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Hodge theory for intersection space cohomology

MARKUS BANAGL

EUGÉNIE HUNSICKER

Given a perversity function in the sense of intersection homology theory, the method
of intersection spaces assigns to certain oriented stratified spaces cell complexes
whose ordinary reduced homology with real coefficients satisfies Poincaré duality
across complementary perversities. The resulting homology theory is well known
not to be isomorphic to intersection homology. For a two-strata pseudomanifold with
product link bundle, we give a description of the cohomology of intersection spaces
as a space of weighted L2 harmonic forms on the regular part, equipped with a fibred
scattering metric. Some consequences of our methods for the signature are discussed
as well.

55N33, 58A14

1 Introduction

Classical approaches to Poincaré duality on singular spaces are Cheeger’s L2 cohomol-
ogy with respect to suitable conical metrics on the regular part of the space [14; 13; 15]
and Goresky and MacPherson’s intersection homology, depending on a perversity
parameter. Cheeger’s Hodge theorem asserts that the space of L2 harmonic forms on
the regular part is isomorphic to the linear dual of intersection homology for the middle
perversity, at least when X has only strata of even codimension or, more generally, is
a so-called Witt space.

More recently, the first author has introduced and investigated a different, spatial
perspective on Poincaré duality for singular spaces [2]. This approach associates
to certain classes of singular spaces X a cell complex I xpX, which depends on a
perversity xp and is called an intersection space of X. Intersection spaces are required
to be generalized geometric Poincaré complexes in the sense that when X is closed
and oriented, there is a Poincaré duality isomorphism zH i.I xpX IR/Š zHn�i.I

xqX IR/,
where n is the dimension of X, xp and xq are complementary perversities in the sense
of intersection homology theory, and zH� and zH� denote reduced singular (or cellular)
cohomology and homology, respectively. The present paper is concerned with X
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that have two strata such that the bottom stratum has a trivializable link bundle. The
construction of intersection spaces for such X, first given in [2, Chapter 2.9], is described
here in more detail in Section 3. The fundamental principle, even for more general X

(see Banagl and Chriestenson [7]), is to replace links by their Moore approximations,
a concept from homotopy theory Eckmann–Hilton dual to the concept of Postnikov
approximations. The resulting (co)homology theory HI�

xp.X / D H�.I xpX IR/ or
HI
xp
� .X /DH�.I

xpX IR/ is not isomorphic to the respective intersection (co)homology
IH�
xp .X IR/ or IH

xp
� .X IR/. The theory HI� has had applications in fibre bundle

theory and computation of equivariant cohomology (Banagl [3]); K–theory (Banagl
[2, Chapter 2.8]; Spiegel [35]); algebraic geometry (smooth deformation of singular
varieties (Banagl and Maxim [8; 9]), perverse sheaves (Banagl, Budur and Maxim [5]),
mirror symmetry [2, Chapter 3.8]); and theoretical physics [2, Chapter 3; 5]. Note for
example that the approach of intersection spaces makes it straightforward to define
intersection K–groups by K�.I xpX /. These techniques are not accessible to classical
intersection cohomology. There are also applications to Sullivan formality of singular
spaces: Given a perversity xp , call a pseudomanifold X xp–intersection formal if I xpX

is formal in the usual sense. Then the results of [8] show that under a mild torsion-
freeness hypothesis on the homology of links, complex projective hypersurfaces X

with only isolated singularities, whose monodromy operators on the cohomology of the
associated Milnor fibres are trivial, are middle-perversity (Sm) intersection formal, since
there is an algebra isomorphism from HI�

Sm.X / to the ordinary cohomology algebra of
a nearby smooth deformation, which is formal, being a Kähler manifold. This agrees
nicely with the result of Chataur, Saralegi-Aranguren and Tanré [12, Section 3.4],
where it is shown that any nodal hypersurface in CP4 is “totally” (ie with respect to
an algebra that involves all perversities at once) intersection formal. Rational Sullivan
models of intersection spaces have been investigated by M Klimczak [27].

A de Rham description of HI�
xp.X / has been given by Banagl [4] for two-strata spaces

whose link bundle is flat with respect to the isometry group of the link. Under this
assumption, a subcomplex �I�

xp.M / of the complex ��.M / of all smooth differ-
ential forms on the top stratum M D X � †, where † � X is the singular set,
has been defined such that for isolated singularities there is a de Rham isomorphism
HI�dR; xp.X / Š

zH�.I xpX IR/, where HI
j
dR; xp.X / D H j .�I�

xp.M //. This result has
been generalized by Timo Essig [16] to two-strata spaces with product link bundle.
In [4] we prove furthermore that wedge product followed by integration over M

induces a nondegenerate intersection pairing \HI W HIj
dR; xp.X /˝HIn�j

dR;xq .X /!R for
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complementary xp and xq . The construction of �I�
xp.M / for the case of a product link

bundle (ie the case relevant to this paper) is reviewed here in detail in Section 6.2.

In the present paper, we find for every perversity xp a Hodge-theoretic description
of the theory HI�

xp.X /; that is, we find a Riemannian metric on M (which is very
different from Cheeger’s class of metrics) and a suitable space of L2 harmonic forms
with respect to this metric (the extended weighted L2 harmonic forms for suitable
weights) such that the latter space is isomorphic to zHI�

xp.X /ŠHIj
dR; xp.X /. Assume

for simplicity that † is connected. If L denotes the link of † in X and M is the
compact manifold with boundary @M DL�† and interior M (called the “blowup”
of X ), then a metric gfs on M is called a product-type fibred scattering metric if
near @M it has the form

gfs D
dx2

x4
Cg†C

gL

x2
;

where gL is a metric on the link and g† a metric on the singular set; see Section 2.
If † is a point, then gfs is a scattering metric.

Given a weight c , weighted L2 spaces xcL2
gfs
��gfs

.M / are defined in Section 7. The
space H�ext.M;gfs; c/ of extended weighted L2 harmonic forms on M consists of
all those forms ! which are in the kernel of d C ı (where ı is the formal adjoint
of the exterior derivative d and depends on gfs and c ) and in xc��L2

gfs
��gfs

.M / for
every � > 0; see Definition 7.1. Extended L2 harmonic forms are already present
in Chapter 6.4 of Melrose’s monograph [30]. Then our Hodge theorem is:

Theorem 1.1 Let X be a (Thom–Mather) stratified pseudomanifold with smooth,
connected singular stratum †�X. Assume that the link bundle Y !† is a product
L�†!†, where L is a smooth manifold of dimension l . Let gfs be an associated
product-type fibred scattering metric on M DX �†. Then

HI�dR; xp.X /ŠH�ext
�
M; gfs;

1
2
.l � 1/� xp.l C 1/

�
:

Aside from giving an analytic description of HI cohomology in terms of harmonic
forms, a nice aspect of this result is that it shows that there is a natural topological
description of the space of extended harmonic forms on the right-hand side. In [25],
the second author obtained a Hodge theorem for these spaces of forms, but thought of
as relating to a conformally equivalent metric and with a different weight. However,
the topological description in that paper is in terms of the topologically less natural IG

spaces we consider below. Thus it is satisfying here to see that there is a natural
cohomology describing these forms.
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As a corollary to this description, we find that the spaces H�ext
�
M; gfs;

1
2
.l�1/�xp.lC1/

�
satisfy Poincaré duality across complementary perversities. We can see this duality
achieved on forms using an appropriate Hodge star operator, as has been shown by
the second author in [25]. Finally, it is worth noting that on the space of extended
harmonic forms, integration does not give a natural well-defined intersection pairing
on the right-hand side. Thus it would be interesting in the future to consider how to
realize the intersection pairing on extended harmonic forms.

The strategy of the proof of Theorem 1.1 is as follows: First we relate HI�dR; xp.X / and
zH�.I

xpX IR/ to intersection cohomology and intersection homology, respectively. To
do this, we introduce in Section 2 the device of a conifold transition CT.X / associated
to an X as in the Hodge theorem. The conifold transition arose originally in theoretical
physics and algebraic geometry as a means of connecting different Calabi–Yau 3–folds
to each other by a process of deformations and small resolutions; see [2, Chapter 3] for
more information. Topologically, such a process also arises in manifold surgery theory
when † is an embedded sphere with trivial normal bundle. The relation of HI to IH

is then given by the following theorem.

Theorem 1.2 (homological version) Let X be an n–dimensional stratified pseudo-
manifold with smooth nonempty singular stratum †�X. Assume that † is closed as a
manifold and the link bundle Y !† is a product bundle L�†!†, where the link L

is a smooth closed manifold of dimension l . Then the reduced homology zHI
xp
� .X /

of the intersection space of perversity xp is related to the intersection homology of the
conifold transition CT.X / of X by

zHI
xp

j .X /Š IG
.n�1�xp.lC1/�j/
j .CT.X //;

where for a pseudomanifold W with one singular stratum of codimension c ,

IG
.k/
j .W /D IH

xq
j .W /˚

IH
xq0

j .W /

im.IH xqj .W /! IH
xq0

j .W //
;

with xq.c/D k � 1 and xq0.c/D k .

Note that when both xp.lC1/ and the degree j are large, one must allow negative values
for k in the quotient IG

.k/
j . Therefore, the perversity functions xq considered in this

paper are not required to satisfy the Goresky–MacPherson conditions, but are simply
arbitrary integer-valued functions. This, in turn, necessitates a minor modification in
the definition of intersection homology. The precise definition of IH

xq
� used in the
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above theorem is provided in Section 4 and has been introduced independently by
Saralegi-Aranguren [31] and by Friedman [17]. In the following de Rham version of
the above result, the link and the singular stratum are assumed to be orientable, as
our methods rely on the availability of the Hodge star operator. When an intersection
cohomology group IH�

xp .W / depends only on the value of the perversity xp at one
particular codimension, it will frequently be more convenient to label the group directly
by the cutoff degree determined by the perversity. Thus we use the notation IH

j

.q/
.W /

to mean that the integer q is the cutoff degree in the local cohomology calculation on
the link. The Poincaré lemma for a cone on a closed manifold L then has the form

IH
j

.q/
.cıL/D

�
H j .L/ if j < q;

0 if j � q:

Theorem 1.3 (De Rham cohomological version) Let X be an n–dimensional strati-
fied pseudomanifold with smooth nonempty singular stratum †�X. Assume that † is
closed and orientable, and the link bundle Y !† is a product bundle L�†!†, where
the link L is a smooth closed orientable manifold of dimension l . Then the de Rham
cohomology HI�dR; xp.X / can be described in terms of the intersection cohomology of
the conifold transition by

HI
j
dR; xp.X /Š IG

j

.jC1�k/
.CT.X //;

where k D l � xp.l C 1/ and for a pseudomanifold W with one singular stratum,

IG
j

.q/
.W /D IH

j

.q�1/
.W /˚

IH
j

.q/
.W /

im.IH j

.q�1/
.W /! IH

j

.q/
.W //

:

We do not deduce the cohomological version from the homological one by universal
coefficient theorems, but prefer to give independent proofs for each version. The proof
of the homological version uses Mayer–Vietoris techniques while the proof of the
cohomological version compares differential forms in the various de Rham complexes
on M. (The regular part of the conifold transition coincides with the regular part M

of X.) Finally, we appeal to a result (Theorem 7.2 in the present paper) of the second
author [25], which relates extended weighted L2 harmonic forms with respect to a
fibred cusp metric gfc to the IG

j

.q/
arising in Theorem 1.3 above. This leads in a

natural way to fibred scattering metrics because fibred cusp metrics

gfc D
dx2

x2
CgLCx2g†
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on the conifold transition are conformal to

1

x2
gfc D

dx2

x4
C

1

x2
gLCg†;

which is precisely a fibred scattering metric on X.

For n divisible by 4, and either l odd or H l=2.L/ D 0 (ie X a Witt space), the
nondegenerate intersection pairing \HI W HI

n=2
dR;Sm.X /˝HI

n=2
dR;Sm.X /!R on the middle

dimension n=2 for the middle perversity has a signature �HI .X /. It has been shown
in [2, Theorem 2.28] that in the setting of isolated singularities, the signature of
the homological intersection form Hn=2.I

SmX /˝Hn=2.I
SmX /! R is equal to the

Goresky–MacPherson signature coming from intersection homology of X. Banagl and
Chriestenson [7, Theorem 11.3 and Corollary 11.4] generalized this result to a class of
nonisolated singularities. We use Theorem 1.3 to obtain results about the intersection
pairing and signature on HI�dR.X /. This turns out to be related to perverse signatures
of the conifold transition, which needs not be Witt even when X is. Perverse signatures
are defined for arbitrary perversities on arbitrary compact oriented pseudomanifolds
from the extended intersection pairing on intersection cohomology. These signatures
are defined in the two-strata case by Hunsicker in [24] and more generally by Friedman
and Hunsicker in [18].

Theorem 1.4 Let n be divisible by 4 and let X be an n–dimensional compact
oriented stratified pseudomanifold with smooth singular stratum † � X. Assume
that the link bundle Y ! † is a product bundle L�†! †. Then the intersection
pairing \HI W HI

j
dR; xp˝HI

n�j

dR;xq.X /! R for dual perversities xp and xq is compatible
with the intersection pairing on the intersection cohomology spaces IG� appearing in
Theorem 1.3. When X is an even-dimensional Witt space, then the signature �HI .X /

of the intersection form on HIn=2
dR;Sm.X / is equal both to the signature �IH .X / of the

Goresky–MacPherson intersection form on IH n=2
Sm
.X /, and to the perverse signature

�IH ;Sm.CT.X //, that is, the signature of the intersection form on

im
�
IH

n=2
Sm .CT.X //! IH

n=2
xn .CT.X //

�
;

where Sm is the lower-middle and xn the upper-middle perversity. Further,

�HI .X /D �IH .X /D �IH ;Sm.CT.X //D �IH .Z/D �HI .Z/D �.M /;

where Z is the one-point compactification of X � † and �.M / is the Novikov
signature of the complement M of an open tubular neighborhood of the singular set.
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Remark 1.5 The compactification Z appearing in Theorem 1.4 has one isolated
singular point. Since X is even-dimensional, Z is thus a Witt space and has a well-
defined IH–signature and a well-defined HI–signature. However, if X satisfies the
Witt condition, then CT.X / need not satisfy the Witt condition and �IH .CT.X //
and �HI .CT.X // are a priori not defined. Therefore, we must use the perverse
signature �IH ;Sm for CT.X / as defined in [24; 18].

We prove Theorem 1.4 using de Rham theory, Siegel’s work [33], Novikov additivity
and results of Banagl, Cappell and Shaneson [6]. Using different, algebraic methods
and building on results of [2], parts of this theorem were also obtained by Matthias
Spiegel in his dissertation [35].

Notation If f is a continuous map, then cone.f / denotes its mapping cone. For a
compact topological space X, we denote by cX the closed cone and by cıX the open
cone on X. Only homology and cohomology with real coefficients are used in this paper.
Thus we will write H�.X /DH�.X IR/. When M is a smooth manifold, H�.M / is
generally, unless indicated otherwise, understood to mean de Rham cohomology. The
symbol zH�.X / denotes the reduced (singular) homology of X , and zH�.X / denotes
the reduced cohomology.

