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Orbifolds of n–dimensional defect TQFTs
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We introduce the notion of n–dimensional topological quantum field theory (TQFT)
with defects as a symmetric monoidal functor on decorated stratified bordisms of
dimension n . The familiar closed or open–closed TQFTs are special cases of defect
TQFTs, and for nD 2 and nD 3 our general definition recovers what had previously
been studied in the literature.

Our main construction is that of “generalised orbifolds” for any n–dimensional
defect TQFT: Given a defect TQFT Z , one obtains a new TQFT ZA by decorating
the Poincaré duals of triangulated bordisms with certain algebraic data A and then
evaluating with Z . The orbifold datum A is constrained by demanding invariance
under n–dimensional Pachner moves. This procedure generalises both state sum
models and gauging of finite symmetry groups for any n . After developing the
general theory, we focus on the case nD 3 .
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1 Introduction

Topological quantum field theory (TQFT) interrelates topology, higher categories and
mathematical physics, with prominent ties also to algebra and geometry. In recent years
the subject has enjoyed further attention via the study of 1–categories and topological
phases of matter.
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The simplest “closed” case of a TQFT is a symmetric monoidal functor Bordn!Vectk
for some positive integer n, where Bordn has closed smooth oriented .n�1/–dimen-
sional manifolds as objects and diffeomorphism classes of bordisms as morphisms. To
work towards classification results, to gain structural insight into their inner workings
and interrelations, and to address questions in neighbouring fields such as knot theory
or theoretical physics, it is desirable to enrich the basic notion of closed TQFTs. Two
natural directions to do so are to “extend” and to add “defects”.

Extended TQFTs in n dimensions are higher functors on higher bordism categories
that involve n– and .n�1/–dimensional manifolds as in Bordn , but also manifolds
with corners of lower dimension. Accordingly, for an extended TQFT also a higher
symmetric monoidal target category has to be specified. On the other hand, the
idea behind defect TQFTs ZW Borddef

n .D/! Vectk is to concentrate all the enriched
structure into the source category Borddef

n .D/ while staying within the realm of ordinary
symmetric monoidal 1–categories. As will be explained in detail in Section 2, objects
and morphisms in Borddef

n .D/ are .n�1/–dimensional oriented manifolds and their
n–dimensional bordism classes, respectively, which come with a decomposition (or
stratification) into j –dimensional submanifolds (or j –strata) for all j 2 f0; 1; : : : ; ng.
Furthermore, all strata are decorated by “defect data” from a given collection D.
These decorated strata can be thought of as “extended physical observables”, of which
boundary conditions are familiar special cases. One may argue that this approach is
closer to the original motivation to axiomatise structures from physics, laying emphasis
on the combinatorics of defect conditions. An n–category may then subsequently be
extracted from the functor Z as an algebraic invariant (this has been worked out in detail
for n 2 f1; 2; 3g; see Davydov, Kong and Runkel [19] and Carqueville, Meusburger
and Schaumann [11]).

Defects can be used to describe symmetries of a closed n–dimensional TQFT Zcl :
Given a representation � of a finite group G on Zcl , it may be possible to find a family
f�.g/gg2G of .n�1/–dimensional defects whose “fusion” reproduces the product
in G. The “superposition” AG D

L
g2G �.g/ together with coherently chosen lower-

dimensional defects (such a choice may be obstructed and is typically not unique) can
be used to construct the G–orbifold theory ZGcl . This is done by “averaging” over the
symmetry — a procedure implemented by evaluating Z on a network of AG –defects
Poincaré dual to a triangulation of the bordisms. One should think of AG and its
lower-dimensional defects as an algebraic structure encoding the symmetry G and the
necessary extra information needed to orbifold, or, in other words, gauge, that symmetry.
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In 2 dimensions this is well understood, with the algebraic structure of AG turning
out to be that of a �–separable symmetric Frobenius algebra; see Fuchs, Runkel and
Schweigert [23] and Carqueville and Runkel [13]. More recently G–crossed fusion
categories have been studied in connection with G–actions on 3–dimensional TQFTs;
see Etingof, Nikshych and Ostrik [20], Cui, Galindo, Plavnik and Wang [18] and
Barkeshli, Bonderson, Cheng and Wang [3]. A study of orbifolds of n–dimensional
TQFTs by finite groups G using the language of G–equivariant TQFTs rather than
that of defects has been carried out by Schweigert and Woike [42].

Algebraic structures A like those above, describing defects in all dimensions (but
which need not necessarily arise from group actions), are also at the centre of state sum
constructions: special symmetric Frobenius algebras over a field k in 2 dimensions —
see Bachas and Petropoulos [1] and Fukuma, Hosono and Kawai [27] — and spherical
fusion categories over k in 3 dimensions; see Turaev and Viro [43] and Barrett and
Westbury [6]. Here again one decorates the Poincaré dual of a triangulation (or a similar
type of decomposition) with the data of A and then uses the algebraic structure to
evaluate. Thus, it is natural to generalise the notion of orbifold to encompass any system
of defects which can be used to decorate suitable decompositions of bordisms. For the
resulting orbifold to be well defined, one must impose the condition that the evaluation
with the TQFT functor is invariant under the specific choice of decomposition. Then,
in particular, one finds that “state sum models are orbifolds of the trivial theory”.

The idea of generalised orbifolds in 2 dimensions was first put forward by Fröhlich,
Fuchs, Runkel and Schweigert [21] in the context of rational conformal field theory.
Later, by Carqueville and Runkel [13], it was adapted to 2–dimensional defect TQFTs
and developed into a Morita-type theory of �–separable symmetric Frobenius algebras
and their bimodules internal to any pivotal 2–category. Out of this emerged a notion of
“orbifold equivalence” which has since found applications in algebra, geometry and
mathematical physics; see eg Carqueville, Ros Camacho and Runkel [12], Brunner,
Carqueville and Plencner [8; 9] and Carqueville and Velez [17].

A good way to think of orbifolds in this generalised sense is the slogan:

Carry out a state sum construction with defects internal to a given n–
dimensional quantum field theory.

The present paper provides a way to make this idea precise and productive for TQFTs of
any dimension n. It originally grew out of a desire to extend the theory of generalised
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orbifolds from 2 to 3 dimensions, with applications to topological invariants, tensor
categories, quantum computation and topological phases of matter in mind.

In this paper, our first contribution is to give a detailed definition of oriented defect
TQFTs as symmetric monoidal functors1

(1-1) ZW Borddef
n .D/! Vectk

in any dimension n. The definition of the defect bordism category Borddef
n .D/ (see

Definitions 2.1 and 2.4) is inductive in n and controls the ways in which we allow
defects, ie decorated strata in stratified bordisms, to meet in terms of iterated cones
and cylinders over basic configurations. In particular, we will describe how the “defect
data” D include label sets Dj to decorate j –strata for all j 2 f0; 1; : : : ; ng. We then
prove that n–dimension defect TQFTs themselves form a symmetric monoidal category
TQFTdef

n ; see Proposition 2.11.

