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Sasaki–Einstein metrics and K–stability

TRISTAN C COLLINS

GÁBOR SZÉKELYHIDI

We show that a polarized affine variety with an isolated singularity admits a Ricci flat
Kähler cone metric if and only if it is K–stable. This generalizes the Chen–Donaldson–
Sun solution of the Yau–Tian–Donaldson conjecture to Kähler cones, or equivalently,
Sasakian manifolds. As an application we show that the five-sphere admits infinitely
many families of Sasaki–Einstein metrics.

32Q20, 53C25; 32Q26

1 Introduction

The existence of Kähler–Einstein metrics is a fundamental problem in Kähler geometry.
If M is a compact complex manifold with c1.M/D 0 or c1.M/ < 0, then the work
of Yau [80] shows that M admits Kähler–Einstein metrics with zero or negative Ricci
curvature. The case when c1.M/ > 0 is more subtle, and the Yau–Tian–Donaldson
conjecture [38; 78; 82], proved by Chen–Donaldson–Sun [21; 22; 23], relates the
existence of a Kähler–Einstein metric on M to the K–stability of M, which is a certain
algebro-geometric condition. Our goal in the present paper is to generalize this result
to the setting of Kähler cones, giving a criterion for the existence of a Ricci flat Kähler
cone metric, or equivalently, a Sasaki–Einstein metric on the link. The question of
existence of such metrics has received increasing attention in the physics community
through their connection to the AdS/CFT correspondence (see Klebanov–Witten [55]
and Maldacena [63]), and we anticipate further developments along these lines (see
eg Collins–Xie–Yau [29]).

Quite generally, if X is an affine variety with an isolated singular point, one can ask
whether X admits a Ricci flat Kähler cone metric. We will address this question under
the extra assumption that we fix the vector field on X that gives the homothetic scaling
on the cone. More precisely, suppose that X �CN is an affine variety, with an isolated
singular point at the origin, invariant under the action of a torus T � U.N/, which for
simplicity we assume to be diagonal. We call � 2 t a polarization of X if it acts with
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positive weights on the coordinate functions, ie if the corresponding holomorphic vector
field � satisfies L�.zi /D iaizi with ai >0. We then seek a Kähler Ricci flat metric !
on X such that L�J�! D 2! . We say that such a metric ! is a Ricci flat Kähler cone
metric on the pair .X; �/. Such a Ricci flat Kähler cone metric can only exist on X if the
pair .X; �/ is a normalized Fano cone singularity, in the terminology of Definition 2.1.

Our main result is the following.

Theorem 1.1 Let .X; �/ be a normalized Fano cone singularity. Then .X; �/ admits
a Ricci flat Kähler cone metric if and only if it is K–stable.

We will give a precise definition of K–stability in this setting below. For now let us
say that if .X; �/ does not admit a Ricci flat Kähler cone metric, then there exists an
embedding X ,! CN 0, a corresponding embedding of the torus T � U.N 0/, and a
one-parameter subgroup �W C�! GL.N 0/T generated by a vector field w with the
following properties:

(1) The limit Y D limt!0 �.t/ �X is normal.

(2) The Futaki invariant satisfies Fut.Y; �; w/6 0, and Y 6ŠX if equality holds.

While in principle T just needs to be a torus of automorphisms of X for which � 2 t, in
practice it is useful to choose a maximal such torus. In fact as in Datar–Székelyhidi [31]
we can also obtain an equivariant version of the theorem for the action of any compact
group on X, but to simplify the exposition we will mostly focus on the case of a torus.

Usually there are infinitely many such degenerations that one needs to check in order
to determine whether a pair .X; �/ is K–stable, and so there does not seem to be an
effective way to test K–stability. This become possible, however, in certain situations
with large symmetry group, where there are only a finite number of possible normal
limits Y under equivariant degenerations of X. Just as in [31], a simple example is
when X is toric, in which case if we work equivariantly with respect to the maximal
torus T, then we necessarily have Y ŠX, and we only need to test the Futaki invariants
Fut.X; �; �/ for � 2 t. If these vanish for all � 2 t, then .X; �/ admits a Ricci flat
Kähler cone metric, recovering the result of Futaki–Ono–Wang [44].

A more general situation is when X has a complexity-one action of a torus T, ie when
dim T D dimX � 1. In this case, using the methods in Ilten–Süß [52] we can still
effectively test K–stability, by checking a finite number of degenerations. In Section 8
we will apply these techniques to several explicit families of hypersurface singularities.
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For example, we study

ZBP.p; q/D fx
2
Cy2C zpCwq D 0g �C4;

where p; q > 1. We show the following.

Theorem 1.2 For a suitable choice of � the pair .ZBP.p; q/; �/ admits a Ricci flat
Kähler cone metric if and only if 2p > q and 2q > p . As a consequence S5 admits
infinitely many families of Sasaki–Einstein metrics.

The necessary conditions 2p>q and 2q >p follow from the Lichnerowicz obstruction
of Gauntlett–Martelli–Sparks–Yau [46], while the existence result was only known
previously for .p; q/D .2; 2/ and .2; 3/, where the latter was shown by Li–Sun [61].

To date, many Sasaki–Einstein manifolds have been found by employing estimates for
the ˛–invariant; see Demailly–Kollár [35] and Tian [77]. For example, the affine vari-
eties ZBP.p; q/ are a special case of the Brieskorn–Pham singularities, which have been
thoroughly studied in the literature. Boyer–Galicki–Kollár [15] used estimates for the
˛–invariant of Brieskorn–Pham singularities to produce 68 distinct Sasaki–Einstein met-
rics on S5, as well as SE metrics on all 28 oriented diffeomorphism types of S7, and the
standard and Kervaire spheres S4mC1. Note that infinitely many Einstein (not Sasakian)
metrics on spheres in dimensions 5 to 9 were constructed previously by Böhm [11].

Estimates for the ˛–invariant were also used by Boyer–Galicki [12; 13], Boyer–
Nakamaye [17], Johnson–Kollár [54], Ghigi–Kollár [47], Kollár [58; 56] and others
to produce many infinite families of Sasaki–Einstein metrics in dimensions 5 and 7,
and higher. For example, #k.S2 �S3/ is known to admit infinite families of Sasaki–
Einstein metrics for any k> 1. We refer the reader to Boyer–Galicki [14] for a thorough
discussion of these results. We note that Kollár [56; 57; 59] has classified the possible
topologies of Sasaki–Einstein manifolds. For example it is known that for affine
varieties of complex dimension 3 with a 2–torus action, the only possible topologies
of the links are S5 and #k.S2 � S3/ for any k > 1 (see [14, Proposition 10.2.27]).
Our techniques also produce new infinite families of distinct Sasaki–Einstein metrics
on #k.S2 �S3/ for all k > 1, and hence cover all possible topologies that can occur
with a 2–torus action.

We expect that many more examples can be found along the same lines. A particularly
interesting problem is to find Sasaki–Einstein metrics with irregular Reeb vector fields.
Remarkably, the first examples of irregular Sasaki–Einstein metrics were discovered
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by Gauntlett–Martelli–Sparks–Waldram [45] by explicitly writing down the metric
in coordinates. We expect K–stability to be particularly useful for finding irregular
Sasaki–Einstein manifolds in real dimension 5, since if the cone X has dimC X D 3,
and � is an irregular Reeb field, then X admits a complexity-one action of a 2–torus.
In particular, using the methods of Ilten–Süß [52] we can effectively test whether .X; �/
admits a Ricci flat Kähler cone metric.

The overall strategy of our proof is the same as that of Chen–Donaldson–Sun [21;
22; 23], as adapted in Datar–Székelyhidi [31] and Székelyhidi [74] to the smooth
continuity method. We will set up this continuity method in Section 2, where we also
give the precise definition of K–stability based on our previous work [28], extending
the definition of Ross–Thomas [67] from the quasiregular case. The main technical
results are contained in Sections 3 and 4. In Section 3 we discuss weak solutions of
the equations along the continuity method, which is analogous to the theory of singular
Kähler–Einstein metrics, as was studied by Eyssidieux–Guedj–Zeriahi [43]. Much of
this discussion, such as the convexity of the Ding functional due to Berndtsson [9],
extends to the case of cones without substantial difficulties. In Section 4 we generalize
the partial C 0–estimate along the smooth continuity method from [74] to the setting of
cones. The main new technical difficulty is that in the method of [74] the strict positivity
of the Ricci curvature was a crucial ingredient, while in our setting the Ricci curvature
on a cone is never strictly positive. Instead we need to exploit the transverse Kähler
structure, which does have strictly positive Ricci curvature. The proof of one direction
of Theorem 1.1 is given in Section 5, primarily along the lines of the argument in [31].
In Section 6 we collect some more algebraic results, with the goal of establishing the
equality between the differential geometric and the algebraic definitions of the Futaki
invariant. In Section 7 we prove the other implication in Theorem 1.1 along the lines of
the work of Berman [6]. In Section 8 we give some example calculations of K–stability,
including the proof of Theorem 1.2 and we finish with some further discussion and
questions in Section 9.

2 Basic definitions

In this section we fix some basic definitions, and set up the continuity method that we
would like to use to find Ricci flat Kähler cone metrics. The continuity method is equiv-
alent to the usual continuity path for finding Kähler–Einstein metrics, but it involves
a scaling to ensure that we have metrics of nonnegative Ricci curvature on our cones.
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Definition 2.1 A polarized affine variety of dimension n is a triple .X;T ; �/, where
X is a normal affine variety, dimC X D n, T is a torus of automorphisms of X, and
� 2 t acts on the ring of functions of X with positive weights in the following sense.
We have a decomposition

R.X/D
M
�2t�

R�.X/

under the torus action into weight spaces, and we require that �.�/>0 for all nonzero �
for which R� is nontrivial. Often we simply speak of a pair .X; �/, where � is a vector
field on X generating a compact torus of automorphisms, and then T is understood to
be this torus. We call � a Reeb field or polarization on X. We denote by CR � t the
cone of Reeb fields.

We say that the pair .X; �/ is a Fano cone singularity if X is Q–Gorenstein and
there is a trivializing section � of mKX for some m> 0 such that L��D i�� for
some � > 0. The last condition is equivalent to X having log-terminal singularities
(see Section 6). The Fano cone singularity .X; �/ is normalized if �D nm.

The basic example is obtained by taking a Fano manifold M, and letting X be the
total space of mKM , with the zero section blown down, for some m such that �mKM
is very ample. In other words X is the cone over M under a projective embedding
by �mKM .

In [28] we defined a notion of K–semistability for a pair .X; �/, in terms of test
configurations for X that commute with a torus T whose Lie algebra contains � . Here
we give a very similar definition, which is adapted to our work here, but is closer in
spirit to the definition of K–stability by Tian [78], which only allows test configurations
with normal central fibers. In addition, in view of possible future applications we work
equivariantly for a compact group acting on X in analogy with [31].

Suppose that .X; �/ is a normalized Fano cone singularity of dimension n, with X
only having an isolated singularity, and G is a compact group of automorphisms of X
such that � is in the center of its Lie algebra. In applications we will take G to be a
maximal torus of automorphisms, containing the torus generated by � .

A G–equivariant special degeneration (or test configuration) of X consists of an
embedding X ! CN such that G acts linearly through an embedding G � U.N/,
together with a one-parameter subgroup �W C�! GL.N /G commuting with G, such
that �.S1/� U.N/ and Y D limt!0 �.t/ �X is normal. In this case .Y; �/ is also a
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normalized Fano cone singularity, together with a C�–action given by � commuting
with � . Let us write T for the torus generated by � and � . By a slight abuse of
notation we will denote by � 2 t the generator of the corresponding S1–action, and
note that for small s 2R the pairs .Y; �C s�/ are also Fano cone singularities (which
may not be normalized). We showed in [28] that the index character

F.�; t/D
X
�2t�

e�t�.�/ dimR�.Y /

can be extended meromorphically to a neighborhood of the origin, and we can define
functions ai .�/ by

F.�; t/D
a0.�/.n� 1/Š

tn
C
a1.�/.n� 2/Š

tn�1
CO.t2�n/:

As a matter of notation we will write

(2-1) D�ai .�/D
d

ds

ˇ̌̌̌
sD0

ai .�C s�/:

Definition 2.2 The Futaki invariant of a special degeneration as above is defined to be

Fut.X; �; �/D
a0.�/

n� 1
D�

�
a1

a0

�
.�/C

a1.�/D�a0.�/

n.n� 1/a0.�/
;

where each ai is computed on the variety Y .

A normalized Fano cone singularity .X; �/ is called G–equivariantly K–stable if for
all special degenerations as above, we have Fut.X; �; �/> 0, and equality holds only
if .Y; �/ is isomorphic to .X; �/.

Remark 2.3 In the case that .X; �/ is the cone over a projective Fano manifold M,
with � induced by the natural C�–action on the fibers of KM , our definition of K–
stability is equivalent to the usual definition of K–stability due to Tian [78] and refined by
Donaldson [38]. This can be seen by showing that a test configuration as defined above
gives rise to a filtration of the homogeneous coordinate ring

L
mH

0.M;�mKM /. The
central fiber Y is then the associated graded of this filtration, with finitely generated
coordinate ring. It is well known (see [76; 79]) that this data is equivalent to the data
of a test configuration for the projective variety M, and vice versa.

Our main result, Theorem 1.1, then says that X admits a Ricci flat Kähler cone metric
with homotheties given by �J � if and only if .X; �/ is equivariantly K–stable.
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Let us digress briefly on the Futaki invariant in Definition 2.2. As remarked above,
given a special test configuration generated by a C�–action �, the central fiber Y is
again a Q–Gorenstein variety with log-terminal singularities, and hence .Y; �C s�/
is a Fano cone singularity, which is not necessarily normalized. As we will see in
Proposition 6.4, the normalized Reeb vector fields form a linear subspace †Y of the
Reeb cone of Y defined by the linear equation

a1.w/

a0.w/
D
n.n� 1/

2
:

Let N WD r.a1=a0/ denote the normal vector to the normalized hyperplane †Y .

First consider the case when Y ŠX, and that � is generated by w 2 Lie.T /. Assume
that w is tangent to †X , then the Futaki invariant is just 1

2
Dwa0.�/. Since we can

also consider �w , this implies that if .X; �/ is K–stable, then � must be an extremal
value of a0 , on †X . By [65, Equation (1.10)], a0 is a convex function on †X which
has a unique minimum. Since a0 can be interpreted as the volume of the link, this is
called “volume minimization”, and was discovered in fundamental work of Martelli–
Sparks–Yau [65].

Now suppose we have a nontrivial test configuration, so that Y 6ŠX, and � is generated
by w and suppose that � is the Reeb vector field minimizing the volume. We can
compute the Futaki invariant by the formula

1
2
Dw 0a0.�/D Fut.X; �; �/ if w0 D w� 2 N �w

n.n�1/
�;

where now w0 is normalized, but it may not generate a test configuration if � is
irrational. This observation extends the interpretation of stability as volume minimiza-
tion [65; 64; 28] from trivial test configurations to all test configurations, and will be
useful in Section 6. Note that when Y 6Š X we cannot replace w with �w , since
this will change the central fiber of the test configuration. These observations have
applications in conformal field theory, where the AdS/CFT correspondence provides
an interpretation of K–stability as a maximization problem for the central charge of the
dual conformal field theory [29].

We next set up the relevant continuity method for polarized affine manifolds. Suppose
that .X; �/ is normalized Fano. Fixing any metric ˛ on .X; �/, our continuity method
is to find metrics !t on .X; �/ satisfying

(2-2) Ric.!t /D 2nŒt!�t C .1� t /˛
� �� 2n!�t ;
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where !�t and ˛� denote the transverse metrics induced by !t and ˛ . In terms of the
transverse metrics induced on the Reeb foliation of the link LD frt D 1g the method
of continuity is

Ric� .!�t /D 2nŒt!
�
t C .1� t /˛

� �:

In particular, (2-2) is the natural lift to the cone of the continuity method for Kähler–
Einstein metrics (see for example [4]). We will call (2-2) the twisted equation, with
twisting form ˛�.

Proposition 2.4 Let I D ft 2 Œ0; 1� W (2-2) has a solutiong. Then I is nonempty, and
relatively open in Œ0; 1�.

The nonemptiness follows from the transverse version of Yau’s theorem [80], due to
El Kacimi-Alaoui [42], while the openness is also analogous to the Kähler case as in
Aubin [4].

As in the compact Kähler case, we must study the Gromov–Hausdorff limit of a
sequence .X; !ti / as ti ! T . For this it is convenient to do a scaling of the Reeb fields
to ensure that we have metrics with Ricci curvature bounded below. Let us denote
the radial function of !t by rt , and define zrt D r tt ; in the Sasakian literature, this is
often referred to as a D–homothetic transformation. It is straightforward to verify that
z!t D

p
�1@@zrt satisfies

Ric.z!t /D 2n
1�t

t
˛� I

ie the Ricci curvature is nonnegative.

3 Weak solutions, twisted Futaki invariants and the Ding
functional

The key result that we will ultimately need is that in the context of the continuity
method defined in the previous section, as t ! sup I, we can extract a limit that is a
normalized Fano cone singularity .Y; �/ together with a transverse positive current ˇ�,
and a weak solution !T on .Y; �/ of the equation

Ric.!T /D 2n.1�T /Œˇ� �!�T �:

In this section we will give a precise definition of such weak solutions, and describe how
in analogy with the compact Kähler case, the existence of such a metric implies the reduc-
tivity of a certain automorphism group, and the vanishing of a twisted Futaki invariant.
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We first define the weak solutions of the twisted equation. We assume that .Y; �/ is
a normalized Fano cone singularity, so we have a nonvanishing global holomorphic
section � of mKY for some m > 1, with L�.�/ D imn�. This gives rise to the
volume form

dV D in
2

.�^�/1=m;

which satisfies L� dV D 2n dV . This volume form is uniquely defined up to a constant
multiple, and we will call it the canonical volume form on a normalized Fano cone
singularity.