2 The conifold transition and Riemannian metrics

Let X be a Thom–Mather stratified pseudomanifold with a single compact smooth
singular stratum, †. Let M DX �†. Assume that the link bundle of † is a product,
L�†. Let N �X be an open tubular neighborhood of †. Fix a diffeomorphism

� W N �†ŠL�†� .0; 1/

that extends to a homeomorphism

z� W N Š
L�†� Œ0; 1/

.z;y; 0/� .z0;y; 0/
Š cı.L/�†:

Define the blowup
M D .X �†/[� .L�†� Œ0; 1//;

with blowdown map ˇW M !X given by the identity away from the boundary and by
the quotient map from L�†� Œ0; 1/ to .L�†� Œ0; 1//=..z;y; 0/� .z0;y; 0// near
the boundary. The blowup is a smooth manifold with boundary Y D @M D L�†.
Let incW @M !M be the inclusion of the boundary, and denote the projections onto
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the two components by �LW Y ! L and �†W Y ! †. By an abuse of notation, we
will also use �L and �† to denote the projections from N �† Š L �† � .0; 1/

to L and †, respectively. Let �Y denote the projection from N �† to Y DL�†.

The conifold transition of X, denoted by CT.X /, is defined as

CT.X /D .X �†/[� .L�†� Œ0; 1//=..z;y; 0/� .z;y
0; 0//:

The conifold transition is a stratified space with one singular stratum L, whose link
is †. However, CT.X / is not always a pseudomanifold: If X has one isolated
singularity † D pt, then CT.X / D M is a manifold with boundary, the boundary
constitutes the bottom stratum and the link is a point. Since the singular stratum
does not have codimension at least two, this is not a pseudomanifold. If † is positive-
dimensional, then CT.X / is a pseudomanifold. All of our theorems do apply even when
dim† D 0. Let ˇ0W M ! CT.X / be the blowdown map for the conifold transition
of X, given by the quotient map. Note also the involutive character of this construction,
CT.CT.X //ŠX.

The coordinate x in .0; 1/ above may be extended to a smooth boundary-defining
function on M , that is, a nonnegative function, x , whose zero set is exactly @M , and
whose normal derivative does not vanish at @M . We can now define the metrics we
will consider on M, which may in fact be defined on a broader class of open manifolds.

Definition 2.1 Let M be the interior of a manifold M with fibration boundary
@M Š Y

 
!† with fibre L and boundary-defining function x . Assume that Y can

be covered by bundle charts Ui Š Vi �L whose transition functions fij have differen-
tials dfij that are diagonal with respect to some splitting TY ŠTL˚H. A product-type
fibred scattering metric on M is a smooth metric that near @M has the form

gfs D
dx2

x4
C �ds2

†C
h

x2
;

where h is positive definite on TL and vanishes on H.

Examples of such metrics are the natural Sasaki metrics [32] on the tangent bundle of a
compact manifold, †. In this case, the boundary fibration of M D T† is isomorphic
to the spherical unit tangent bundle Sn! Y !†. We note that the condition on Y in
this definition is necessary for it to make sense. If the coordinate transition functions
do not respect the splitting of TY , then we cannot meaningfully scale in just the fibre
direction. This is different from the four types of metrics below, which can be defined
on any manifold with fibration boundary.
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A special subclass of these metrics arises when the boundary fibration is flat with
respect to the structure group Isom.L/ for some fixed metric ds2

L
on L. In this case,

we can require that the metric gfs be a product metric

gfs D
dx2

x4
C ds2

Vi
C

1

x2
ds2

L

on each chart .0; �/�UiŠ .0; �/�Vi�L for the given fixed metric on L. In this case, we
say that gfs is a geometrically flat fibred scattering metric on M. This flatness condition
arises also in the definition of HI cohomology; see [4]. This of course can be arranged
when the boundary fibration is a product, as in the case we consider in this paper.

Note that in the case that @M is a product L�†, it carries two possible boundary
fibrations: either  W Y !† or �W Y !L. A fibred scattering metric on M associated
to the boundary fibration  W @M !† is a fibred boundary metric on M associated
to the dual fibration �W @M !L. Fibred boundary metrics on M associated to � are
conformal to a third class of metrics, called fibred cusp metrics. These two classes may
be defined as follows:

� gfb is called a (product-type) fibred boundary metric if near @M it takes the
form

gfb D
dx2

x4
C
��ds2

L

x2
C k;

where k is a symmetric two-tensor on @M which restricts to a metric on each
fibre † of �W Y !L.

� gfc is called a (product-type) fibred cusp metric if near @M it takes the form

gfc D
dx2

x2
C��ds2

LCx2k;

where k is as above.

In the case that † is a point, these two metrics reduce to the well-studied classes of
b–metrics and cusp metrics, respectively (see eg [23] for more) and gfs becomes a
scattering metric.

3 Intersection spaces

Intersection homology groups of a stratified space were introduced by Goresky and
MacPherson in [20; 21]. In order to obtain independence of the stratification, they
imposed on perversity functions xpW f2; 3; : : : g! f0; 1; 2; : : : g the conditions xp.2/D 0

and xp.k/ � xp.k C 1/ � xp.k/C 1. Theorems 1.2 and 1.3, however, clearly involve
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perversities that do not satisfy these conditions. Thus in the present paper, a perversity xp
is just a sequence of integers . xp.0/; xp.1/; xp.2/; : : : /. (This is called an “extended”
perversity; it is called a “loose” perversity in [26].)

Let xp be an extended perversity. In [2], the first author introduced a homotopy-theoretic
method that assigns to certain types of n–dimensional stratified pseudomanifolds X

CW-complexes
I xpX;

the perversity- xp intersection spaces of X, such that for complementary perversities
xp and xq , there is a Poincaré duality isomorphism

zH i.I xpX /Š zHn�i.I
xqX /

when X is compact and oriented, where zH i.I xpX / denotes reduced singular cohomol-
ogy of I xpX with real coefficients. If xp D Sm is the lower-middle perversity, we will
briefly write IX for ISmX. The singular cohomology groups

HI�xp.X /DH�.I xpX /; zHI�xp.X /D
zH�.I xpX /

define a new (unreduced/reduced) cohomology theory for stratified spaces, usually not
isomorphic to intersection cohomology IH�

xp .X /. This is already apparent from the
observation that HI�

xp.X / is an algebra under cup product, whereas it is well known
that IH�

xp .X / cannot generally, for every xp , be endowed with a xp–internal algebra
structure. Let us put HI�.X /DH�.IX /.

Roughly speaking, the intersection space IX associated to a singular space X is defined
by replacing links of singularities by their corresponding Moore approximations, ie
spatial homology truncations. Let L be a simply connected CW complex, and fix an
integer k .

Definition 3.1 A stage-k Moore approximation of L is a CW complex L<k , to-
gether with a structural map f W L<k ! L, such that f�W Hr .L<k/!Hr .L/ is an
isomorphism if r < k , and Hr .L<k/Š 0 for all r � k .

Moore approximations exist for every k ; see eg [2, Section 1.1]. If k � 0, then we take
L<k D¿, the empty set. If kD 1, we take L<1 to be a point. The simple connectivity
assumption is sufficient, but certainly not necessary. If L is finite-dimensional and
k > dimL, then we take the structural map f to be the identity. If every cellular
k–chain is a cycle, then we can choose L<k DL.k�1/ , the .k�1/–skeleton of L, with
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structural map given by the inclusion map, but in general, f cannot be taken to be the
inclusion of a subcomplex.

Let X be an n–dimensional stratified pseudomanifold as in Section 2. Assume that
the link L of † is simply connected. Let l be the dimension of L. We shall recall
the construction of associated perversity- xp intersection spaces I xpX only for such X,
though it is available in more generality; see eg [7]. Set k D l � xp.l C 1/ and let
f W L<k !L be a stage-k Moore approximation to L. Let M be the blowup of X

with boundary @M D Y DL�†. Let

gW L<k �†!M

be the composition

L<k �†
f�id†
����!L�†D @M ,!M :

The intersection space is the homotopy cofibre of g :

Definition 3.2 The perversity- xp intersection space I xpX of X is defined to be

I xpX D cone.g/DM [g c.L<k �†/:

Poincaré duality for this construction is Theorem 2.47 of [2]. For a topological space Z ,
let ZC be the disjoint union of Z with a point. Recall that the cone on the empty set
is a point and hence cone.¿!Z/DZC .

Proposition 3.3 Let xp be an (extended) perversity and let c be the codimension of
the singular stratum † in X. If xp.c/ < 0, then zHI

xp
� .X / Š H�.M ; @M /, and if

xp.c/� c � 1, then zHI
xp
� .X /ŠH�.M /.

Proof If xp.c/ < 0, then k > l and L<k D L with f W L<k ! L the identity. It
follows that I xpX DM [@M c.@M / and

zHI
xp
� .X /D zH�.M [@M c.@M //ŠH�.M ; @M /:

If xp.c/� c� 1, then k � 0, so L<k D¿. Thus, I xpX D cone.¿!M /DMC and

zHI
xp
� .X /D zH�.M

C/ŠH�.M /:

Example 3.4 Consider the equation

y2
D x2.x� 1/

or its homogeneous version v2w D u2.u�w/, defining a curve X in CP2 . A local
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isomorphism
V D fy2

D x2.x� 1/g ! f�2
D �2
g

near the origin is given by � D xg.x/ and �D y , with g.x/D
p

x� 1 analytic and
nonzero near 0. The equation �2D �2 describes a nodal singularity at the origin in C2 ,
whose link is @I �S1 , two circles. All other points on the curve are nonsingular, as is
easily seen from the gradient of the defining equation. It is homeomorphic to a pinched
torus, that is, T 2 with a meridian collapsed to a point, or, equivalently, a cylinder I�S1

with coned-off boundary, where I D Œ0; 1�. The ordinary homology group H1.X / has
rank one and is generated by the longitudinal circle (while the meridian circle bounds the
cone with vertex at the singular point of X ). The intersection homology group IH1.X /

agrees with the intersection homology of the normalization S2 of X (the longitude
in X is not an “allowed” 1–cycle, while the meridian bounds an allowed 2–chain), so

IH1.X /D IH1.S
2/DH1.S

2/D 0:

The link of the singular point is @I �S1 , two circles. The intersection space IX of X

is a cylinder I �S1 together with an interval, whose one endpoint is attached to a point
in f0g �S1 and whose other endpoint is attached to a point in f1g �S1 . Thus IX is
homotopy equivalent to the figure eight and

H1.IX /DR˚R:

Remark 3.5 As suggested by the previous example, the middle homology of the
intersection space IX usually takes into account more cycles than the corresponding
intersection homology group of X. More precisely, for X 2k with only isolated singu-
larities †, the group IHk.X / is generally smaller than both Hk.X �†/ and Hk.X /,
being a quotient of the former and a subgroup of the latter, while Hk.IX / is generally
bigger than both Hk.X �†/ and Hk.X /, containing the former as a subgroup and
mapping to the latter surjectively; see [2].

One advantage of the intersection space approach is a richer algebraic structure: The
Goresky–MacPherson intersection cochain complexes IC �

xp .X / are generally not al-
gebras, unless xp is the zero-perversity, in which case IC �

xp .X / is essentially the
ordinary cochain complex of X. (The Goresky–MacPherson intersection product raises
perversities in general.) Similarly, Cheeger’s differential complex ��

.2/
.X / of L2–

forms on the top stratum with respect to his conical metric is not an algebra under
wedge product of forms. Using the intersection space framework, the ordinary cochain
complex C �.I xpX / of I xpX is a DGA, simply by employing the ordinary cup product.
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Another advantage of introducing intersection spaces is the possibility of discussing the
intersection K–theory K�.I xpX /, which is not possible using intersection chains, since
nontrivial generalized cohomology theories such as K–theory do not factor through
cochain theories.

4 Intersection homology

We need to use a version of intersection homology that behaves correctly for extended
perversities. More precisely, the singular intersection homology of [26], which agrees
with the Goresky–MacPherson intersection homology, displays the following anomaly
for very large perversity values: If A is a closed .n�1/–dimensional manifold and
cıA the open cone on A, then the intersection homology of cıA vanishes in degrees
greater than or equal to n� 1� xp.n/, with one exception, namely, if the degree is 0

and 0� n�1� xp.n/, then the intersection homology of the cone is Z. Now if the per-
versity xp satisfies the Goresky–MacPherson growth conditions, then this exception can
never arise, since xp.n/� n�2. But if xp is arbitrary, the exception may very well occur.

To correct this anomaly, we use the modification of Saralegi [31] and, independently,
Friedman [17]. Let �i denote the standard i–simplex and let �j

i � �i be the j –
skeleton of �i . Let X be any stratified space with singular set † and xp be an arbitrary
(extended) perversity. Let C�.X /DC�.X IR/ denote the singular chain complex with
R–coefficients of X. A singular i–simplex � W �i !X is called xp–allowable if for
every pure stratum S of X,

��1.S/��
i�kCxp.k/
i ; where k D codim S:

(This definition is due to King [26].) For each i D 0; 1; 2; : : : , let C
xp

i .X /� Ci.X / be
the linear subspace generated by the xp–allowable singular i–simplices whose image is
not entirely contained in †. If � 2C

xp
i .X /, then its chain boundary @� 2Ci�1.X / can

be uniquely written as @� D ˇ†C ˇ , where ˇ† is a linear combination of singular
simplices whose image lies entirely in †, whereas ˇ is a linear combination of simplices
each of which touches at least one point of X �†. We set @0� D ˇ and

IC
xp

i .X /D f� 2 C
xp

i .X / j @
0� 2 C

xp
i�1
.X /g:

It is readily verified that @0 is linear and .IC
xp
� .X /; @

0/ is a chain complex. The version
of intersection homology that we shall use in this paper is then given by

IH
xp

i .X /DHi.IC
xp
� .X //:
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Friedman [17] shows that if xp.k/ � k � 2 for all k , then IH
xp
� .X / as defined here

agrees with the definition of singular intersection homology as given by Goresky,
MacPherson and King. If A is a closed a–dimensional manifold, then

(1) IH
xp

i .c
ıA/Š

�
0 if i � a� xp.aC 1/;

IH
xp

i .A/ if i < a� xp.aC 1/;

and this holds even for degree i D 0, ie the above anomaly has been corrected. If A is
unstratified (that is, has only one stratum, the regular stratum), then IH

xp
i .A/DHi.A/.

If A is however not intrinsically stratified, then one can in general not compute IH
xp
� .A/

by ordinary homology, since IH
xp
� is not a topological invariant anymore for arbitrary

perversities xp .

According to [17], IH
xp
� has Mayer–Vietoris sequences: If U;V �X are open such

that X D U [V , then there is an exact sequence

(2) � � �! IH
xp

i .U \V /! IH
xp

i .U /˚IH
xp

i .V /! IH
xp

i .X /! IH
xp

i�1
.U \V /!� � � :

Furthermore, if M is any (unstratified) manifold (not necessarily compact) and X a
stratified space, then the Künneth formula

(3) IH
xp
� .M �X /ŠH�.M /˝ IH

xp
� .X /

holds if the strata of M �X are the products of M with the strata of X. (When
xp.k/� k � 2 for all k , this is Theorem 4 with R–coefficients in [26].)

Proposition 4.1 Let xq be an (extended) perversity and let c be the codimension of the
singular stratum L in the conifold transition CT.X /. If xq.c/<0, then IH

xq
� .CT.X //Š

H�.M /, and if xq.c/� c � 1, then IH
xq
� .CT.X //ŠH�.M ; @M /.