In Sections 2.4 and 2.5 we develop the theory further and, in particular, consider
decorations for point defects. We show that, without loss of generality, in a defect
TQFT one can identify labels for 0–strata with states associated to the surrounding
sphere that are invariant under certain automorphisms of the sphere, and we prove that
such states form an algebra. In Section 2.5 we exponentiate invertible point defects with
the Euler characteristic of the surrounding stratum to construct a refinement of a given
defect TQFT, which we call the “Euler completion”. The details of these subsections
are, however, not required to understand Sections 3 and 4.

The other central notion which we introduce (in Definition 3.5) is that of an “orbifold
datum” A for a given defect TQFT ZW Borddef

n .D/ ! Vectk . An orbifold datum
consists of a collection of labels Aj 2Dj to decorate the j –strata of Poincaré duals
of triangulated bordisms for j 2 f1; : : : ; ng, as well as two labels AC0 ;A�0 2D0 for
0–strata. The defining constraints on the orbifold datum A are precisely that evaluation
with Z of A–decorated bordisms is invariant under the choice of triangulation, ie under
oriented versions of Pachner moves (which we recall in Section 3.1). Our main result
(Theorem/Definition 3.10) is then the construction of the “A–orbifold theory”ZA :

Theorem For every defect TQFT ZW Borddef
n .D/! Vectk and every orbifold datum

A for Z , there is an associated closed TQFT

(1-2) ZAW Bordn! Vectk:

1In fact the definition of defect TQFT works for any symmetric monoidal target category, and, given
the existence of certain limits, also all other constructions in this paper go through; see Remark 3.11.
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After a brief discussion in Section 3.3 of how the above-mentioned �–separable sym-
metric Frobenius algebras for nD2 fit into the general picture, we finally concentrate on
the 3–dimensional case in Section 3.4. For nD3, the number of defining constraints for
an orbifold datum (ie the number of independent oriented Pachner moves) is already 30.
We will introduce (Definition 3.13) the notion of a “special orbifold datum” which
involves only ten conditions that can be checked more easily in practice. Consistent
with the general (expected) relation between state sum models and orbifolds, a special
orbifold datum may be characterised as “spherical fusion categories internal to Gray
categories with duals” (which need not have units), as we discuss in Section 4.

We note that the main constructions in Sections 2 and 3 are exclusively in terms of
ordinary symmetric monoidal categories and their functors. It is only in Section 4 that we
discuss higher categorical formulations — which may prove worthwhile independently
of their TQFT origin.

The only examples in the present paper are the invertible “Euler defect TQFTs”
(Example 2.14). In follow-up work [16] we will study examples of orbifolds of 3–
dimensional defect TQFTs, namely Turaev–Viro models as orbifolds of the trivial TQFT,
and two different types of Z2–orbifold of the Reshetikhin–Turaev theory for bsl.2/k .
Reshetikhin–Turaev TQFT with defects is developed in our companion paper [15].

Acknowledgements The work of Carqueville is partially supported by a grant from
the Simons Foundation. Carqueville and Schaumann are partially supported by the stand-
alone project P 27513-N27 of the Austrian Science Fund. The authors acknowledge
support by the Research Training Group 1670 of the German Research Foundation.

2 Defect TQFTs

An n–dimensional defect TQFT is a symmetric monoidal functor from a category
Borddef

n .D/ of decorated stratified n–dimensional bordisms to Vectk . To explain the
details, we start in Section 2.1 by describing our conventions for stratifications. In
Section 2.2 we define Borddef

n .D/ in two steps: first without decorations (Definition 2.1)
and then fully with decorations by “defect data” D (Definition 2.4). Then, in Section 2.3
we define n–dimensional defect TQFTs, show how they are themselves the objects of
a symmetric monoidal category, and discuss the example of “Euler theories”. Finally,
in Sections 2.4 and 2.5 we define two completions of a given defect TQFT: passing to a
maximal set of labels for point defects, and internalising the example of Euler theories.
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2.1 Stratified bordisms

Defects are geometrically realised as a system of submanifolds of a bordism. To specify
the types of allowed neighbourhoods for the submanifolds in a defect TQFT, we rely on
the concept of stratifications, as discussed in [11] or [39] (where the term “decomposed
space” is used).

By an n–dimensional stratified manifold2 we mean an n–dimensional topological
manifold M (with empty boundary), together with a filtration M DFn�Fn�1� � � � �
F0 � F�1 D ∅ such that Mi WD Fi nFi�1 is a smooth i –dimensional submanifold
of M for all i 2 f0; 1; : : : ; ng. The connected components M ˛

i of Mi are called
i –strata, and we ask the sets of i –strata to be finite. Furthermore, for all strata M ˛

i

and M ˇ
j with i < j and M ˛

i \M ˇ
j ¤∅, we demand M ˛

i �M ˇ
j .

Every triangulated manifold (see Section 3.1) is a stratified manifold. Here, Fi consists
of the union of all (closed) j –simplices for j 6 i , and Mi consists of the open i –
simplices. The Poincaré dual of a triangulated manifold is typically not triangulated,
but it continues to be stratified.

We are interested in oriented stratified n–manifolds M, where the manifold M is
itself oriented. Furthermore, each i –stratum with i < n is equipped with a choice of
orientation, while the orientation of each n–stratum is taken to be the one induced
from M. Morphisms between oriented stratified manifolds are continuous maps that
restrict to smooth orientation-preserving maps between the strata; see eg [39, Chapter 1].

A stratified manifold M with boundary @M is an n–manifold M with boundary
together with a filtration M D Fn � Fn�1 � � � � � F0 � F�1 D∅ as above such that
the interior of M is a stratified manifold and each i –stratum is a submanifold whose
boundary is empty or lies in the boundary of M, intersecting @M transversely. We
also view @M a stratified manifold with the stratification induced from M. If M is
oriented, we equip @M and all its strata with the induced orientations from the strata
of M. For more details we refer to [11, Section 2.1]

2In the literature it is common to say a stratified manifold is a topological space that is a manifold
outside of certain singularities that are located on the strata and satisfy certain regularity conditions. These
conditions specify the type of allowed singularity and the allowed adjacency conditions for all strata. The
stratified manifolds we will consider are, however, such that the total space is still a topological manifold.

So the regularity conditions are only needed to specify adjacency conditions, and we note that what we
call a “stratified manifold” in the present paper is only the nonsingular subclass of what is often called by
that name in the literature.
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Convention From now on we make the assumption that, unless specified otherwise,
all manifolds and all stratified manifolds we consider are compact and oriented, possibly
with boundary, while all maps between them are continuous and their restrictions to
strata are smooth and orientation-preserving.

As an example we consider a stratified 3–manifold M where a small part of the
stratification is shown here:

(2-1)

In this case there are two 3–strata (the two half-balls), five 2–strata (the two hemispheres
and the three triangle-shaped regions), six 1–strata, and four 0–strata shown. Other
2–strata that are not shown might for example meet the equator from outside. Keeping
the outer stratification in M, we obtain another stratification of M by exchanging the
ball (2-1) with just one 2–stratum, three 1–strata, and three 0–strata:

(2-2) �

Later in Section 3.4.2, local changes of stratifications which exchange (2-1) and (2-2)
(called “bubble moves”) will be important for us.

