.1], EmbŠ@=2.Wg;1/ is weakly equivalent as a topological monoid
to Diff�@.Wg;1/, the topological group of homeomorphisms that are smooth away from
a single point x 2 Dn�1 � @Wg;1 . Using Lemma 4.24 the map BDiff@.Wg;1/!

BTop@.Wg;1/ can be factored as

BDiff@.Wg;1/! BWg;1==BD! BTop@.Wg;1/:
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In [18], Ebert and Randal-Williams proved that BDiff@.Wg;1/!BTop@.Wg;1/ is sur-
jective on rational cohomology in the range �� g�4

2
, and hence so is BDiff@.Wg;1/!

BWg;1==BD.

5.2 Diffeomorphisms of 2n–dimensional manifolds

We now prove the first corollaries, about diffeomorphisms of 2–connected manifolds.
We single out spheres because Diff.Sn/ ' Diff@.Dn/ � O.nC 1/, and hence the
following is a direct consequence of Theorem 5.1.

Corollary 5.3 If 2n¤ 4, then BDiff.S2n/ is of finite type.

Corollary 5.4 Let 2n ¤ 4. If M is a closed, 2–connected, oriented, smooth 2n–
dimensional manifold and we write M ı WDM n int.D2n/, then

(i) BDiffid
@
.M ı/ 2 Fin,

(ii) BDiff@.M ı/ 2 HFin,

(iii) BDiffid.M / 2 Fin,

(iv) BDiffC.M / 2 HFin.

Proof (i) We may restrict to 2n� 6 because there is no 2–connected closed surface.
Consider the fiber sequence of Corollary 4.29, which loops to a fiber sequence

(5) BDiffH
@ .D

2n/! BDiffid
@ .M

ı/! BMı;id==BDH

with H the second inertia group of M ı (see Definition 4.27). Since �0.Diff@.D2n//Š

‚nC1 is finite, BDiffH
@ .D

2n/ is a finite cover of BDiff@.D2n/. Hence by Theorem 5.1
and Lemma 2.5, the fiber of (5) is in Fin. By Proposition 3.15, the base of (5) is in Fin.
By Lemma 2.20(ii) and .ii0/ and the fact that base is simply connected, the total space
of (5) is in Fin.

(ii) There is a second fiber sequence

BDiffid
@ .M

ı/! BDiff@.M
ı/! B�0.Diff@.M

ı//:

By Proposition 3.11 its base is in HFin and by part (i) its fiber is in HFin. Using
Lemma 2.5(ii) we conclude BDiff@.M ı/ 2 HFin.

(iii) Letting the identity component of Diff.M / act on EmbC.D2n;M /, we get a
fiber sequence

EmbC.D2n;M /! BDiffT
@ .M

ı/! BDiffid.M /;
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where BDiffT
@ .M

ı/ is the classifying space of the subgroup of Diff@.M ı/ given
by those components consisting of diffeomorphisms which become isotopic to the
identity when gluing in a disk. Each of these components is homotopy equivalent to
Diffid

@
.M ı/, which by part (i) is in Fin. The group of components �0.DiffT

@ .M
ı// is

generated by a Dehn twist along the boundary (ie the diffeomorphisms obtained by
inserting an element of �1.SO.n//Š Z=2Z on a collar Œ0; 1��Sn�1 of the boundary
of M ı ), and hence is either Z=2Z or trivial. See [84, page 302] for an example. The
fiber is easily seen to lie in Fin. Thus BDiffT

@ .M
ı/ 2 Fin. By Lemma 2.20(i) and the

fact that the base is simply connected, we conclude that BDiffid.M / 2 Fin.

(iv) We use that [80, Theorem 13.3] proves B�0.DiffC.M // 2 HFin, and finish the
proof by applying Lemma 2.5(ii) to the fiber sequence

BDiffid.M /! BDiffC.M /! B�0.DiffC.M //:

In [19], Ebert and Randal-Williams studied the higher-dimensional analogue of the
Torelli group, Tor@.Wg;1/, defined as the subgroup of Diff@.Wg;1/ given by com-
ponents that act trivially on Hn.Wg;1/. For surfaces of genus � 7, some rational
homology group of the Torelli group is infinite-dimensional [1]. In high dimensions
this is not the case:

Corollary 5.5 For 2n� 6, BTor@.Wg;1/ is of homologically finite type.