Suppose that we have an embedding Y !CN such that the Reeb field (or rather the
torus it generates) acts diagonally, and Y is not contained in a linear subspace. Then �
defines a Reeb field on CN and so we can then fix a smooth reference radial function yr
on CN which is compatible with this Reeb field [28]. In the presence of the action
of a torus T, we can take our embedding to be T–equivariant as well, where T acts
diagonally.

The space of transverse psh potentials is the space of basic functions ' (ie L�' D
LJ�' D 0) such that r' D yre' is psh. Recall that a psh function on a normal variety
can always be viewed locally as the restriction of a psh function from an ambient space,
after embedding [33, Theorem 1.10]. In particular, r' is always the restriction of a psh
function defined in a neighborhood of the origin. For smooth such ' we write

!' D
1
2

p
�1@@r2' ;

and we suppose that we have a twisting form ˇ� given as

ˇ� D
p
�1@@ log r ;

where  is also a transverse psh potential. If Y and ˇ� were smooth, then the twisted
equation

(3-1) Ric.!'/D 2n.1� t /Œˇ� �!�t �

could be written on the level of volume forms as

(3-2) !n' D Ce
2n.1�t/Œ'� � dV;

and we can use this latter formulation to define solutions of the twisted equation in a
weak sense (see [43] for the analogous definition of weak Kähler–Einstein metrics).
More precisely, given  and t , a weak solution of (3-1) is a continuous transverse psh
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potential ' such that (3-2) holds as an equality of measures. In particular this implies
that e�2n.1�t/ dV must be integrable in a neighborhood of the cone vertex.

Definition 3.1 Let .Y; �/ be a normalized Fano cone singularity together with a
reference radial function yr as above. Suppose that  is a transverse psh potential such
that e�2n.1�t/ dV is integrable in a neighborhood of the vertex for some t 2 Œ0; 1�.
We say that .Y; �; .1� t / / admits a (weak) solution of the twisted equation if .Y; �/
has a continuous transverse psh potential ' satisfying

!n' D Ce
2n.1�t/Œ'� � dV

in the sense of measures; that is, for any Borel set B � Y we haveZ
B\Yreg

!n' D C

Z
B\Yreg

e2n.1�t/Œ'� � dV:

Often we will write .Y; �; .1� t /ˇ� / when the twisting form ˇ� is more natural than
its potential  .

As in [31, Remark 4] (see also [7, Proposition 3.8]), it is enough to check that outside
of a closed set † with vanishing .2n�2/–dimensional Hausdorff measure, !n' defines
a singular metric e�f on KY with f 2 L1loc , and in addition, on Y n†,

p
�1@@f D 2n.1� t /Œˇ� �!�' �:

The main properties of weak solutions of the twisted equation are the reductivity of the
automorphism group, and the vanishing of the twisted Futaki invariant, analogous to
Propositions 7 and 8 in [31]. Let us first define the relevant automorphism group, or
rather its Lie algebra.

Definition 3.2 Suppose we have a triple .Y; �; ˇ� / as above. We define gY;� to be
the space of holomorphic vector fields on Y (more precisely on the regular part),
commuting with � . We then define

gY;�;ˇ� D fw 2 gY;� W �wˇ
�
D 0g:

As in [31], note that gY;�;ˇ� is in general smaller than the space of holomorphic vector
fields w on Y commuting with � , and preserving ˇ� in the sense that Lwˇ� D 0.
For instance if ˇ� is a transverse Kähler form, then gY;�;ˇ� is spanned by „, where
Im„D � .
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The following is analogous to [31, Proposition 7], the special case of which, without
the twisting form, has been shown in Donaldson–Sun [41]. The proof is based on a
uniqueness theorem due to Berndtsson [10], generalizing the classical Bando–Mabuchi
theorem [5], further extended by Berman–Boucksom–Eyssidieux–Guedj–Zeriahi [7],
Berman–Witt Nyström [8], Chen–Donaldson–Sun [23] and Yi [84].

Proposition 3.3 Suppose that .Y; �; .1� t /ˇ� / admits a solution !t of the twisted
equation. Then gY;�;ˇ� is reductive. Moreover if G is a compact group of biholomor-
phisms of Y , commuting with � and fixing !t , then the centralizer .gY;�;ˇ� /G is also
reductive.

Next we define the twisted Futaki invariant. Suppose that w is a vector field commuting
with � that preserves the radial function yr above. In addition suppose that w is the
real part of a holomorphic vector field in gY;�;ˇ� . The transverse Hamiltonian �w is
defined by letting �wyr2 be a Hamiltonian for w , ie by requiring that it satisfy

(3-3) �wyr
2
D �Jwd

�
1
2
yr2
�
:

Note that with this convention the transverse Hamiltonian of the Reeb field � is ��D�1.
We then define the twisted Futaki invariant to be

FutY;�;.1�t/ˇ� .w/D
t

V

Z
Y

�we
� 1
2
yr2!n� t

R
Y �we

�2n.1�t/ e�
1
2
yr2 dVR

Y e
�2n.1�t/ e�

1
2
yr2 dV

:

Proposition 6.8 will show that for t D 1, this definition agrees with the algebraic
definition given in Definition 2.2. Below we will also give a different formula for the
twisted Futaki invariant when t ¤ 1.

We have the following, analogous to [31, Proposition 8].

Proposition 3.4 If .Y; �/ admits a weak solution of the twisted equation above, then
FutY;�;.1�t/ˇ� .w/D 0 for all vector fields w as above.

The proofs of Propositions 3.3 and 3.4 both follow from convexity properties of the
twisted Ding functional along weak geodesic segments, based essentially on work of
Berndtsson [10]. The arguments follow those in [10] (see also [31, Section 6]) closely,
together with the discussion in Donaldson–Sun [41] on extending these to the setting
of cones. See also Guan–Zhang [49] for geodesics of Sasakian metrics.
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Definition 3.5 Suppose that .Y; �/ is a normalized Fano cone singularity, and  is
a transverse psh potential as above (relative to a reference radial function), such that
e�2n.1�t/ dV is locally integrable. The twisted Ding functional D.1�t/ is defined
for continuous transverse psh potentials ' by

D.1�t/ .'/D�tE.'/�
1

2n
log

Z
Y

e2n.1�t/Œ'� �e�
1
2
r2' dV:

Here E is defined by its variation:

ıE.'/D
1

V.�/

Z
Y

P'e�
1
2
r2'!n' :

The properties of the twisted Ding functional in this setting follow calculations analo-
gous to those in the compact Kähler case that was studied in [31] (see Ding–Tian [37],
Berndtsson [10] and Chen–Donaldson–Sun [23] for earlier work), using some additional
identities that are valid on cones. An alternative approach is to work with pluripotential
techniques on the link, as developed recently by van Coevering [26], but we prefer
to work directly on the cone. As a sample of the calculations involved we have the
following simple result.

Lemma 3.6 E.'/ is well defined.

Proof Let us consider first the restriction of E to smooth transverse psh potentials ' .
We show that the 1–form defined by ıE is closed. Note that the variation of 1

2
r2'

is ı
�
1
2
r2'
�
D .ı'/r2' . The differential of ıE is the map

. 1;  2/ 7! �

Z
Y

 1 2r
2
'e
� 1
2
r2'!n' Cn

Z
Y

 1e
� 1
2
r2'
p
�1@@. 2r

2
'/^!

n�1
' ;

and we need to show that this is symmetric in  1 and  2 . We haveZ
Y

 1�. 2r
2
'/e
� 1
2
r2'!n' D

Z
Y

Œ 1� 2 r
2
' C 1r 2 � rr

2
' C 1 2�r

2
' �e
� 1
2
r2'!n'

D

Z
Y

�
�
1
2
r 1 � r 2r

2
' C 2n 1 2

�
e�

1
2
r2'!n' ;

where the integration by parts is justified since r2' DO.yr
2/ and rr2' DO.yr/, and we

used
r 2 � rr' D 0 and �1

2
r2' D n:

We obtain that the differential of ıE is

. 1;  2/ 7! n

Z
Y

r 1 � r 2e
� 1
2
r2'!n' ;

Geometry & Topology, Volume 23 (2019)



Sasaki–Einstein metrics and K–stability 1351

where we used the formula

(3-4)
Z
Y

f r2'e
� 1
2
r2' dV D 2n

Z
Y

fe�
1
2
r2' dV;

for any basic function f .

This shows that E is well defined on the space of smooth transverse psh potentials. We
can then extend E to the space of continuous transverse psh potentials by continuity,
since the formula for the variation of E implies that E is uniformly continuous for the
L1–norm on potentials.

The critical points of the twisted Ding functional are given by solutions of the twisted
equation. To see this, note that the variation of D.1�t/ .'/ is given by

ıD.1�t/ .'/D
�t

V

Z
Y

P'e�
1
2
r2'!n' �

1

2n

R
Y Œ2n.1� t / P'� P'r

2
' �e

2n.1�t/Œ'� �e�
1
2
r2' dVR

Y e
2n.1�t/Œ'� �e�

1
2
r2' dV

D
�t

V

Z
Y

P'e�
1
2
r2'!n'C t

R
Y P'e

2n.1�t/Œ'� �e�
1
2
r2' dVR

Y e
2n.1�t/Œ'� �e�

1
2
r2' dV

;

where we used (3-4) again. It follows that critical points satisfy

!n' D Ce
2n.1�t/Œ'� � dV;

which is what we wanted.

In addition from this calculation of the variation we see that the variation of D.1�t/ 
along a suitable one-parameter family of biholomorphisms recovers the twisted Futaki
invariant. Suppose that w is a vector field as above, and let fsW Y ! Y denote the one-
parameter group of biholomorphisms generated by �Jw . We claim that the twisted
Futaki invariant is given by the variation of the twisted Ding functional along fs .
Writing 's for the induced family of potentials, we have

1
2
yr2e2's D f �s

�
1
2
yr2e2'

�
;

and so
P'sr

2
' D��Jwd

�
1
2
r2'
�
:

We obtain that P' D��w in terms of the transverse Hamiltonian of w as in (3-3). It
follows that

d

ds

ˇ̌̌̌
sD0

D.1�t/ .'s/D
t

V

Z
Y

�we
� 1
2
r2'!n' � t

R
Y �we

2n.1�t/Œ'� �e�
1
2
r2' dVR

Y e
2n.1�t/Œ'� �e�

1
2
r2' dV

;
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which when ' D 0 is just the twisted Futaki invariant as we have defined it above. We
can rewrite this in a different form, as in the proof of Proposition 8 in [31].

Proposition 3.7 The twisted Futaki invariant is given by

FutY;�;.1�t/ .w/D FutY;�.w/�n.n� 1/
1�t

V

Z
Y

�we
� 1
2
yr2
p
�1@@ ^!n�1;

where

(3-5) FutY;�.w/D
1

V

Z
Y

�we
� 1
2
yr2!n�

R
Y �we

� 1
2
yr2 dVR

Y e
� 1
2
yr2 dV

is the “untwisted” Futaki invariant. Note that here, as before, we are assuming
that �Jw

p
�1@@ D 0, since w is the real part of a holomorphic vector field in gY;�;ˇ� .

Note that in addition when w is normalized, ie Lw�D 0, we have

(3-6) FutY;�.w/D
1

V

Z
Y

�we
� 1
2
yr2!n;

since in this case we have Z
Y

�we
� 1
2
yr2 dV D 0;

as can be seen by considering the variation of the integral
R
Y e
� 1
2
yr2 dV along the flow

generated by Jw .

Proof of Proposition 3.7 We define

I.'/D
1

V

Z
Y

log

�R
Y e
� 1
2
r2' dV

��1
e�

1
2
r2' dV�R

Y e
2n.1�t/Œ'� �e�

1
2
r2' dV

��1
e2n.1�t/Œ'� �e�

1
2
r2' dV

e�
1
2
r2'!n'

D log

R
Y e

2n.1�t/Œ'� �e�
1
2
r2' dVR

Y e
� 1
2
r2' dV

� 2n
1�t

V

Z
Y

Œ' � �e�
1
2
r2'!n' :

Differentiating along the one-parameter group generated by Jw we must get zero. To
see this, we use that all the terms in the integral are invariant under biholomorphisms
up to constant factors, and these constants cancel. For instance the fact that �Jwˇ� D 0
implies that LJw is a constant. The result of the differentiation is

2n

R
Y P'e

� 1
2
r2' dVR

Y e
� 1
2
r2' dV

� 2nt

R
Y P'e

2n.1�t/Œ'� �e�
1
2
r2' dVR

Y e
2n.1�t/Œ'� �e�

1
2
r2' dV

� 2n
1�t

V

Z
Y

P'e�
1
2
r2'!n'

� 2n
1�t

V

Z
Y

.' � /Œ� P'r2' C�. P'r
2
'/�e

� 1
2
r2'!n' D 0:
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Similar calculations to before, using also that r2'�.' � / is a basic function, showZ
Y

.'� /Œ� P'r2'C�. P'r
2
'/�e

� 1
2
r2'!n' D 2n.n�1/

Z
Y

e�
1
2
r2' P'
p
�1@@.'� /^!n�1' :

We obtainR
Y P'e

� 1
2
r2' dVR

Y e
� 1
2
r2' dV

� t

R
Y P'e

2n.1�t/Œ'� �e�
1
2
r2' dVR

Y e
2n.1�t/Œ'� �e�

1
2
r2' dV

D
1� t

V

Z
Y

P'e�
1
2
r2'!n' Cn.n� 1/

1� t

V

Z
Y

P'e�
1
2
r2'
p
�1@@.' � /^!n�1' :

From this, using that at the reference metric ' D 0 we have P' D �w , we obtain the
required formula.

We can write the twisting term above in a more intrinsic way as

�

Z
Y

�we
� 1
2
yr2
p
�1@@ ^!n�1 D�

Z
Y

�we
� 1
2
yr2.ˇ� �!� /^!n�1;

recalling that ˇ� D
p
�1@@ log r and !� D

p
�1@@ log yr .

As in [31] we use the twisted Futaki invariant to define a notion of (equivariant) twisted
stability following also Dervan [36]. We will also choose a twisting form of a special
form for which we will calculate an alternative formula for the twisted Futaki invariant.

Suppose that .X; �/ is a normalized Fano cone singularity, smooth away from the
vertex, and write R.X/ for the coordinate ring as before. We also denote by R<D.X/
the direct sum of weight spaces for the action of T with weights � ¤ 0 such that
�.�/ < D. Suppose that D is large enough that the functions in R<D.X/ give an
embedding X ,! CN. It will be convenient to separate the spaces corresponding to
different characters as

CN
DCN1 � � � � �CNm ;

and so � acts diagonally on the coordinate functions with weights a1; : : : ; am > 0.

A test configuration for X commuting with T is given by a one-parameter subgroup
�W C�!GL.N /T, and we assume that �.S1/�U.N/T, generated by a vector field w .
Note that GL.N /T is simply the product of GL.Ni / for i D 1; : : : ; m. By a further
unitary change of basis we will assume that � is diagonal. We define

Y D lim
t!0

�.t/ �X;
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and we suppose that Y is normal, and Q–Gorenstein. We define the limiting current

ˇ� D lim
t!0

�.t/ �˛� ;

whose existence follows from the proof of Proposition 3.8; see (3-9). The twisted
Futaki invariant of the corresponding test configuration is then defined by

FutX;�;.1�t/˛� .w/D FutY;�;.1�t/ˇ� .w/:

Note here that w is not tangent to X, but it is tangent to Y , and it is the real part of a
holomorphic vector field in gY;�;ˇ� .

As in [31], a crucial role is played by an alternative formula for this twisted Futaki
invariant. We assume that � is quasiregular. There is then a constant M such that
M=ai 2Z. We define a reference radial function analogous to the Fubini–Study metric
for projective varieties, with radial function yr given by

(3-7) yr2 D

� mX
iD1

� NiX
jD1

jz
.i/
j j

2

�M=ai�1=M
;

where the fz.i/j g form an orthonormal basis for CNi. We take the background metric to
be ! D 1

2

p
�1@@yr2, and the transverse form ˛� D

p
�1@@ log yr ; ie  D 0 relative to

this radial function. To see that ! is indeed a metric, note first that for any cone metric
p
�1@@r2 and  > 0, the forms

p
�1@@r2 also define cone metrics, with Reeb fields

obtained by scaling. In this way,

mX
iD1

� NiX
jD1

jz
.i/
j j

2

�M=ai
defines a product metric on CN, and it follows that ! is also a cone metric. In addition, yr
is preserved by the action of U.N/T. With this setup we have the following.

Proposition 3.8

FutX;�;.1�t/˛� .w/D FutX;�.w/C c.n/
1�t

V

Z
Y

.max
Y
�w � �w/e

� 1
2
yr2!n;

where ! D
p
�1@@1

2
yr2, and c.n/ is a dimensional constant.

Proof The proof follows a similar argument to that in [31, Proposition 11], express-
ing ˛� as an average of currents of integration along hypersurfaces in X. One new
difficulty is that the limit Y may be contained in a coordinate hyperplane.
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We will use hypersurfaces defined by functions of the form

f� D

BX
jD1

�ju
M=bj
j ;

where the uj are monomials in the zi (including each zi as well), the bj are corre-
sponding weights, and we think of � as � 2 P D PB�1. It may happen that X is
contained in some of these hypersurfaces, but there is a linear subspace E�P such that
for � 2 P nE , the function f� does not vanish on X. Let us write V�DX \f �1� .0/,
which may have multiplicity. By Shiffman–Zelditch [70, Lemma 3.1], whose proof is
entirely local, we have that on CN,

2�

Z
P
Œf �1� .0/� d�D

p
�1@@ log

� BX
jD1

juj j
2M=bj

�
;

in the sense of distributions, for the standard probability measure d� on the projective
space P. Multiplying out the M=ai power in (3-7) we see that for suitable choices of
the uj restricted to X we will have

(3-8) ˛� D
�

M

Z
PnE

ŒV�� d�D
1

2M

p
�1@@ log

� BX
jD1

juj j
2M=bj

�
:

We can then compute ˇ� on Y by taking the limits of the currents ŒV�� under the
C�–action �. We will do this by computing the limit of the underlying schemes.
Suppose that �.t/ acts on the uj diagonally with entries twj . Then we have

�.t/ �f� D

BX
jD1

�j t
wjM=bju

M=bj
j :

If I denotes the homogeneous ideal defining X, then V� is defined by the ideal
IC.f�/. The weights of the C�–action � define a partial order on the monomials, and
the limit �.t/ �V� has ideal defined by the lowest-weight parts of elements of IC.f�/,
ie the initial ideal in�.I C .f�//. In the same way the limiting variety Y is defined by
the ideal in�.I /.