For any n 2 ZC one may now consider the category Bordstrat
n of stratified bordisms.

An object in Bordstrat
n is a closed .n�1/–dimensional stratified manifold † (oriented

and compact by the above convention). A morphism †!†0 is an equivalence class
of n–dimensional stratified manifolds M with parametrised boundary. We describe
the parametrisation and the equivalence relation in turn. The boundary parametrisation
is a germ (in " > 0) of orientation-preserving embeddings

(2-3) �W .†� Œ0; "//t .†0 � .�"; 0�/!M

(which are in particular continuous maps whose restrictions to strata are smooth and
orientation-preserving by our convention) which map .†�f0g/revt.†0�f0g/ onto @M ;
we will use � to denote both the germ and a representative map. The operation
.�/rev reverses the orientation of all strata. Two such stratified manifolds .M; �/ and
. �M; Q�/ are equivalent if there is an isomorphism f W M ! �M such that f ı �D Q� on
.†� Œ0; ı//t .†0� .�ı; 0�/ for some small enough ı > 0. Composition in Bordstrat

n is
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defined by choosing representatives, gluing along the boundary parametrisation and
then taking the bordism class. Thus, composition is well defined, associative and unital.
Further standard arguments show that Bordstrat

n has a natural structure of a symmetric
monoidal category.

2.2 Defect bordisms

2.2.1 Undecorated defect bordisms We think of defects in a defect TQFT as “com-
binatorial” in nature, meaning that for a defect confined to a given stratum Y it is only
the distribution of strata in the immediate surroundings of Y that matters. We will
impose regularity conditions by requiring the existence of certain local neighbourhoods
(detailed below) for all strata.

Like in the case of a smooth manifold, we shall first specify the type of open stratified
manifolds that we want to allow as local neighbourhoods and then define a defect
bordism via an atlas of charts taking values in these neighbourhoods. The definition is
inductive on the dimension n, and stratified manifolds whose underlying manifolds are
standard n–spheres feature prominently in the induction step:

Definition 2.1 For all n 2 ZC we define three related structures recursively:

� the sets N n of local neighbourhoods for n–dimensional defect bordisms,

� the symmetric monoidal category of n–dimensional defect bordisms Borddef
n ,

� the set of defect n–spheres Spheredef
n .

For nD 1 the above data is fixed as follows:

� The set N 1 consists of three open stratified 1–manifolds: the oriented interval
.�1; 1/, oriented from �1 to 1, and the interval .�1; 1/ with the same orientation
and an oriented 0–stratum at 0 which is either oriented C or �:

(2-4) N 1 D f ; C ; � g:
� Borddef

1 WD Bordstrat
1 .

� Spheredef
1 WD fS j S is a stratified 1–manifold with underlying manifold S1g.

Now assume that N n , Borddef
n and Spheredef

n are defined for a given n> 1.

� The set N nC1 consists of all open stratified .nC1/–manifolds of two types.
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One type is X � .�1; 1/ for X 2N n with orientations induced from the orientation
of X taken together with the standard orientation of .�1; 1/. Each j –stratum in X
produces a .jC1/–stratum in X�.�1; 1/.3 For p2X a 0–stratum with orientation �,
the orientation of the 1–stratum fpg � .�1; 1/ is obtained by reversing the orientation
of the interval.

The other type of element in N nC1 is an open cone

(2-5) C.†/D .†� Œ0; 1//=.†� f0g/;
where † is an element in Spheredef

n . We identify C.†/ with the open .nC1/–ball
BnC1 � RnC1 , with 0 2 RnC1 as cone point. It has a natural structure of a stratified
manifold with the cone point as 0–stratum and with j –strata Y on † inducing .jC1/–
strata Y � .0; 1/ of C.†/. Each † 2 Spheredef

n yields two elements in N nC1 , one for
either orientation of the 0–stratum at the cone point of (2-5).

� The symmetric monoidal category Borddef
nC1 has as objects closed stratified n–

manifolds equipped with a compatible system of charts mapping an open neighbourhood
of each point isomorphically (as oriented stratified manifolds) to an element in N n . The
morphisms of Borddef

nC1 are those morphisms of Bordstrat
nC1 whose representatives have

open neighbourhoods around interior points that are isomorphic an element of N nC1 .

� The set Spheredef
nC1 consists of all those stratified .nC1/–manifolds S whose un-

derlying manifold is the standard .nC1/–sphere SnC1 , and such that the isomorphism
class of S defines a morphism ŒS�W ∅!∅ in Borddef

nC1 .

Note that as a consequence of the recursive definition we have the following equivalent
ways to think about defect n–spheres:

(2-6) Spheredef
n D

˚
S j S is a stratified n–manifold with underlying manifold Sn

whose class is a morphism ŒS�W ∅!∅ in Borddef
n

	

D fS 2 Borddef
nC1 j the underlying manifold of S is Sng:

In the definition of the bordisms M in Borddef
nC1 above it is enough to consider open

neighbourhoods only of interior points. Points in @M then have compatible neigh-
bourhoods coming from the parametrisation of @M with respect to source or target
objects.

3The convention for the orientation is chosen such that the orientation on X is the induced boundary
orientation of X � Œ�1; 1/ .
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Remark 2.2 Why is this the correct definition of local neighbourhoods for our pur-
poses? Ultimately we are motivated by examples and the attitude that topological
defects should be combinatorial objects. Still, there might be situations where one is
led to considering different types of local neighbourhoods. At least our definition is
closed under taking iterated cones: for X 2N n�k we have that the interior of C kX is
isomorphic to an element of N n , as the cone of an i –ball is topologically an .iC1/–ball.
The resulting n–ball can also be realised as a neighbourhood of 0 in CX � .�1; 1/k�1 .

To illustrate Definition 2.1 we now go through the iteration for n 2 f1; 2; 3g:

Example 2.3 (i) The sets N 1 , Spheredef
1 and the category Borddef

1 are directly given
in the definition. An example of a morphism from ∅ to ∅ (which is thus also an
element in Spheredef

1 ) is

(2-7) �

�

C

:

(ii) The set N 2 consists of open neighbourhoods of two types. The first type are
cylinders over the elements (2-4) in N 1 , resulting in the three elements of N 2 :

(2-8)
	

;

	

	
;

	

	

The second type of allowed neighbourhood is a cone over a circle in Spheredef
1 . Hence,

there are infinitely many elements of N 2 of this second type. Taking for example the
circle (2-7) and the two possible orientations of the cone point, we arrive at:

(2-9)
C

	

	

	

;
�

	

	

	

:

The category Borddef
2 has stratified circles like (2-7) as objects. Morphisms of

Borddef
2 are those morphisms of Bordstrat

2 where each point has a local neighbourhood
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in N 2 .4 An example of an element of Spheredef
2 is:

(2-10)

C C

��

;

where the orientation of the 2–strata is counterclockwise on the front side of the sphere.

(iii) Next we describe the set N 3 . By taking a cylinder over the first cylinder in (2-8)
we obtain the empty 3–ball (drawn as a cube)

(2-11) :

This ball has the induced standard orientation from R3 , as do all 3–strata of all other
elements in N3 . For the other two discs in (2-8) we get (the shading emphasises the
opposite orientation)

(2-12)
	

;
˚

:

Taking cylinders over the cones in N 2 we obtain

(2-13)

	
	

˚

;

	
	

˚

for the two discs in (2-9), respectively.