Proof Set Ij D IH
xq

j .L� cı†/ and let sD c�1 be the dimension of †. Then by (1)
and (3),

I� ŠH�.L/˝ IH
xq
� .c
ı†/

DH�.L/˝ ��s�1�xq.sC1/H�.†/DH�.L/˝ ��c�2�xq.c/H�.†/:

If xq.c/� c�1, that is, c�2�xq.c/ < 0, then I�D 0, so IH
xq
� .CT.X //ŠH�.M ; @M /

by the Mayer–Vietoris sequence of the open cover CT.X / D M [ .L � cı†/ and
the five lemma. If xq.c/ < 0, that is, c � 2 � xq.c/ � s , then I� D H�.L �†/, so
IH
xq
� .CT.X //ŠH�.M /, again by a Mayer–Vietoris argument.
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5 Proof of Theorem 1.2

Let j be any nonnegative degree. Throughout this entire section, j will remain fixed
and we must establish an isomorphism zHI xp

j
.X /Š IG.n�1�xp.lC1/�j/

j
.CT.X //, where

l D dim L. Let M be the blowup of X and M its interior. Let c be the codimension
of the singular set L in CT.X / and yc be the codimension of the singular set † in X,
that is,

c D n� l and yc D l C 1:

Set k D yc � 1� xp.yc/ and let f W L<k !L be a stage-k Moore approximation of L.
Then the intersection space I xpX is the mapping cone I xpX D cone.g/ of the map
gW L<k �†!M given by the composition

L<k �†
f�id†
����!L�†D @M ,!M :

Let
 W IH

xq
j .CT.X //! IH

xq0

j .CT.X //

be the canonical map, where xq.c/D n� 2� xp.l C 1/� j and xq0.c/D xq.c/C 1. Note
that the perversities xq and xq0 depend on the degree j . Then by definition

IG
.n�1�xp.lC1/�j/
j .CT.X //D IH

xq
j .CT.X //˚ coker. /:

The strategy of the proof is to compute intersection homology and HI near the singular
stratum using Künneth theorems (“local calculations”), then determine maps (“local
maps”) between these groups near the singularities, and finally to assemble this infor-
mation to global information using Mayer–Vietoris techniques. Our arguments do not
extend to integer coefficients; field coefficients are essential.

We begin with the local calculations. Let B� D H�.L � †/ be the homology of
the boundary, T� DH�.M / the homology of the top stratum, I� D IH

xq
� .L� cı†/,

J�D IH
xq0

� .L� cı†/ and R�DH�.cone.f � id†//. Again, we stress that the graded
vector spaces I� and J� depend on the degree j .

Lemma 5.1 The canonical inclusion L! cone.f / induces an isomorphism

��kH�.L/Š zH�.cone.f //:

Proof The reduced homology of the mapping cone of f fits into an exact sequence

� � � !Hi.L<k/
f�
�!Hi.L/! zHi.cone.f //!Hi�1.L<k/

f�
�!Hi�1.L/! � � � :
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We distinguish the three cases i D k , i > k and i < k . If i < k , then f� on Hi.L<k/

and on Hi�1.L<k/ is an isomorphism and thus zHi.cone.f // D 0. If i D k , then
Hi.L<k/ D 0 and f� on Hi�1.L<k/ is an isomorphism. Therefore, Hi.L/ !
zHi.cone.f // is an isomorphism. Finally, if i >k , then both Hi.L<k/ and Hi�1.L<k/

vanish and again Hi.L/! zHi.cone.f // is an isomorphism.

Remark 5.2 If k � 0, then L<k D¿ and cone.f /DLC . It follows that in degree 0,

.��kH�.L//0 DH0.L/Š zH0.L
C/D zH0.cone.f //;

in accordance with the lemma.

Let v 2 cone.f / be the cone vertex and let QD .cone.f /�†/=.fvg �†/, which is
homeomorphic to cone.f � id†/. As the inclusion fvg�†! cone.f /�† is a closed
cofibration, the quotient map induces an isomorphism

H�
�
.cone.f /; fvg/�†

�
DH�.cone.f /�†; fvg�†/Š zH�.Q/Š zH�.cone.f �id†//:

By the Künneth theorem for relative homology,

H�
�
.cone.f /; fvg/�†

�
ŠH�.cone.f /; fvg/˝H�.†/D zH�.cone.f //˝H�.†/:

Composing, we obtain an isomorphism

zH�.cone.f � id†//Š zH�.cone.f //˝H�.†/:

Composing with the isomorphism of Lemma 5.1, we get an isomorphism

(4) zH�.cone.f � id†//Š .��kH�.L//˝H�.†/:

Remark 5.3 If k � 0, then L<k �†D¿ and thus cone.f � id†/D .L�†/C . This
is consistent with

cone.f � id†/ŠQD
cone.f /�†
fvg �†

D
LC �†

fvg �†
D
fvg �†tL�†

fvg �†
D .L�†/C:

It will be convenient to put aD xp.l C 1/C j � l ; then the relation

(5) aC k D j

holds. We compute the terms R� :
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Lemma 5.4 If j > 0, then the isomorphism (4) induces an isomorphism

Rj Š

aM
tD0

Hj�t .L/˝Ht .†/:

(If a< 0, this reads Rj D 0.) Furthermore,

R0 Š

�
R if k > 0;

R˚ .H0.L/˝H0.†// if k � 0:

Proof We start by observing that k is independent of j . Now for j > 0, reduced and
unreduced homology coincide, so

Rj D
zHj .cone.f � id†//Š

jM
tD0

.��kH�.L//j�t ˝Ht .†/:

Using (5), j � t � k if and only if aD j � k � t . Thus

Rj Š

aM
tD0

Hj�t .L/˝Ht .†/;

since if a> j and j < t � a, then j � t < 0, so that Hj�t .L/D 0.

j Pj

P 0
j�1

a

a� 1

� � �

� � �

� � �

� � �

PaC1

P 0a Pa

P 0
a�1

k

Pa�1

P 0
a�2

j � 2

� � �

� � � P1

P 0
0

j � 1

P0

j

RjDIj

Rj�1DJj�1

Jj

Ij�1

Figure 1: Local Künneth factor truncations when j ¤ 0
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In degree 0, we find

R0 DR˚ zH0.cone.f � id†//ŠR˚
�
.��kH�.L//0˝H0.†/

�
and .��kH�.L//0 D 0 for k > 0, whereas .��kH�.L//0 DH0.L/ for k � 0.

With s D dim†, we have sC 1D n� l D c and thus according to (1),

IH
xq
� .c
ı†/Š �<s�xq.sC1/H�.†/D ��aH�.†/

for

s� 1� xq.sC 1/D s� 1� xq.c/D n� l � 2� .n� 2� xp.l C 1/� j /D a:

Consequently by the Künneth formula (3) for intersection homology,

Ij Š .H�.L/˝ IH
xq
� .c
ı†//j

Š .H�.L/˝ ��aH�.†//j D

aM
tD0

Hj�t .L/˝Ht .†/;

Ij�1 Š .H�.L/˝ IH
xq
� .c
ı†//j�1

Š .H�.L/˝ ��aH�.†//j�1 D

aM
tD0

Hj�1�t .L/˝Ht .†/:

Similarly for xq0,

Jj Š .H�.L/˝ IH
xq0

� .c
ı†//j

Š .H�.L/˝ ��a�1H�.†//j D

a�1M
tD0

Hj�t .L/˝Ht .†/;

Jj�1 Š .H�.L/˝ IH
xq0

� .c
ı†//j�1 Š

a�1M
tD0

Hj�1�t .L/˝Ht .†/:

This concludes the local calculations of groups. We can get a bit of help understanding
how these pieces fit together, at least when j ¤ 0, by setting Pt DHj�t .L/˝Ht .†/

and letting Œj ; a�W
Lj

tD0
Pt !

La
tD0 Pt be the standard projection if j > a and

the identity if j � a. (Recall that when j < a and j < t � a, then Pt D 0 since
then j � t < 0 and Hj�t .L/D 0.) Analogously, let P 0t DHj�1�t .L/˝Ht .†/ and
define Œj �1; a�W

Lj�1
tD0

P 0t !
La

tD0 P 0t to be the standard projection if j �1> a and
the identity if j � 1� a.

We picture how these pieces fit together in Figure 1.
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We commence the determination of various local maps near the singularities. Let
 loc

i W Ii ! Ji the canonical map. Using the collar associated to the boundary of the
blowup, the open inclusion L�†� .0; 1/ ,!M induces a map

ˇT
W B�! T�;

while the open inclusion L�†� .0; 1/ ,!L� cı† induces maps

ˇI
W B�! I� and ˇJ

W B�! J�

such that

(6)
B�

ˇI

//

ˇJ
  

I�

 loc

��

J�

commutes. The canonical inclusion L�† ,! cone.f � id†/ induces a map

ˇR
W B�!R�:

The diagram

Bj

ˇI
j

// Ij

Lj
tD0

Pt

� Š

OO

Œj ;a�

//
La

tD0 Pt

Š �

OO

commutes. The vertical isomorphisms are given by the cross product. For j > 0,
let 'locW Ij !Rj be the unique isomorphism such that

Ij
'loc

// Rj

La
tD0 Pt

� Š

OO

La
tD0 Pt

Š �

OO

commutes, using Lemma 5.4. Since

Bj

ˇR
j

// Rj

Lj
tD0

Pt

� Š

OO

Œj ;a�

//
La

tD0 Pt

Š �

OO
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commutes, we know that

(7)
Bj

ˇI
j
//

ˇR
j   

Ij

'locŠ

��

Rj

commutes also. For j >1, let  locW Ij�1!Rj�1 be the unique epimorphism such that

Ij�1

 loc
// // Rj�1

La
tD0 P 0t

� Š

OO

Œa;a�1�
// //
La�1

tD0 P 0t

Š �

OO

commutes, using Lemma 5.4. Under the cross product, the commutative diagramLj�1
tD0

P 0t
Œj�1;a�

//

Œj�1;a�1� ''

La
tD0 P 0t

Œa;a�1�
����La�1

tD0 P 0t

corresponds to

(8)

Bj�1

ˇI
j�1
//

ˇR
j�1 ##

Ij�1

 loc

����

Rj�1

and therefore this also commutes.

For any j , the diagrams

Ij

 loc
j

// Jj

La
tD0 Pt

� Š

OO

Œa;a�1�

//
La�1

tD0 Pt

Š �

OO

and
Ij�1

 loc
j�1

// Jj�1

La
tD0 P 0t

� Š

OO

Œa;a�1�

//
La�1

tD0 P 0t

Š �

OO
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commute, showing that both  loc
j and  loc

j�1
are surjective. For j > 1, let Rj�1!Jj�1

be the unique isomorphism such that

Rj�1
Š

// Jj�1

La�1
tD0 P 0t

� Š

OO

La�1
tD0 P 0t

Š �

OO

commutes. Then, since  loc and  loc
j�1

are both under the Künneth isomorphism given
by the projection Œa; a� 1�, the diagram

(9)

Ij�1

 loc
j�1

// //

 loc
## ##

Jj�1

Rj�1

Š

;;

commutes (j > 1).

Lemma 5.5 When j > 1, the identity kerˇJ
j�1
D kerˇR

j�1
holds in Bj�1 .

Proof By diagram (9), in the case j > 1 there is an isomorphism �W Rj�1! Jj�1

such that � loc D  loc
j�1

. According to diagram (8), ˇR
j�1
D  locˇI

j�1
. Furthermore,

ˇJ
j�1
D  loc

j�1
ˇI

j�1
by diagram (6). Hence ˇR

j�1
.x/ D  locˇI

j�1
.x/ vanishes if and

only if

� locˇI
j�1.x/D 

loc
j�1ˇ

I
j�1.x/D ˇ

J
j�1.x/

vanishes.

This concludes our investigation of local maps.

We move on to global arguments. The open cover CT.X / DM [ .L� cı†/ with
M \ .L � cı†/ D L �† � .0; 1/ ' L �† yields a Mayer–Vietoris sequence for
intersection homology

Bj
ǰ
�!Tj ˚ Ij

�
�! IH

xq
j .CT.X // @��!Bj�1

ǰ�1
���!Tj�1˚ Ij�1I

see (2). Similarly, there is such a sequence for perversity xq0 :

Bj
ˇ0
j
�!Tj ˚Jj

� 0
�! IH

xq0

j .CT.X // @��!Bj�1
ˇ0
j�1
���!Tj�1˚Jj�1:
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The canonical map from perversity xq to xq0 induces a commutative diagram

(10)

Bj

ˇj
// Tj ˚ Ij

�
//

id˚ loc
j

��

IH
xq
j .CT.X //

@�
//


��

Bj�1

ˇj�1
// Tj�1˚ Ij�1

id˚ loc
j�1

��

Bj

ˇ0
j
// Tj ˚Jj

� 0
// IH

xq0

j .CT.X //
@�
// Bj�1

ˇ0
j�1
// Tj�1˚Jj�1

The subset

U D ..0; 1��L�†/[f1g�L�† cone.f � id†/' cone.f � id†/

is open in the intersection space I xpX. The open cover I xpX DM [U with M \U D

L�†� .0; 1/'L�† yields a Mayer–Vietoris sequence

Bj
ˇ00
j
�!Tj ˚Rj

� 00
�!HI

xp
j .X /

@�
�!Bj�1

ˇ00
j�1
���!Tj�1˚Rj�1;

the standard Mayer–Vietoris sequence for singular homology of topological spaces.

We shall prove Theorem 1.2 first for all j > 1. Using the commutative diagrams
(7) and (8), we obtain the following commutative diagram with exact rows:

(11)

Bj

ˇj
// Tj ˚ Ij

�
//

id˚'locŠ

��

IH
xq
j .CT.X //

@�
// Bj�1

ˇj�1
// Tj�1˚ Ij�1

id˚ loc

����

Bj

ˇ00
j
// Tj ˚Rj

� 00
// HI

xp
j .X /

@�
// Bj�1

ˇ00
j�1
// Tj�1˚Rj�1

There exists a (nonunique) map �W IH xqj .CT.X //!HI
xp

j .X / which fills in diagram (11)
commutatively; see eg [2, Lemma 2.46]. By the four lemma, � is a monomorphism.
This shows that HI

xp
j .X / contains IH

xq
j .CT.X // as a subspace. Hence the theorem

will follow from:

Proposition 5.6 If j > 1, there is an isomorphism coker �Š coker  .

Proof Let us determine the cokernel of . Let B be the restriction of idW Bj�1!Bj�1

to BW ker ǰ�1 ! kerˇ0
j�1

, that is, B is the inclusion ker ǰ�1 � kerˇ0
j�1

. Let
� W im � ! im � 0 be obtained by restricting  . Applying the snake lemma to the
commutative diagram

0 // im � //

�
��

IH
xq
j .CT.X //

@�
//


��

kerˇj�1
//

B

��

0

0 // im � 0 // IH
xq0

j .CT.X //
@�
// kerˇ0

j�1
// 0
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yields an exact sequence

0! ker � ! ker  ! ker B! coker � ! coker  ! coker B! 0:

Since ker B D 0, we can extract the short exact sequence

0! coker � ! coker  ! coker B! 0:

As  loc
j is surjective, the diagram

Tj ˚ Ij
�
// //

id˚ loc
j
����

im �

�
��

Tj ˚Jj
� 0
// // im � 0

shows that � is also surjective and thus coker � D 0. Therefore, we obtain an
isomorphism

coker  Š�! coker B D
kerˇ0

j�1

ker ǰ�1

D
kerˇT

j�1
\ kerˇJ

j�1

kerˇT
j�1
\ kerˇI

j�1

;

since ǰ�1 D .ˇ
T
j�1

; ˇI
j�1

/ and ˇ0
j�1
D .ˇT

j�1
; ˇJ

j�1
/.