Suppose that we find a function g� 2 in�.I C .f�// such that g� 62 in�.I /, and in
terms of the grading of the polynomial ring given by � the function g� has the same
degree as the f� (ie degree M ). In this case, since the coordinate ring of Y is an
integral domain (we have assumed that Y is reduced and irreducible), we will see
that the Hilbert functions of the ideals I C .f�/ and in�.I /C .g�/ coincide, and
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so limt!0 V� is the hypersurface in Y cut out by g� . The key information that we
need is the weight ƒ of the �–action on g� . We will determine this for generic � and
in fact we claim that generically ƒD�M maxY �w .

For simplicity let us assume that the (relative) weights wi=bi are ordered so that
w1=b1 6 w2=b2 6 � � � 6 wB=bB . Let c be the smallest index such that uc does
not vanish on Y . Suppose that � is chosen to be in general position in the sense
that we cannot write f� D hC f 0� , where h 2 I, and f 0� has strictly larger weights
than uc . If we write uc0 ; uc0C1; : : : ; uB for the monomials with strictly larger weight
(we have c0 > c C 1, but this inequality may be strict), then the condition is that
f� 62 I C .uc0 ; : : : ; uB/, or in other words that f� does not vanish on the intersection
of X with the subspace H D fuc0 ; : : : ; uB D 0g. If this intersection were just the
origin, then we would have uc 2 I C .uc0 ; : : : ; uB/, so that uc 2 in�.I /. But then uc
vanishes on Y contrary to our assumption. This means that the intersection X \H is
nontrivial, and so the space of � for which f� vanishes on X \H is contained in a
hyperplane in P. We can then enlarge the subspace E above by this hyperplane, and
focus on � 2 P nE .

By assumption u1; : : : ; uc�1 2 in�.I /, and so I must contain uM=bii modulo higher-
weight terms, for i D 1; : : : ; c � 1. It follows that I contains

c�1P
iD1

�iu
M=bi
i

modulo higher-weight terms, but it cannot contain

c0�1P
iD1

�iu
M=bi
i ;

modulo higher-weight terms, by our genericity assumption. Then in�.I C .f�// D
in�.I C .f 0�//, where

f 0� D
BP
iDc

�0iu
M=bi
i ;

for some new coefficients �0i with at least one of �0c ; �
0
cC1; : : : ; �

0
c0�1 nonzero. We

can then let g� be the part of f 0� which has the same weight as uM=bcc under �,
ie ƒDMwc=bc .

Since the transverse Hamiltonian is

�w D

PB
iD1�.wi=bi /jui j

2M=biPB
iD1 jui j

2M=bi
;
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and u1; : : : ; uc�1 vanish on Y , but uc does not, we have Mwc=bc D�M maxY �w ,
and so the weight of g� is ƒD�M maxY �w as we claimed.

Let us write Y� D Y \g�1� .0/. By the discussion above we then have

(3-9) ˇ� D
�

M

Z
PnE

ŒY�� d�;

where recall that now E is a suitable union of two hyperplanes. It follows that

(3-10)
Z
Y

�we
� 1
2
yr2ˇ� ^!n�1 D

�

M

Z
PnE

Z
Y�

�we
� 1
2
yr2!n�1:

From Propositions 6.6 and 6.7 we have

(3-11)
Z
Y�

�we
� 1
2
yr2!n�1 D .2�/n�1Œ.n� 2/Š�2Dwa0.Y�; �/;

where, as in (2-1), the notation Dw refers to varying the Reeb field � in the direction
ofw. We have that � acts on g� with weightM, whilew acts with weight�M maxY �w .
The index characters of Y and Y� are related by

FY�.t; �C sw/D FY .t; �C sw/Œ1� e
�tM.1�smaxY �w/�;

and so, differentiating with respect to s , at s D 0, we obtain

DwFY�.t; �/DDwFY .t; �/Œ1� e
�tM ��FY .t; �/tM max

Y
�w :

Comparing the leading terms in the Laurent expansion, we have

.n� 2/ŠDwa0.Y�; �/DM.n� 1/ŠDwa0.Y; �/�M max
Y
�w.n� 1/Ša0.Y; �/:

It then follows from (3-10), (3-11), and Proposition 6.7 thatZ
Y

�we
� 1
2
yr2ˇ� ^

!n�1

.n�1/Š
D

1

2.n�1/

Z
Y

Œn�w �max
Y
�w �

!n

nŠ
:

At the same time we have

!� ^!n�1 D
1

yr2
n�1

n
!n;

and so Z
Y

�we
� 1
2
yr2!� ^

!n�1

.n�1/Š
D
1

2

Z
Y

�we
� 1
2
yr2 !

n

nŠ
:

Combining these formulas we obtain the required result.
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Remark 3.9 We remark that maxY �w and the integral of �w on Y depend only on
the induced action on Y and can be computed from the weights of the action. Indeed, in
the argument above we have seen that �maxY �w is the minimal relative weight wj =bj
of a monomial uj that does not vanish on Y , under the action � relative to the action of
the Reeb field. This is the same as the minimal relative weight wi=ai of a coordinate
function zi which does not vanish on Y , and since the zi generate the ring of algebraic
functions of Y which vanish at the vertex, this is simply the minimum relative weight of
any such function on Y . More precisely, if f is any algebraic function on Y vanishing
at the vertex which is in a weight space of the torus spanned by � and � , then the
relative weight is the quotient of the weights of these two C�–actions, and �maxY �w
is the minimum of this quotient over all such f . At the same time the integral of �w
on Y can be interpreted as the variation of the a0 coefficient in the Hilbert series of Y ,
by Propositions 6.6 and 6.7.

From the above proof we also see the following.

Proposition 3.10 In the above setup, given X and �, there is a union of two hyper-
planes E � P such that if � 2 P nE and V� DX \f �1� .0/, then

FutX;�;.1�t/˛� .w/D FutX;�;.�=M/ŒV��.w/:

In other words, when we want to compute the twisted Futaki invariant, we can re-
place ˛� by a current of integration along a suitable hypersurface on X, as long as this
hypersurface, as a point in a projective space P, is not contained in a certain union of
two hyperplanes. It is important to emphasize that these two hyperplanes can depend
on the choice of X and �.

4 The partial C 0–estimate

Our goal in this section is to prove the partial C 0–estimate, Theorem 4.7, for cone
metrics satisfying a Ricci curvature equation. A special case of this will be the partial
C 0–estimate along the continuity method. The partial C 0–estimate was introduced
by Tian [77] in his study of Kähler–Einstein metrics on complex surfaces, and he
conjectured a general version for compact Kähler manifolds with a positive lower
bound on the Ricci curvature. For Kähler–Einstein metrics in arbitrary dimension this
estimate was obtained by Donaldson–Sun [40], using the Cheeger–Colding convergence
theory [19] under Ricci curvature bounds, together with the Hörmander technique [51]
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for constructing holomorphic functions. Many more general results followed this
development (see [22; 23; 66; 74; 24; 53]).

Our method will be fairly close to that in [74] for the smooth continuity method. The
main difficulty is that along our continuity method the Ricci curvature of the cone metrics
is only nonnegative, while in the approach of [74] it is important to treat the Ricci form
as a metric. On the other hand it is not clear how to extend the Cheeger–Colding theory
to the transverse Kähler structure, which does have strictly positive Ricci curvature.
We therefore use the convergence theory on the level of the cones, but at certain crucial
steps we invoke the positivity of the Ricci curvature of the transverse metric.

We suppose that .X; �/ is a normalized Fano cone singularity, and ˛ is a smooth Kähler
cone metric on .X; �/. From the discussion in Section 2 we know that we have a family
of metrics !t on .X; t�1�/, satisfying

Ric.!t /D 2n
1�t

t
˛� ;

for t 2 Œt0; T /, with T 6 1 and t0 > 0.

Since we will also have to obtain uniform estimates while varying the Reeb field, we
suppose more generally that we have a family of Reeb fields �t , and metrics ˛t and !t
on .X; �t / satisfying

(4-1) Ric.!t /D 2nct˛�t ;

where 0 6 ct 6 c0 < 1, and the pairs .�t ; ˛t / move in a bounded family in the
following sense.

Definition 4.1 We say that data .�t ; ˛t / consisting of Reeb vector fields and a com-
patible cone metrics on X are in a C 2 bounded family if the �t are in a compact subset
of CR , and the metrics ˛t are locally uniformly equivalent to a fixed reference cone
metric, and locally bounded in C 2 when measured with respect to this reference metric.

Along our continuity method we will have uniform constants � and CL such that:

� .X; !t / are uniformly noncollapsed. That is, Vol.B1.0; !t // > � > 0, where
0 2X denotes the cone point.

� Ric.!t / > 0 on X, and the corresponding Sasakian metric gt on the link L
satisfies Ric.gt /D .2n� 2/gt C .2n� 2/ct˛�t .

� diam.L; gt / < CL for some controlled constant CL .

The first point follows from the lower bound for t0 . The second point is the formula
relating the Ricci curvature on the cone to the Ricci curvature on L, while the last point
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follows from Myers’s theorem. Let rt denote the radial function of !t . Then the Bishop–
Gromov comparison theorem implies the metrics !t are uniformly noncollapsed on the
annuli

˚
1
2
< rt < 2

	
and so results of Croke [30] and Yau (see eg [81, page 9]) imply:

Lemma 4.2 For metrics !t satisfying (4-1) there is a uniform Sobolev inequality on
the set Ann WD

˚
1
2
< rt < 2

	
. That is, there exists a constant C.�; CL/ independent

of t such that for any W 1;2 function f on Ann we have

C�1
�Z

Ann
jf j2n=.n�1/!nt

�n�1
2n

6
�Z

Ann
jrf j2!t!

n
t

�1
2

C

�Z
Ann
jf j2!nt

�1
2

:

Our eventual estimates will depend only on the dimension, the noncollapsing condition,
and a bound on the geometry of ˛ , which roughly speaking says that we have good
control of the transverse metric ˛� on sufficiently small balls (see Definition 4.5 for
a precise statement). As motivation consider the following analogous property of
a compact Kähler manifold, which is easily proven by covering the manifold with
sufficiently small coordinate balls.

Lemma 4.3 Let .M;!/ be a compact Kähler manifold, and let g be the associated
Kähler metric. Then for any constant K > 0 sufficiently large the following holds:
if B � M is any g–ball of radius smaller than K�1, then there exist holomorphic
coordinates fz1; : : : ; zng defined on B such that

1
2
ıi Nj < gi Nj < 2ıi Nj and kgi Nj kC2.gEuc/

<K:

Furthermore, K can be chosen to be uniform over C 2 bounded families of metrics.

We need a generalization of this to the transverse Kähler structure defined by ˛�. Let
us denote by Q the quotient bundle Q D TX=C� , where by C� � TX we denote
the complex subbundle spanned by � . Note that Q has a natural integrable complex
structure, and ˛� defines a Kähler form on it (see Boyer–Galicki [14]).

Definition 4.4 Let B �Cn�1 be a ball. We say that an immersion F W B!X is a
�–transverse immersion if for any point p 2 B , the image dFp.TpB/ is transverse
to C� . In particular, we get an induced vector space isomorphism

dFpW TpB!QF.p/:

We say F is a transverse holomorphic immersion if dFp is complex linear with respect
to the standard complex structure on B , and the transverse complex structure on Q .
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For any transverse holomorphic immersion F , we obtain a Kähler metric F �˛� on B ,
compatible with the standard structure on B . Note that we have a C–action on X
induced by � , and for any smooth hW B!C , the maps F and h �F induce the same
Kähler structure on B . In particular we can assume that F W B!L maps into the unit
link L�X.

Definition 4.5 We say that ˛ (or equivalently ˛� ) has geometry bounded by K if the
following holds. Let F W B ! L be a transversal holomorphic immersion as above,
where B �Cn�1 denotes a ball. We write g D F �˛� for the induced Kähler metric
on B . If .B; g/ has diameter at most K�1, then there are holomorphic functions
z1; : : : ; zn�1 on B (not necessarily giving an embedding of B into Cn�1, but an
immersion) such that

1
2
ıij < gi Nj < 2ıij and kgi Nj kC2.B;gEuc/

<K:

Here gi Nj D g.@=@z
i ; @=@Nzj /, and gEuc D ıij is the pullback of the Euclidean metric

by the map .z1; : : : ; zn�1/W B!Cn�1.

We now prove the analog of Lemma 4.3.

Proposition 4.6 For K > 0 sufficiently large, depending on ˛ , the geometry of ˛ is
bounded by K . Moreover, K can be chosen uniformly over bounded families.

Proof We consider the case of a fixed metric ˛ . We first cover L by a finite number
of adapted charts Vi . This means that on such a V we have coordinates

.x; z1; : : : ; zn�1/W V !R�Cn�1;

in which the Reeb field � is given by @=@x and the Sasakian metric ˛ agrees with the
Euclidean metric at the origin. If we denote by ˛0 the metric on the slice fx D 0g,
then ˛0 D ˛� is a Kähler metric which in the coordinates zi agrees with the Euclidean
metric at the origin. By using a cover by smaller charts if necessary, we can assume
that in these coordinates ˛0 satisfies 1

2
ıij < ˛0 < 2ıij and k˛0kC2 <K , for some K

(independent of the chart). Increasing K if necessary, we can ensure that every ˛–ball
of radius K�1 in L is contained in one of our adapted charts Vi .

Fixing again one of our charts V , suppose that we have a transverse holomorphic
immersion f W B! V , transverse to @=@x . Then the induced Kähler structure on B
is simply the pullback .� ı f /�˛0 , where � is the projection in V onto the fx D 0g
slice. The holomorphic functions zi ı� ıf then satisfy our requirements.
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To prove the proposition it would suffice to show that if F W B! L is any transversal
holomorphic immersion such that .B; F �˛� / has diameter smaller than K�1, then it is
contained in one of the Vi . This is clearly impossible, since given such an immersion
one could easily stretch the immersion by the Reeb flow to obtain a new immersion
which is not contained in a ball of radius K�1. Instead, given such an immersion F ,
we will construct a new, “equivalent” immersion f W B! L whose image lies in one
of our adapted charts V . Since the Reeb vector field is real holomorphic, we can flow
our transverse holomorphic immersion F to a new transverse holomorphic immersion
along the Reeb field. Writing ˆW L�R!L for the Reeb action, we are looking for a
smooth function aW B!R such that the image of

f W B! L; p 7!ˆ.F.p/; a.p//;

lies in one of our adapted charts. We can choose the function a so that f maps
radial rays  from the origin in B to curves f ./ in L that are orthogonal to � . The
length of f ./ with respect to ˛ is then equal to its transversal length — that is, its
length in .B; g/. By assumption the diameter of .B; g/ is at most K�1, and so the
image f .B/ must be contained in an ˛–ball of radius K�1, and so it is contained in
one of our adapted charts. This completes the proof of bounded geometry of a fixed
metric. Moreover it is clear from the above argument that we can choose a uniform K

for metrics in a bounded family.

We now state the main result that we will prove in this section. Recall that we
write R�.X/ for the part of the ring of functions of X on which the torus T acts by
the character �. For any D > 0 let us write

R<D.X/D
M

0<�.�/<D

R�.X/:

Suppose that we have a sequence of solutions !k on .X; �k/ of

Ric.!k/D 2nck˛
�
k

for ck 2 Œ0; c0� for some c0>0 . Choosing L2–orthonormal bases of R<D with respect
to !k we obtain a sequence of maps Fk W X !CN.

Theorem 4.7 There exists a constant D, depending on the dimension, the noncollaps-
ing constant and the bound K on the geometry of ˛ , such that each Fk is an embedding,
and up to choosing a subsequence we have Fk.X/ ! Y in the sense of currents,
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where Y is a normal, Q–Gorenstein variety with a Reeb field � D lim �k . In addition
.Fk/�.˛

�
k
/! ˇ� for a positive transverse current on Y , and .Y; T �1�; .1 � T /ˇ� /

admits a weak solution of the twisted equation, where tk! T .

We will spend the rest of this section proving this result, based on work of Donaldson–
Sun [40], Chen–Donaldson–Sun [22; 23] as well as the second author [74]. A key ingre-
dient in the work of Chen–Donaldson–Sun is to make use of the Hörmander technique
for producing holomorphic sections of positive line bundles. In our setting we will use
the Hörmander technique to produce holomorphic functions on our affine varieties. The
following estimate holds on noncompact manifolds (see Demailly [32, Theorem 4.1]
or [9, Theorem 6.2]).

Theorem 4.8 Let L be a holomorphic line bundle endowed with a metric e�' over a
complex manifold X which has some complete Kähler metric. Assume the metric e�'

has strictly positive curvature, and that
p
�1@@' > c!;

where ! is some Kähler form on X (not necessarily complete) and c > 0.

Let f be a @–closed .n; q/–form (where q > 0) with values in L. Then there is an
.n; q� 1/–form u with values in L such that @uD f , and

kuk2
L2.X;e�' ;!/

6 1

cq
kf k2

L2.X;e�' ;!/
;

provided the right-hand side is finite.

Using a resolution of singularities (see Saper [68, Example 9.4]) we know that X n f0g
admits a complete Kähler metric since 0 2 X is an isolated singular point. Hence
Theorem 4.8 applies in our setting.