4This situation illustrates our choice of the definition of stratified manifolds and their morphisms as
given in Section 2.1, rather than requiring a smooth structure on the total space and smooth maps that
respects the filtration: a smooth map has a differential at the 0–stratum in (2-9), and since the differential is
linear, such smooth maps cannot relate local situations with arbitrary angles between the 1–strata meeting
at the 0–stratum.
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Finally, we have to consider cones over spheres in Spheredef
2 . For example, the cones

over (2-10) (with the two possible orientations for the interior cone point) are the open
stratified 3–balls

(2-14) C ; � :

2.2.2 Decorated defect bordisms Having specified the allowed geometric configu-
rations for defects, we next turn to the sets of labels that defects carry. Our definition
of “defect data” D in n dimensions and of the decorated bordism category Borddef

n .D/

is again inductive.

Roughly, these definitions amount to the following. The defect labels for i –strata Y
consist of a set Di together with a map fi that specifies the allowed labels for the
adjacent strata. A local neighbourhood of Y has the form Bn�i � .�1; 1/i , and the
relevant information about the adjacent strata is encoded in a decorated stratification
of the sphere Sn�i�1 D @Bn�i . More precisely, we must consider the stratified
sphere only up to isomorphism. This leads to an equivalence class (with respect to
isomorphisms of stratified manifolds) of decorated spheres, the set of which we will
denote ŒSpheredef

n�i�1.@iC1D/�, and the map that specifies the allowed configuration
for labels Di is a map fi W Di ! ŒSpheredef

n�i�1.@iC1D/�.

The precise definition is as follows:

Definition 2.4 For all n 2 N a set of n–dimensional defect data

(2-15) Dn � .Dnn ;Dnn�1; : : : ;Dn0 If nn�1; f nn�2; : : : ; f n0 /
consists of sets Dn

k
of k–dimensional defect labels together with the k–dimensional

adjacency maps f n
k

out of Dn
k
�f˙g, whose targets will be defined inductively below.

Namely, for all n 2 N we define two related structures recursively:

� Dn , the class of all n–dimensional defect data, together with a boundary map
@W Dn! Dn�1 (for n> 1), and

� for each Dn 2 Dn and n > 1 the symmetric monoidal category Borddef
n .D

n/

of n–dimensional decorated defect bordisms (while for nD 0 we define a set
Borddef

0 .D
0/).

We start the induction with nD 0:
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� D0 WD f.D00/ j D00 is a nonempty setg.
� For D0 2 D0 , Borddef

0 .D
0/ is the set whose elements are isomorphism classes

of finite sets of oriented points labelled with elements in D00 . We take

(2-16) ŒSpheredef
0 .D

0/�� Borddef
0 .D

0/

to be the subset consisting of classes whose underlying point-set is an oriented
0–sphere (ie two points with opposite orientation).

Now assume that Dn , @W Dn!Dn�1 (for n> 1) and Borddef
n .D

n/ have been defined
up to and including a given n> 0. For n> 1 we set (compare to (2-6))

(2-17) ŒSpheredef
n .D

n/�

WD fŒM � 2 HomBorddef
n .D

n/.∅;∅/ jM has underlying manifold Sng:
Then:

� The set DnC1 consists of sets

(2-18) DnC1 � .DnC1nC1 ;D
nC1
n ; : : : ;DnC10 If nC1n ; f nC1n�1 ; : : : ; f

nC1
0 /

subject to two conditions:

– @.DnC1/ WD .DnC1nC1 ;DnC1n ; : : : ;DnC11 If nC1n ; f nC1n�1 ; : : : ; f
nC1
1 / is an element

of Dn , ie omitting DnC10 and f nC10 from DnC1 gives a set of n–dimensional
defect data. We thus obtain a map @W DnC1! Dn .

– f nC10 is a map DnC10 � f˙g! ŒSpheredef
n .@DnC1/� such that

(2-19) f nC10 .�;�/D .f nC10 .�;C//rev;

where for any S 2 ŒSpheredef
n .D

n/�, S rev denotes the bordism class with reversed
orientation for all strata.

Iterating the boundary map we have that, for 06 j 6m,

(2-20) @jDm WD .Dmm ; : : : ;Dmj If mm�1; : : : ; f mj / 2 Dm�j ;

and that the source and target of the adjacency map f mj are, for j < m,

(2-21) f mj W Dmj � f˙g! ŒSpheredef
m�j�1.@

jC1Dm/�;

which satisfies the duality condition

(2-22) f mj .�;�/D .f mj .�;C//rev

for all � 2Dmj .
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� For DnC1 2 DnC1 , the category Borddef
nC1.DnC1/ is defined as follows:

– Objects are those of Borddef
nC1 together with a decoration by @DnC1 in such a

way that their classes define bordisms ∅!∅ in Borddef
n .@DnC1/.

– Morphisms are the morphisms Y of Borddef
nC1 where each i –stratum Y ˛i is

labelled by an element of DnC1i , subject to two requirements:

(i) If the stratum meets the boundary of the bordism, it restricts to the decorations
on the boundary.

(ii) Let the stratum Y ˛i be labelled by � 2DnC1i and let "DC for i > 05 and
let " 2 f˙g be the orientation of Y ˛i for i D 0. Let X be a representative
.n�i/–sphere of the class f nC1i .�; "/ 2 ŒSpheredef

n�i .@iC1DnC1/�. Let U
be the stratified manifold given by the interior of C.X/� Œ�1; 1�i , equipped
with the induced labelling by DnC1 (and f0g � .�1; 1/i labelled by � ).
Then each interior point of Y ˛i has a local neighbourhood isomorphic to U
in a way compatible with the labelling.

Usually the dimension n of a set of defect data Dn will be clear from the context,
in which case we will simply write D, Di and fi for Dn , Dni and f ni , respectively.
Also, according to (2-22) it suffices to know the values f mj .�;C/ of the adjacency
maps, so we will sometimes abbreviate

(2-23) f mj .�/ WD f mj .�;C/:
The signs in (2-19) and (2-21) in particular ensure that a label x 2Di can occur both
on the in- and outgoing boundary of a bordism. For i D 1, if a 1–stratum meets the
boundary with both endpoints, the neighbourhood of one endpoint is determined by
"DC, of the other by "D�.

Example 2.5 Let us spell out what the induction in Definition 2.4 amounts to for
nD 1 and nD 2:

(i) A set of 1–dimensional defect data D consist of two sets D0 and D1 . Elements
in the set of spheres classes ŒSpheredef

0 .@D/� consist of two oppositely oriented points
decorated each with D1 . Thus, f0 is a map

(2-24) f0W D0 � f˙g!D1 �D1:
5One may equally well choose "D� for i > 0 as the open sets U below resulting from "DC and

"D� will be related by an isomorphism which preserves the orientation of all strata.
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Since reversing the orientation of the two points of the 0–sphere lies in the same class
as keeping the orientation of the two points but exchanging their labels, condition
(2-19) states that if f1.x;C/D .a; b/ then f0.x;�/D .b; a/.
It can be helpful to think of x 2D0 as a “morphism” with source a and target b , that
is, we define maps s; t W D0!D1 such that f1.x;C/D .s.x/; t.x// (see Section 4
for more on this point of view).