Similarly, we determine the cokernel of � . Let �B be the restriction of idW Bj�1!Bj�1

to �BW ker ǰ�1 ! kerˇ00
j�1

, that is, �B is the inclusion ker ǰ�1 � kerˇ00
j�1

. Let
�� W im � ! im � 00 be obtained by restricting � . Applying the snake lemma to the
commutative diagram

0 // im � //

��
��

IH
xq
j .CT.X //

@�
//

�
��

kerˇj�1
//

�B

��

0

0 // im � 00 // HI
xp

j .X /
@�

// kerˇ00
j�1

// 0

yields an exact sequence

0! ker �� ! ker �! ker �B! coker �� ! coker �! coker �B! 0:

Since ker �B D 0, we can extract the short exact sequence

0! coker �� ! coker �! coker �B! 0:
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As 'loc is an isomorphism, the diagram

Tj ˚ Ij
�
// //

id˚'loc Š

��

im �

��
��

Tj ˚Rj
� 00
// // im � 00

shows that �� is also surjective and thus coker �� D 0. Therefore, we obtain an
isomorphism

coker � Š�! coker �B D
kerˇ00

j�1

ker ǰ�1

:

As ˇ00
j�1
D .ˇT

j�1
; ˇR

j�1
/, we have

kerˇ00j�1 D kerˇT
j�1\ kerˇR

j�1:

By Lemma 5.5, kerˇJ
j�1
D kerˇR

j�1
and hence

coker �Š
kerˇT

j�1
\ kerˇR

j�1

kerˇT
j�1
\ kerˇI

j�1

D
kerˇT

j�1
\ kerˇJ

j�1

kerˇT
j�1
\ kerˇI

j�1

Š coker :

Now assume that j D 1. We need to consider the subcases k � 0, k D 1 and k > 1

separately. We start with k � 0. In principle, we shall again use a diagram of the shape
of (11), but the definition of  loc changes. In this case, L<k D¿, cone.f � id†/D
.L�†/C , R0 D R˚ .H0.L/˝H0.†//, a � 1 and I0 Š J0 Š H0.L/˝H0.†/.
The maps of the commutative diagram

B0

ˇI
0

Š
//

ˇJ
0

Š

  

I0

 loc
0

Š

��

J0

are all isomorphisms. The map L � † ,! cone.f � id†/, which induces ˇR , is
the inclusion L�† ,! .L�†/C and thus ˇR

0
W B0!R0 is the standard inclusion

H0.L/ ˝ H0.†/ ! R ˚ .H0.L/ ˝ H0.†//. Let  locW I0 ! R0 be the unique
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monomorphism such that

B0

ˇI
0

Š
//

� p

ˇR
0 ""

I0

 loc

��

R0

commutes. (Note that for j � 2, the map  loc was known to be surjective, which is
not true here.) Diagram (11) becomes

B1

ˇ1
// T1˚ I1

�
//

id˚'locŠ

��

IH
xq
1
.CT.X //

@�
// B0

ˇ0
// T0˚ I0� _

id˚ loc

��

B1

ˇ00
1
// T1˚R1

� 00
// HI

xp
1
.X /

@�
// B0

ˇ00
0
// T0˚R0

There exists a (nonunique) map �W IH xq
1
.CT.X //!HI

xp
1
.X / which fills in the diagram

commutatively. By the five lemma, � is an isomorphism. To establish the theorem, it
remains to be shown that coker  vanishes. Since diagram (10) is available for any j ,
the argument given in the proof of Proposition 5.6 still applies to give an isomorphism

coker  Š
kerˇ0

0

kerˇ0

D
kerˇT

0
\ kerˇJ

0

kerˇT
0
\ kerˇI

0

:

Since ˇI
0

and ˇJ
0

are isomorphisms, we deduce that coker  D 0, as was to be shown.
This concludes the case k � 0.

We proceed to the case k D 1 (and j D 1). By Lemma 5.4, R0 DR, generated by the
cone vertex. We have aD0 and thus still I0DH0.L/˝H0.†/, but J0D0. Therefore,
kerˇJ

0
D B0 . The map ˇR

0
W B0!R0 can be identified with the augmentation map

�W B0!R, a surjection. Let  locW I0!R0 be the unique epimorphism such that

B0

ˇI
0

Š
//

�DˇR
0

!! !!

I0

 loc

��

R0 DR

commutes. There exists a map � filling in diagram (11) commutatively. Such a � is
then injective. Using arguments from the proof of Proposition 5.6, we have

coker  Š
kerˇT

0
\ kerˇJ

0

kerˇT
0
\ kerˇI

0

D kerˇT
0 \B0 D kerˇT

0
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and
coker �Š kerˇT

0 \ kerˇR
0 D kerˇT

0 \ ker �:

We recall from elementary algebraic topology:

Lemma 5.7 If A and B are topological spaces and hW A! B is a continuous map,
then the diagram

H0.A/
h�
//

�
%%

H0.B/

�

��

R

commutes. In particular, ker h� � ker.�W H0.A/!R/.

Applying this lemma to h�Dˇ
T
0

, we have kerˇT
0
�ker � and thus coker �ŠkerˇT

0
Š

coker  . This concludes the proof in the case k D 1.

When k > 1 (and j D 1), then R0 D R (Lemma 5.4), a < 0, and I0 D J0 D 0. As
in the case k D 1, the map ˇR

0
W B0! R0 can be identified with the augmentation

epimorphism �W B0 ! R, but this time, there does not exist a map  loc such that
 locˇI

0
D ˇR

0
. We must therefore argue differently. By exactness and since ˇI

0
D 0,

im.@�W IH
xq
1
.CT.X //! B0/D ker.ˇT

0 ; ˇ
I
0 /D kerˇT

0 :

Also,
im.@�W HI

xp
1
.X /! B0/D ker.ˇT

0 ; ˇ
R
0 /D kerˇT

0 \ ker �:

By Lemma 5.7, kerˇT
0
� ker � and hence

im.@�W IH
xq
1
.CT.X //! B0/D im.@�W HI

xp
1
.X /! B0/:

For the diagram

B1

ˇ1
// T1˚ I1

�
//

id˚'locŠ

��

IH
xq
1
.CT.X //

@�
// im @� // 0

B1

ˇ00
1
// T1˚R1

� 00
// HI

xp
1
.X /

@�
// im @� // 0

there exists a (nonunique) map �W IH xq
1
.CT.X //!HI

xp
1
.X / which fills in the diagram

commutatively. By the five lemma, � is an isomorphism. The cokernel of  ,

coker  Š
kerˇT

0
\ kerˇJ

0

kerˇT
0
\ kerˇI

0

D
kerˇT

0
\B0

kerˇT
0
\B0

D 0;
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vanishes and thus the theorem holds in this case as well. This finishes the proof
for j D 1.

It remains to establish Theorem 1.2 for j D 0. We shall write zB� , zT� and zR� for the
reduced homology groups. We have aD�k ,

I0 Š

�
H0.L/˝H0.†/ if k � 0;

0 if k > 0;

and by Lemma 5.4,

zR0 Š

�
H0.L/˝H0.†/ if k � 0;

0 if k > 0:

Thus I0 and zR0 are abstractly isomorphic. Recall that for a topological space A, the
reduced homology zH0.A/ is the kernel of the augmentation map �W H0.A/!R, so
that there is a short exact sequence

0! zH0.A/
�
!H0.A/

�
!R! 0:

Let žR
0
W zB0!

zR0 be the map induced by ˇR
0

between the kernels of the respective
augmentation maps. If k � 0, then L<k D¿ and the exact sequence

H0.L<k �†/!H0.L�†/! zR0! 0

shows that B0!
zR0 is an isomorphism. Since the composition

zB0
�,!B0

Š
�! zR0

is žR
0

, we deduce that žR
0

is injective for k � 0. Inverting žR
0

on its image and
composing with ˇI

0
, then extending to an isomorphism using dim I0 D dim zR0 , we

obtain a (nonunique) isomorphism �W zR0! I0 such that

(12)

zB0

žR
0
//

� _

�

��

zR0

�

��

B0
ˇI

0

// I0

commutes. When k > 0, let �W zR0! I0 be the zero map (an isomorphism). Then
diagram (12) commutes also in this case. As for the above open cover I xpX DM [U,
the intersection M \U D L�†� .0; 1/ is not empty, so there is a Mayer–Vietoris
sequence on reduced homology:

zB0
ˇ00

0
�! zT0˚

zR0
� 00
�! zHI

xp
0
.X /! 0:
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Using � , we get the following commutative diagram with exact rows:

zB0

ž00
0
//

� _

�

��

zT0˚
zR0

� 00
//

� _

�˚�

��

zHI
xp

0
.X / // 0

B0

ˇ0
// T0˚ I0

�
// IH

xq
0
.CT.X // // 0

From this we infer that

zHI
xp

0
.X /Š coker ž000 and IH

xq
0
.CT.X //Š cokerˇ0:

Let T0˚ I0!R be the composition of the standard projection T0˚ I0! T0 with
the augmentation �W T0!R. Applying the snake lemma to the commutative diagram

0 // zB0
�

//

ž00
0
��

B0
�

//

ˇ0

��

R // 0

0 // zT0˚
zR0

�˚�
// T0˚ I0

// R // 0

we arrive at the exact sequence

0! ker ž000 ! kerˇ0! ker idR! coker ž000 ! cokerˇ0! coker idR! 0:

As ker idRD 0 and coker idRD 0, we obtain an isomorphism coker ž00
0
Š cokerˇ0 , ie

zHI
xp

0
.X /Š IH

xq
0
.CT.X //. It remains to show that  W IH xq

0
.CT.X //! IH

xq0

0
.CT.X //

is surjective. This follows from the surjectivity of  loc
0

and diagram (10).

5.1 Example

We may consider the following example to illustrate Theorem 1.2. Consider the two-
sphere, as a stratified space, thought of as the suspension of S1 . So the two poles are
the “singular” stratum, with link LD S1 , and we will denote these by ˙pt. Now take
X D S2�T 2 with the induced stratification, †D f˙ptg�T 2 �X. The codimension
of † in X is 2, and any standard perversity takes xp.2/D 0. We will first calculate
H�.I

xpX /. Let M D X �N.†/, where N is an open normal neighborhood of †.
Note that @M Š S1 � f˙ptg �T 2 . The cutoff degree here is k D 1� xp.2/D 1, so
I xpX DM[gc.L<1�T 2/, where L<1�LDS1 . For any path connected space, L<1

is just a point e0 in the space. Thus g is the inclusion map gW e0�f˙ptg�T 2 ,!M.
The reduced homology is given by

zHI
xp
� .X /D zH�.I

xpX /D zH�.M ; e0
� f˙ptg �T 2/:
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Then using the relative exact sequence on homology, we can calculate this as

zHI
xp

i .X /Š

8<:
0 if i D 0 or 4;

R2 if i D 1 or 3;

R4 if i D 2;

Theorem 1.2 states that there is a relationship between the zHI
xp

i .X / we just calculated
and intersection homology groups for CT.X /. The conifold transition of X is CT.X /D
..T 2 � I/=.T 2 � @I//�S1 , whose normalization is the suspension of T 2 times S1 ,
that is, eCT.X / D S.T 2/ � S1 . This has singular stratum B D f˙ptg � S1 with
link F D T 2 , so the codimension of B is 3. This means there are two possible
standard perversities Sm (lower middle) and xn (upper middle), where Sm.3/D 0 and
xn.3/ D 1. By [20, Theorem 4.2] and [19, Lemma C.1], the intersection homology
does not change under normalization and thus IH

xq
� .CT.X // Š IH

xq
� .eCT.X //. The

intersection homology groups of eCT.X / for the perversities Sm and xn are calculated
in [2, page 79], which also indicates the generators of the classes.

In order to illustrate Theorem 1.2, we also need to understand IH
xq
� .CT.X // when

xq is an extended perversity, as in [18], and we need to understand the maps be-
tween consecutive perversity intersection homology groups to calculate the groups
IG

.k/
� .CT.X //. By Proposition 4.1, IH

xq
� .CT.X // D H�.M / for xq.3/ < 0 and

IH
xq
� .CT.X //DH�.M ; @M / for xq.3/� 2. If xq.3/< xq0.3/, then there is a natural map

IH
xq
� .CT.X //! IH

xq0

� .CT.X //;

since any cycle satisfying the more restrictive condition given by xq will in particular
also satisfy the less restrictive condition given by xq0. This is the map that appears in
the definition of IG

.k/
� .CT.X //. Now we can create Table 1, which will allow us to

calculate these groups.

j n xq.3/ �1 ! 0 ! 1 ! 2

0 R Š R Š R 0
! 0

1 R3 Š R3 � R 0
! R

2 R3 � R2 0
! R2 ,! R3

3 R 0
! R ,! R3 Š R3

4 0 0
! R Š R Š R

Table 1: IH
xq

j .CT.X //
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We get, for example,

IG
.2/
1
.CT.X //Š IH

xq.3/D1
1

.CT.X //˚
IH
xq0.3/D2
1

.CT.X //

im
�
IH
xq.3/D1
1

.CT.X //!H
xq0.3/D2
1

.CT.X //
�

ŠR˚
R

0

ŠR2:

Collecting the relevant results, and recalling that xp.2/D 0, we get

IG
.3/
0
.CT.X //Š 0;

IG
.2/
1
.CT.X //ŠR2;

IG
.1/
2
.CT.X //ŠR4;

IG
.0/
3
.CT.X //ŠR2;

IG
.�1/
4

.CT.X //Š 0:

Thus
zHI
xp

j .X /Š IG
.3�j/
j .CT.X //;

where we see 3D n� 1C xp.2/, as in Theorem 1.2.

6 De Rham cohomology for IH and HI

6.1 Extended perversities and the de Rham complex for IH

Let W be a pseudomanifold with one connected smooth singular stratum B �W of
codimension c and with link F of dimension f D c � 1. (In what follows, we will
take W D CT.X /, so B DL and F D†.) Then the only part of the perversity which
affects IH�

xp .W / is the value xp.c/. Thus, in this special case, we can simplify notation
by labelling the intersection cohomology groups by a number p that depends only on
the value xp.c/, rather than by the whole function xp . Further, we will fix notation such
that the Poincaré lemma for a cone has the form

(13) IH
j

.q/
.cıF /D

�
H j .F / if j < q;

0 if j � q:

That is, the q we use in the notation IH
j

.q/
.W / gives the cutoff degree in the local coho-

mology calculation on the link. The de Rham theorem for intersection cohomology [11]
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states that in this situation,

IH�.c�1�xp.c//.W /Š Hom.IH xp� .W /;R/:

Standard perversities satisfy 0� xp.c/� c � 2, so in terms of the convention we have
introduced, this gives 0 < q � c � 1. We use an extension of these definitions in
which q 2 R. This does not give anything dramatically new; when q � 0, we get
H�.M ; @M /, where M ŠW �N for N an open tubular neighborhood of B . When
q > c � 1 we get H�.M /. It is also worth recording that when W has an isolated
conical singularity B D pt with link F, we get globally the isomorphisms

IH
j

.q/
.W /D

8<:
H j .M / if j < q;

im.H j .M ; @M /!H j .M // if j D q;

H j .M ; @M / if j > q;

where in this case @M Š F.

In order to prove Theorem 1.3 from the de Rham perspective, we need to use compatible
de Rham complexes to define these cohomologies. Various complexes have been shown
to calculate intersection cohomology of a pseudomanifold. We will present first a
version of the de Rham complex from [11], adapted to our setting.