We are going to apply the Hörmander theorem to LDOX ˝K�1X 'K
�1
X , where we

recall that OX is endowed with the metric e�
1
2
r2 and we use the corresponding volume

form !n as a metric on K�1X . The reason we make this choice for L is that we have
isomorphisms

ƒn;1.K�1X /Šƒ0;1˝KX ˝K
�1
X Šƒ

0;1 and K�1X ˝KX ŠOX :

In particular, Theorem 4.8 implies that we can solve the @ equation on OX . Following
the ideas of Donaldson–Sun [40], we can then use the Hörmander technique to trans-
plant holomorphic functions from tangent cones of Gromov–Hausdorff limits to our
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noncompact cone manifold .X; !/. In order to do this, we need to ensure that there
exist iterated tangent cones which are “good”.

Definition 4.9 Suppose .Z; dZ/ is a Gromov–Hausdorff limit of .X; !t / as t!T 61,
and suppose C.Y / is an (iterated) tangent cone at p 2Z . We say that the tangent cone
is good if:

(1) The regular set Yreg � Y is open in Y and smooth.

(2) The distance function on C.Yreg/ is induced by a Ricci flat cone metric, and
on C.Yreg/ the scaled-up metrics along our sequence converge in Lploc for all p
to this Ricci flat metric.

(3) For all ı>0 there is a Lipschitz function g defined on Y which is identically 1 on
a neighborhood of YsingDY nYreg , with support contained in the ı neighborhood
of Ysing and with krgkL2 6 ı , where the L2–norm is with respect to the Sasaki–
Einstein metric on Yreg .

Suppose that !t are Kähler cone metrics on X, solving (4-1) where .�t ; ˛t / move in a
bounded family. Suppose that, along a subsequence, .X; !t / converge in the Gromov–
Hausdorff sense to .Z; dZ/. If we can show that each tangent cone of .Z; dZ/ is good,
then the techniques of [40], together with the above remarks, will imply that there
is a number "0 depending only on the dimension, the noncollapsing constant and a
bound for the geometry of ˛t with the following effect: Let rt be the radial function
for !t . For any point p 2LD frt D 1g there is a holomorphic function f 2OX with
kf kL2.e�

1
2
r2t / D 1, and jf .p/j> "0 .

At this point we will need to pass from arbitrary holomorphic functions to those with
polynomial growth. This is done in Section 4.4, essentially by truncating the Taylor
series of f at a sufficiently high (but controlled) order. Putting all of these results
together with techniques from Donaldson–Sun [41] will imply Theorem 4.7. With this
discussion, we state our first goal:

Proposition 4.10 Suppose !t are solutions of (4-1) with data .˛t ; �t / which move in
a bounded family. If .Z; dZ/ is any Gromov–Hausdorff limit of a sequence .X; !ti /,
then Z has good tangent cones.

4.1 Gromov–Hausdorff convergence

We will now specialize to sequences .X; !i ; ˛i ; �i /, where

.�i ; ˛i /! .�; ˛/
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in the C 2 topology for a fixed background metric, and

(4-2) Ric.!i /D 2nci˛�i

with ci ! c .

Suppose we have a sequence of metrics solving (4-2), with ci ! c . Since the
links .L; gi / have bounded diameter, positive Ricci curvature, and are uniformly
noncollapsed, we can take a Gromov–Hausdorff limit

.L; gi /
dGH
���! .Z; d/:

At the same time we will have convergence of the cones

.X; !i /
dGH
���! .C.Z/; yd/;

in the pointed Gromov–Hausdorff topology, where we can identify Z with the unit
link in C.Z/.

To understand iterated tangent cones in the space C.Z/, for any p2Z we need to study
very small balls centered around p 2C.Z/, scaled to unit size. This in turn means that
we need to study small balls centered at points on the unit link in .C.L/; !i /, scaled
to unit size. Such a ball B has the following structure: B is the unit ball with respect
to a Kähler metric ! , satisfying the equation

(4-3) Ric.!/D c˛� ;

and a uniform noncollapsing condition Vol.B; !/ > K�1 > 0. There is a holomorphic
vector field „ on B , whose imaginary part is the Reeb field � scaled down, satisfying

1� ı < j„j! < 1C ı; L„! D �!

for some �6 ı 6 1
2

. If the ball that we scaled up is sufficiently small, then ı can be
taken to be arbitrarily small. Finally, ˛� is a closed, nonnegative .1; 1/–form, vanishing
along „, and defining a transverse Kähler metric with bounded geometry on TB=C�
in the sense of Definition 4.5.

There are two different cases to study, depending on whether the ci are bounded away
from 0 or ci ! 0.

4.2 The case ci are bounded away from zero

Fix i , and suppress the index. Scaling ˛� by a bounded factor we can rewrite (4-3) as

Ric.!/D ˛� :
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The next proposition, which is based on [74, Proposition 8], shows that when .B; !/
is close to the Euclidean ball in the Gromov–Hausdorff sense, then on a smaller ball
the Ricci curvature is bounded. The quantity I.B/, as defined in [22; 74], is

I.B/D inf
B.x;r/�B

VR.x; r/;

where VR.x; r/ is the ratio of the volumes of the ball B.x; r/ and the Euclidean
ball rB2n.

Proposition 4.11 There is a ı D ı.K/ > 0, depending on the bound K for the
geometry of ˛ , such that if 1� I.B/ < ı , then Ric.!/ < 5! on 1

2
B .

Proof The difference with [74, Proposition 8] is that ˛� is not strictly positive, but it
is strictly positive on slices transverse to „, and it is invariant under the flow of „,
since this flow simply scales ! .

As in [74, Proposition 8], if Ric.!/ is not bounded by 5! on 1
2
B , then we can find a

small ball inside B , which when scaled to unit size . zB; z!/ satisfies ˛� 6 z! , and in
addition there is a unit vector v at the origin (with respect to z! ) such that

˛� .v; Nv/> 1:

The equation for ! implies that on zB the metric z! has bounded Ricci curvature,
and so if ı is sufficiently small, then Anderson’s result [3] implies that we have
holomorphic coordinates z1; : : : ; zn on the ball � zB , with respect to which z! is close
to the Euclidean metric in C 1;˛. In these coordinates the holomorphic vector field „
will satisfy 1

4
< j„jEuc < 4, and so by rotating the coordinates and shrinking � we can

assume that on � zB the vector field „ is very close to @z1 . In particular ˛.@z1 ; Nw/ is
very small for any unit vector w .

It follows that the slice U D fz1D 0g\ � zB is transverse to „, and so .U; ˛� / is
a Kähler manifold with bounded geometry. The inequality ˛� 6 z! implies that
the diameter of .U; ˛� / is at most � , so shrinking � further if necessary, we have
holomorphic functions w2; : : : ; wn on U, defining local coordinates near each point,
in which the components of ˛� are controlled in C 2.

The vector v may not be tangent to the slice U, but we may simply discard its @z1–
component, while still having ˛� .v; Nv/ > 1

2
. Rotating the z2; : : : ; zn coordinates, we

can then assume that
˛� .@z2 ; @ Nz2/ >

1
4
:
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We now have that the components of ˛� in the zi coordinates have bounded derivatives
along the slice U, but in addition ˛� is also constant along the flow of „, which
is very close to @z0 . It follows that just as in [74, Proposition 8] we can obtain a
spherical sector in which the Ricci curvature of z! is strictly positive. Applying the
Bishop–Gromov volume comparison we get a contradiction to 1� I.B/ < ı if ı is
sufficiently small.

Corollary 4.12 If we have solutions of .X; gi / of (4-2) with ci > c > 0, and
if .B.pi ; 1/; gi /�X converge in the Gromov–Hausdorff sense to the Euclidean ball,
then the convergence is C 1;˛ on compact sets. In particular, if .B.pi ; 1/; gi /!Z , then
the regular set in Z is open, and then convergence on the regular set is locally C 1;˛.

Proof We combine Colding’s volume convergence [27] with Proposition 4.11 to get a
uniform Ricci bound, and then apply Anderson’s result in [3] to get C 1;˛ convergence
to a Euclidean ball.

Now assume we have a sequence of balls as above such that .B.pi ; 1/; gi / ! Z ,
with pi ! p , and a tangent cone at p 2 Z is of the form C � Cn�1. As in
[74, Proposition 11] we have  2 .1; 2/ for some 0 < 1 < 2 < 1. The results
of [22] apply, and in particular, arguing as in [22, Section 2.5], after scaling up the !i ,
that is, letting

z!i D k!i ; z„i D
1
p
k
„i ;

we can view z!i as a metric on the unit Euclidean ball B2n whose coordinates are
.u; v1; : : : ; vn�1/, in which z!i is close to the model cone metric

� D
p
�1

du^ d Nu

juj2�2
C

n�1X
iD1

dvi ^ d Nvi :

More precisely, if we scale by a large integer k , and take i large depending on k , we
have, for some fixed constant C :

� z!i D
p
�1@@'i , with 06 'i 6 C.

� !Euc < C z!i .

� Given ı > 0 and a compact set K �B2n nfuD 0g we can suppose (by taking i
large once k is taken sufficiently large) that j z!i � � jC1;˛.K;gEuc/

< ı .

Lemma 4.13 In the above setting, for every " 2
�
0; 1
2

�
we have j z„i jgEuc >

1
2

on the
set fjuj D "g provided i and the scaling factor k are sufficiently large.
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Proof We fix ">0, and suppose that the conclusion is false. Then we have a sequence
of metrics z!i and holomorphic vector fields z„i on B2n (with scaling factors k!1)
converging in C 1;˛ to the standard cone metric � locally away from fuD 0g, and
the z„i satisfy

j z„i jgEuc 6 C; 1�
1

k
< j z„i jz!i < 1C

1

k
; Lz„i

z!i D �z!i ;

with � < 1=k . Since the z„i are holomorphic and bounded we obtain uniform
C 3;˛–estimates on 1

2
B2n. We can choose a subsequence so that z„i converges to

a holomorphic vector field z„ in C 3.gEuc/ on 1
2
B , and z!i ! � on

˚
juj> 1

2
"
	
\
1
2
B .

Furthermore, we have

Lz„� D 0; j
z„j� D 1:

By direct computation one verifies that the only holomorphic vector fields on 1
2
B

which are Killing for � on
˚
juj> 1

2
"
	
\
1
2
B and of unit length are the translations in

the vi directions. In particular j z„jEuc D jz„j� . The result then follows from the
convergence z!i ! � .

Proposition 4.14 There is a constant c0 > 0 such that if .B.p; 1/; !/ is sufficiently
close to the unit ball in the cone C �Cn�1 with  2 .1; 2/, thenZ

B.p;1/

˛� ^!n�1 > c0:

Proof We argue by contradiction and assume there is no such c0 . Then we will have a
sequence B.pi ; 1/! B.0; 1/, where 0 is the vertex in the cone C �Cn�1, such that

(4-4) lim
i!1

Z
B.pi ;1/

˛�i ^!
n�1
i D 0:

As discussed above, we can then find a small r0 > 0 such that for sufficiently large i ,
the scaled-up metric r�20 !i can be thought of as a metric on a set containing the
Euclidean unit ball B2n such that !Euc <Cr

�2
0 !i on B2n. By the previous lemma we

can assume (choosing r0 smaller if necessary) that the rescaled Reeb vector field „i
is a perturbation of the vector field @=@z0 for one of the holomorphic coordinates z0
on B2n, and so the sets Uc D fz0 D cg are transverse to „i for jcj< 1

2
, say.

Suppose that Z
B2n

˛�i ^!
n�1
Euc < "1;
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for some "1 > 0. Then we must haveZ
Uc

˛�i ^!
n�2
Euc < C1"1

for at least one c with jcj < 1
2

, and a uniform constant C1 . The form ˛�i defines a
Kähler metric on Uc with bounded curvature, so the "–regularity theorem of Schoen–
Uhlenbeck [69] (see also [74, Proposition 7]) implies that if C1"1 < "0 , then we must
have ˛�i < C

0!Euc < C
0Cr�20 !i on Uc (evaluated on vectors tangent to this slice).

Since „i is a small perturbation of @=@z0, and ˛�i vanishes along „i , we obtain
a bound for ˛� on 1

2
B2n. This implies a uniform bound for Ric.!i / on this ball,

independent of i . The result of Cheeger–Colding–Tian [20] implies that no conical
singularity can then form, which is a contradiction.

As a result, we must have Z
B2n

˛�i ^!
n�1
Euc > "1

for sufficiently large i , where "1 D C�11 "0 . This in turn impliesZ
B2n

˛�i ^ .r
�2
0 !i /

n�1 > C�n�1"1;

contradicting (4-4).

We also have the following, whose proof is the same as that of [74, Proposition 13].

Proposition 4.15 There is a constant A > 0 such that if .B.p; 1/; !/ is sufficiently
close to either the Euclidean unit ball or the unit ball in the cone C �Cn�1 with
 2 .1; 2/, then Z

B
�
p; 1
2

� ˛� ^!n�1 < A:
We can now show that the iterated tangent cones are good, similarly to Chen–Donaldson–
Sun [22], or [74]. The argument in the published version of [74] was incomplete, but it
is corrected in the latest version on the arXiv, and that argument can be used verbatim in
our setting, using the estimates on the “densities” given by Propositions 4.14 and 4.15.

4.3 The case ci ! 0

In this case we study noncollapsed balls B D B.p; 1/ with metrics ! satisfying

Ric.!/D ci˛� ;

where ci ! 0. As above, the additional structure is the (rescaled) Reeb field „, which
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is a holomorphic vector field satisfying 1
2
< j„j! <2 and L„!D �! , for some �6 2.

Note that as we scale up the metric, we must scale down the Reeb field, and so scale
down �. The form ˛� defines a transverse Kähler metric on TB=C� , with bounded
geometry as before. Once again, the difficulty when compared to [74] is that ˛� is not
strictly positive, and so the "–regularity theorem for harmonic maps cannot be applied.
Our strategy, as above, is to find transverse slices.

We first need a slight refinement of [23, Proposition 1], which will allow us to control
the Reeb field „. First we recall some definitions. For a subset A in a 2n–dimensional
length space P, and for � < 1, let m.�;A/ be the infimum of those M for which A
can be covered by Mr2�2n balls of radius r for all �6 r < 1.

For x 2 B and r; ı > 0 a holomorphic map �W B.x; r/!Cn is called an .r; ı/–chart
centered at x if

� �.x/D 0,

� � is a homeomorphism onto its image,

� for all x0; x00 2 B.x; r/ we have jd.x0; x00/� d.�.x0/; �.x00//j6 ı ,

� for some fixed p > 2n, we have k��.!/�!EuckLp 6 ı .

With these definitions, we need the following slight modification of [23, Proposition 1].

Proposition 4.16 Given M and c there are �.M/, �.M; c/, ı.M; c/ > 0 with the
following effect. Suppose that 1�I.B/< ı and W �B is a subset with m.�;W /<M
such that for any x 2B nW there is a .c�; ı/–chart centered at x . There is a constant C,
depending only on the dimension, such that:

(1) There is a holomorphic map F W B.p; �/!Cn which is a homeomorphism to
its image, jrF j< C, and the image of F lies between 0:9�B2n and 1:1�B2n.

(2) There is a local Kähler potential ' for ! on B.p; �/ with j'j��2 < C.

(3) The slices fzn D lg\C�1�B2n are transverse to the Reeb field for jl j<C�1� .

The way this proposition is used is that under the assumptions we can use F to think
of ! as a metric on the Euclidean ball 0:9�B2n, and because of the gradient bound
for F we have !Euc <C1! . The new statement is (3), which will essentially follow if
we can show that j„j!Euc is not too small near the origin. In fact we will show that
given any � > 0, the � and ı in the proposition can be chosen so that there exists a
point q 2 ��B2n at which F�.!/ < 2!Euc .
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In order to prove this claim, we recall briefly the proof of [23, Proposition 1]. For this,
let �.W; s/ � B denote the set of points in B at a distance greater than s from W

and from the boundary of B . One part of the proof of the proposition is to produce an
embedding 'W �.W; r/!B2n, for which k'�.!/�!EuckLp 6 z� , j'�.J /�JEucj6 z�
and d.x; '.x//6 z� , where r; z� > 0 can be chosen a priori, and d denotes the distance
function realizing the Gromov–Hausdorff distance from B to B2n. In addition ! is
the curvature of a metric on the trivial bundle on B , and ' can be lifted to a bundle
map from the trivial bundle on B to the trivial bundle on B2n, which almost identifies
the corresponding connections (see [23, Proposition 4]).

The holomorphic function F is now obtained by taking the holomorphic functions
1; z1; : : : ; zn on B2n, and applying suitable cutoff functions to obtain approximately
holomorphic functions (sections of the trivial bundle) �; �1; : : : ; �n over B , vanishing
on �.W; r/, and near @B . Using the Hörmander L2–estimate these can be projected
to holomorphic sections s; s1; : : : ; sn (globally on our cone X ), and si=s give the
components of F . The result of [23, Proposition 1] is then obtained by choosing the
parameters in the cutoff functions in a suitable way.

In order to obtain (3), we just note that given � > 0 we simply need to choose r
much smaller than �� , so that we can find some q 2 ��B , which is contained in a
definite ball Bq disjoint from �.W; 2r/, say. If z� above is sufficiently small, then
on this ball Bq the geometry of ! will be almost identical in an Lp–sense to the
Euclidean geometry. In particular the holomorphic function F will be very close to the
identity map on 1

2
Bq . There will then exist a point q0 2 1

2
Bq at which F�.!/ < 2!Euc .

Note that „ gives a holomorphic vector field on 0:9�B2n, and it has bounded length
with respect to the Euclidean metric. In particular on 0:8�B2n the derivatives of the
components of „ are bounded. On the other hand we know that we can choose a point q0

very close to the origin, where j„j!Euc >
1
4

. Rotating coordinates, we can assume that
the @=@zn component of „ is nonzero inside C�12 �B2n. This implies our claim (3).