Borddef
1 .D/ has as objects oriented points decorated with D1 . Morphisms are stratified

1–manifolds with 1–strata decorated with D1 , compatible with the boundary deco-
rations, together with 0–strata p with orientation " that are decorated with elements
� 2D0 such that for "DC, s.�/ is the decoration on the incoming 1–stratum at p
and t .�/ the decoration of the outgoing 1–stratum, while for " D � this order is
reversed:

(2-25) C
�s.�/ t.�/

; �
�t.�/ s.�/

(ii) A set of 2–dimensional defect data D consists of three sets D0 , D1 and D2
together with maps f0 and f1 as follows. We demand that @DD .D2;D1If1/ forms
a set of 1–dimensional defect data, ie the map

(2-26) f1W D1 � f˙g!D2 �D2
is defined as in point (i) above.

The set ŒSpheredef
1 .@D/� is already defined by the 1–dimensional case: it consists

of (isotopy classes of) oriented stratified decorated circles where each 1–stratum is
decorated with elements in D2 , and each 0–stratum with elements in D1 , such that
the source and target of the decorations match with the map f1 . Possibly there are no
0–strata, in which case the circle is decorated just with an element in D2 .

By definition, the map

(2-27) f0W D0 � f˙g! ŒSpheredef
1 .@D/�

is subject to the duality condition (2-19). The elements of ŒSpheredef
1 .@D/� are spheres

considered up to isomorphisms of stratified manifolds, so in particular up to rotations.
Describing the stratified circles combinatorially and restricting to positively oriented
points, we recover the junction map j of [19, Equation (2.2)]: f0.x;C/D j.x/, where

(2-28) j W D0!D2 t
G

m2ZC
..D1 � f˙g/�D2 � � � �D2 .D1 � f˙g//=Cm
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determines the neighbourhood of a D0–decorated 0–stratum (with the first factor D2
corresponding to the case of no 1–strata in the neighbourhood). The condition in
the product on the right is that source and target of adjacent D1–terms must agree,
including the first and last term. Cm denotes the cyclic group with m elements, which
acts naturally on the product of m elements.

We do not describe the case n D 3 in detail, since a combinatorial description of
defect 2–spheres seems impracticable. Note, however, that the map (2-27) also ap-
pears as the folding map f 31 for defect 1–strata in 3–dimensional defect bordisms
[11, Definition 2.6], just as (2-26) is a reincarnation of (2-24).

For any i –dimensional defect label x 2Di in D, we can and do choose a representative
.n�i�1/–sphere Sx such that the adjacency map fi sends x to the class of Sx , that
is, fi .x/D ŒSx�. From Sx we produce a decorated stratified n–ball by first taking the
cone and then iterated cylinders. More precisely, we define the n–dimensional open
x–defect ball as

(2-29) Bx WD C.Sx/� .�1; 1/i \Bn:
For later use we note that its closure is

(2-30) Bx D C.Sx/� .�1; 1/i \Bn;
and we denote its boundary by

(2-31) †x D @Bx :
The open ball Bx describes what the surroundings of an x–labelled i –stratum look
like in Borddef

n .D/, and it will be important to us in Sections 2.4 and 2.5.

2.2.3 Symmetric monoidal category of defect data We now turn the sets of defect
data Dn into symmetric monoidal categories. We start by adding maps of defect data
as morphisms:

Definition 2.6 A morphism of n–dimensional defect data hD .hn; : : : ; h0/W D!D0
is a collection of maps hi W Di !D0i such that for all i 2 f0; : : : ; ng the squares

(2-32)

Di ŒSpheredef
n�i�1.@iC1D/�

D0i ŒSpheredef
n�i�1.@iC1D0/�

fi

hi h�

f 0i
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commute, where h�W ŒSpheredef
n�i�1.@iC1D/�! ŒSpheredef

n�i�1.@iC1D0/� is the map of
decorated spheres induced by the maps hi .

Together with the above notion of morphism, the obvious identity morphisms and
composition, the sets of defect data Dn form a category for all n 2 ZC .

The monoidal structure on Dn is slightly less straightforward, as illustrated by the
following example. Let D;D0 2 Dn and pick defect labels a 2Dn�2 and a0 2D0n�2
of codimension-two defects. Suppose that f D

n�2.a/ is a 1–sphere with two 0–strata
labelled by x; y 2 Dn�1 for x ¤ y . Similarly, f D0

n�2.a0/ is a 1–sphere with two
0–strata labelled by x0; y0 2D0n�1. How many defect conditions should a and a0 give
rise to in the to-be-constructed tensor product D˝D0? One might guess that there
should be one defect condition labelled by the pair .a; a0/. However, there are now
two distinct choices for what the neighbourhood of .a; a0/ should look like. One is the
1–sphere with 0–strata labelled .x; x0/ and .y; y0/, and the other is the 1–sphere with
0–strata labelled .x; y0/ and .y; x0/. Thus, in the tensor product D˝D0, we need two
distinct defect labels corresponding to the pair .a; a0/, which have to be distinguished
by the adjacency maps f D˝D0

i .

This example shows that the tensor product of defect data is more complicated than
just the Cartesian product of the sets of defect labels. Instead, one has to take into
account automorphisms of the defect sphere describing the surrounding arrangement
of higher-dimensional defect strata. We now describe this construction in detail.

For D;D0 2 Dn we define their tensor product D˝D0 2 Dn to have component sets
of the form

(2-33) .D˝D0/i D fŒx; x0; S '�! U
'0 � S 0�g

for all i 2 f0; 1; : : : ; ng. Here x 2 Di and x0 2 D0i are defect labels, S 2 f D
i .x/

and S 0 2 f D0
i .x0/ are decorated defect spheres, U 2 Spheredef

n�i�1 is an undecorated
defect sphere, and 'W S!U and '0W S 0!U are isomorphisms of undecorated defect
spheres. By definition, two such tuples

(2-34) .x; x0; S '�! U
'0 � S 0/; .x; x0; zS z'�! zU z'0 � zS 0/

represent the same equivalence class Œx; x0; S '�!U
'0 � S 0� if there are isomorphisms

of decorated defect spheres � W S ! zS and � 0W S 0 ! zS 0 and an isomorphism of
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undecorated defect spheres �W U ! zU such that the diagram

(2-35)

zS zS 0

S S 0 zU

U

�

' '0

z'
z'0

� 0

�

commutes. Furthermore, we define the adjacency maps f D˝D0
i by setting

(2-36) f D˝D0
i .Œx; x0; S '�! U

'0 � S 0�/ WD ŒU';'0 � 2 Spheredef
n�i�1.@

iC1.D˝D0//;

where U';'0 has underlying stratified manifold U, and the decoration of the strata U ˛j
is obtained from the pair ' and '0.