Proof By work of Kreck [50], the components of Tor@.Wg;1/ are an extension of a
finitely generated abelian group by a finitely generated abelian group. Such groups
have classifying spaces in HFin by Lemmas 2.14 and 2.8. The corollary then follows
from Corollary 5.4(i), Lemma 2.5(ii) and the fiber sequence

BDiffid
@ .Wg;1/! BTor@.Wg;1/! B�0.Tor@.Wg;1//:

5.3 Diffeomorphisms of the odd-dimensional disk

For the odd-dimensional case, we replace Wg;1 with the manifold

Hg WD \
g
.DnC1

�Sn/;

where \ denotes boundary connected sum. Its boundary is @Hg ŠWg . We establish
some notation:
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� Fix a disk D2n�@Hg , so that @Hgnint.D2n/ŠWg;1 . Recall from Section 4.4.2
that Diff@;Wg;1

.Hg/ is the subgroup of Diff.Hg/ consisting of those diffeomor-
phisms that fix D2n pointwise and @Hg n int.D2n/ setwise.

� Fix a smaller disk D0 ŠD2n � int.D2n/. Recall that EmbŠ@=2;Wg;1
.Hg/ is the

subspace of Emb.Hg/ consisting of those self-embeddings that fix D2nnint.D0/
pointwise and fix @Hg n int.D2n/ setwise, and are isotopic through such embed-
dings to a diffeomorphism.

� Let Diffext
@
.Wg;1/ be the subgroup of Diff@.Wg;1/ consisting of those diffeo-

morphisms of Wg;1 fixing the boundary that extend to a diffeomorphism of Hg

that fixes D2n .

Proposition 3.11 does not apply to the connected components of the last of these
groups. Instead we will use work of Kreck [50] and Wall [84] on isotopy classes of
diffeomorphisms of handlebodies. Wall’s results are stated for pseudoisotopy classes,
but pseudoisotopy classes coincide with isotopy classes for simply connected manifolds
of dimension � 5 [14].

Lemma 5.6 If n� 4, the group �0.Diffext
@
.Wg;1// has a classifying space in HFin.

Proof Kreck gave a complete description of �0.Diff@.Wg;1// up to extensions in
terms of two short exact sequences [25, Section 7]. We will only need one:

1! In
g;1! �0.Diff@.Wg;1//! Aut.Hn; �; ˛/! 1:

Here Hn is the middle-dimensional homology group Hn.Wg;1/ and Aut.Hn; �; ˛/

is the arithmetic group of automorphisms of the intersection form and its quadratic
refinement. The group In

g;1
is an extension of finitely generated abelian group by a

finitely generated abelian group. Thus �0.Diff@.Wg;1// is an iterated extension of
an arithmetic group by finitely generated abelian groups, confirming the first part of
Proposition 3.11 in this particular case.

Theorem 6 of [84] says we can describe the subgroup of isotopy classes of diffeomor-
phisms that extend to Hg by replacing Aut.Hn; �; ˛/ with the subgroup consisting
of those elements that preserve K D ker.Hn.Wg;1/!Hn.Hg//�Hn , and replacing
In

g;1
by a subgroup. This is also an iterated extension of an arithmetic group by finitely

generated abelian groups, so has a classifying space in HFin.

Corollary 5.7 If 2nC1¤ 5; 7, then BDiff@.D2nC1/ is in Fin. It is thus in particular
of homologically and homotopically finite type.
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Proof The cases 2nC 1 D 1; 3 are respectively folklore and [35], so we focus on
the case 2nC 1 � 9. Similar to the proof in Theorem 5.1, we start by remarking it
suffices to prove that �==BD 2 Fin using the fiber sequence of Corollary 4.31 applied to
M DHg and ADWg;1 � @Hg . Its middle term BHg;Wg;1

==BD is weakly equivalent
to BEmbŠ@=2;Wg;1

.Hg/ and there is a fiber sequence

BEmbŠ@=2.Hg/! BEmbŠ@=2;Wg;1
.Hg/! BDiffext

@ .Wg;1/:

The base has a classifying space in …Fin, using Corollary 5.4 and Lemma 5.6 for
the identity component and group of components, respectively, and hence in HFin by
Lemma 2.15. The fiber has a classifying space in HFin using Theorem 3.2. Hence,
using Lemma 2.5(ii), we obtain that BHg;Wg;1

==BD 2 HFin. From this point, the
argument continues as in the proof of Theorem 5.1 with the results of Botvinnik
and Perlmutter [7; 66] replacing those of Galatius and Randal-Williams [24; 26].
These results say that for 2n C 1 � 9 and � � g�4

2
, we have an isomorphism

H�.BDiffD2n.Hg// Š H�.Q0BO.2n C 1/hniC/. Here DiffD2n.Hg/ denotes the
topological group of diffeomorphisms of Hg fixing D2n � @Hg pointwise (and neces-
sarily @Hg setwise).

Remark 5.8 The restriction 2nC 1¤ 5; 7 is due to the use of a higher version of the
Whitney trick. Just like the ordinary Whitney trick is limited to dimension � 5 due
to an application of transversality to make an immersed Whitney disk embedded, a
transversality result limits the higher version of the Whitney trick to dimensions � 9. It
may be that automorphisms of manifolds of dimensions 5 and 7 behave in a qualitatively
different manner.

A similar proof as that for Corollaries 5.3 and 5.4 now gives us the odd-dimensional
case.

Corollary 5.9 Let 2nC 1¤ 5; 7, then BDiff.S2nC1/ is of finite type.

Corollary 5.10 If M is a closed, compact, 2–connected, .2nC1/–dimensional, ori-
ented, smooth manifold and 2nC 1 ¤ 5; 7 and we write M ı WD M n int.D2nC1/,
then

(i) BDiffid
@
.M ı/ 2 Fin,

(ii) BDiff@.M ı/ 2 HFin,

(iii) BDiffid.M / 2 Fin,

(iv) BDiffC.M / 2 HFin.
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5.4 Homeomorphisms and PL–homeomorphisms of Rn

Recall that Top.n/ denotes the topological group of homeomorphisms of Rn in the
compact–open topology and PL.n/ denote the simplicial group of piecewise-linear
homeomorphisms of Rn . We recall two results about these groups, the first from
[49, Section V.5]:

Theorem 5.11 (Kirby and Siebenmann) If n�5, then �i.PL.n/=O.n//!�i.PL=O/
is an isomorphism for i � nC 1 and a surjection for i D nC 2. Furthermore, there are
isomorphisms

�i.PL=O/Š
�

0 if i � 4,
‚i otherwise,

�i.Top.n/=PL.n//Š �i.Top=PL/Š
�

Z=2Z if i D 3,
0 otherwise.

The second result is smoothing theory for PL–manifolds, eg [11, Theorem 4.4].

Theorem 5.12 (Burghelea and Lashof) ‚n �BDiff@.Dn/'�nPL.n/=O.n/.

Corollary 5.13 Let n¤ 4; 5; 7. BTop.n/ and BPL.n/ are in Fin. They are thus in
particular of homotopically and homologically finite type.

Proof For n� 3 it is true that O.n/' PL.n/' Top.n/, so we will focus on n� 6.
Since O.n/ is homotopically finite type and ‚i is a finite abelian group, Theorem 5.11
implies that �i.O.n/=PL.n// is finite for i � nC 1. Theorem 5.12 says

‚n �BDiff@.D
n/'�nPL.n/=O.n/:

Since BDiff@.Dn/ 2 Fin by Theorem A, �nPL.n/=O.n/ 2 Fin and thus we also have
PL.n/=O.n/ 2 Fin. There is a fiber sequence

PL.n/=O.n/! BO.n/! BPL.n/;

and since BO.n/2Fin, the long exact sequence for homotopy groups implies BPL.n/2
Fin. That BTop.n/ is in Fin then follows from the last part of Theorem 5.11.

5.5 Homeomorphisms of 2n–dimensional manifolds

Next, we prove similar results for homeomorphisms and PL–homeomorphisms.