Given this result, the rest of the argument is quite similar to that in [74]. We give the re-
quired modifications of the proofs. The following is analogous to [74, Proposition 16].

Proposition 4.17 Given M, suppose that the ball B satisfies the hypotheses of
Proposition 4.16 for some c > 0. There are A; � > 0, depending on M, such that ifZ

B

˛� ^!n�1 < �;

then ˛� <A�! on 1
3
C2.K/

�1�B , with �D �.M/ and C2.K/ from Proposition 4.16.
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Proof The assumption implies thatZ
0:9�B2n

˛� ^!n�1Euc < C1�;

for some C1 . We argue similarly to the proof of Proposition 4.14. There is a slice
Ul D fzn D lg\C2.K/

�1�B2n, with jl j< 1
2
K�1�B2n on which we haveZ

Ul

˛� ^!n�1Euc < C3�:

The "–regularity implies that if � is sufficiently small, then on a slightly smaller set
we have ˛� < C4!Euc < C

0
4! . The flow of the Reeb field preserves ˛�, and acts on !

by a controlled scaling factor, so we obtain the required estimate on a ball of a definite
size, 1

3
C2.K/

�1�B2n.

For any ball B.q; r/� B we define

V.q; r/D r2�2n
Z
B.q;r/

˛� ^!n�1:

We have the following.

Proposition 4.18 There are ı; " > 0 depending on K satisfying the following: if
1� I.B/ < ı and

sup
B.q;r/�B

V.q; r/ < ";

then ˛� 6 4! on 1
2
B .

Proof The proof follows the argument of [74, Proposition 17], together with the idea
we used in the proof of Proposition 4.11 to make use of the vector field „.

There is one other time when the strict positivity of ˛ is used in [74], namely in the
proof of [74, Proposition 19] where the "–regularity is used again. In the present
setting the same argument can be used, just like in the proof of Proposition 4.17. The
remainder of the proof of Proposition 4.10 is identical to the argument in [74].

4.4 Polynomial growth holomorphic functions

In this section we assume that we have a Kähler cone .C.L/; !/, which has nonnegative
Ricci curvature, and is noncollapsed (ie we have a lower bound on the volume of L).
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In addition we assume that there is a constant "0 > 0 with the following property:
for every x 2 L there is a holomorphic function f on C.L/ such that f .0/ D 0,
kf kL2 D 1, and jf .x/j2 > "0 . Here the L2–norm is with respect to the weight e�

1
2
r2

as before. This extra property holds for any family of solutions of (4-1) with data
moving in a bounded family by using the results of the previous section on having
good tangent cones. Our goal is to show that up to replacing "0 by a smaller constant,
we can take f to have polynomial growth with controlled degree. More precisely we
have the following.

Proposition 4.19 There are constants D; "1 > 0, depending on "0 and the lower
bound on the volume of L, such that the following holds: if x 2 L, then there is a
holomorphic function f on C.Y / with f .0/D 0, kf kL2 D 1, jf .x/j2 > "1 , and in
addition jf j DO.rD/.

Proof First let us write H for the space of L2 holomorphic functions on C.L/, which
we can decompose into weight spaces under the torus action

HD
M
�2t�

H�;

where infinite convergent sums are allowed. In addition we have the Reeb field � 2 t.

As we mentioned above, we already have an f with the required properties, except for
the growth condition. To restate our goal, we are trying to construct an f 0 that also
satisfies the growth condition, which is equivalent to

f 2
M
�¤0
h�;�i<D

H�:

Lemma 4.21 shows that we have a constant C such that

#
�
C \f� 2 t� W h�; �i 2 .w� 1;w�g

�
< C5w

for all w > 1. Note that this estimate is far from optimal, but it is enough for our
purposes here.

Suppose that we have f such that f .0/D 0, jf .x/j2 > "0 and kf kL2 D 1. We write

f D

1X
wD1

NwX
iD1

fw;i ;

where each fw;i is in a weight space H� with h�; �i 2 .w�1;w�. We have Nw <C5w.
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From Lemma 4.20 we have that on L

jfw;i j
2wŠ

2w
< Ckfw;ik

2
L2
;

and so for any D > 0 we haveˇ̌̌̌ 1X
wDD

NwX
iD1

fw;i

ˇ̌̌̌2
6
� 1X
wDD

NwX
iD1

2w

wŠ

�� 1X
wDD

NwX
iD1

jfw;i j
2wŠ

2w

�

6 Ckf k2
L2

1X
wDD

10w

wŠ
:

Since the series on the right converges, and jf .x/j2 > "0 , we can choose D large
enough that at x we have ˇ̌̌̌ DX

wD1

NwX
iD1

fw;i

ˇ̌̌̌2
> 1
2
"0:

We can then let

f 0 D

DX
wD1

NwX
iD1

fw;i ;

and f 0kf 0k�1
L2

will satisfy the required properties.

Lemma 4.20 Suppose that f 2H� , and let w D dh�; �ie. Then we have

jf j2 <
2wCkf k2

L2

wŠ
on L:

Proof Assume kf kL2 D 1. We have (with dimensional factors cn)

1D kf k2
L2

> cnkf k
2
L2.L/

Z 1
1

r2wC2n�3e�
1
2
r2 dr

> c0n2
w.wCn� 2/Škf k2

L2.L/
:

The L2–norm on the link gives a C 0–estimate on the half-ball around the cone vertex,
and then using the assumed growth rate on f we obtain a C 0–estimate on the link L:

sup
L

jf j2 <
2wC

.wCn�2/Š
:

We have also used the following simple estimate on the dimension of the space of
holomorphic functions of polynomial growth.
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Lemma 4.21 For an integer w > 1, let us write Hw for the space of holomorphic
functions satisfying the growth condition jf j DO.rw/ as r!1. We then have

dimHw < C5w :

Proof This follows a standard argument using the previous lemma. Let ff1; : : : ; fN g
be an L2–orthonormal basis for Hw , and define the function B by

B.x/D

NX
iD1

jfi .x/j
2e�

1
2
r2 :

The previous lemma implies that

B 6 2wC

wŠ
maxf1; r2wg;

and so Z
C.L/

B!n 6 C5w :

On the other hand, by definition the integral of B is the dimension of Hw .

4.5 Synthesis

Let us recall where we stand. Suppose we have a sequence of cone Kähler metrics !tk
on .X; t�1

k
�k/, with radial functions rk , satisfying the equations

Ric.!tk /D
1� tk

tk
˛�k;

and tk! T , �k! � and ˛k! ˛ . In addition the sequence .X; !tk / converges in the
Gromov–Hausdorff sense to .Z; dZ/. Our work so far leads to the following “partial
C 0–estimate”.

Proposition 4.22 There exists a constant D > 0 depending only on the noncollaps-
ing constant, the dimension and a bound for the geometry of .�k; ˛k/ such that
if ff .k/1 ; : : : ; f

.k/
N g denotes an L2–orthonormal basis of R<D.X/, then the map

Fk W X ! CN whose components are given by the f .k/i gives an embedding of X.
Furthermore, there is a uniform constant C such that

C�1 < jFkj< C and C�1F �k !Euc < !tk

on the set
˚
1
2
< rk < 2

	
.
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Proof In Sections 4.2 and 4.3 we have shown that the iterated tangent cones in suitable
Gromov–Hausdorff limits are good, and so the arguments of Donaldson–Sun [40] show
that the assumptions of Proposition 4.19 apply: for each x 2 L, we can find a holo-
morphic function f on X with polynomial growth of bounded degree, unit L2–norm
on L, and jf .x/j2 > "1 for a fixed number "1 (independent of k ). Increasing D if
necessary, we can assume that Fk gives an embedding (note that X is fixed, only
the metric is changing). It then follows directly that C�1 < jFkj on L, while the
bound on the growth rate implies that the same estimate (with different C ) also
holds on the annulus 1

2
< r < 2. A uniform bound jFkj < C and derivative bound

jrFkj!tk < C on the annulus follows by using Moser iteration, and this implies the
estimate C�1F �

k
!Euc < !tk .

Arguing as in Donaldson–Sun [41, Section 2] we can deduce the convergence of the
affine varieties

Fk.X/! Y

where Y is a normal, Q–Gorenstein affine variety with Reeb vector field � , and
furthermore Y is homeomorphic to Z . In order to finish the proof of Theorem 4.7 it
suffices to prove the last statement regarding convergence to a weak solution of the
twisted equation, after possibly passing to a further subsequence.

Consider the pushed-forward forms .Fk/�˛�. We would like to take a weak limit
of these forms. As a first step we prove the volume is bounded below. Suppose
that ˛ D 1

2

p
�1@@r2 is a cone metric, with transverse form ˛� D

p
�1@@ log r .

Recall [71] we have the form � WD
p
�1.@�@/ log r . In terms of � we have ˛� D 1

2
d�,

and ˛ D 1
2
d.r2�/. Then we compute

˛� ^˛n�1 D 21�n.n� 1/r2n�3 dr ^ �^ .d�/n�1:

Writing everything on the cone we getZ
fr61g

˛� ^˛n�1 D 21�n.n� 1/

Z 1

0

r2n�3 dr

Z
rD1

�^ .d�/n�1

D cn Vol.L; �/ > 0;

where Vol.L; �/ is the volume of the link, which is a topological invariant depending
only on the Reeb field. Furthermore, if ! is another metric compatible with � , with
radial function zr , then we can write r D e zr for a function  which is independent
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of r , and L� D 0. Then it is easy to check thatZ
fzr61g

˛� ^!n�1 D cn Vol.L; �/:

Now suppose we have sequence of maps Fk W X ! CN as above and consider the
closed positive currents

.Fk/�˛
�
^ ŒFk.X/�:

Let A WD fp 2 CN W M�1 < jpj < M g for some constant M > 0. Let A0 WD
F�1
k
.A\Fk.X//. Suppose that � is a smooth positive .n�1; n�1/–form with compact

support in A. Then we haveZ
CN
.Fk/�˛

�
^ ŒFk.X/�^ � D

Z
A0
˛� ^F �k �:

We can find a constant C1 such that on A we have � 6C1!n�1Euc as .n�1; n�1/–forms.
Furthermore, by the properties of Fk we have

F �k !Euc < C!k

on A0, where !k is our metric, and the partial C 0–estimate implies that˚
1
2
< rtk < 2

	
� A0 � fr < C 0g

for some constant C 0, provided M is sufficiently large. The above discussion implies
a uniform upper bound Z

A0
˛� ^F �k � < C;

with the constant C depending only on the form � . It follows that .Fk/�˛� ^ ŒFk.X/�
converges weakly to a closed positive current ˇ� on Y D limk Fk.X/.

By arguing as in [31] we can show that Y admits a weak solution !T of the equation

Ric.!T /D
1�T

T
ˇ� :

Note that the proof of this result in [31] is essentially local, working in neighborhoods
of points p in the limit Y where the complex structure of Y is smooth, and where in
terms of the metric structure we have a tangent cone of the form Cn or Cn�1 �C .
On this set we have good local coordinates, and so we can study the limiting equation,
while at the same time the complement of this set has Hausdorff codimension greater
than 2, and therefore it can be ignored in terms of writing down weak solutions of the
twisted equation, as in [31, Remark 4]. This completes the proof of Theorem 4.7.
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5 Proof of the main result

In this section we prove one direction of Theorem 1.1. Recall that we have a normalized
Fano cone singularity .X; �/ together with the action of a torus T, whose Lie algebra
contains � . We assume that .X; �/ is T–equivariantly K–stable, and our goal is to
show that .X; �/ admits a Ricci flat Kähler cone metric. The proof naturally splits
into two cases depending on whether .X; �/ is quasiregular, or irregular. We will first
focus on the former, and then we will deal with irregular � by approximating it with a
sequence of quasiregular Reeb fields.

5.1 The quasiregular case

Suppose that .X; �/ is quasiregular. We first fix a T–invariant transverse Kähler
metric ˛�, using an embedding X!CN by a collection of (nonconstant) holomorphic
functions just as in (3-7). We can then solve the continuity method (2-2) up to some
time T 6 1.

According to Theorem 4.7 there is a number D, depending on the bound on the geometry
of the twisting form ˛� and on the pair .X; �/ through the noncollapsing condition,
such that using orthonormal bases of holomorphic functions with growth rates less
than D we obtain embeddings Fk W X ! CN such that Fk.X/! Y with a normal
limit space Y . In addition we have convergence of twisting forms .Fk/�˛� ! ˇ� and
the limit Y admits a weak solution of the twisted equation

Ric.!T /D
1�T

T
ˇ� :

In order to apply the results from Section 3 we need to make sure that ˛� can be written
as an integral over currents of integration (with respect to a positive measure) over
suitable hypersurfaces. The problem with ˛� defined as in (3-7) is that it does not use
all the functions in R<D.X/ and so in the integral expression (3-8) we are not using a
positive measure on P. To fix this, we will modify ˛� slightly by adding small terms
corresponding to the remaining functions in R<D.X/, and so that the new transverse
metric still has the same bound on its geometry. In particular the above discussion still
holds with the same constant D. Let us write ˛� D

p
�1@@ log yR , and we will call the

perturbed radial function yr .

Consider the decomposition

R<D.X/DR1˚ � � �˚Rm˚RmC1˚ � � �˚Rk
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into weight spaces of T, where ˛� is defined as in (3-7) using bases of Ri for i 6m.
Suppose that � acts on the functions in Ri with weight ai as before, and recall that
we chose M so that M=ai 2 Z for i 6m. We also choose K so that K=ai 2 Z for
all i , and then for ı > 0 we define a new radial function yr by

yr2K D

� mX
iD1

� NiX
jD1

jz
.i/
j j

2

�M=ai�K=M
C ı

kX
iDmC1

� NiX
jD1

jz
.i/
j j

2

�K=ai

D yRK C ı

kX
iDmC1

� NiX
jD1

jz
.i/
j j

2

�K=ai
:

Here the z.i/j form a basis for Ri . As ı! 0, we recover the original radial function yR ,
and so for sufficiently small ı the transverse metric

p
�1@@ log yr has the same bounded

geometry as
p
�1@@ log yR , but at the same time the methods of Section 3, in particular

Proposition 3.8, can be applied.

At this point we are in essentially the same setup as in [31, Section 3.1], and can follow
the argument there closely. We have a sequence �k 2GL.N /T such that Fk D �k ıF1 .
For simplicity of notation let us write F1.X/DX and .F1/�.˛� /D ˛�. Then in the
notation of Section 3, on X we have

(5-1) ˛� D
�

M

Z
PnF

ŒV�� d�;

where F is a hyperplane in the projective space P and each V� is a hypersurface in X.
Similarly to [31, Lemma 14] we can choose a subsequence of the �k such that �k.V�/
converges for all �. Let us define

�1.V�/D lim
k!1

�k.V�/:

Generalizing Definition 3.2, for any .1; 1/–current on Y we let gY;�;� denote the
holomorphic vector fields on Y commuting with � such that ��� D 0. Then as
in [31, Lemma 15] we have:

Lemma 5.1 We can find �1; : : : ; �d , for some d , such that

gY;�;ˇ� D

d\
iD1

gY;�;Œ�1.V�i /�:

The proof is the same as in [31], except instead of the Fubini–Study volume form we
use e�

1
2
yr2!n, where ! D 1

2

p
�1@@yr2 as usual.
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By Lemma 5.1 and Proposition 3.3 we can choose hypersurfaces V 01; : : : ; V
0
d

in P nF

such that the automorphism group of the .dC1/–tuple .Y; �1.V 01/; : : : ; �1.V
0
d
// is

reductive, by Proposition 3.3. Since Y may be contained in a hyperplane, the stabilizer
of this .dC1/–tuple in the multigraded Hilbert scheme, under the action of GL.N /T,
may contain extra factors of GL.ki / for suitable ki , but this product is still reductive.
At this point, we can use the Luna slice theorem (see [62] and also [39; 23]) to find a
C�–subgroup �.t/� GL.N /T with �.S1/� U.N/T, and an element g 2 GL.N /T

such that

.Y; �1.V
0
1/; : : : ; �1.V

0
d //D lim

t!0
�.t/g � .X; V 01; : : : ; V

0
d /:

More generally, enlarging F by a set of measure zero, if V1; : : : ; VK are hypersurfaces
in P nF , then the stabilizer of the .1CdCK/–tuple

.Y; �1.V
0
i /; �1.Vj //iD1;:::;d;jD1;:::;K

is unchanged, so the Luna slice theorem provides a corresponding C�–subgroup �.t/
and element g . These will satisfy

Y D lim
t!0

�.t/g �X and �1.Vi /D lim
t!0

�.t/g �Vi :

Note that we do not necessarily have ˇ�D limt!0 �.t/g �˛
�, and that the one-parameter

subgroup �.t/ and g may depend on the choice of V1; : : : ; VK . Note also that the vector
field w on Y induced by the C�–subgroup � will stabilize �1.V 0i / for 1 6 i 6 d ,
and hence by Lemma 5.1 we have w 2 gY;�;ˇ� .

It is important to choose V1; : : : ; VK above correctly, and we will discuss how this is
done shortly, but for the time being, let us assume we have a C�–subgroup � generated
by a vector field w commuting with � . Let �w denote the transverse Hamiltonian with
respect to the radial function yr . We will assume that �w is normalized so thatZ

Y

�we
� 1
2
yr2!n D 0;

and write kwk D supY j�w j. Note that any two choices of norm are equivalent on the
finite-dimensional space of holomorphic vector fields on Y commuting with � . In
addition we cannot have �w D 0 on Y , unless � already acts trivially on X. To see
this note that � induces a filtration on the coordinate ring of X, and the coordinate
ring of Y is the associated graded ring, with the action � on Y being induced by the
corresponding grading. If this grading is trivial, then the original filtration must have
been trivial.
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As in [31], the idea is to use Proposition 3.10 to estimate the twisted Futaki invariant
of the test configuration �.t/ for g �X. In order to apply Proposition 3.10 we must
ensure that our hypersurfaces avoid the set E , which is a union two hyperplanes in P.
On the other hand, if no N C 1 of our hypersurfaces V1; : : : ; VK are on a hyperplane
in P, then at most 2N of them can be contained in E . So once we choose K very
large compared to N, then we get a good approximation to the twisted Futaki invariant
by replacing g �˛� by the average of g � ŒVi �.