We illustrate the above definition by spelling it out for the motivating example above:
Let U � R2 be the standard circle with two 0–strata at .0;C1/ and .0;�1/. For the
defect circle S with f D

n�2.a/D ŒS�, we take U with the labels x; y 2Dn�1 at .0;C1/
and .0;�1/, respectively, while S 0 with f D0

n�2.a0/D ŒS 0� is U with .0;C1/, .0;�1/
decorated by x0; y0 2 D0n�1 . Then, in D˝D0 we have two inequivalent elements
.a; a0; S id�! U id � S 0/ and .a; a0; S id�! U � � S 0/, where � is rotation by � .

Given two morphisms hW D! E and gW D0! E0 in Dn , we define their tensor product
h˝gW D˝D0! E˝ E0 by setting, for all i 2 f0; 1; : : : ; ng,
(2-37) .h˝g/i .Œx; x0; S '�!U

'0 �S 0�/ WD Œhi .x/; gi .x0/; h�.S/ '�!U
'0 �g�.S 0/�:

Here, the induced maps h� and g� are as in Definition 2.6, and it follows that
.h˝g/� ıf D˝D0

i D f E˝E0
i ı .h˝g/i , so that h˝g really is a morphism in Dn .

The monoidal unit in Dn is Did , whose sets

(2-38) Did
i WD ŒSpheredef

n�i�1�

consist of all defect spheres for all i 2 f0; 1; : : : ; ng, and whose adjacency maps are
identities, f Did

i .ŒS�/D ŒS�.
Finally, we equip Dn with the symmetric braiding given by the exchange of factors.

Lemma 2.7 Dn is a symmetric monoidal category.

Geometry & Topology, Volume 23 (2019)



Orbifolds of n–dimensional defect TQFTs 799

Proof We show that for the tensor product given in (2-33), (2-37) and (2-38) there are
natural unitors D˝Did ŠDŠDid˝D; the associator is straightforward to determine,
and the pentagon and hexagon are then clear.

For any D 2 Dn , the isomorphism �DW D˝Did! D has components which project
Œx; Œ†�; S

'�! U
'0 � †� 2 .D˝ Did/i to x 2 Di . To give the action of ��1D , we

choose a representative zS 2 fi .x/, and we write zSı 2 Spheredef
n�i�1 for zS with its

D–decoration discarded. Then

(2-39) .��1D /i .x/ WD Œx; Œ zSı�; zS id�! zSı id � zSı�:

Note that the right-hand side is independent of the choice of representative zS.

Clearly we have �D ı ��1D D 1D . To see that also ��1D ı �D equals 1D˝Did , simply
act with the former on .x; Œ†�; S '�! U

'0 �†/ and note that the following diagram
commutes:

(2-40)

S Sı

S † Sı

U

id

' '0

id

id
'�1 ı'0

'�1

This concludes the proof.

2.3 n–dimensional defect TQFTs

We will now define defect TQFTs in arbitrary dimension, describe maps between them,
and discuss their tensor products. Unless specified otherwise, in this section n is any
positive integer and D is a set of n–dimensional defect data.

2.3.1 Defect TQFTs and their morphisms

Definition 2.8 An n–dimensional defect TQFT with defect data D is a symmetric
monoidal functor

(2-41) ZW Borddef
n .D/! Vectk:
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The most basic example of a defect TQFT for fixed defect data D is the identity TQFT

(2-42) 1DW Borddef
n .D/! Vectk;

which by definition maps all objects to k, and all morphisms to idk . Closed n–
dimensional TQFTs, ie symmetric monoidal functors Bordn!Vectk , provide another
class examples by viewing them as functors on Borddef

n .D
�/, where the set of defect

data D� consists of the singleton set D�nDf�g and D�j D∅ for all j 2f0; 1; : : : ; n�1g.
Another class of examples of defect TQFTs comes about by “compactifying” higher-
dimensional defect TQFTs. Indeed, thanks to the prominent role of the boundary map @
in Definition 2.4 of defect data, the following observation is immediate:

Lemma 2.9 Let Z be an n–dimensional defect TQFT with defect data D, and let M
a closed k–manifold with k < n. Then the compactification of Z along M is an
.n�k/–dimensional defect TQFT ZM W Borddef

n�k.@
kD/! Vectk with

(2-43) ZM .N /D Z.N �M/

on both objects and morphisms N in Borddef
n�k.@

kD/; here the decorated stratification
of N naturally induces the decorated stratification of N �M.

Defect TQFTs in dimension n form the objects of a symmetric monoidal category
TQFTdef

n , to which we turn next. We start by defining the morphisms between two
defect TQFTs ZW Borddef

n .D/!Vectk and Z 0W Borddef
n .D

0/!Vectk . If DDD0, one
can in particular consider monoidal natural transformations Z) Z 0. In general, one
has to take into account maps of defect data hW D! D0 as in Definition 2.6, which
induce symmetric monoidal functors

(2-44) h�W Borddef
n .D/! Borddef

n .D
0/

by applying the component maps hi to the decoration of the strata of the objects and
morphisms in Borddef

n .D/. Hence, we define a morphism from Z to Z 0 to be a pair
.h; '/ where hW D! D0 is a map of defect data and 'W Z) Z 0 ı h� is a monoidal
natural transformation,

(2-45)

Borddef
n .D/

Borddef
n .D

0/ Vectk

Z

Z 0

h� ' D)
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In the same way as for closed TQFTs without defects, one proves that ' in the above
definition is necessarily invertible (see eg [14]); note however that this does not imply
TQFTdef

n is a groupoid as h� need not have an inverse.

The composition of morphisms .h; '/W Z ! Z 0 and .g;  /W Z 0! Z 00 is defined by
composing h� with g� and pasting ' and  together:

(2-46)

Borddef
n .D/

Borddef
n .D

0/ Vectk

Borddef
n .D

00/ Vectk

Z

Z 0

Z 00

h�

g�

' D)
 

D)

The identity morphism on ZW Borddef
n .D/! Vectk is .idD; idZ/. Altogether, we have

a category TQFTdef
n .

2.3.2 Symmetric monoidal category of defect TQFTs To describe the monoidal
structure on TQFTdef

n , we have to produce symmetric monoidal functors on the category
Borddef

n .D˝D0/ from defect TQFTs ZW Borddef
n .D/!Vectk and Z 0W Borddef

n .D
0/!

Vectk , where D˝D0 is the tensor product in Dn defined in Section 2.2. For an object
or morphism M in Borddef

n .D˝D0/, we write p1.M/ for the object or morphism
in Borddef

n .D/ which is M but with the decorations from D0 forgotten. Similarly,
we write p2.M/ for the object or morphism in Borddef

n .D
0/ which is obtained by

discarding the D–decoration. This gives us a symmetric monoidal functor

(2-47) P W Borddef
n .D˝D0/!Borddef

n .D/�Borddef
n .D

0/; M 7! .p1.M/; p2.M//:

With this notation we have a natural notion of tensor product of defect TQFTs:

Definition 2.10 Let Z and Z 0 be two n–dimensional defect TQFTs with defect data
D and D0, respectively. Their tensor product is the defect TQFT

(2-48) Z˝Z 0W Borddef
n .D˝D0/ P�! Borddef

n .D/�Borddef
n .D

0/
Z�Z0��! Vectk �Vectk

˝k�! Vectk:

It follows that we have

(2-49) .Z˝Z 0/.M/D Z.p1.M//˝k Z 0.p2.M//
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for objects and morphisms M in Borddef
n .D˝D0/. The unit for the tensor product is

the identity defect TQFT

(2-50) 1 WD 1Did ;

which is the special case of (2-42) where DD Did is the monoidal unit of Dn with
Did
i D ŒSpheredef

n�i�1�; see (2-38). This means that for each local neighbourhood there
exists precisely one defect label in Did , that is, the forgetful functor

(2-51) Borddef
n .D

id/! Borddef
n

is an equivalence.