Corollary 5.14 Let n¤ 4; 5; 7; then BTop.Sn/ and BPL.Sn/ are of finite type.
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Proof Let CATDTop or PL. Let FrCAT.TSn/ be the bundle over Sn with fiber over
x 2 Sn given by the CAT–isomorphisms Rn! TxSn . A homeomorphism of SN

acts on the tangent microbundle TSn , giving rise to a fiber sequence

BCAT@.D
n/! BCAT.Sn/! FrCAT.TSn/:

By the Alexander trick, CAT@.Dn/' �, so BCAT.Sn/' FrCAT.TSn/. The fiber of
FrCAT.TSn/ is equivalent to CAT.n/, so we can prove the result using Corollary 5.13
by applying Lemma 2.20(ii) and .ii0/ to the fiber sequence

CAT.n/! FrCAT.TSn/! Sn:

For general manifolds, the technique is smoothing theory for embeddings [53].

Corollary 5.15 Suppose that M is a closed, compact, 2–connected, n–dimensional,
smooth manifold, and n ¤ 4; 5; 7, and let M ı WDM n int.Dn/. If CAT D Top;PL
then BCAT@.M ı/ and BCAT.M / are of homologically finite type. Furthermore, the
classifying spaces of their identity components are of homotopically and homologically
finite type.

Proof We start with the identity component of Diff@.M ı/. Let n � 5 and CATD
PL;Top; then Corollary 2 of [53] says that

hofibid.ImmŠ@=2.M
ı/! ImmCAT

@=2 .M
ı//' hofibid.EmbŠ@=2.M

ı/! EmbCAT
@=2 .M

ı//:

By immersion theory [31; 55], the left-hand side is equivalent to the homotopy fiber F

of a map �
�
EO ;M ıI

1
2
@M ı

�
! �

�
ECAT;M ıI

1
2
@M ı

�
between spaces of sections

of bundles EO and ECAT with fibers O.n/ and CAT.n/, respectively, equal to a fixed
section on half the boundary. As a consequence of Lemma 2.21 and Corollary 5.13,
each of the components of F is in Fin. Furthermore, since the first n homotopy groups
of CAT.n/=O.n/ are finite by Theorem 5.11, obstruction theory tells us F has finitely
many components.

We conclude there is a fiber sequence

F ! EmbDiff;id
@=2

.M ı/! EmbCAT;id
@=2

.M ı/

with F in Fin. By Proposition 3.15, EmbDiff;id
@=2 .M ı/ 2 …Fin. We can then use

Lemma 2.20(i) and .i0/ to conclude EmbCAT;id
@=2 .M ı/ 2 …Fin. By Corollary 4.32,

BCATid
@=2
.M ı/' BEmbid

@=2
.M ı/, so the former is in Fin.
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Next is the group of connected components of Diff@.M ı/. The proof of Theorem 13.3
of [80] only uses surgery theory and that the first n rational homotopy groups of O.n/

are finite-dimensional, so it also applies to CAT–manifolds (see [81, page 3392]). As
in Proposition 3.11, B�0.CAT@=2.M ı// 2 HFin. Applying Lemma 2.5(ii) to

BCATid
@=2.M

ı/! BCAT@=2.M
ı/! B�0.CAT@=2.M

ı//;

we conclude that BCAT@=2.M ı/ 2 HFin.

As in the smooth case, there is a fiber sequence

EmbCAT;C.Dn;M /! BCATT
@ .M

ı/! BCATid.M /;

where EmbCAT;C.Dn;M / is the space of orientation-preserving embeddings and
BCATT

@ .M
ı/ is the classifying space of the subgroup of CAT@.M ı/ given by those

components consisting of CAT–isomorphisms which become isotopic to the identity
after gluing in a disk. As before, this group of components is either Z=2Z or trivial,
and we conclude that BCATid.M / 2 …Fin. We also have B�0.CAT.M // 2 HFin,
which finishes the proof.

5.6 Concordance diffeomorphisms and the WhDiff –spectrum

Next, we give an application to concordance diffeomorphisms and algebraic K–theory
of spaces.

Definition 5.16 Let C.M / be the topological group of diffeomorphisms of M � I

fixing @M � I and M � f0g pointwise. These are called the concordance diffeomor-
phisms.