We now describe how to choose the V1; : : : ; VK . For simplicity of notation we will
suppose that g is the identity. From (5-1) we have that on Y

ˇ� D
�

M

Z
PnF

Œ�1.V�/� d�:

In addition, since .Y; �; .1� T /ˇ� / admits a weak solution of the twisted equation,
from Proposition 3.4 we have

FutY;�;.1�T /ˇ� .w/D 0

for all w 2 gY;�;ˇ� . By the formula for the twisted Futaki invariant in Proposition 3.7
this means that

FutY;�.w/� cn
1�T

V

Z
Y

�we
� 1
2
yr2ˇ� ^!n�1 D 0;

and so if we define the function hW P nF !R to be

hw.�/D
�

M

Z
�1.V�/

�we
� 1
2
yr2!n�1;

then we have
FutY;�.w/D cn

1�T

V

Z
PnF

hw.�/ d�:

Since the possible w form a finite-dimensional space, for any " > 0 we can choose
a large K0 with the following effect: for any K > K0 we can find hypersurfaces
V1; : : : ; VK , with no N C 1 on a hyperplane in P, such that

(5-2) FutY;�.w/6 "kwkC cn
1�T

V
�
1

K

KX
iD1

�

M

Z
�1.Vi /

�we
� 1
2
yr2!n�1:

To see this more precisely, we choose a basis w1; : : : ; wk for gY;�;ˇ� , and then using
Lusin’s theorem applied to each hwi we can find a compact set B � P nF with arbi-
trarily small complement, on which each hwi is continuous. We can then approximate
the integrals on B using Riemann sums over discrete finite sets.
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Assume T < 1. There is a constant ı > 0 such thatZ
Y

.max
Y
�w � �w/e

� 1
2
yr2!n > ıkwk;

since the left-hand side is a norm on the finite-dimensional vector space gY;�;ˇ� .
Choose 0 < " < 4�1c.n/.1�T /ı , where c.n/ is the constant from Proposition 3.10.
Take K sufficiently large as above and such that K > 2N"�1. Using the hypersurfaces
V1; : : : ; VK we now find � as discussed before (and for simplicity assume g is the
identity). It follows that �1.Vi /D limt!0 �.t/ �Vi .

We now use Proposition 3.10, which implies that in the sum in (5-2), for all but 2N of
the integrals we have

�

M

Z
�1.Vi /

�we
� 1
2
yr2!n�1 D�c.n/

Z
Y

max
Y
�we

� 1
2
yr2!n:

From our choice of K we have

(5-3) FutY;�.w/6 2"kwk� c.n/
1�T

V

Z
Y

max
Y
�we

� 1
2
yr2!n

6 �c.n/1
2
.1�T /max

Y
�w :

This is a contradiction if .X; �/ is K–stable.

If T D 1, then .Y; �/ admits a weak Ricci flat metric, and then as in [31] or Donaldson–
Sun [41, Section 3.3], we obtain a test configuration for .X; �/ with vanishing Futaki
invariant.

5.2 The irregular case

Suppose now that .X; �/ is irregular, and let �k ! � be a sequence of normalized
quasiregular Reeb fields approximating � . Let ˛�

k
! ˛� be a sequence of compatible

transverse Kähler metrics, obtained by restricting suitable reference forms under an
embedding X !CM. Note that we may not be able to choose the ˛�

k
to be exactly of

the form considered in the previous section. On the other hand it is easy to show in
a way identical to the argument in [73] that if .X; �; .1� t /˛� / admits a solution of
the twisted equation, then so does .X; �; .1� t /z̨� / for any z̨� in the same transverse
cohomology class as ˛�.

For each k we obtain a Tk < 1 such that we can solve

Ric.!.k/t /D 2n.1� t /Œ˛�k �!
.k/;�
t �
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on .X; �k/ for t 2 Œ0; Tk/. Note that if we choose � to be the Reeb field with minimal
volume, then necessarily Tk < 1, since each .X; �k/ will be strictly unstable if �k ¤ � .
Indeed by [65] the Reeb field with minimal volume is unique and a Sasaki–Einstein
metric can exist only for that Reeb field.

Proposition 5.2 If .X; �/ is K–stable, then Tk! 1 as k!1.

Proof Let us suppose that lim supTk < 1. From (5-3), for each k we obtain a vector
field wk , inducing a test configuration for X with central fiber Yk , such that

(5-4) FutYk ;�k .wk/6 �ımax
Yk

�wk ;

for some ı > 0. Applying Theorem 4.7 to a diagonal sequence, we can assume that
Yk! Y , and moreover that Y is normal.

Our goal is to show that for sufficiently large k we have

FutYk ;�.wk/ < 0;

since this will contradict the K–stability of .X; �/. Recall that we have normalized
each �wk to have zero integral on Yk . It is worth pointing out that the background
metrics on CN are also varying with k , and so the transverse Hamiltonians are all
computed with different metrics, but these background metrics also converge as k!1
to a metric for the limiting Reeb field � . In addition, as discussed in Remark 3.9, the
normalization of wk and maxYk �wk only depends on the induced action on Yk , and
not for instance on the background metric used to compute the Hamiltonians.

By (3-5) the Futaki invariant is

FutYk ;�k .wk/D�

R
Yk
�wke

� 1
2
yr2
k dVkR

Yk
e�

1
2
yr2
k dVk

;

where dVk is the canonical volume form on Yk . Note that these can be scaled so that
they converge to the canonical volume form on Y . In addition if we scale each wk so
that oscYk �wk D 1, then we can extract a limit �w on Y , corresponding to a vector
field w . Note that w may not be defined on all of CN if Y is contained in a hyperplane,
since in this case our scaling might make some of the weights of wk become unbounded.
However we must still have oscY �w D 1.
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From our normalization this implies a positive lower bound for maxY �w and hence a
uniform positive lower bound for maxYk �wk . From (5-4) we obtain

FutYk ;�k .wk/6 �ı0:

Now the required result follows, since both FutYk ;�k .wk/ and FutYk ;�.wk/ converge
to FutY;�.w/, which we have just seen must be negative.

We can now choose metrics !.k/tk on .X; �k/, satisfying

Ric.!.k/tk /D 2n.1� tk/Œ˛
�
k �!

.k/;�
tk

�;

with tk D Tk � k
�1. We can apply the same arguments as above to the sequence

.X; !.k/tk /, to obtain a normal limit space Y , which admits a weak Ricci flat metric,
since tk!1. As before, we can then realize Y as the central fiber of a test configuration
for X, contradicting the assumption that .X; �/ is K–stable, unless Y Š X. But if
Y ŠX, then we have obtained the desired Ricci flat Kähler cone metric on X.

6 The algebraic Futaki invariant

In this section we collect some results of a more algebraic nature. First we will consider
the normalization (or gauge fixing) condition for a Fano cone singularity .X;T ; �/, and
show that normalized Reeb fields � form a linear subspace of the Lie algebra of T. We
then discuss the relation between the algebro-geometric definition of the Futaki invariant
in Definition 2.2 and the differential geometric definition in (3-5). The analogous result
in the smooth projective case was shown by Donaldson [38, Proposition 2.2.2], using
the equivariant Riemann–Roch formula. Here our approach is more algebraic in order
to avoid having to resolve possible singularities.

6.1 The gauge fixing condition

We begin with a lemma alluded to in Section 2.

Lemma 6.1 Suppose .X;T ; �/ is Q–Gorenstein with an isolated singularity at the
origin. Suppose � 2 �.X;mKX / is a nonvanishing section with L�� D i�� for
some � 2R. Then X has log-terminal singularities at 0 if and only if � > 0.
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Proof Define a volume form dV D in
2

.�^�/1=m. By [43, Lemma 6.4] it suffices
to determine conditions for dV to have finite volume in a neighborhood of 0. Let r
be a radial function for � . Using the flow by �J � , we can writeZ

f2�k6r<2�.k�1/g

dV D e��k log2
Z˚

1
2

6r<1
	 dV

and so we get Z
f0<r<1g

dV D

1X
kD0

e��k log2
�

Z˚
1
2

6r<1
	 dV;

which proves the lemma.

Note that the proof implies slightly more. Namely, that if .X;T ; �/ is a normal, Q–
Gorenstein, with � as above, then X is log terminal if and only if � > 0, and X is
log terminal at all points away from the origin.

Suppose we have an n–dimensional polarized affine variety .X;T ; �/ which is a Fano
cone singularity, so X is normal Q–Gorenstein with log-terminal singularities. In
addition suppose that m 2 N is minimal such that mKX is trivial. Let R be the
coordinate ring of X, which is an integral domain since X is a variety. Furthermore,
since X has log-terminal singularities, it is known that R is Cohen–Macaulay. When X
is Gorenstein with an isolated singularity at the cone point, Martelli–Sparks–Yau [65]
showed the existence of a T–equivariant trivialization of KX . Their argument applies
verbatim to the singular, Q–Gorenstein case. We include the short proof for the reader’s
convenience.

Lemma 6.2 There exists a unique, up to scale, nonvanishing section �2�.X;mKX /,
and a unique linear function `W CR ! R>0 with the property that, for any Reeb
field � 2 CR , we have

L��D `.�/�:

In particular, for any c > 0 the set f� 2 CR W `.�/D cg defines an affine hyperplane in t

intersecting CR in a set of codimension 1.

Proof Fix a nonvanishing section �2�.X;mKX /, and � 2 CR . Since mKX is trivial
we have

L��D k.z/�
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for some holomorphic function k.z/ on X. We decompose k.z/ into its graded pieces
according to the grading defined by � :

k.z/D
X
˛2t�

k˛.z/:

This decomposition converges in L2loc and therefore also locally uniformly. Indeed, we
can restrict k to the link of X, and consider its weight decomposition in L2 for the
torus action.

Since X has log-terminal singularities, we can assume that k0 2R>0 . We project to
the degree-zero part to conclude. Explicitly, define

f .z/D
X

˛2t�nf0g

1

˛.�/
k˛.z/;

and then z� WD e�f .z/� satisfies our requirements. The last two claims are clear from
the linearity of the projection and the positivity of k0 . The uniqueness follows from the
fact that � induces a positive grading, and hence the only homogeneous, holomorphic,
nonvanishing holomorphic functions on X are constant.

The above discussion makes it possible to introduce the gauge fixing condition, as in
Martelli–Sparks–Yau [65].

Definition 6.3 We say � 2 CR satisfies the gauge fixing condition (or is normalized) if

L��D inm�;

where � is as in Lemma 6.2.

An important point for us is that the gauge fixing condition can in fact be read off from
the index character. This is implicit in the work of Martelli–Sparks–Yau [65] when X
is Gorenstein with an isolated log-terminal singularity. We now extend this to the case
of general Q–Gorenstein affine varieties with log-terminal singularities. To this end, fix
a trivializing section � 2 �.X;mKX / and suppose that L��D i�� for some � > 0.
Then we have an isomorphism of graded R–modules

(6-1) R.��/' �.X;mKX /

by the map f 7!f �. The index character of the ring R , denoted by FR.�; t/, expands
as a Laurent series

FR.�; t/D
a0.�/.n� 1/Š

tn
C
a1.�/.n� 2/Š

tn�1
CO.t2�n/:
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We have the following.

Proposition 6.4 In the above setting, the coefficients a0.�/ and a1.�/ satisfy

a1.�/

a0.�/
D
�.n� 1/

2m
:

In particular, the set f� 2 CR W 2a1.�/D n.n� 1/a0.�/g is an affine subset of CR with
codimension 1 which agrees with the normalized Reeb fields.

Proof The proof is essentially a computation in commutative algebra. Recall that a
Q–Gorenstein ring R with log-terminal singularities is Cohen–Macaulay. The main
tool in the proof is a duality equation due to Stanley [72], Corollary 4.4.6 of [18], which
says that if R is a Cohen–Macaulay, positively graded C–algebra of dimension n with
canonical module �R , then the Hilbert series satisfies

H�R.s/D .�1/
nHR.s

�1/

as rational functions, or in terms of the index character we have

(6-2) F�R.t/D .�1/
nFR.�t /:

Roughly speaking this is a form of Serre duality. Let us first explain the proof in
the easier case that R is Gorenstein, so that mD 1. Then the isomorphism in (6-1)
becomes

R.��/'�R;

and so, in particular, F�R.t/D e
��tFR.t/. Combining this with (6-2) gives

FR.t/D .�1/
ne�tFR.�t /:

In terms of the index character this implies

a0.n� 1/Š

tn
C
a1.n� 2/Š

tn�1
D .1C�t/

�
a0.n� 1/Š

tn
�
a1.n� 2/Š

tn�1

�
CO.t2�n/:

Comparing coefficients we get that

2a1.n� 2/ŠD �a0.n� 1/Š;

which proves the proposition in the Gorenstein case.

We now consider the case when X is Q–Gorenstein. Since the coordinate ring R is a
Cohen–Macaulay integral domain, [18, Proposition 3.3.18] says that there is a homoge-
neous ideal I �R such that �R ' I as R–modules. In the current case, X is normal
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and affine, so the canonical sheaf is given by KX D i�KU , where i W U DXreg ,!X

and KU is the canonical sheaf of U. Then

�R D �.X;KX /

as R–modules. Thanks to the fact that X is Q–Gorenstein we have

I .m/ 'R � � 'R.��/;

where � is the trivializing section of �.X;mKX /, and I .m/ denotes the mth symbolic
power of I. Since I is a reflexive R–module of rank one, the symbolic power may be
defined as

I .m/ D .

m times‚ …„ ƒ
I ˝R � � � ˝R I /

��
D .I˝m/��;

where if M is an R–module, then M �DHomR.M;R/ denotes the dual. Geometrically,
we have an exact sequence of sheaves on X,

0! K!K˝mX ! .K˝mX /��!Q! 0:

Since KX is reflexive and locally free on Xreg , the sheaves K and Q are supported
on a subvariety of codimension at least 2. By Serre’s criterion for affineness, we have
H 1.X;F/D 0 for any coherent sheaf F . In particular, by taking global sections, using
[50, Proposition 5.2] we get an exact sequence of graded R–modules,

0!K WD �.X;K/! I˝m! I .m/!Q WD �.X;Q/! 0:

On the level of Hilbert series this implies that

HI .m/.s/DHI˝m.s/CHQ.s/�HK.s/:

Since Q and K are supported in codimension 2, their associated index characters
satisfy

FQ.t/DO.t
2�n/ and FK.t/DO.t

2�n/:

We now consider the index character (or Hilbert series) of I˝m. We need the following
lemma.

Lemma 6.5 Suppose that M and N are graded R–modules, with M free in codimen-
sion 1. Then

FM˝RN .t/D
FM .t/FN .t/

FR.t/
CO.t2�n/:
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Proof Let us take a free resolution of N, ie a complex

0!Ek!Ek�1! � � � !E0! 0

whose only cohomology is H 0 DN. Tensoring with M we obtain a complex

0!M ˝R Ek! � � � !M ˝R E0! 0;

whose cohomology is H i DTorRi .M;N /. It is easy to check that the alternating sum of
index characters of a complex is the same as the alternating sum of the index characters
of its cohomology; ie we have

kX
iD0

.�1/iFM˝REi .t/D

kX
iD0

.�1/iFTorR
i
.M;N/.t/:

Since M is free in codimension 1, we have that TorRi .M;N / is supported in codimen-
sion 2 for i > 0; ie its index character is of order t2�n. It follows that

FM˝RN .t/D

kX
iD0

.�1/i
FM .t/FEi .t/

FR.t/
CO.t2�n/

D
FM .t/

FR.t/

kX
iD0

.�1/iFEi .t/CO.t
2�n/

D
FM .t/FN .t/

FR.t/
CO.t2�n/:

From this lemma a simple induction gives

FI˝m.t/D
F�R.t/

m

FR.t/m�1
CO.t2�n/:

As remarked earlier, the Q–Gorenstein assumption implies that I .m/ 'R.��/, so

(6-3) e�t�FR.t/D
F�R.t/

m

FR.t/m�1
CO.t2�n/:

Expanding this equation to order t1�n we obtain, as required,

a1

a0
D
�.n� 1/

2m
:

6.2 The Futaki invariant

Suppose that .X; �/ is a normalized Fano cone singularity and we have a test config-
uration � for X with central fiber Y . Recall that � gives a C�–action on Y generated
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by a vector field w . We have given two versions of the Futaki invariant of this test
configuration. One was purely algebraic in terms of the weights of the action � on
the coordinate ring of Y , in Definition 2.2. As discussed below that definition, for
small s we can consider the Reeb field �C sw on Y , and we can normalize the test
configuration (ie modify the vector field w by adding a multiple of � ) in such a way that

a1.Y; �C sw/

a0.Y; �C sw/
D
n.n� 1/

2
:

Under this normalization the Futaki invariant is given by

(6-4) Fut.Y; �; w/D 1
2
Dwa0.Y; �/:

At the same time, from Proposition 6.4 we see that this normalization is equivalent to
requiring Lw dV D 0, where dV is the canonical volume form on Y . The differential
geometric definition of the Futaki invariant in that case is given in (3-6) by

(6-5) FutY;�.w/D
1

V

Z
Y

�we
� 1
2
r2!n;

where !D 1
2

p
�1@@r2 is a suitable reference metric with Reeb field � , the function �w

is the transverse Hamiltonian of w and V is the volume of .Y; �/. To relate this to the
algebraic definition we have the following two results.