We use the notation from Section 2, and in particular let W D CT.X / have an l–
dimensional smooth singular stratum L with link †, a smooth s–dimensional manifold,
and product link bundle Y ŠL�†. Note that sC1D codim L. From the isomorphism
Y ŠL�†, we have that T �Y Š T �L˚T �†. This induces a bundle splitting

ƒk.T �Y /Š
M

iCjDk

ƒi.T �L/˝ƒj .T �†/:

We write �k.Y /D �1.Y Iƒk.T �Y // for the space of smooth differential k–forms
on Y , and we write ƒi;j Y Dƒi.T �L/˝ƒj .T �†/ and �i;j .Y /D �1.Y Iƒi;j Y /.
Then also we obtain a splitting of the space of smooth sections,

�k.Y /Š
M

iCjDk

�i;j .Y /; ˛ D
X
i;j

˛i;j ;

as C1.Y /–modules. For q 2 Z, define the fibrewise (along †) truncated space of
forms over Y by

.ft<q �
�.Y //k WD

�
˛ 2�k.Y /

ˇ̌̌
˛ D

q�1X
jD0

˛k�j ;j

�
:
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Note that ft<q �
�.Y / is not a complex in general. Then define the complex

(14) I��.q/.CT.X //

WD f! 2��.M / j inc�! 2 ft<q �
�.Y / and inc�.d!/ 2 ft<q �

�.Y /g:

(Recall that incW Y D @M ,!M is the inclusion of the boundary.) The cohomology of
this complex is IH�

.q/
.CT.X //, as shown in eg [11]. We note that there is an inclusion

of complexes,

Sq;qC1W I�
�
.q/.CT.X // ,! I��.qC1/.CT.X //:

This induces a natural map on cohomology, which however is generally neither injective
nor surjective. We will come back to this map later.

6.2 Extended perversities and the de Rham complex for HI

In this subsection, we present the de Rham complex defined in [4], which computes the
reduced singular cohomology of intersection spaces. Let L be oriented and equipped
with a Riemannian metric. For flat link bundles E! † whose link can be given a
Riemannian metric such that the transition functions are isometries, the first author
defined in [4] a subcomplex ��MS.†/ � �

�.E/, the complex of multiplicatively
structured forms. In the present special case of E D Y DL�†, this subcomplex is

��MS.†/D

�
! 2��.Y /

ˇ̌̌
! D

X
i;j

��L�i ^�
�
†�j

�
;

where the sum here is finite, and �i 2 �
�.L/ and �j 2 �

�.†/. We may also write
this as

��MS.†/Š�
�.L/˝��.†/:

Let k be any integer. The level-k cotruncation of the complex ��.L/ is defined in
loc. cit. as the subcomplex ��k�

�.L/���.L/ given in degree m by

.��k�
�.L//m D

8<:
0 if m< k;

ker ıL if mD k;

�m.L/ if m> k;

using the codifferential ıL on ��.L/. Note that ��k�
�.L/D��.L/ for k � 0, while

��k�
�.L/ D 0 for k > l . The subcomplex ft�k �

�
MS.†/ � �

�
MS.†/ of fibrewise
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(along L) cotruncated forms is given in degree m by

.ft�k �
�
MS.†//

m
D

�
! 2�m.Y /

ˇ̌̌
! D

X
i;j

��L�i ^�
�
†�j ; �i 2 ��k�

�.L/

�
:

Taking k D l � xp.l C 1/, we set

HI�dR; xp.X / WDH�.�I�xp.M //;

where

�I�xp.M / WD f! 2��.M / j !jN�† D �
�
Y �; � 2 ft�l�xp.lC1/�

�
MS.†/g:

(Recall from Section 2 that N is an open tubular neighborhood of † with a fixed
diffeomorphism N � † Š L � † � .0; 1/ and �Y W N � † ! Y D L � † is the
projection.) The Poincaré duality theorem of [4] asserts that if xp and xq are comple-
mentary perversities, then wedge product of forms followed by integration induces a
nondegenerate bilinear form

HI�dR; xp.X /�HIn��
dR;xq .X /!R; .Œ!�; Œ��/ 7!

Z
X�†

! ^ �;

when X is compact and oriented. (This is shown not just for trivial link bundles,
but for any flat link bundle whose transition functions are isometries of the link.)
Furthermore, using a certain partial smoothing technique that we shall sketch below, the
de Rham theorem of [4] for isolated singularities and its generalization to nonisolated
singularities with trivial link bundle due to Essig [16, Theorem 3.4.1] asserts that

(15) HI�dR; xp.X /Š Hom. zH�.I xpX IR/;R/:

This isomorphism is constructed as follows: For a topological space Z , let C�.Z/

denote its singular chain complex with real coefficients. For a smooth manifold V

(which is allowed to have a boundary), let C1� .V / denote its smooth singular chain
complex with real coefficients, generated by smooth singular simplices �j ! V . For
a continuous map gW Z! V , the first author defined in [4] the partially smooth chain
complex C/� .g/. In degree j ,

C/j .g/DHj�1.Z/˚C1j .V /:

Let �W C1� .V / ,!C�.V / be the inclusion and sW C�.V /!C1� .V / be Lee’s smoothing
operator [29, pages 416–424]. The map s is a chain map such that s ı � is the identity
and � ı s is chain homotopic to the identity. Thus s and � induce mutually inverse
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isomorphisms on homology. If V has a nonempty boundary @V , then we can assume
that s has been arranged so that the square

C�.@V /
s
//

��

C1� .@V /

��

C�.V /
s
// C1� .V /

commutes. Let Zj denote the subspace of j –cycles in Cj .Z/ and Bj D @CjC1.Z/

the subspace of j –boundaries. Choosing direct sum decompositions Zj D Bj ˚H 0j ,
we obtain a quasi-isomorphism qW H�.Z/DH�.C�.Z//! C�.Z/, which is given
in degree j by the composition

Hj .Z/D
Zj

Bj
D

Bj ˚H 0j

Bj

Š
�!H 0j ,!Zj ,! Cj .Z/:

Here, we regard H�.Z/ as a chain complex with zero boundary operators. By construc-
tion, the formula Œq.z/�D z holds for a homology class z 2Hj .Z/. Let z 2Hj�1.Z/

be a homology class in Z and vW �j ! V be a smooth singular simplex v 2 C1j .V /.
The boundary operator @W C/j .g/! C/

j�1
.g/ is defined to be

@.z; v/D .0; @vC sg�q.z//;

where g�W Cj�1.Z/! Cj�1.V / is the chain map induced by g . By Proposition 9.2
of [4], the partially smooth chain complex C/� .g/ is naturally quasi-isomorphic to the
algebraic mapping cone C�.g�/ of g� . Applying this to the map gW L<k �†!M,
we get an identification

H�.C
/
� .g//ŠH�.C�.g�//D zH�.cone.g//D zH�.I xpX /:

A map
‰ xpW H

j .�I�xp.M //! Hom.Hj .C
/
� .g//;R/

is given by ‰ xp Œ!�Œ.z; v/�D
R
v ! , where ! 2�I

j
xp.M / is a closed form and .z; v/ 2

C/j .g/ is a cycle. (See [4, page 48]. Note that ! has a unique extension to a closed
form on M ; see also Section 6.3.) Then the isomorphism (15) is the composition

HI�dR; xp.X /
‰xp
�!Hom.H�.C/� .g//;R/Š Hom. zH�.I xpX /;R/:

This construction, as well as the argument showing the map to be an isomorphism,
does not require any assumptions on the cutoff degree k 2 Z, and thus works even
for extended perversities xp . We can create a notation for HI�dR; xp that emphasises
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the cutoff degree instead of the perversity in a similar vein to the notation we fixed
for IH�

xp .X / in the previous section. With k D l � xp.l C 1/, we simply write

HI�.k/.X / WDHI�dR; xp.X /:

Since the only value of xp to make a difference in the right side of this equation is
xp.l C 1/, no ambiguity arises from replacing the function xp by the number k , where
now k is giving the cutoff degree in the local calculation on the link.

We observe two useful lemmas about the cohomology of the complex �I�
xp.M /. The

first one is a generalized Mayer–Vietoris sequence.

Lemma 6.1 There is a long exact sequence of de Rham cohomology groups as follows:

� � � !HI
j

.k/
.X /!H j .M /˚H j .ft�k �

�
MS.†//!H j .@M /! � � � :

In particular, since @M DL�†, the second summand of the middle term is isomorphic
to

lM
iDk

H i.L/˝H j�i.†/:

Proof Let kD l� xp.lC1/. By definition of �I�
xp.M /, we have a short exact sequence

of complexes

0!�I�xp.M /!��.M /˚ ft�k �
�
MS.†/!��.N �†/! 0;

where the second map takes a pair .!; �/ to !jN�† ���Y �, and the first map takes
! 2 �I�

xp.M / with !jN�† D ��Y � to .!; �/. This sequence induces a long exact
sequence on cohomology isomorphic to the one above. The form of the second summand
comes from the definition of cotruncation and of multiplicatively structured forms. The
isomorphism of the third term comes from the standard de Rham Künneth isomorphism
H j .@M /ŠH j .@M � .0; 1// and the diffeomorphism N �†Š @M � .0; 1/.

Lemma 6.2 (Künneth for HI� ) If W is a pseudomanifold with only one isolated
singularity and B is a closed manifold, then the homological cross product induces an
isomorphism zHI

xp
� .W �B/Š zHI

xp
� .W /˝H�.B/.

Proof Let W be the blowup of W . Set k D l � xp.l C 1/, where l is the dimension
of the link LD @W , and let f W L<k !L be a stage-k Moore approximation to L.
Then I xpW D cone.g/, where g is the composition

L<k
f
!LD @W ,!W :
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The blowup M of X D W � B is M D W � B with boundary @M D L � B .
The intersection space of X is then I xpX D cone.g � idB/ because g � idB is the
composition

L<k �B
f�idB
����!L�B D @M ,!M DW �B:

Let v 2 cone.g/ be the cone vertex and let QD .cone.g/�B/=.fvg �B/, which is
homeomorphic to cone.g� idB/. As the inclusion fvg�B! cone.g/�B is a closed
cofibration, the quotient map induces an isomorphism

H�
�
.cone.g/; fvg/�B

�
DH�.cone.g/�B; fvg�B/Š zH�.Q/Š zH�.cone.g� idB//:

The Künneth theorem for relative homology [34, Theorem 5.3.10, page 235] asserts
that the cross product

H�.cone.g/; fvg/˝H�.B/
�
�!H�

�
.cone.g/; fvg/�B

�
is an isomorphism. Composing, we obtain an isomorphism

zHI
xp
� .W �B/D zH�.cone.g� idB//ŠH�

�
.cone.g/; fvg/�B

�
Š zH�.cone.g//˝H�.B/D zHI

xp
� .W /˝H�.B/:

Lemma 6.3 (Künneth for HI�dR ) Let W be a pseudomanifold with only one isolated
singularity and B be a smooth closed manifold such that zHI xp

�
.W / and H�.B/ are

finite-dimensional. Then HI�dR; xp.W �B/ŠHI�dR; xp.W /˝H�.B/.

Proof The homology groups zHI
xp
� .W / and H�.B/ are finite-dimensional by assump-

tion, and thus the natural map

Hom. zHI
xp
� .W /;R/˝Hom.H�.B/;R/! Hom. zHI

xp
� .W /˝H�.B/;R˝R/

is an isomorphism. Thus, by Lemma 6.2 and the de Rham isomorphism (15),

HI�dR; xp.W �B/Š Hom. zHI
xp
� .W �B/;R/

Š Hom. zHI
xp
� .W /˝H�.B/;R/

Š Hom. zHI
xp
� .W /;R/˝Hom.H�.B/;R/

ŠHI�dR; xp.W /˝H�.B/:

Using these lemmas, we may also compute HI�
.k/
.X / for values of extended perversities

that lie outside of the topologically invariant range of Goresky–MacPherson, as follows:
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For standard perversities, 1� k � l . If k � 0, then ��k�
�.L/D��.L/ and thus the

sequence of Lemma 6.1 becomes

� � � !HI
j

.k/
.X /

�
!H j .M /˚H j .��MS.†//

 
!H j .@M /! � � � :

The map  has the form  D M � Y , where  M W H
j .M /!H j .@M / is restric-

tion and  Y W H
j .��MS.†//!H j .@M / is induced by the inclusion of complexes.

Since  Y is in the present case an isomorphism, the map  is surjective and thus � is
injective. Now

im� D ker D f.!; �/ j  M .!/D  Y .�/g D f.!;  
�1
Y  M .!//g;

which is isomorphic to H�.M /. We conclude that HI�
.k/
.X /ŠH�.M / when k � 0.

On the other hand, if k > l , then ��k�
�.L/D 0 and hence the sequence of Lemma 6.1

becomes
� � � !HI

j

.k/
.X /!H j .M /!H j .@M /! � � � :

Therefore, HI�
.k/
.X /ŠH�.M ; @M / when k > l . In particular, Poincaré duality also

works for these extended perversities, since relative and absolute (co)homology pair
nondegenerately under the standard intersection pairing.

6.3 An alternative de Rham complex for HI

We continue to assume that L is oriented. We now want to define a new, equivalent
de Rham complex for HI�

.k/
.X / that is analogous to the de Rham complex we presented

above for IH�
.q/
.CT.X //. In order to do this, we need to extend the operator ıL from

multiplicatively structured forms on Y to all smooth forms on Y . This is standard,
but we give details here for clarity. First, we can decompose the exterior derivative
according to the splitting of Y as

dY D
zdLC .�1/r zd†

for .r;�/–forms, where for zD .z1; : : : ; zl/ local coordinates on a coordinate patch
U � L and y D .y1; : : : ;ys/ local coordinates on a coordinate patch V � † and
multi-indices I and J,

zdL.f .z;y/ dzI ^ dyJ / WD

lX
iD1

@f

@zi
dzi ^ dzI ^ dyJ ;

zd†.f .z;y/ dzI ^ dyJ / WD

sX
jD1

@f

@yj
dzI ^ dyj ^ dyJ :
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Note zdL.�
�
L
�^��

†
�/D ��

L
.dL�/^�

�
†
� and zd†.��L�^�

�
†
�/D ��

L
�^��

†
.d†�/,

so these operators extend the exterior derivatives on multiplicatively structured forms
to operators over all smooth forms on Y .

Now fix a metric gL on L. This defines a Hodge star operator on ��.L/, which may
be extended to forms on Y via the rule

z�L.dzI ^ dyJ / WD .�LdzI /^ dyJ :

We can extend the adjoint operator of dL to forms on Y by setting for .i; j /–forms that

zıL WD .�1/liClC1
z�L
zdLz�L:

Note that this does extend the adjoint operator from multiplicatively structured forms.
From the coordinate definitions and the invariance of gL in the V coordinates, observe

(16) zdL
zd† D zd† zdL; zd†z�L D z�L

zd†; and zd†zıL D zıL zd†:

Further, we can lift the Hodge decomposition for ��.L/ to any neighborhood L�V

by observing that for any fixed y 2 V , we have a decomposition of ! 2�i;j .L�V /

given by
! D

X
jJ jDj

�J .y/^ dyJ ;

where each �J .y/ 2�
i.L/ decomposes as dL�1;J .y/CıL�2;J .y/C�3;J .y/, with

�3;J .y/ 2 Hi.L/. Here, H�.L/ denotes the space of harmonic forms on L. Thus
altogether we can decompose

(17) !D
X
jJ jDj

dL�1;J .y/^dyJ C

X
jJ jDj

ıL�2;J .y/^dyJ C

X
jJ jDj

�3;J .y/^dyJ

D zdL

X
jJ jDj

�1;J .y/^dyJ C
zıL

X
jJ jDj

�2;J .y/^dyJ C

X
jJ jDj

�3;J .y/^dyJ

D zdL!1.y/CzıL!2.y/C!3.y/:

Now putting this together for all y 2 V , we get a unique decomposition of any form
in �i;j .L�V / into pieces in the image of zdL , in the image of zıL and in the kernel
of both.