Corollary 5.17 If n� 8, then C.Dn/ is of finite type.

Proof There is a fiber sequence Diff@.DnC1/! C.Dn/! Diff@.Dn/, so the result
follows from Theorem 5.1 and Corollary 5.7.

Igusa’s pseudoisotopy stability theorem [44] says there is a stabilization map

C.M � Ik/! C.M � IkC1/;

which is an equivalence in a range going to 1 as k !1. Assume for simplicity
that M is 1–connected. By Waldhausen’s parametrized stable h–cobordism theorem,
the space colimk!1BC.M / is the infinite loop space �1C1WhDiff.M / [83]. The
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spectrum WhDiff.M / is a summand of A.M /: A.M /'WhDiff.M /_†1MC . Both
A.M / and WhDiff.M / only depend on the homotopy type of M. Since A.M / is
connective and �0.A.M //ŠZ, the splitting implies that �i.WhDiff.M //D0 for i �0.
Thus Corollary 5.17 implies the following result of Dwyer [17]:

Corollary 5.18 Both WhDiff.�/ and A.�/ are of finite type.

5.7 Homotopy automorphisms and block automorphisms

Two types of automorphism groups of manifolds remain to be discussed: homotopy
automorphisms and block automorphisms. Finiteness results for these can be obtained
with relative ease, and we include their proofs for completeness. Similar results were
obtained by Farrell and Hsiang [22] and Burghelea [10], and, more recently, rationally
by Berglund and Madsen [4]. We will assume that our manifolds are closed, but we
expect this restriction to be unnecessary.

Definition 5.19 Let haut.M / be the grouplike topological monoid of homotopy auto-
morphisms of M, ie the union of those components of Map.M;M / consisting of
continuous maps that are homotopy equivalences.

Proposition 5.20 If M is a closed n–dimensional manifold with finite fundamental
group, then

(i) Bhautid.M / 2 Fin,

(ii) Bhaut.M / 2 HFin.

Proof (i) Since the identity component of haut.M / is a path-connected topological
monoid, it suffices to prove it has finitely generated homotopy groups. By Lemma 2.21,
the identity component of the space Map�.M;M / of pointed maps has finitely gener-
ated homotopy groups. It fits into a fiber sequence

Mapid
� .M;M /!Mapid.M;M /!M;

and the result follows from Lemma 2.20(ii) and .ii0/ using the fact that there is a section
M !Mapid.M;M /.

(ii) After having established part (i), we want to apply Lemma 2.5(ii) to the fiber
sequence

Bhautid.M /! Bhaut.M /! B�0.haut.M //;
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and to do so, it suffices to show B�0.haut.M // 2 HFin. Triantafillou proved that for
a finite CW complex X with finite fundamental group, �0.haut.X // differs by finite
groups from an arithmetic group [81], and hence we can apply Theorem 2.12.

Next we consider block automorphisms. We take CATD Top, PL or Diff.

Definition 5.21 The group eCAT.M / of CAT–block automorphisms of a CAT–mani-
fold M is the simplicial group with k –simplices given by the CAT–isomorphisms

f W �k
�M !�k

�M

such that f .� �M /D � �M for every face � of �k .

This group is designed to be studied by surgery. The difference between block auto-
morphisms and homotopy automorphisms is the subject of Quinn’s surgery exact
sequence [67]: if n� 5 (or nD 4, CATD Top and �1.M / is good [23]) the following
is a fiber sequence when restricted to identity components:

(6) haut.M /=eCAT.M /!Map.M;G=CAT/! L.M /;

where G D colimn!1haut�.Sn/ and L.�/ is the quadratic L–theory space.

Proposition 5.22 If M is a closed, oriented CAT–manifold of dimension n� 5 with
finite fundamental group or a 1–connected topological 4–manifold, then

(i) B eCAT id.M / 2 Fin,

(ii) B eCAT.M / 2 HFin.