Proposition 6.6 Suppose X � CN is a polarized affine variety with Reeb field �
which has weights wi on the coordinates zi ; ie � is the imaginary part of

2

NX
iD1

wizi
@

@zi
:

Let

yr2 D

NX
iD1

jzi j
2=wi ;

and ! D 1
2

p
�1@@yr2. We have

(6-6) a0.n� 1/ŠD
1

.2�/n

Z
X

e�
1
2
yr2 !

n

nŠ
;

where a0 is defined by the index character

F.�; t/D
a0.n� 1/Š

tn
CO.t�nC1/:

Proof We can choose a generic C�–action �.t/ commuting with � , and degenerate X
to Y D limt!0 �.t/ �X. This will not affect the integral in (6-6), since the integral
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over �.t/ �X is the same as the integral over X using a different metric. The volume,
however, is a function of just the Reeb field. At the same time the index character is
also unchanged in passing to the limit since Y is a flat limit.

For a generic C�–action the top-dimensional part of Y is a union of n–dimensional
coordinate subspaces with multiplicity. The leading term in the index character will
be the sum of the corresponding terms for these subspaces, with multiplicity, and the
limiting integral on Y is also given by a corresponding sum. As such, we only need to
check the formula on Cn for a given Reeb field. But both the index character and the
integral is multiplicative when taking products of varieties, so it is enough to do the
calculation for C , with a Reeb field

� D Im
�
wz

@

@z

�
;

with corresponding radial function yr2 D jzj2=w. The metric is then

! D
i

2
�
1

w2
jzj2=w�2 dz ^ d Nz;

so a calculation gives Z
C
e�

1
2
yr2! D

2�

w
:

At the same time the index character is
1X
kD0

e�tkw D
1

1�e�tw
D

1

tw
CO.1/;

from which the result follows.

We also have the following formula for the variation of the volume as we vary the Reeb
field.

Proposition 6.7 Suppose that we consider a variation ı� D w of the Reeb field. The
corresponding variation in the volume

V.�/D

Z
X

e�
1
2
r2 !

n

nŠ
is given by

ıV .�/D n

Z
X

�we
� 1
2
r2 !

n

nŠ
:

Proof This was shown by Martelli–Sparks–Yau [65]; see also Donaldson–Sun [41].
In comparing these formulas recall that by our convention �� D �1. The result and
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its proof are valid even if X is not normal, interpreting the integral as just a sum of
integrals on the n–dimensional components of X, with multiplicity.

Using these results we can now compare the definitions (6-4) and (6-5) to see that the
two Futaki invariants agree up to a dimensional constant, obtaining the following.

Proposition 6.8 We have FutX;�.w/ D c.n/Fut.X; �; �/ in terms of Definition 2.2,
where � is the C�–action generated by w , and c.n/ > 0 is a dimensional constant.

7 K–stability of affine varieties with Ricci flat Kähler cone
metrics

The main theorem of this section is:

Theorem 7.1 Suppose that .X; �/ admits a Ricci flat Kähler cone metric. Then .X; �/
is K–stable.

The idea of the proof follows work of Berman [6], and goes as follows. First, we will
show that the Ding functional is convex along (sub)geodesics. Geodesics in the space
of Sasakian metrics have been studied by Guan–Zhang [49], but we will need a slightly
different formulation than the one given there. Since the Ricci flat Kähler cone metric
is a critical point of the Ding functional, the strict convexity along geodesics means
that along a (sub)geodesic 's emanating from a Sasaki–Einstein potential 'SE we have

d

ds
D.'s/> 0

and the limit slope lims!1.d=ds/D.'s/ exists in Œ0;1�. Furthermore, a result
of Berndtsson [10] says that the limit must be strictly positive unless the geodesic
was generated by a real holomorphic vector field (see [41] for the generalization of
Berndtsson’s result to our setting). Next, we show that any special degeneration gives
rise to a (sub)geodesic, and we show that the limit slope is precisely the Futaki invariant.

Let .X; �/ be a polarized cone, which we assume is Q–Gorenstein and log terminal.
Recall that we have defined the Ding functional

D.'/D�E.'/� 1

2n
log

Z
X

e�
1
2
r2' dV;

where dV D .�^�/1=mwith � a T–equivariant trivialization of mKX , r W X!RC is
a radial function compatible with � , and r'De'r , where ' is basic and independent of r .
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As before, the function E is defined by its variation

ıE.'/D
1

V.�/

Z
X

P'e�
1
2
r2' !n' :

Our goal is to compute the second variation of E.'s/. For our computation, we will
assume that 's is a smooth variation. Dropping the V.�/ term for convenience an easy
computation shows that

�
d

ds
E.'/D

1

2n

Z
X

P'r2'e
� 1
2
r2' !n' D

1

2n

Z
X

1
2
Pr2'e
� 1
2
r2' !n' :

Let us suppress the dependence on ' to ease notation. Then we have

(7-1) �2nC2n d
2

ds2
E D

Z
X

�
Rr2� 1

2
. Pr2/2

�
e�

1
2
r2.
p
�1@@r2/n

Cn

Z
X

Pr2e�
1
2
r2
p
�1@@ Pr2 ^ .

p
�1@@r2/n�1:

Let us manipulate the last term. Integrating by parts gives

n

Z
X

Pr2e�
1
2
r2
p
�1@@ Pr2 ^ .

p
�1@@r2/n�1

D�n

Z
X

e�
1
2
r2
p
�1@ Pr2 ^ @ Pr2 ^ .

p
�1@@r2/n�1

C
n

2

Z
X

Pr2e�
1
2
r2
p
�1@r2 ^ @ Pr2 ^ .

p
�1@@r2/n�1:

We focus now on the second term of this expression. Integration by parts gives

n

2

Z
X

Pr2e�
1
2
r2
p
�1@r2 ^ @ Pr2 ^ .

p
�1@@r2/n�1

D
n

2

Z
X

Pr2e�
1
2
r2
p
�1 @ Pr2 ^ @r2 ^ .

p
�1@@r2/n�1

�
n

4

Z
X

. Pr2/2e�
1
2
r2
p
�1 @r2 ^ @r2 ^ .

p
�1@@r2/n�1

C
n

2

Z
X

. Pr2/2e�
1
2
r2
p
�1 @@r2 ^ .

p
�1@@r2/n�1

D�
n

2

Z
X

Pr2e�
1
2
r2
p
�1@r2 ^ @ Pr2 ^ .

p
�1@@r2/n�1

C
n

4

Z
X

. Pr2/2e�
1
2
r2
p
�1@r2 ^ @r2 ^ .

p
�1@@r2/n�1

�
n

2

Z
X

. Pr2/2e�
1
2
r2.
p
�1@@r2/n:
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Thus, we get

n

2

Z
X

Pr2e�
1
2
r2
p
�1@r2 ^ @ Pr2 ^ .

p
�1@@r2/n�1

D
n

8

Z
X

. Pr2/2e�
1
2
r2
p
�1@r2^@r2^.

p
�1@@r2/n�1�

n

4

Z
X

. Pr2/2e�
1
2
r2.
p
�1@@r2/n:

Now, since !� D
p
�1@@ log r2 satisfies .!� /n D 0, a direct computation shows that

@r2 ^ @r2 ^ .
p
�1@@r2/n�1 D

r2

n
.
p
�1@@r2/n:

From this observation, an easy computation shows that

n

8

Z
X

. Pr2/2e�
1
2
r2
p
�1@r2^@r2^.

p
�1@@r2/n�1 D

1

8

Z
X

. Pr2/2e�
1
2
r2r2.

p
�1@@r2/n

D
nC2

4

Z
X

. Pr2/2e�
1
2
r2.
p
�1@@r2/n;

and hence

n

2

Z
X

Pr2e�
1
2
r2
p
�1@r2 ^ @ Pr2 ^ .

p
�1@@r2/n�1 D

1

2

Z
X

. Pr2/2e�
1
2
r2.
p
�1@@r2/n:

Plugging this back into the (7-1) we get

�2nC2n
d2

ds2
E D

Z
X

e�
1
2
r2 Œ Rr2

p
�1@@r2�n

p
�1@ Pr2 ^ @ Pr2�^ .

p
�1@@r2/n�1:

A geodesic is a path f'sg along which the function E is affine. In particular, we can
write the geodesic equation as

Œ Rr2
p
�1@@r2�n

p
�1@ Pr2 ^ @ Pr2�^ .

p
�1@@r2/n�1 D 0:

We will also make use of subgeodesics, along which the functional E is concave; that
is, paths 's satisfying

Œ Rr2
p
�1@@r2�n

p
�1@ Pr2 ^ @ Pr2�^ .

p
�1@@r2/n�1 > 0:

Another standard computation shows that if we introduce a holomorphic coordinate �
with j� j D e�s, then the (sub)geodesic equation can be written as

.
p
�1DDr2/nC1 D 0;

where now D and D denote the @ and @ operators in the variables � and z jointly.
In particular, a subgeodesic is nothing but a family of radial functions r.z; �/W X!RC ,
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all compatible with � , and such that
p
�1DDr2 > 0. Furthermore, the above descrip-

tion of the geodesic equation makes it clear that we can produce (weak) geodesics using
the standard techniques of envelopes and subsolutions, but we will not need this here.

In order to obtain the convexity of the Ding functional, we also need the convexity of
the second term in its definition. Berndtsson’s theorem [10] gives this and even more;
we refer the reader to [41] for an extension of Berndtsson’s theorem to our setting.

Proposition 7.2 Let r.x; �/W X ���!R>0 be a path of radial functions compatible
with � , and S1–invariant. Suppose that

p
�1DDr > 0, and that D.rs/ is affine

(s D � log j� j). Then there exists a holomorphic vector field „ on X, commuting
with � and r@r , such that rs D F �s r.x; 0/, where

Fs D exp.s Re.„//:

We now explain how a special degeneration gives rise to a subgeodesic. Let T �Aut.X/
be a torus containing � . Recall that a special degeneration consists of an embedding
X ! CN, which we may assume is not contained in a linear subspace, such that
T � Aut.X/ acts linearly and diagonally through an embedding T � U.N/, together
with a one-parameter subgroup �W C� ! GL.N /T commuting with T such that
�.S1/� U.N/ and Y D limt!0 �.t/ �X is normal. We may package this as an affine
scheme Y �CN �C , together with a C�–equivariant projection

� W Y!C;

where the C�–action is by �; we will usually restrict our attention to ��1.�/, where �
is the closed unit disk. Abusing notation, we will also denote this by Y . By definition
� 2 u.N / induces a Reeb vector field on CN, and hence we may find r0W CN !RC ,
a U.N/–invariant radial function compatible with � . Let p1W CN �C! CN, and
consider p�1 r0W C

N �C!RC . The C�–action allows us to identify Y� WD ��1.��/
with X ���, and hence p�1 r0 induces a radial function r.�/ compatible with � on
each fiber of X���. By the U.N/–invariance of r0 , the function r.�/ is S1–invariant,
and since the map X ���! Y� is holomorphic we have

p
�1DDr.�/> 0:

We can therefore write

r.�/D r0e
 .j� j/:
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Let ' be any potential of a radial function on X. By taking A and C large and " small
we define

ˆ.z; �/Dˆ.z; j� j/ WD

(
emax"

˚
'.z/CA log j� j;  .z; j� j/�C

	
if j� j> 1

2
;

 .z; j� j/�C if j� j6 1
2
;

where emax" is the regularized maximum [34, Section 5.E]. A few words are in order
about how to choose A and C. First, we choose C�1 large enough that  .z; �/�C <
'.z/� 100 on X � f1g. Next we choose A large enough that

'.z/CA log j� j6  .z; j� j/�C � 100

for all 1
2
< j� j < 3

4
, and finally choose 0 < " � 1. Clearly A and C exist since

' and  .�/ are smooth on X, and uniformly bounded for � in any compact subset
of ��. By our choices and the properties of the regularized maximum we obtain that
for every � 2 ��, rˆ WD reˆ.�/ defines a smooth radial function on X compatible
with � , and furthermore, reˆ.�/ is plurisubharmonic on X ���. In particular, ˆ.�/
defines a subgeodesic emanating from ' .

We now compute the limit slope of the Ding functional along ˆ.�/. Note that ˆ.�/
for j� j< 1

2
depends only on r0 and the test configuration, and not on the initial data.

Since we are computing the limit

lim
s!1

d

ds
D.ˆ.e�s//;

we can assume that in fact ˆ.�/D  .�/. Before proceeding, we need a preliminary
lemma.

Lemma 7.3 The total space of the special degeneration Y is a polarized cone. In partic-
ular, it is Q–Gorenstein, with log-terminal singularities, and admits a Reeb vector field.

Proof That Y is Q–Gorenstein and log terminal follow from the fact that Y is flat
over C and every fiber is normal, Q–Gorenstein with log-terminal singularities. We
only need to show that Y has a Reeb vector field. Let � be the generator of the
C�–action defining the test configuration. By definition � acts on the coordinate t
on C with weight one, and commutes with � . Hence for s sufficiently small, �C s�
is a Reeb vector field for Y .

Let T 0 be the torus in Aut.Y/ containing T, and � the generator of the C�–action
defining the special degeneration. It follows from Lemma 6.2 that we can choose y�
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a T 0–equivariant trivializing section of mKY so that �.@=@�/˝m y� is a T–equivariant
trivialization � of mKXt for all t 2C , where Xt D ��1.t/. By the uniqueness part
of Lemma 6.2 we must have

.��1.�//��D c.�/�.@=@�/˝m
y�;

where c.�/ is a nonvanishing holomorphic function, constant on the fibers. In particular,
on the level of volume forms we have

.��1.�//� dV D jyc.�/j2=m dVX� WD jc.�/j
2=m.�.@=@�/˝m

y�^ �.@=@�/˝m
y�/:

We now compute the limit slope of the Ding functional. As explained above, it suffices
to compute the limit slope of D.rs/, where s D � log j� j, and rs D �.e�s/�p�1 r0 .
Recall that

D.rs/D�E.rs/�
1

2n
log

Z
X

e�
1
2
r2s dV:

Let us first focus on the E term. By definition we have

�
d

ds
E.rs/D�

1

V.�/

Z
X

d

ds
log
�
rs

r0

�
e�

1
2
r2s !ns :

We now use the biholomorphism �.e�s/ to push the integral forward to Xe�s . Note

�.e�s/�
d

ds
log �.e

�s/� r0
r0

D���;

where �� is the Hamiltonian function, with respect to r0 , of the real part of the
holomorphic vector field generating the action of � on CN. Thus we have

�
d

ds
E.rs/D

1

V.�/

Z
Xe�s

��e
� 1
2
r2!n:

Since Y is flat over C , the current of integration ŒXe�s � converges to ŒX0� weakly and
we obtain

lim
s!1

�
d

ds
E.rs/D

1

V.�/

Z
X0

��e
� 1
2
r2!n;

which is justified by the weak convergence since ��e�
1
2
r2!n is a smooth .n; n/–form

defined on the ambient space CN.

We now compute the contribution of the second term. Specifically, we are computing

�
d

ds

1

2n
log

Z
X

e�
1
2
r2s dV D

1

2n

R
X r

2
s
d
ds

log
�
rs
r

�
e�

1
2
r2s dVR

X e
� 1
2
r2s dV

:
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Pulling this back to X� and using that .��1.�//� dV D jc.�/j2=m dVX� we get

�
d

ds

1

2n
log

Z
X

e�
1
2
r2s dV D�

1

2n

R
X�
r2��e

� 1
2
r2 dV�R

X�
e�

1
2
r2 dV�

:

Since L� dV� D 2n
p
�1 dV� and �� is basic we obtainZ
X�

r2��e
� 1
2
r2 dV� D 2n

Z
X�

��e
� 1
2
r2 dV� :

Putting everything together we have

�
d

ds

1

2n
log

Z
X

e�
1
2
r2s dV D�

R
X�
��e
� 1
2
r2 dV�R

X�
e�

1
2
r2 dV�

:

Now, by definition y� is a nonvanishing, holomorphic section of mKY , which is in
particular smooth on Yreg . Thanks to the fact that X0D ��1.0/ is reduced and normal,
Hartogs’s theorem implies that

�.@=@�/˝m
y�j�D0 D c0�0;

where �0 is the unique (up to scale) T 0–equivariant trivialization of mKX0 , and c0 is
a nonzero constant. In particular, it follows that

dV� ! jc0j
2=m.�0 ^�0/

1=m

smoothly on X0;reg . Furthermore, by the log-terminal assumption, X�;sing and X0;sing

have zero volume with respect to dV� and dV0 respectively. Finally, since �� and r
are smooth functions on CN, flatness implies

lim
�!0

R
X�
��e
� 1
2
r2 dV�R

X�
e�

1
2
r2 dV�

D

R
X0
��e
� 1
2
r2 dV0R

X0
e�

1
2
r2 dV0

:

Putting everything together we get

lim
s!1

d

ds
D.rs/D

Z
X0

��e
� 1
2
r2!n�

R
X0
��e
� 1
2
r2 dVR

X0
e�

1
2
r2 dV

:

By Proposition 6.8 this is (up to a positive constant c.n/), the algebraic Futaki invariant
of the test configuration .Y; �/. From the convexity of the Ding functional we conclude

Fut.Y; �; �/> 0:
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If Fut.Y; �; �/ D 0, then we must have that .d=ds/D.rs/ D 0 identically, and then
Berndtsson’s theorem implies that rs D F �s r0 on X, where

Fs D exp.sV /

and V is the real part holomorphic vector field on X commuting with � . Consider the
map

� WD �.�/ ıF�1� W X ��
�
! Y�;

and let �� D �. � ; �/ for � 2��. By definition we have ��� r0 D r0 , and .�� /� � D � .
Since r0 is the potential for a Kähler cone metric on CN compatible with � , this
implies that for any compact set K � X, the image �

�
K �

�
1
2
� n f0g

��
is compact

in Y . By Riemann’s extension theorem � extends to a map

�W X ��! Y

which is an isomorphism away from � D 0. The same argument applied to ��1 shows
that �W X ��! Y is an isomorphism, and so Y is a trivial test configuration. This
completes the proof of Theorem 7.1.