To describe the tensor product also on morphisms in TQFTdef
n , let us consider defect

TQFTs

(2-52)
ZW Borddef

n .D/! Vectk; Z 0W Borddef
n .D

0/! Vectk;

YW Borddef
n .E/! Vectk; Y 0W Borddef

n .E
0/! Vectk:

For two morphisms .g;  /W Y! Y 0 and .h; '/W Z! Z 0, their tensor product

(2-53) .g;  /˝ .h; '/W Y˝Z! Y 0˝Z 0

is defined to be the commutative diagram

(2-54)

Borddef
n .E˝D/

Borddef
n .E/�Borddef

n .D/

Borddef
n .E

0/�Borddef
n .D

0/ Vectk �Vectk

Borddef
n .E

0˝D0/ Vectk

.g˝ h/�

P

P

g� � h�

Y 0˝Z 0

Y �Z

Y 0 �Z 0

Y˝Z

˝k

 �' D)

It is straightforward to verify that the identity defect TQFT 1 is the monoidal unit, and
again unitors, associator and symmetric braiding are given by the obvious choice. To
summarise:

Proposition 2.11 The category TQFTdef
n of n–dimensional defect TQFTs is symmet-

ric monoidal.
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There is an equivalence relation on the set of objects in TQFTdef
n which will be relevant

for us in Sections 2.4 and 2.5:

Definition 2.12 Two TQFTs ZW Borddef
n .D/! Vectk and Z 0W Borddef

n .D
0/! Vectk

are equivalent, Z � Z 0, if there are morphisms .h; '/W Z� Z 0 W.g;  / between them.

This equivalence relation is compatible with the monoidal structure on TQFTdef
n in

the sense that if Z � Z 0 and Y � Y 0, then also Y ˝Z � Y 0˝Z 0. The morphisms
witnessing the latter equivalence are constructed from those of the former equivalences
and the tensor product defined in (2-54).

Remark 2.13 (i) If Z and Z 0 are equivalent as in Definition 2.12 then there are
isomorphisms of symmetric monoidal functors Z Š Z 0 ı h� and Z 0 Š Z ı g�
and thus also Z Š Z ıg� ıh� and Z 0 Š Z 0 ıh� ıg� . In this sense equivalent
TQFTs determine one another and thus deserve to be called equivalent.

(ii) If Z and Z 0 are isomorphic in TQFTdef
n then they are clearly also equivalent in

the sense of Definition 2.12. The converse is not true: a morphism .h; �/W Z!Z 0
is an isomorphism if and only if h is invertible and in Sections 2.4 and 2.5 we
will encounter examples of equivalent defect TQFTs with nonisomorphic sets of
defect labels.

(iii) A natural mechanism to produce additional equivalences in a 1–category is to
add a layer of 2–morphisms, thereby turning it into a 2–category, and then
passing to its homotopy 1–category. In TQFTdef

n , for example, one could add
a single 2–(iso)morphism between any two 1–morphisms. In the homotopy
category, all 1–morphisms then lie in one equivalence class, and this produces
Definition 2.12. Finding a more natural 2–categorical structure on defect TQFTs
is a problem for future research.

An invertible n–dimensional defect TQFT is an invertible object Z in the monoidal
category TQFTdef

n . This means that Z is invertible if and only if there exists an
n–dimensional defect TQFT Z 0 and an isomorphism of defect TQFTs Z ˝Z 0 Š 1.
A particular class of invertible defect TQFTs in any dimension n are “Euler defect
TQFTs”:

Example 2.14 Let us for the moment restrict the discussion to the field kD C and
later return to general fields. Recall that for a triangulated topological manifold M its
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Euler characteristic �.M/ can be computed as the alternating sum of the number of
k–simplices over all dimensions k 6 dimM. From this characterisation it is immediate
that if M ı†N is the result of gluing two triangulated manifolds M and N along a
common boundary †, then

(2-55) �.M ı†N/D �.M/C�.N/��.†/:

Following [40], for any n 2 ZC and �; � 2 C, one thus obtains a closed TQFT
Z.�;�/W Bordn ! VectC which maps all objects to C, and on a bordism M with
boundary .@inM/rev[ @outM we set

(2-56) Z.�;�/.M/D exp
�
�.�.M/�� ��.@inM/� .1��/ ��.@outM//

�
:

These exponents ensure that Z.�;�/.M ı†N/D Z.�;�/.M/ �Z.�;�/.N /, and one can
verify that Z.�;�/ Š Z.�;�0/ for all �; �0 2 C. Clearly, Z.�;�/ is an invertible closed
TQFT with inverse Z.��;�/ .

For later convenience we prefer the symmetric choice �D 1
2

, as this attaches the same
weight to in- and outgoing boundaries and reduces the risk of confusion. To shorten
notation and avoid lots of factors of two, we will use a rescaled version of the Euler
character:

(2-57) �sym.M/ WD 2�.M/��.@M/;

so that Z.�;1=2/.M/D e���sym.M/=2 . We will also return to the case of general fields k

by replacing e� in the above expression by ‰2 for some ‰ 2 k� . Altogether, we
define the closed Euler theory to be the TQFT

(2-58) Zeu
‰ W Bordn! Vectk; Zeu

‰ .M/D‰�sym.M/:

We can lift this example to an invertible n–dimensional defect TQFT

(2-59) Zeu
‰ W Borddef

n .D
id/! Vectk

for any tuple ‰D . 1; : : : ;  n/2 .k�/n as follows. The defect data Did for Zeu
‰ is the

one for the monoidal unit 1 as in (2-38) (and hence by (2-51) we can also think of Zeu
‰

as an unlabelled defect TQFT, ie a symmetric monoidal functor Borddef
n ! Vectk ).

For all objects † we set Zeu
‰ .†/D k. For a morphism M in Borddef

n .D
eu/ as before

we write M j̨

j for its j –strata, and we recall that @M j̨

j D @M \M j̨

j . Then we define
the Euler defect TQFT on M as the natural generalisation of (2-58), by assigning a
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weight  �sym.M j̨
j
/

j to every stratum M j̨

j of dimension j > 1,

(2-60) Zeu
‰ .M/D

nY

jD1

Y

j̨

 
�sym.M

j̨

j
/

j :

2.4 Point defects from states on spheres

Suppose we are given a defect TQFT ZW Borddef
n .D/! Vectk with some set D0 of

labels for point defects. If one “regularises” a point defect by replacing it by a small
sphere around that point, one can interpret certain states in the vector space associated
to that sphere as being located on the point. To allow for such an interpretation, the
states need to satisfy an invariance condition given below.