Proof (i) There is a fiber sequence

hautid.M /=eCATid.M /! B eCATid.M /! Bhautid.M /:

By Proposition 5.20(i) its base is in Fin, so using Lemma 2.20 it suffices to prove
that the fiber has finitely generated homotopy groups. This uses the surgery exact
sequence (6). We will first prove that the path components of Map.M;G=CAT/ and
L.M / have finitely generated homotopy groups. Note that �i.G/Š �i.S/ for i � 1,
while �0.G/D Z=2Z. In the case CATD Diff, colimn!1CAT.n/'O and by Bott
periodicity the homotopy groups of O are finitely generated, so that G=O 2 Fin. From
this and Theorem 5.11, we can conclude that G=CAT 2 Fin and it has abelian �1

because G=CAT is an infinite loop space [57, Chapter 6]. By Lemma 2.21, each
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component of Map.M;G=CAT/ has finitely generated homotopy groups. For the
second term, �i.L.M // Š �iCn

�
L.ZŒ�1.M /�/

�
, which is finitely generated when

�1.M / is finite [32].

That hautid.M /=eCAT id.M / has finitely generated homotopy groups then follows from
Lemma 2.20(iii) and .iii0/, where we have condition (a) since �1.Map.M;G=CAT// is
abelian again because G=CAT is an infinite loop space. We conclude that B eCAT id.M /

is in Fin, which finishes the proof of part (i) of this proposition.

(ii) We intend to apply Lemma 2.5(ii) to the fiber sequence

B eCATid.M /! B eCAT.M /! B�0.eCAT.M //;

and it thus suffices to prove that B�0.eCAT.M // 2 HFin. First, by Lemma 5.23 the
classifying space of the kernel of the surjection �0.CAT.M //! �0.eCAT.M // is
in HFin. Next, the group �0.CAT.M // is arithmetic when dim M � 5 and �1.M /

is finite [81], and thus by Theorem 2.12 we have B�0.CAT.M // 2 HFin. Using
Lemma 2.8(i), which says that a group with classifying spaces in HFin are closed under
quotients, we conclude that �0.eCAT.M // 2 HFin. If n D 4 and �1.M / D 0, then
�0.Top.M // is arithmetic and pseudoisotopy implies isotopy [68].

Lemma 5.23 If n� 5, �1.M / is finite and M is oriented, then the kernel K of the
map �0.CAT.M //! �0.eCAT.M // has classifying space in HFin.

Proof Proposition II.5.1 of [39] describes the kernel K as the quotient of the group
�0.C.M // by the abelian subgroup �0.Diff@.M � I//, with C.M / as in Definition
5.16. To apply Lemma 2.8(i) it suffices to show �0.C.M // is finitely generated nil-
potent, as then �0.Diff@.M�I// will be finitely generated abelian and, by Lemmas 2.14
and 2.8(ii), both B�0.Diff@.M � I// and B�0.C.M // will be in HFin. Theorem 3.1
of [34] gives an exact sequence

(7) H0

�
�1.M /I�2.M /Œ�1.M /�=�2.M /Œ1�

�
! �0.C.M //

!Wh2.�1.M //˚H0

�
�1.M /IZ=2ZŒ�1.M /�=Z=2ZŒ1�

�
! 0;

with Wh2.�1.M // a quotient of K2.ZŒ�1.M /�/. Because �1.M / is finite, the univer-
sal cover �M is a finite CW complex and thus �2.M /ŠH2. �M / is finitely generated.
Both H0 –terms of (7) are thus coinvariants of actions on finitely generated abelian
groups, and hence finitely generated abelian. For Wh2.�1.M // we use that K2.ZŒG�/

is finitely generated abelian if G is finite by [52, Theorem 1.1(i)].
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Finally we deduce a result about the difference between block diffeomorphisms and
diffeomorphisms, previously known only in the concordance stable range.

Corollary 5.24 If M is closed, smooth, 2–connected manifold of dimension 6 or � 8,
then eCAT.M /=CAT.M / is in …Fin.

Proof Under the conditions of the corollary, pseudoisotopy classes coincide with
isotopy classes [14; 70; 13]. Thus the map �0.CAT.M // ! �0.eCAT.M // is an
isomorphism and hence there is a fiber sequence

eCAT.M /=CAT.M /! BCATid.M /! B eCATid.M /:

From Lemma 2.20(iii) and .iii0/, Corollaries 5.4, 5.10 and 5.15, and Proposition 5.22
we conclude that eCAT.M /=CAT.M / 2 Fin.
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