8 Examples and applications

In this section we check K–stability for a family of hypersurfaces of dimension 3
admitting a 2–torus action. Rational hypersurface singularities in C4 admitting a C�–
action were classified by Yau–Yu [83]. In the terminology of the Yau–Yu classification,
we will study the links of types I–III admitting a T2–action. For this section we will
describe a holomorphic vector field in terms of its S1–action by specifying the weights;
in particular, a vector .a1; a2; a3; a4/ should be understood to act on C2

.z1;z2;z3;z4/
by

acting on zi with weight ai . With this notation, the main theorem of this section is:

Theorem 8.1 The following affine varieties admit conical Ricci flat Kähler metrics
with respect to the given Reeb field:

(I) The Brieskorn–Pham singularity

ZBP.p; q/ WD fuvC z
p
Cwq D 0g �C4

.u;v;z;w/;

� D
3

2.pCq/
.pq; pq; 2q; 2p/;

if 2p > q and 2q > p . Topologically, the link is #m.S2 � S3/, where m D
gcd.p; q/� 1 and #0.S2 �S3/D S5.
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(II) The Yau–Yu singularities of type II

ZII.p; q/ WD fuvC z
p
C zwq D 0g �C4

.u;v;z;w/;

� D
3

2.qCp�1/
.qp; qp; 2q; 2.p� 1//;

provided 3.p�1/ > .qCp�1/ and 2qpC1 > p2Cq . Topologically, the link
is #m.S2 �S3/, where mD gcd.p� 1; q/.

(III) The Yau–Yu singularities of type III

ZIII.p; q/ WD fuvC z
pwC zwq D 0g �C4

.u;v;z;w/;

� D
3

2.pC q� 2/
.pq� 1; pq� 1; 2.q� 1/; 2.p� 1//;

provided 3.p�1/2.q�1/ > .pCq�2/.pq�2pC1/ and 3.q�1/2.p�1/ >
.p C q � 2/.pq � 2q C 1/. Topologically, the link is #m.S2 � S3/, where
mD gcd.p� 1; q� 1/C 1.

In particular, there exists

� one infinite family of inequivalent Sasaki–Einstein metrics on S5,
� two distinct infinite families of inequivalent Sasaki–Einstein metrics on S2 �S3,
� three distinct families of inequivalent Sasaki–Einstein metrics on #m.S2 �S3/

for any m> 2.

The proof of this theorem will occupy the remainder of this section. We use the theory of
polyhedral divisors. The original paper in this area is the work of Altmann–Hausen [1],
and there is a nice survey by Altmann–Ilten–Petersen–Süß [2]. For applications of this
theory to K–stability of Fano manifolds, see Ilten–Süß [52].

8.1 The Brieskorn–Pham singularities

We begin with the Brieskorn–Pham (BP) singularities, denoted by ZBP.p; q/ above,
which appear as type I singularities in the Yau–Yu classification. In order to avoid
the trivial cases, we will assume that maxfp; qg> 2. Let gcd.p; q/Dm, and choose
relatively prime integers a; b 2 Z such that

a
q

m
� b

p

m
D 1:

The affine variety admits a 2–torus action, which is generated by the C�–actions
with weights .1;�1; 0; 0/, and .0; pq=m; q=m; p=m/ on .u; v; z; w/, respectively.
Let t denote the Lie algebra of the compact torus, equipped with a basis fe1; e2g
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corresponding to the above actions. The Reeb cone inside of t is given by

CR D f.x; y/ WD xe1Cye2 j x > 0 and xpq�ym > 0g:

A simple symmetry argument shows that the Reeb field minimizing the volume of the
link is a multiple of .2; pq/, which corresponds to the C�–action .pq; pq; 2q; 2p/. Let
F W Z2!Z4 be the inclusion of the algebra t into the Lie algebra of the diagonal torus
acting on C4, equipped with the standard basis. With these choices, F is represented
by the matrix

F D

2664
0 1

pq=m �1

q=m 0

p=m 0

3775 :
Let P W Z4! Z2 be the orthogonal projection to the cokernel of F . We have

P D

�
0 0 �p=m q=m

1 1 �p 0

�
:

So we have an exact sequence

0! Z2 F!Z4 P!Z2! 0:

We choose a splitting sW Z4! Z2 such that s ıF D 1,

s D

�
0 0 a �b

1 0 0 0

�
:

In the language of [1], the tail cone is given by

� WD s.F.Q2/\Q4
>0/D cone

��
1

0

�
;

�
1

pq=m

��
:

It is straightforward to check that � D CR is the closure of the Reeb cone. The 2–torus
action on C4 induces a fibration of C4 over a surface whose fibers are noncompact
toric surfaces. Using the techniques of [1] we can describe this fibration in terms of com-
binatorial data called a p–divisor. Roughly speaking, a p–divisor is a finite formal sum
of divisors on the base of the fibration, with coefficients being noncompact polytopes
corresponding to the noncompact toric varieties comprising the fibers. We refer the
reader to [1; 2] for a thorough discussion and introduction to these techniques. We first
compute the base of the fibration, which is given by the fan †Y with maximal cones

cone
��
0

1

�
;

�
�1

�m

��
; cone

��
1

0

�
;

�
�1

�m

��
; cone

��
0

1

�
;

�
1

0

��
;
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which is the fan corresponding to the projective space P2
Œ1W1Wm�

. The rays of this fan
are the columns of P. The p–divisor is then a formal finite sumX

��˝D�;

where D� is a divisor on P2
Œ1W1Wm�

and �� is a convex polytope with tail cone � . For
the case at hand we have

�.1;0/ D

�
�
bm

q
; 0

�
C �; �.�1;�m/ D

�
am

p
; 0

�
C �; �.0;1/ D f0g � Œ0; 1�C �;

where �� D s.P�1.�/ \Q4
>0/. This restricts to define a p–divisor on the curve

C WDfXmCY mCZD0g�P2
Œ1W1Wm�

, which is precisely the base of the induced fibration
of ZBP . This curve intersects the divisor Z D 0 at m points, so the polytope �.0;1/
will appear m times. Let �_ denote the dual of the tail cone as a subset of t_ , the
dual of the Lie algebra. In this case �_ is described explicitly by

�_ D cone
��
0

1

�
;

�
pq=m

�1

��
:

For each p–divisor �� we get a function ‰W �_!R defined by

‰�.w/D min
u2��
hw; ui;

where h � ; � i denotes the natural pairing between t and t_. In our case we get

‰.1;0/.s; t/D�
bm

q
s; ‰.�1;�m/.s; t/D

am

p
s; ‰.0;1/.s; t/Dminft; 0g;

where again ‰.0;1/ is repeated m times. If am=p is an integer then we obtain
an equivalent p–divisor by replacing ‰.�1;�m/ by zero, and replacing ‰.1;0/ by
.am=p� bm=q/s . This new p–divisor only has two distinct polytopes, and so from
the description of T–equivariant test configurations with normal central fiber due to
Ilten–Süß [52] we see that there are at most two nontrivial test configurations. The
same applies when bm=q is an integer. When neither is an integer, then both ‰.1;0/
and ‰.0;1/ have nonintegral slope, and so again from [52, Proposition 4.2] we obtain
at most two nontrivial test configurations. These can be obtained from the methods
of [52], but here we can simply guess the test configurations. They are

X1 D fuvC .t � z/pCwq D 0g and X2 D fuvC zpC .t �w/q D 0g:
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We will compute the Futaki invariant for X1 , the other case being identical. The special
fiber of X1 is

Z0 WD Spec CŒu; v; z; w�
uvCwq

;

which is polarized by the Reeb vector field .pq; pq; 2q; 2p/. Since ZBP.p; q/ is
a hypersurface, it is straightforward to check (see eg [65]) that .ZBP.p; q/; �/ is
normalized Fano if

� D
3

2.pCq/
.pq; pq; 2q; 2p/:

On the central fiber there is a new C�–action corresponding to the one-parameter
subgroup induced by �D .0; 0; 1; 0/. The index character for the Reeb field � � s�
can be computed directly since the special fiber is a hypersurface (and in particular,
a complete intersection) — see [28, Proposition 4.11] — though one can equally use
Macaulay2 [48] to compute the multigraded Hilbert series. If �D 3=.2.pC q//, then

F.� � s�; t/D
1� e�2pq�t

.1� e�pq�t /2.1� e�.2q��s/t /.1� e�2p�t /

D
1

�2p2q.2q�� s/t3
C

2p�C 2q�� s

2�2p2q.2q�� s/t2
CO.t�1/:

From this we read off

a0.� � s�/D
1

2�2p2q.2q�� s/
;

�
a1

a0

�
.� � s�/D �.2pC 2q/� s

and so

D�a0.�/D�
1

2�2p2q.2q�/2
; D�

�
a1

a0

�
.�/D 1:

By definition, the Futaki invariant is

Fut.X1; �/D 1
2
a0.�/D�

�
a1

a0

�
.�/C 1

2
D�a0.�/

D
1
2
a0.�/

�
1�

1

2q�

�
D

1
2
a0.�/

�
2q�p

3q

�
;

which is positive if and only if 2q > p . Similarly for the other test configuration
the condition is 2p > q , and so we obtain that .ZBP.p; q/; �/ is K–stable, and hence
admits a conical Ricci flat Kähler metric if and only if

2p > q and 2q > p;
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which is precisely the Lichnerowicz obstruction discovered by Gauntlett–Martelli–
Sparks–Yau [46]. In dimension 5 there is standard machinery for computing the
topology of links of isolated hypersurface singularities; see [14] for a complete de-
scription. In particular, it is straightforward to compute that the link of Z.p; q/ is
topologically #gcd.p;q/�1

.S2�S3/. In particular, whenever gcd.p; q/D1 with 2p>q
and 2q > p , we obtain a Sasaki–Einstein metric on S5. Furthermore, as a function
of p and q , the (unnormalized) volume of .ZBP.p; q/; �/ is given by

a0.�/D
2.pC q/3

27p2q2
;

and hence infinitely many of these metrics are inequivalent. For example, fix a positive
integer m and let p > 2. Then the affine varieties ZBP.pm; .p� 1/m/ are K–stable,
and the link is topologically #m.S2 �S3/. Furthermore, the volume is given by

Vol.ZBP.pm; .p� 1/m/; �/D
2.2p� 1/3

27mp2.p� 1/2
;

which is a strictly decreasing function as p!1. By taking a sequence of primes going
to infinity we obtain the existence of infinite families of inequivalent, nontoric Sasaki–
Einstein metrics on #m.S2�S3/ for any m>0 (where mD0 means S5 ). Furthermore,
we note that ZBP.2; 3/ is also K–stable, confirming the result of Li–Sun [61] that
the A2 singularity admits a Ricci flat cone metric.

8.2 The Yau–Yu singularities of type II

One can apply similar techniques to treat the Yau–Yu links of types II and III. We
mention these applications briefly. Consider the family of hypersurface singularities
described by ZII.p; q/, which admits a 2–torus generated by the C�–actions with
weights .0; pq; q; p � 1/ and .1;�1; 0; 0/. An easy symmetry argument shows that
the normalized Reeb field minimizing the volume is given by

� D
3

2.qCp� 1/
.qp; qp; 2q; 2.p� 1//; Vol.ZII.p; q/; �/D

2.pC q� 1/3

27pq2.p� 1/
:

By similar techniques used for the Brieskorn–Pham links one can show that there are
only two T–equivariant test configurations. The first of these test configurations is

X1 WD fuvC zpC z.t �w/q D 0g;
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which is induced by the C�–action with weights .0; 0; 0; 1/. A straightforward compu-
tation using the index character yields

Fut.X1; �/ > 0 ()
3.p� 1/

.qCp� 1/
> 1:

The second test configuration is more interesting and given by

X2 WD fuvC tpqwpCwzq D 0g;

which is induced by the C�–action with weights .0; 0; q;�1/. Computing the Futaki
invariant yields

Fut.X2; �/ > 0 () 2qpC 1 > p2C q:

Note, in particular, that this obstruction is strictly stronger than the Lichnerowicz. For
example, the affine variety ZII.6; 3/ is not obstructed by the Lichnerowicz bound, but
is destabilized by the test configuration X2 . Topologically, the link of ZII.p; q/ is
#gcd.p�1;q/

.S2 �S3/. If p > 2 is a prime number then one can easily check that

ZII.m.p� 1/C 1;mp/

is K–stable, and hence generates a Sasaki–Einstein metric on #m.S2 � S3/ with
volume

Vol.ZII.m.p� 1/C 1;mp/; �/D
2.2p� 1/3

27p2.p� 1/.m.p� 1/C 1/
:

Taking a sequence of primes going to 1 yields a second infinite sequence of distinct
Sasaki–Einstein metrics on #m.S2 �S3/ for any m> 1.

8.3 The Yau–Yu links of type III

Finally, a similar analysis works for the Yau–Yu links of type III, given by

ZIII.p; q/D fuvC z
pwC zwq D 0g �C4

.u;v;z;w/;

each of which has a 2–torus action generated by the C�–actions whose weights are
.0; .pq� 1/; .q� 1/; .p� 1// and .1;�1; 0; 0/. The critical Reeb field is then

� D
3

2.pCq�2/
.pq� 1; pq� 1; 2.q� 1/; 2.p� 1//:

There are two nontrivial T–equivariant test configurations generated by the C�–actions
with weights .0; 0;�1; p/ and .0; 0; q;�1/. Computing the Futaki invariants as above
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we find that the link of ZIII.p; q/ admits a Sasaki–Einstein metric if and only if

3.p� 1/2.q� 1/ > .pC q� 2/.pq� 2pC 1/;

3.q� 1/2.p� 1/ > .pC q� 2/.pq� 2qC 1/:

If we let mD gcd.p� 1; q� 1/C 1, then using [14, Chapter 9] one can check that the
link of ZIII.p; q/ is topologically #m.S2 �S3/. As before, we obtain a third infinite
family of distinct Sasaki–Einstein metrics on #m.S2�S3/ for any m2N with m> 2.

9 Further discussion

The results contained in this paper motivate the following picture, which is the Sasakian
analog of the general picture described in [75]. Fix a polarized affine variety .X;T ; �/
of dimension n, where � 2 t is normalized, and has minimal volume. We try to find
a Ricci flat Kähler cone metric compatible with � by deforming along the method of
continuity. If .X; �/ is K–stable, then we succeed. If not, then the method of continuity
breaks at some time T1 6 1, and we get a test configuration with central fiber a normal,
polarized affine variety .Y1;T1; �/, where T1 is the torus generated by T and the
vector field w1 giving the test configuration. In particular dim T1 D dim T C 1, but it
is possible that Y1 ŠX if the torus T that we started with was not maximal.

The test configuration is destabilizing, and so by the discussion in Section 2, if w1 is
normalized, then we have

Dw1a0.Y1; �/6 0;

with strict inequality if Y1 Š X. We can now repeat the volume minimization
for .Y1;T1; �/ to obtain a new Reeb field �1 . We expect that it will be possible to restart
the method of continuity with the data .Y1;T1; �1/. Assuming that the results here
carry over to the case of nonisolated singularities, we can repeat the above process to get

X ! Y1! � � � ! Yk WD Y;

where the final .Y; �k/ is K–stable, since after finitely many steps we must reach a
toric variety. Once the variety is toric, then it is automatically K–stable, after volume
minimization, since there are no nontrivial toric test configurations with normal central
fiber. Note that it was previously shown by Futaki–Ono–Wang [44] that toric Fano cone
singularities with an isolated singularity admit Ricci flat cone metrics, and we expect
the same to hold when there are singularities away from the cone point. It then follows
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that given any .X;T ; �/, it should be possible to deform X to a K–stable affine variety
.Y;T 0; � 0/ by at most n� 1 test configurations.

It is natural to wonder whether this process can be made canonical and it seems
reasonable to expect that the K–stable variety .Y; �k/ is canonically associated to .X; �/.
In view of the discussion in Donaldson–Sun [41, Section 3.3] and the example of Hein–
Naber mentioned there, we expect that the Ricci flat cone metric on .Y; �k/ is the
metric tangent cone at the vertex of any Ricci flat Kähler metric on a neighborhood of
the vertex on X.

One can also ask for a more algebraic description of each Yi in the sequence above,
and for this at each step it would be necessary to distinguish one particular destabilizing
test configuration. Motivated by conformal field theory (see [29]) the natural way to
choose between any two destabilizing test configurations with central fibers Y1 and Y2
is to compare their volumes, after volume minimization. That is, we repeat the volume
minimization on Yi and get new polarized affine varieties .Y1; �1/ and .Y2; �2/. We
choose Y1 over Y2 if

Vol.Y1; �1/ > Vol.Y2; �2/;

and vice versa, where the volume can be computed algebraically from the index
character. When equality occurs, it may be that either Y1 Š Y2 or there is a test
configuration taking .Y1; �1/ to .Y2; �2/ or vice versa. These statements are confirmed
to some extent by example calculations, but so far there is still little evidence for them.

In a less speculative vein there are many interesting questions regarding the existence
of Sasaki–Einstein metrics on various manifolds. From Cho–Futaki–Ono [25] we know
that #m.S2�S3/ admits infinitely many irregular Sasaki–Einstein metrics for m> 1,
and we have shown that S5 admits infinitely many quasiregular Sasaki–Einstein metrics.
It is natural to ask therefore:

Question 9.1 Does there exist an irregular Sasaki–Einstein metric on S5? More
generally can we classify all Sasaki–Einstein metrics on S5 with an isometric 2–torus
action?

The combinatorial description of T–varieties should help with this classification, as
long as one develops a method for reading off the topology of the link from the p–
divisor (see the work [60] in this direction). A more thorough study should also lead to
higher-dimensional existence results, in particular on odd-dimensional spheres. We
expect the following.
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Conjecture 9.2 There are infinitely many families of Sasaki–Einstein metrics on
S2nC1 for all n.

The same question can be asked for exotic spheres which bound parallelizable manifolds,
and the existence of Sasaki–Einstein metrics on these was conjectured by Boyer–Galicki–
Kollár [15]. This conjecture was verified up to dimension 15 by Boyer–Galicki–Kollár–
Thomas [16].
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