Lemma 6.4 We have the decomposition

�i;j Y D zdL�
i�1;j .Y /˚zıL�

iC1;j .Y /˚ .Hi.L/˝�j .†//;

where the sums are vector space direct sums. Further, zd† preserves this decomposition.
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Proof We have already demonstrated the decomposition, since this is done pointwise
in B (finite-dimensionality of Hi.L/ allows us to write the last term of the decompo-
sition as a tensor product). The fact that it is preserved by zd† follows from (16).

Note that since L�† is a product, we can also apply Lemma 6.4 in the other direction,
namely that zdL preserves the Hodge decomposition for †. In this way, we get in fact
a double Hodge decomposition. A graded vector space bft�k �

�.Y / of alternatively
fibrewise cotruncated forms is given by

.bft�k �
�.Y //j WD

�
˛ D

lX
iDk

˛i;j�i

ˇ̌̌
˛i;j�i 2�

i;j�i.Y /; zıL˛k;j�k D 0

�
:

Lemma 6.5 The differential dY restricts to bft�k �
�.Y /.

Proof The differential dY D
zdL˙

zd† does not lower the L–degree i of a form ˛i;j�i .
Thus, if ˛ D

Pl
iDk ˛i;j�i , then dY ˛ can again be written in the form dY ˛ DPl

iDk ˇi;jC1�i , where ˇi;jC1�i 2�
i;jC1�i.Y /. Assume that zıL˛k;j�k D 0. Since

dY ˛ D . zdL˙
zd†/.˛k;j�k C˛kC1;j�k�1C � � � /

D zdL˛k;j�k ˙
zd†˛k;j�k C

zdL˛kC1;j�k�1˙
zd†˛kC1;j�k�1C � � � ;

the component in bidegree .k; j C 1� k/ of dY ˛ is

.dY ˛/k;jC1�k D˙
zd†˛k;j�k :

Using (16),

zıL.dY ˛/k;jC1�k D˙
zıL zd†˛k;j�k D˙

zd†zıL˛k;j�k D 0:

This shows that dY ˛ 2 .bft�k �
�.Y //jC1 .

By the lemma, bft�k �
�.Y / is a differential complex. Now we can define the new

de Rham complex for HI�
.k/
.X / as

(18) c�I
�

.k/.X / WD f�jM j � 2�
�.M /; inc�.�/ 2bft�k �

�.Y /g:

We want to show this complex is quasi-isomorphic to the original de Rham complex.
For this, we will need the Künneth theorem.

Theorem 6.6 (Künneth theorem) Let Y DL�†, where † has a finite good cover.
Then the inclusion of complexes

��.L/˝��.†/Š�MS.†/ ,!��.Y /
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induces an isomorphism on cohomology. In particular, if ˛ 2��MS.†/ and ˛ D dˇ

for ˇ 2��.Y /, then ˇ D d Cˇ0, where ˇ0 2��MS.†/.

Note that the second part of the Künneth theorem is not obvious, but follows from
the standard proof for the de Rham cohomology version. Details may be found eg
in [10, page 49].

It is also useful to start with two observations. First, although the forms in the complex
�I�

.k/
.X / are only defined on M, we can extend each one uniquely to a form on M.

This is because on N �†Š @M � .0; 1/, they are constant in the variable on .0; 1/
(which we will call x ), and thus can be extended to M � Œ0; 1/. We will abuse
notation and use �I�

.k/
.X / to denote both the original complex and the complex of

extended forms, which is isomorphic to the original complex through the extension map.
This is convenient, because it then allows us to consider �I�

.k/
.X / as a subcomplex

of b�I
�

.k/.X /.

Second, we observe that when we choose our neighborhood N of † � X, we can
always arrange for it to sit inside a larger neighborhood N2 � X with the property
that N2 � † Š @M � .0; 2/, where N � † Š @M � .0; 1/ is a restriction of the
diffeomorphism for N2�†. Let N denote the blowup of N , so that N Š @M � Œ0; 1/,
and similarly, let N 2 denote the blowup of N2 .

Lemma 6.7 The cohomology bHI �.k/.X / of the complex b�I
�

.k/.X / is isomorphic
to HI�

.k/
.X /.

Proof The inclusion of complexes

�I�.k/.X / ,!
c�I
�

.k/.X /;

described above induces a map on cohomology. We need to show this map is a
bijection. We start with injectivity. Assume that Œ˛� 2HIj

.k/
.X / and that ˛ D d y̌ for

y̌ 2b�I
j�1

.k/ .X /. The two complexes differ only by the structure of forms on N. To
prove injectivity, we will thus only need to modify forms in a small neighborhood of N .
We will use N 2 as this neighborhood.

When we restrict y̌ to N 2 , we have

y̌.x/D y̌t .x/C dx ^ y̌n.x/;
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where x is the coordinate in Œ0; 2/, and where the y̌t=n.x/ are, for each fixed value
of x , smooth forms on Y D @M. Now on all of M, define a new form

ˇ D y̌� d

�
�

Z x

0

y̌
n.t/ dt

�
;

where � is a smooth cutoff function on M which is identically 1 on N and is
identically 0 on M � N 2 (we may in particular choose � to be a pullback of a
smooth cutoff on Œ0; 2/ to N 2 and extend it by zero to the rest of M ). Note that
inc�.ˇ/D inc�. y̌/, so ˇ 2b�I

j�1

.k/ .X /. But additionally, dx y ˇ D 0 on N , because
ˇ D

�
y̌

t .x/�
R x

0 dY
y̌

n.t/ dt
�
C dx ^ 0.

Since, on N , ˛D ��
Y
� for some � 2�j

MS.†/ and dˇD d y̌D ˛ , we have on N that

��Y �D dˇ.x/D dY ˇ.x/C dx ^ˇ0.x/;

where ˇ0.x/ D .@=@x/ˇ.x/. Thus we must have ˇ0.x/ D 0, so ˇ.x/ is constant
in x on N . This means ˇ D ��

Y
� for some � D inc�ˇ D inc� y̌ 2 .bft�k �

�.Y //j�1 .
Since d commutes with pullbacks, we have dY � D �.

To complete the injectivity proof, we need to show now that we can further adapt y̌

to a ž D ��
Y
z� where z� is multiplicatively structured and still in the right cotruncated

complex. What we have done so far permits us to reduce this to showing that if
� D dY � , where � 2 .bft�k �

�.Y //j�1 and � 2 .ft�k �
�
MS.†//

j , then � D dY z� ,
where z� 2 .ft�k �

�
MS.†//

j�1 .

As noted in Theorem 6.6, the injectivity of the Künneth isomorphism, dY � D �, where
� 2�

j
MS.†/, implies that � D dY  C�

0, where � 0 2�j�1
MS .†/. Thus dY �

0D �. We
need to show that in addition, � 0 can be chosen to satisfy the correct cotruncation.
Expanding dY �

0 D � in terms of bidegree, we get

zdL�
0
j�1;0 D �j ;0;

zdL�
0
j�2;1C .�1/j�1 zd†�

0
j�1;0 D �j�1;1;

:::

zdL�
0
k�1;j�k C .�1/k zd†�

0
k;j�k�1 D �k;j�k ;(19)

zdL�
0
k�2;j�kC1C .�1/k�1 zd†�

0
k�1;j�k D 0;

:::
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Decompose the term � 0
k;j�1�k

according to the L Hodge decomposition as

� 0k;j�1�k D
zdLak�1;j�1�k C

zıLbkC1;j�1�k C ck;j�1�k ;

and set

z� D � 0j�1;0C � � �C �
0
kC1;j�k�2C

zıLbkC1;j�1�k C ck;j�1�k :

Note that in the L Hodge decomposition of a multiplicatively structured form, each
term is itself multiplicatively structured. This means that z� 2 .ft�k �

�
MS.†//

j�1 . We
would like to have that dY z� D �. When we decompose this equation by bidegree,
we get exactly the same equations as in the previous decomposition for all equations
above the one for �k;j�k (labelled (19)), so these are still correct. For the equations
corresponding to those below (19), we get just 0C 0D 0, which is also correct. So we
just need to check that the equation corresponding to (19) is also correct:

(20) .�1/k zd†.zıLbkC1;j�1�k C ck;j�1�k/D �k;j�k :

So consider again (19):

�k;j�k D
zdL�
0
k�1;j�k C .�1/k zd†. zdLak�1;j�1�k C

zıLbkC1;j�1�k C ck;j�1�k/

D zdL.�
0
k�1;j�k C .�1/k zd†ak�1;j�1�k/CzıL.�1/k zd†bkC1;j�1�k

C .�1/k zd†ck;j�1�k ;

where in the last step, we have used the fact that zd† commutes up to sign with both
zdL and zıL . This is exactly the L Hodge decomposition of �k;j�k . However, the fact
that zıL�k;j�k D 0 implies that the zdL term in its decomposition vanishes, ie

zdL.�
0
k�1;j�k C .�1/k zd†ak�1;j�1�k/D 0:

This means that (19) reduces to

�k;j�k D
zıL..�1/k zd†bkC1;j�1�k/C .�1/k zd†ck;j�1�k ;

which is equivalent to (20), as desired. This completes the injectivity part of the proof.

Now consider surjectivity. Let Œ y̌� 2 bHI j
.k/
.X /. We need to construct a form ž 2

�Ij
.k/
.X / such that y̌ D žC dz� for some z� 2b�I

j�1

.k/ .X /.

Restricting forms to N 2 , we again have

y̌.x/D y̌t .x/C dx ^ y̌n.x/:
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As before, on M, define

ˇ D y̌� d

�
�

Z x

0

y̌
n.t/ dt

�
:

By the same arguments as above, we get that Œ y̌� D Œˇ� 2 bHI j
.k/
.X /, and on N,

ˇD ��
Y
� for some � 2 .bft�k �

�.Y //j . We now need to adapt ˇ to a multiplicatively
structured ž. As before, this reduces to adapting the form � on Y to an element
of .ft�k �

�
MS.†//

j .

First note that d y̌ D 0 implies that dY � D 0. Thus using the Hodge decomposition
on Y , we get

(21) � D dY �C �
0;

where � 0 is harmonic in Y , and therefore multiplicatively structured as a sum of wedges
of harmonic forms on L and †. (This follows from the double Hodge decomposition
Lemma 6.8 together with the Künneth theorem.) Now as in the injectivity argument,
decomposing by bidegree and using the Hodge decomposition and the fact that � 2bft�k �

j .Y /, we get that � 0 2 .ft�k �
�
MS.†//

j as desired.

We next need to show that we can choose � 2 .bft�k �
�.Y //j�1 in (21). Decompos-

ing (21) by bidegree, we also get that dY .�k�1;j�kC� � �C�0;j�1/D 0. Thus we may
choose our � without loss of generality such that �k�1;j�kC� � �C�0;j�1D 0. Finally,
we have that zıL zd†�k;j�k�1D

zıL.�k;j�k��
0
k;j�k

/D 0. Thus �2 .bft�k �
�.Y //j�1

as desired.

Finally, we let

ž D ˇ� d.��/D y̌� d

�
�

�
�C

Z x

0

y̌
n.t/ dt

��
D y̌C dz�:

Since Œ ž�D Œ y̌�2bHI j
.k/
.X /, where Œ ž� is a class in HIj

.k/
.X /, the map is surjective.

When the link bundle is trivial, that is, Y DL�†, we can analogously define operators
zd† and zı† . Then the Hodge decomposition theorem for forms on Y , Lemma 6.4, can
be refined to a double Hodge decomposition.

Lemma 6.8 Let ! 2�i;j .L�†/. Then ! may be decomposed uniquely in a double
Hodge decomposition as

! D zdL
zd†ai�1;j�1C

zdL
zı†ai�1;jC1C

zdLh†i�1;j C
zıL zd†aiC1;j�1

CzıLzı†aiC1;jC1C
zıLh†iC1;j C

zd†hL
i;j�1C

zı†hL
i;jC1C hY

i;j ;
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where the terms h†�;j� are in the kernels of zd† and zı† , the terms hL
�;� are in the kernels

of zdL and zıL and hY
i;j is in the kernels of dY and ıY .

Proof This follows from the Hodge decompositions of each factor in

�i;j .L�†/

D�i.L/ y̋ �j .†/

D .dL�
i�1.L/C ıL�

iC1.L/CHi.L// y̋ .d†�
j�1.†/C ı†�

jC1.†/CHj .†//

together with the definitions of zdL=† and zıL=† , which imply that

zdL
zd†.�

i�1.L/ y̋ �j�1.†// WD dL�
i�1.L/ y̋ d†�

j�1.†/;

and similar equalities for zdL
zı† , zıL zd and zıLzı† . Note that the finite-dimensionality of

the space of harmonic forms on L and on † means that for the terms in the expansion
of the product that contain harmonic forms, we in fact have that y̋ is simply the same
as ˝, so the operators satisfy dL=† D

zdL=† and ıL=† D zıL=† .

This double Hodge decomposition has similar properties to the standard single Hodge
decomposition. For instance, if zd†! D 0, then applying this to the double decomposi-
tion of ! , we get that

zd†zı†. zdLai�1;jC1C
zıLaiC1;jC1C hL

i;jC1/D 0:

Taking the inner product in L2.†/ of this with zdLai�1;jC1C
zıLaiC1;jC1C hL

i;jC1

at each point in L implies that in fact

zı†. zdLai�1;jC1C
zıLaiC1;jC1C hL

i;jC1/D 0:

6.4 Proof of Theorem 1.3

Theorem 1.3 follows from a sequence of lemmas relating the spaces IH j
.q/
.CT.X //,

HIj
.j�q/

.X / and IH j
.qC1/

.CT.X //. First we have the following lemma, which shows
that there is a sequence of maps in each degree j :

Lemma 6.9 For all j , there are well-defined maps

IH
j

.q/
.CT.X // A

�!HI
j

.j�q/
.X / B
�! IH

j

.qC1/
.CT.X //

that factorise the standard map Sq;qC1 between intersection cohomology groups of
adjacent perversities.
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Proof First consider the map A. Let ˛ 2 I�j
.q/
.CT.X //, with d˛ D 0. Then by

definition of this complex, inc�˛ 2 .ft<q �
�.Y //j . We can decompose inc�˛ by

.L; †/ bidegree to get

inc�˛ D j̨ ;0C � � �C j̨�qC1;q�1:

In particular, ˛0;j C � � �C j̨�q;q D 0, which means that ˛ 2b�I
j
.j�q/.X /.

To show that this inclusion induces a well-defined map, A, on cohomology, we need to
know that if ˛ D d�, where � 2 I�j�1

.q/
.CT.X //, then we can find �0 2b�I

j�1
.j�q/.X /

so that ˛ D d�0, as well.

Decomposing by bidegree, we get

inc��D �j�1;0C � � �C �j�q;q�1:

Breaking down the equation inc�˛ D inc�d� D dY inc�� by bidegree, we get that
zd†�j�q;q�1 D 0. This means that in the double Hodge decomposition for �j�q;q�1

we have

�j�q;q�1 D
zdL
zd†aj�q�1;q�2C

zıL zd†aj�qC1;q�2C
zd†hL

j�q;q�2C
zdLh†j�q�1;q�1

CzıLh†j�qC1;q�1C hY
j�q;q�1:

Note that zd†. zd†aj�q�1;q�2C h†j�q�1;q�1/D 0. For � a smooth cutoff supported at
the end of M, let �0D��d.�. zd†aj�q�1;q�2Ch†j�q�1;q�1//. Then d�0D˛ still, and

inc��0 D inc���dY . zd†aj�q�1;q�2Ch†j�qC1;q�1/

D �j�1;0C� � �C�j�qC1;q�2C.�j�q;q�1�
zdL. zd†aj�q�1;q�2Ch†j�q�1;q�1//:

So zıL�0j�q;q�1
D 0, so �0 2b�I

j�1
.j�q/.X /, and the map A is well defined.

Now consider the map B . Suppose that ˇ 2b�I
j
.j�q/.X / and dˇ D 0. Then

(22) inc�ˇ D ǰ ;0C � � �C ǰ�q;q; zıL ǰ�q;q D 0;

and so decomposing inc�dˇ by bidegree, we have

0D inc�dˇ D dY inc�ˇ

D . zdL ǰ ;0/C . zdL ǰ�1;1C .�1/j zd† ǰ ;0/C � � �˙ . zd† ǰ�q;q/:

Thus zd† ǰ�q;q D 0, so ˇ 2 I�j
.qC1/

.CT.X //. We need to show the map induced by
inclusion is well defined on cohomology. Assume that ˇ D d� for � 2b�I

j�1
.j�q/.X /;

then decomposing by bidegree again, we have by definition of b�I
j�1
.j�q/.X / that

inc��D �j�1;0C � � �C�j�q;q�1; zıL�j�q;q�1 D 0:
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In particular, �j�q�1;q D 0, so � 2 I�j�1
.qC1/

.CT.X //, so B is well defined.

Finally, since on the form level, A and B are both given by inclusion of a closed form
in the domain complex into the range complex, their composition factorises the natural
map Sq;qC1 .

Next we have three lemmas showing A is injective, B is surjective and ker.B/� im.A/.
Together, these prove Theorem 1.3.

Lemma 6.10 The map A is injective.

Proof Suppose that AŒ˛� D 0, that is, ˛ 2 I�j
.q/
.CT.X //, d˛ D 0 and ˛ D dˇ

for ˇ 2b�I
j�1
.j�q/.X /. Then decomposing by bidegree,

inc�ˇ D ǰ�1;0C � � �C ǰ�q;q�1; zıL ǰ�q;q�1 D 0:

Because the degree in † is � q � 1 for all pieces, inc�ˇ 2 .ft<q �
�.Y //j�1 . Also,

by hypothesis, dˇ D ˛ where inc�˛ 2 .ft<q �
�.Y //j , so ˇ 2 I�j�1

.q/
.CT.X //, and

0D Œ˛� 2 IH j
.q/
.CT.X //. Thus A is injective.

Lemma 6.11 The map B is surjective.

Proof Suppose that Œ � 2 IH j
.qC1/

.CT.X //. Then decomposing by bidegree, we have

inc� D j ;0C � � �C j�q;q:

Since d D 0, we get that zd†j�q;q D 0. Decompose j�q;q according to the double
Hodge decomposition:

j�q;q D
zdL
zd†aj�q�1;q�1C

zıL zd†aj�qC1;q�1C
zd†hL

j�q;q�1C
zdLh†j�q�1;q

CzıLh†j�qC1;qC hY
j�q;q:

Note that zd†. zd†aj�q�1;q�1Ch†
j�q�1;q

/D 0. Then for � a smooth cutoff supported
at the end of M, let

 0 D  � d.�. zd†aj�q�1;q�1C h†j�q�1;q//:

Then we have d 0 D 0 and

inc� 0 D j ;0C � � �C .j�q;q �
zdL. zd†aj�q�1;q�1C h†j�q�1;q//;

so zıL 0j�q;q D 0. Thus  0 2b�I
j
.j�q/.X / represents a class in HIj

.j�q/
.X /.
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Further,

inc�.�. zd†aj�q�1;q�1C h†j�q�1;q//

D zd†aj�q�1;q�1C h†j�q�1;q 2 .ft<qC1�
�.Y //j�1;

so Œ 0�D Œ � 2 IH
j

.qC1/
.CT.X //. Thus Œ �D BŒ 0�, so B is surjective.

Lemma 6.12 The kernel of B is contained in the image of A.

Proof Assume that BŒˇ� D 0, that is, ˇ 2 b�I
j
.j�q/.X / and ˇ D d for  2

I�j�1
.qC1/

.CT.X //. Then decomposing inc�ˇ by bidegree as in (22) and using the fact
that dˇ D 0, we get that zd† ǰ�q;q D 0D zıL ǰ�q;q .

Now decomposing inc� and inc�d by bidegree, we get that

inc� D j�1;0C� � �Cj�1�q;q;

inc�d D . zdLj�1;0/C..�1/j�1 zd†j�1;0C
zdLj�2;1/

C� � �C..�1/j�q zd†j�q;q�1C
zdLj�1�q;q/C..�1/j�q�1 zd†j�1�q;q/:

Thus zd†j�1�q;q D 0 and

(23) .�1/j�q zd†j�q;q�1C
zdLj�1�q;q D ǰ�q;q:

Decompose j�q;q�1 by the Hodge decomposition in L:

j�q;q�1 D
zdLaj�q�1;q�1C

zıLbj�qC1;q�1C cj�q;q�1:

Then recalling that zıL ǰ�q;q D 0 and applying the Hodge decomposition in L to all
of (23), we get

ǰ�q;q D .�1/j�q zd†.zıLbj�qC1;q�1C cj�q;q�1/:

Let
ˇ0 WD ˇ� d�.zıLbj�qC1;q�1C cj�q;q�1/:

Note .zıLbj�qC1;q�1C cj�q;q�1/ 2 bft�j�q �
�.Y /, so Œˇ0�D Œˇ� 2HIj

.j�q/
.X /. But

inc�ˇ0 D inc�ˇ� dY .zıLbj�qC1;q�1C cj�q;q�1/

D ǰ ;0C � � �C ǰ�qC1;q�1�
zdL
zıLbj�qC1;q�1;

so ˇ0 2 I�j
.q/
.CT.X //. Thus Œˇ�DAŒˇ0�.

To put these lemmas together, we will use the following general result:
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Lemma 6.13 Assume that X, Y and Z are vector spaces and we have an injection
AW X ! Y and surjection BW Y ! Z such that the kernel of B is contained in the
image of A. Then

Y ŠX ˚
Z

im.BıA/
:

Proof Choose a splitting Y D im.A/˚W and a further splitting im.A/D ker.B/˚V .
Then Y D ker.B/˚V ˚W . Note that A is an isomorphism X Š im.A/D ker.B/˚V

and B is an isomorphism V ˚W ŠZ . Further,

.B ıA/.X /D B.im.A//D B.ker.B/˚V /D B.V /Š V:

Thus W ŠZ= im.B ıA/. Thus

Y D ker.B/˚V ˚W ŠX ˚
Z

im.BıA/
:

Finally, we can complete the proof of Theorem 1.3 by applying this lemma to the maps

IH
j

.q/
.CT.X // A

�!HI
j

.j�q/
.X / B
�! IH

j

.qC1/
.CT.X //:

We get

HI
j

.j�q/
.X /Š IH

j

.q/
.CT.X //˚

IH
j

.qC1/
.CT.X //

im.B ıA/

D IH
j

.q/
.CT.X //˚

IH
j

.qC1/
.CT.X //

im.Sq;qC1/

DW IG
j

.qC1/
.CT.X //:

To reindex, define xp such that

qC 1D j C 1� k WD j � 1� .l � xp.l C 1//:

Then xp.l C 1/D q� j C l , so

HI
j

dR; xp
.X / WDHI

j

.l�xp.lC1//
.X /DHI

j

.l�.q�jCl//
.X /DHI

j

.j�q/
.X /:

Thus HI
j

dR; xp
.X /Š IG

j

.jCi�k/
.CT.X //, as desired.

7 The Hodge theorem for HI

Our Hodge theorem relates to the spaces of extended weighted L2 harmonic forms
over M D X �† with respect to the various metrics we consider. A weighted L2
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space for any metric g on M is a space of forms:

xcL2
g�
�
g.M / WD

�
! 2��.M /

ˇ̌̌ Z
M

kx�c!k2g dvolg <1
�
:

Here k � kg is the pointwise metric on the space of differential forms over M induced
by the metric on M and x is the function on M that extends the .0; 1/ coordinate
on the end of M. The space xcL2

g�
�
g.M / can be completed to a Hilbert space with

respect to the inner product (see standard references, eg [28, Theorem 3.2–3.3])

h˛; ˇic WD

Z
M

˛^x�2c
�g ˇ:

Let d represent the de Rham differential on smooth forms over M and ıg;c represent
its formal adjoint with respect to the xcL2 inner product induced by the metric g .
Then Dg;c WD dC ıg;c is an elliptic differential operator on the space of smooth forms
over M. If c D 0, the elements of the kernel of Dg;0 that lie in L2 are the standard
space of L2 harmonic forms over .M;g/. More generally, we write

Hj

L2.M;g; c/ WD

�
! 2 xcL2

g�
j
g.M /

ˇ̌̌
Dg;c! D 0

�
:

Definition 7.1 The space of extended xcL2 harmonic forms on .M;g/ is

H�ext.M;g; c/ WD
\
�>0

f! j ! 2 xc��L2
g�
�
g.M /; Dg;c! D 0g:

7.1 Proof of Theorem 1.1

The space IGj
.q/
.W / arises in extended Hodge theory for manifolds with fibred cusp

metrics, studied by the second author in [25], and this allows us to prove Theorem 1.1.
In [25], the second author considered the situation in which the regular stratum M

of a pseudomanifold X with a single singular stratum B is endowed with a fibred
cusp metric. It is important to note that when we apply the results of that paper here,
we are applying them to the space CT.X / rather than the space X considered in the
current paper. Thus, although the manifold M, which is the regular stratum of both X

and CT.X /, is the same as the one considered in [25], the role of the base and fibre
of @M D Y DL�† will switch depending on if we are considering M as the regular
stratum of X or of CT.X /. In particular, the base of M in [25], referred to as B in
that paper, corresponds to the fibre L considered in the current paper. Correspondingly,
the fibre F considered in [25] corresponds to the base † in the current paper. With
this notation in mind, Theorem 1.2 from [25] may be rephrased in this situation as:
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Theorem 7.2 [25] Let .M;gfc/ be the regular stratum of CT.X / and x be a smooth
positive function on M restricting to the radial coordinate at the end, as defined
before. Endow M with a geometrically flat fibred cusp metric, gfc , for the fibration
�W L�†!L. Then

Hj
ext.M;gfc; c/Š IG

j

..b=2/C1�c/
.CT.X //;

where b D dim†.

Corollary 7.3 Under the conditions of Theorem 7.2, if gfb D x�2gfc is the fibred
boundary metric conformal to gfc , then

(24) Hj
ext.M;gfb; c/DHj

ext
�
M;gfc; cC

1
2
n� j

�
Š IG

j

.q/
.CT.X //;

where q D j � 1
2
.b� 1/� c and nD dim.M /D l C bC 1.

Proof The proof of this corollary is not difficult, but is somewhat long and technical
in that it uses the spaces of fc– and fb–forms on M. The basic idea is that if we
take gfb to be the conformally related fibred boundary metric on M, then the conformal
relationship gfb D x�2gfc means that

xcL2
fb�

j
fb.M /D xcCn=2�j L2

fc�
j
fc.M /:

This means for the Hodge star operators that also �fb;c D �fc;cC.n=2/�j , so in fact
the extended harmonic forms in these spaces are the same. For more details, see the
definitions of fc– and fb–forms and similar calculations to the above in [23].

Note that changing the role of fibre and base in the boundary fibration on M means
that the fibred boundary metric gfb on M with respect to the fibration L�†!L can
also be thought of as a fibred scattering metric gfs on M with respect to the fibration
L�†!†. Thus we can rewrite this corollary as follows.

Corollary 7.4 Under the conditions of Theorem 7.2, if .M;gfs/ D .M;gfb/ is the
corresponding fibred scattering metric on M, then

(25) Hj
ext.M;gfs; c/Š IG

j

.q/
.CT.X //;

where q D j � 1
2
.l � 1/� c .

Finally, if we set q D j C 1� .l � xp.l C 1// as in Theorem 1.1, then this implies that
c D 1

2
.l � 1/� xp.l C 1/ as claimed.
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7.2 Example

We consider the same space X D S2�T 2 as in Section 5.1, stratified as before. Then
M Š R � S1 � T 2 . We can endow this with a geometrically flat fibred scattering
metric:

gfs D dr2
C .1C r2/ d�2

1 C d�2
2 C d�2

3 :

Note that if we make the change of coordinates x D jr j�1 near ˙1, we get a metric
that is a perturbation of one of the form in Definition 2.1 that decays like x2 . This
turns out to be sufficient to use the same analysis (see [22]). We use this coordinate r

instead of x because it makes the explicit calculations below easier to understand. In
fact, in general, it is impossible to explicitly calculate the space of harmonic forms,
and only the very simple structure of the space and metric here makes it possible.

If we consider extended L2 harmonic forms on .M;gfs/ with no weight (c D 0), then
Theorem 1.1 says

H�ext.M;gfs; 0/ŠHI�dR; xp.X /;

where 1
2
.1� 1/� xp.2/D 0. That is, the spaces of extended unweighted L2 harmonic

forms on M should be isomorphic to the spaces with xp.2/D 0 as we calculated in
Section 5.1.

In order to identify the extended L2 harmonic forms on .M;gfs/ it is useful to observe a
few things. First, since the metric is a global product metric, the extended L2 harmonic
forms on M are all products of extended L2 harmonic forms on W DR�S1 with
harmonic forms on T 2 . Thus it suffices to determine the extended harmonic forms
on W with the metric gW WD dr2C .1C r2/ d�2

1
.

Second, we observe that gW is a scattering metric, and is thus conformally invariant
(with conformal factor .1Cr2/) to a b–metric. By the same argument as in Corollary 7.3,
this means that extended harmonic forms on .W;gW / are the same as extended
weighted L2 harmonic forms on .W; .1Cr2/�1gW /. These forms are, in turn, known
to be in the kernel of d and ı independently (see either Proposition 6.16 in [30] or
Lemma 4.3 in [25]). Thus we know that extended harmonic L2–forms on W are both
closed and coclosed. This means that the only possible 0–forms are constants and the
only possible 2–forms are constant multiples of the volume form.

Third, recall that for a differential form to be extended harmonic, it must be in
x��L2��.W;gW / for all � > 0, or equivalently, .1C r2/��w 2 L2��.W;gW /.
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If we consider constant functions, this means we needZ 1
�1

c2.1C r2/1�2� dr < 0:

This is not true, so H0
ext.W;gW /D f0g. By an analogous argument (or equivalently,

by Poincaré duality), also H2
ext.W;gW /D f0g.

Finally consider H1
ext.W;gW /. The space of extended L2 harmonic forms of middle

degree is preserved by a conformal change of metric, and as noted before, gW is
conformally equivalent to the metric

gb D
dr2

1C r2
C d�2

1 :

If we reparametrize, setting t D arcsinh r , this becomes the metric on the infinite
cylinder:

gb D dt2
C d�2

1 :

If we use a Fourier series decomposition in �1 , we find that a 1–form

! D �0.r/ dr C

� 1X
nD0

.�1;n.r/ cos.n�1/C �2;n.r/ sin.n�1// dr

�
C�0.r/ d�

C

1X
nD0

.�1;n.r/ cos.n�1/C�2;n.r/ sin.n�1// d�1

is closed and coclosed if �0.r/ and �0.r/ are constant and the remaining coefficients
satisfy f 00 D n2f , that is, they are all exponential functions in t , and thus blow up
at either 1 or �1, so are not almost in L2 . So the only extended L2 harmonic
forms are c1 d�1C c2 dt , which are in .1C t2/�L2��.W;gW /, as required. Thus
H1

ext.W;gW /ŠR2 . Now when we take the tensor product with H�.T 2/, we get

H0
ext.M;gfs/Š 0 ŠHI0

dR; xp.X /;

H1
ext.M;gfs/ŠR2

ŠHI1
dR; xp.X /;

H2
ext.M;gfs/ŠR4

ŠHI2
dR; xp.X /;

H3
ext.M;gfs/ŠR2

ŠHI3
dR; xp.X /;

H4
ext.M;gfs/Š 0 ŠHI4

dR; xp.X /;

as predicted by Theorem 1.1.
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7.3 Explicit isomorphism for the Hodge theorem

Although Theorem 1.1 shows that there exists an isomorphism from extended harmonic
forms to HI cohomology of X, the proof does not give an explicit description of a map
that yields this isomorphism. Furthermore, although the spaces involved do not relate in
any way to CT.X /, the proof of the theorem critically uses relationships to CT.X /. It
would be nice if, as in the classical Hodge theorem, the isomorphism could be realized
by sending an extended harmonic form to the HI class that it represents: ! Œ �. That
way, we obtain a map realising the isomorphism that makes sense without reference
to CT.X /. Furthermore, it gives us a place to start when trying to extend the HI

Hodge theorem to the case when the link bundle of † in X is twisted.

However, the extended harmonic forms in our Hodge theorem do not in general lie in
either of the two complexes we have seen that calculate HI�dR; xp.X /, as forms that are
in the extended L2 spaces over M can in general have coefficients that blow up at the
end of M. Thus to obtain an explicit map realising the Hodge isomorphism, that is to
see extended harmonic forms as representatives of classes in the HI space, we need
new larger spaces of forms that can be used to calculate the HI cohomology spaces
and that do contain the extended harmonic forms. We can find spaces that work in this
regard by reinterpreting the proof of Theorem 1.1. In this section, we find appropriate
new spaces of forms by using the isomorphism with IG and alternative complexes
of forms that may be used to calculate IH. However, the spaces that we eventually
obtain do not relate in any way to CT.X /, and are defined entirely in terms of X itself.
In this sense they achieve our goal. Unfortunately, the spaces used in the definition
do not fit into a cochain complex, so the necessary alternative description of the HI

cohomology spaces is not as topologically satisfying as it might be. Nevertheless, we
believe that demonstrating an explicit isomorphism is useful.

From [25], we have the following setup and lemma which will allow us to see the
extended harmonic forms as representing classes in HI. Assume that W is a pseudo-
manifold with a single, smooth singular stratum B of dimension l , whose link bundle
with link F of dimension b is flat with respect to the structure group Isom.F;gF /

for some fixed metric on F. Let M DW �B and let x be a smooth function on M

that extends across B in W by zero. Let M be the complement in W of a normal
neighborhood of B , and let isW @M !M denote the inclusion of @M into M in the
slice where x D s .

Geometry & Topology, Volume 23 (2019)



2218 Markus Banagl and Eugénie Hunsicker

Define the projection operator …q�1;q on ��.@M / by projection onto forms in fibre
degree q that lie in ker.zıF / and forms in fibre degree qC1 that lie in im. zdF / in terms
of the F Hodge decomposition. Let xaL2��con.M;gfc/ denote the complex of forms
on M that are conormal at x D 0 (see eg [30]), and are also in the xa weighted L2

space on M with respect to the metric gfc .

Lemma 7.5 The cohomology of the complex x.b=2/�q��L2��.M;gfc/ (made into a
complex in the standard way by requiring both ! and d! lie in the appropriate spaces)
is isomorphic to IH�

.q/
.W / and the cohomology of the complex

x.b=2/�q��L2��0.M;gfc/

WD f! 2x.b=2/�q��L2��con.M;gfc/ j lim
s!0

…q�1;qı i�s !D 0; lim
s!0

…q�1;qı i�s d!D 0g

is isomorphic to IH�
.q�1/

.W /. Furthermore, using this definition of IH�
.q�1/

.W /, we
have the following long exact sequence on cohomology:

!H j�q�1.BIH p.F // ı
�! IH

j

.q�1/
.W / inc�
�! IH

j

.q/
.W / r
�!H j�q.BIH q.F //! ;

where r D lims!0…q�1;q ı i�s .

These are the complexes used to prove Theorem 5.1 from [25], so from Corollary 7.3,
letting W DCT.X /, BDL and †DF, we have that the isomorphism in Corollary 7.4
is realized by an inclusion of the space of extended weighted L2 harmonic forms into
the numerator of the quotient space:

Hj
ext.M

0;gfs; c/!
ker.d/� x.b=2/�q��L2�j .M;gfc/

d.x.b=2/�q��L2�
j
0
.M;gfc//

;

where q D j � 1
2
.l � 1/� c for l the dimension of B . We can reinterpret the spaces

on the right in terms of the metric gfs to get

Hj
ext.M

0;gfs; c/!
ker.d/� xc�1��L2�j .M 0;gfs/

d.xc�1��L2�
j
0
.M 0;gfs//

:

Using Theorem 1.3, we calculate HIj
dR; xp.X / from this quotient:

HIj
dR; xp.X /Š

ker.d/� x.l�3/=2�xp.lC1/��L2��.M 0;gfs/

d.x.l�3/=2�xp.lC1/��L2��
0
.M 0;gfs//

:

This is then the definition of HIj
dR; xp.X / for which the isomorphism in the Hodge

theorem, Theorem 1.1, is given by the classical map  ! Œ �.
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8 Proof of Theorem 1.4

In order to prove Theorem 1.4, we need to understand how the intersection pairing
defined on the original de Rham cohomology of intersection spaces relates to the
isomorphism in Theorem 1.3 and the intersection pairing on the de Rham intersection
cohomology groups. First, we can show that the alternative complex we defined to
calculate HI�dR; xp.X / also admits a natural intersection pairing by integration, and that
this pairing is equivalent to the original pairing by the isomorphism in Lemma 6.7.

Lemma 8.1 Integration of wedge products defines a bilinear pairing between bHI j
xp
.X /

and bHI n�j
xq

.X / which is equal to the pairing by integration of wedge products between
HIj

dR; xp.X / and HIn�j
dR;xq .X /.

Proof First we show there is a well-defined bilinear pairing between bHI j
xp
.X / and

bHI n�j
xq

.X /. Let y̨ 2b�I
j
xp.X / and y̌ 2b�I

n�j
xq .X / be closed forms. Then

R
M y̨ ^

y̌

is finite since both forms are smooth on M. Furthermore, if y̨ D dy�, where y� 2
b�I

j�1
xp .X /, then by Stokes’s theorem,Z

M

dy�^ y̌D

Z
M

d.y�^ y̌/D lim
s!0

Z
Y

y�.s/^ y̌.s/;

where now s is the coordinate on .0; 1/ near the end, to correspond to the limits in
Lemma 7.5. We can decompose y�.s/ and y̌.s/ by .L; †/ bidegree. By definition of
b�I

j�1
xp .X / and b�I

n�j
xq .X /, and by the fact that xp.lC 1/Cxq.lC 1/D l � 1, we get

lim
s!0

k�1X
iD0

y�i;j�1�i.s/D 0D lim
s!0

l�kX
iD0

y̌
i;.n�j/�i.s/:

Thus the only part that can remain in the limit is

D lim
s!0

Z
Y

� lX
iDk

y�i;k�1�i.s/

�
^

� lX
iDlC1�k

y̌
i;n�j�i.s/

�
:

But this also is zero, since none of the terms in the second sum is of complementary
bidegree to any term in the first sum.

Because the inclusion map of forms from �I
j
xp.X / ,!

b�I
j
xp induces an isomorphism

on cohomology for all xp and j , and because the intersection pairing between classes
in bHI j

xp
.X / and bHI n�j

xq
can be calculated from any representatives of these classes,

the intersection pairing between these spaces is equal to the intersection pairing (also
defined by integration) for HI

j
xp.X / and HI

n�j
xq .
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Next, we want to trace this pairing through the proof of Theorem 1.3 to see how it can
be interpreted in terms of the signature pairing on intersection cohomology on CT.X /.
Recall that we have

(26) HI
j
dR; xp.X /Š IG

j

.tC1/
.CT.X //D

IH
j

.t/
.CT.X //˚ IH

j

.tC1/
.CT.X //

im
�
IH

j

.t/
.CT.X //! IH

j

.tC1/
.CT.X //

� ;
where t D j � l C xp.l C 1/. So also if xp and xq are dual perversities on X, then
xp.l C 1/Cxq.l C 1/D l � 1 implies that

(27) HI
n�j
dR;xq .X /Š IG

n�j

.sC1/
.CT.X //D

IH
n�j

.s/
.CT.X //˚ IH

n�j

.sC1/
.CT.X //

im
�
IH

n�j

.s/
.CT.X //! IH

n�j

.sC1/
.CT.X //

� ;
where s D n � j � 1 � xp.l C 1/. Observe that t C s C 1 D n � l , which is the
codimension of the singular stratum in CT.X /. This is the relationship we expect for
the cutoff degrees for dual perversities in IH�� .CT.X //. That is, the signature pairing
for intersection cohomology on CT.X / pairs the first term in the top of (26) with the
second term in the top of (27), and vice versa.

We can identify the right and left spaces in (26) in terms of the HI space using the
maps A and B from the proof of Theorem 1.3. To distinguish these maps in the two
settings of (26) and (27), fix the notation

IH
j

.t/
.CT.X // Axp

�!HI
j
dR; xp.X /

Bxp
�! IH

j

.tC1/
.CT.X //

and similarly define Axq and Bxq for the spaces in (27). Then we have

IH
j

.t/
.CT.X //Š im.A xp/ and IH

j

.tC1/
.CT.X //ŠHI

j
dR; xp.X /= ker.B xp/;

and analogous isomorphisms in the xq case. Now we can precisely state the compatibility
between the intersection pairing on HI spaces and on IH spaces.

Lemma 8.2 For Œ˛� 2 IH
j

.t/
.CT.X // and Œˇ� 2HI

n�j
dR;xq .X /,

A xp Œ˛�\HI Œˇ�D Œ˛�\IH Bxq Œˇ�:

Proof Both of the pairings \IH and \HI are achieved on their corresponding de
Rham cohomology spaces by integration of the wedge of representatives of the paired
cohomology classes. Both are known to be well defined on their corresponding coho-
mologies. Further, by definition of the map A xp , we can take the same representative
form to represent both Œ˛� and A xp Œ˛�. Similarly, we can represent both Œˇ� and Bxq Œˇ�
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by the same form. Thus for Œ˛� and Œˇ� as in the statement of the lemma,

A xp Œ˛�\HI Œˇ� WD

Z
M

˛^ˇ WD Œ˛�\IH Bxq Œˇ�:

Note that this gives us the following corollary:

Corollary 8.3 The image im.A xp/ is the annihilator under the pairing \HI of ker.Bxq/.

Proof Lemma 8.2 implies that if Œˇ� 2 ker.Bxq/, then A xp Œ˛�\HI Œˇ�D Œ˛�\HI 0D 0.
So im.A xp/� Ann.ker.Bxq//. So we just need to show this containment is an equality.
Because the intersection pairing on HI is nondegenerate, we know that

dim.ker.Bxq//D dim
�
HI

j
xp.X /=Ann.ker.Bxq//

�
:

So we want to show that

dim.ker.Bxq//D dim.HI
j
xp.X /= im.Axq//:

Recall that Poincaré duality for intersection cohomology gives isomorphisms

IH
n�j

.t/
.CT.X //Š

�
IH

j

.sC1/
.CT.X //

��
WD im.B xp ıA xp/

�
˚W �

for some complementary subspace W and

IH
n�j

.tC1/
.CT.X //Š

�
IH

j

.s/
.CT.X //

��
WD V �˚ ker.B xp ıA xp/�

for a complementary subspace V Š im.B xp ı A xp/. Suppose that we have classes
Œ˛�IH 2 IH j

.t/
.CT.X // and Œ � 2 IH n�j

.s/
.CT.X //. Then by Lemma 8.2,

A xp Œ˛�\HI Axq Œ �D Œ˛�\IH Bxq ıAxq Œ �:

But applying Lemma 8.2 where we switch the roles of the perversities xq and xp , we
also have

A xp Œ˛�\HI Axq Œ �D B xp ıA xp Œ˛�\IH Œ �:

Thus overall, we have B xp ıA xp Œ˛�\IH Œ �D Œ˛�\IH Bxq ıAxq Œ �. Because Poincaré
duality for intersection cohomology is realized by the intersection pairing between
dual perversity and dual degree spaces, this means that under the duality map, also
Bxq ıAxq D .B xp ıA xp/�.

Thus Bxq ıAxq must be an isomorphism from im.B xp ıA xp/
� to V � . This means that

W � Š ker.Bxq ıAxq/Š ker.Bxq/;

because Axq is an injection and ker.Bxq/� im.Axq/. But also,

W � ŠW ŠHI
j
xp.X /= im.A xp/:
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Now let us focus on the setting where X is an even-dimensional Witt space, so the map
Sxn;Sm from the lower-middle perversity intersection cohomology to the upper-middle
perversity intersection cohomology is an isomorphism. Note that this does not imply
that CT.X / is Witt; for instance, l could be odd and H b=2.†/¤ 0. We start with the
decomposition

HI
n=2
Sm .X /D ker.BSm/˚V ˚W;

where IH n=2
xn

.CT.X // Š ker.BSm/˚ V and IH n=2
Sm
.CT.X // Š V ˚W . Here V D

im
�
IH n=2
xn

.CT.X //! IH n=2
Sm
.CT.X //

�
, so the signature of the intersection pairing

restricted to V is the middle perversity perverse signature of CT.X /. This is equal
to the signature of the open manifold M as well as the middle perversity signatures
for HI and IH of the space Z obtained as the one-point compactification of M.
This follows from a result in [24], which calculates perverse (IH ) signatures for a
pseudomanifold with a single smooth singular stratum as the sum of the signature on
its complement (ie the signature of M ) and a set of terms arising from the second and
higher pages in the Leray spectral sequence of the link bundle of the singular stratum.
In particular, if the spectral sequence degenerates at the second page, as it does in the
case of a product bundle, all of these additional terms vanish, so all perverse signatures
are simply the signature of M.

Thus we need to show that the signature of the intersection pairing restricted to each
of the other two factors vanishes. For the factor ker.BSm/, this is true because it is
contained in its annihilator, im.ASm/. For the factor W , we use the fact that under
Poincaré duality applied to IH

n=2

Sm=xn
.X / the space W is the dual of ker.BSm/. Because

this map preserves intersection pairing, this means that the intersection pairing restricted
to W also vanishes.

It remains to show that �IH .X / D �IH .Z/. There are several ways to see this,
for example as follows: By Siegel’s pinch bordism (see [33] or [1, Chapter 6.6]),
�IH .X /D �IH .Z/C �IH .E/, where E is the pseudomanifold

E D .cL/�†[L�† c.L�†/:

If l D dim L is odd, then Lemma 8.1 of [6] implies that in fact already the group
IH Sm

n=2
.E/ is trivial. In particular, �IH .E/D 0 and �IH .X /D �IH .Z/. If l is even,

then dim† is odd and thus CT.X / is a Witt space. (Note that dim† odd means in
particular that dim† � 1 and thus that the singular set of CT.X / has codimension
at least 2.) Hence we may apply what we have proved so far to X 0 D CT.X / and
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obtain
�HI .CT.X //D �IH ;Sm

�
CT.CT.X //

�
D �IH .Z/:

Since CT.CT.X //ŠX and X is Witt, we have for the perverse signature

�IH ;Sm

�
CT.CT.X //

�
D �IH .X /:
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