In this section we define when a defect TQFT has a “complete set of point defects”
(which we will call D0–complete) and we will show that every defect TQFT factors
through a D0–complete one. For a D0–complete theory we describe a multiplication
of point defects in which one replaces two neighbouring point defects by a “fused”
point defect.

We first need to define the notion of an “invariant state” in the state space of a defect
sphere. Let † 2 Spheredef

n�1.@D/ be given. Write B WD C.†/� Rn for the closed unit
ball given by the cone over †, as a decorated stratified manifold but without a label
for its central 0–stratum. Note that @B D†. Similarly, for " > 0 write B1C" for the
open ball of radius 1C " which is given by the interior of the (now slightly larger)
cone over †. By construction, B � B1C" as decorated stratified manifolds.

Define the set of embeddings

(2-61) Emb.B/

of B into itself as follows: an element of Emb.B/ is a germ (in " > 0) of maps
f W B1C"! B of decorated stratified manifolds which are isomorphisms onto their
images; as for boundary parametrisations, we will write f both for the germ and for a
representative map. Composition of maps is independent of representatives and turns
Emb.B/ into a nonunital semigroup.

Let B be the interior of B. Given an element f 2 Emb.B/, define a bordism
Hf W †!† in Borddef

n .D/ as

(2-62) Hf WD B nf .B/;
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where the outer boundary is the outgoing boundary and is parametrised by † via the
identity map (with its canonical germ on †� .1� "; 1�, where the second coordinate
is the radius), while the inner boundary is the ingoing boundary and is parametrised
by † via the germ f restricted to †� Œ1; 1C "/. For f; g 2 Emb.B/, composition of
bordisms is compatible with the semigroup structure on Emb.B/:

(2-63) Hf ıHg DHf ıg
in Borddef

n .D/. The subspace of invariant states in Z.†/ is defined to be

(2-64) Y† WD f 2 Z.†/ j Z.Hf /. /D  for all f 2 Emb.B/g:
One reason to introduce Y† is that point defects give rise to such invariant states, as
proved in the next lemma. Conversely, if one tries to describe point defects by cutting
out small balls and assigning states to the resulting boundary spheres, one has to make
sure that the result is independent of the chosen boundary parametrisation. We will see
in the proof of Proposition 2.17 how this is ensured by the above invariance condition.

Lemma 2.15 Let x 2 D0 be such that f0.x/ D Œ†� and let Bx be the closed cone
C.†/ as above, but with central point labelled x . Then Bx is a bordism ∅!† and
we have6

(2-65) Z.Bx/ 2 Y†:

Proof We have Z.Hf / ıZ.Bx/D Z.Hf ıBx/. It is therefore enough to show that
Hf ıBx is isomorphic to Bx as a decorated stratified manifold with parametrised
boundary. But this is clear from the construction: the isomorphism 'W Hf ıBx! Bx

is given by 'jHf D idW Hf !Hf � Bx and 'jBx D f W Bx! f .Bx/� Bx .

After these preparations we can introduce the notion of D0–completeness. For † 2
Spheredef

n�1.@D/ define the subset

(2-66) D0.†/ WD fx 2D0 j f0.x/D Œ†�g;
that is, D0.†/ contains all point defect labels that can be assigned to the 0–stratum in
the cone C.†/. By Lemma 2.15 we obtain a map

(2-67) Y†W D0.†/! Y†; x 7! Z.Bx/;
6Since Bx is a morphism from ∅ to † , Z.Bx/ is a linear map from k! Z.†/ . We will identify

linear maps k! Z.†/ with Z.†/ by evaluating on 1 2 k . This is to avoid writing lots of “.1/”, eg
(2-65) would read Z.Bx/.1/ 2 Y† .
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which assigns to a point defect label the corresponding state on the surrounding sphere.
This map can be thought of as a variant of the state–field correspondence one has in
conformal field theories.

Definition 2.16 A defect TQFT ZW Borddef
n .D/! Vectk is called D0–complete if

for all † 2 Spheredef
n�1.@D/, the map (2-67) is a bijection of sets.

For a D0–complete TQFT, the spaces D0.†/ inherit the structure of a k–vector space
via the bijection (2-67), and we will use this vector space structure for D0.†/ below.

The next proposition shows that working with D0–complete theories is not a restriction,
as every defect TQFT factors through such a theory.

Proposition 2.17 For a given defect TQFT ZW Borddef
n .D/!Vectk there exist defect

data D� , a map of defect data hW D!D� and a defect TQFT Z�W Borddef
n .D

�/!Vectk
such that Z� is D0–complete and

(2-68) Z D Z� ı h�:

Proof We start by introducing the point-completed defect data D� . It will differ
from D only in the label set and adjacency map for 0–strata. Choose a subset

(2-69) S � Spheredef
n�1.@D/

of representatives of the classes in ŒSpheredef
n�1.@D/�, ie for each S 2 ŒSpheredef

n�1.@D/�

there exists a unique † 2 S such that S D Œ†�. An element of D�0 is a pair consisting
of a defect sphere † 2 S and a state  2 Y† , while f �0 simply forgets the state:

(2-70) D�0 WD f.†; / j† 2 S;  2 Y†g;
and

(2-71) f �0 W D�0 � fCg! ŒSpheredef
n�1.@D/�; .†; / 7! Œ†�;

while f �0 is determined on D�0 � f�g by (2-22). Finally, D� is given by

(2-72) D� WD .Dn; : : : ;D1;D�0Ifn�1; : : : ; f1; f �0 /:
By Lemma 2.15, there is a canonical map of defect data hW D!D� (recall Definition 2.6)
which is given by the identity on Di for i 2 f1; : : : ; ng and by

(2-73) h0W D0!D�0; x 7! Y†.x/;

where †2S is such that f0.x;C/D Œ†�, ie x 2D0.†/, and Y† is as defined in (2-67).
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We can now describe the D0–complete defect TQFT

(2-74) Z�W Borddef
n .D

�/! Vectk

obtained from Z by extending from D to D� . Note that the objects of Borddef
n .D

�/
are the same as those of Borddef

n .D/, and so on objects X we set

(2-75) Z�.X/ WD Z.X/:

Let

(2-76) M W X ! Y

be a bordism in Borddef
n .D

�/. Let p 2M0 be a 0–stratum of M and let .†p;  p/2D�0
be its label. Write Bp for the closed cone C.†p/ with central point labelled .†p;  p/.
Fix a an isomorphism-onto-its-image fpW Bp!M of decorated stratified manifolds,
such that fp.0/ D p . Such a local neighbourhood exists by the definition of defect
bordisms (embed a slightly larger open ball Bp;1C" as above and restrict to Bp ).
Repeat this procedure for all p 2M0 . By restricting the maps fp to balls of smaller
radii if necessary, we may assume that all images are disjoint.

We can now define a new bordism

(2-77) M..fp/p2M0/W X t
G

p2M0
†p! Y

as follows. As a manifold, M..fp/p2M0/DM n
F
p2M0 fp.Bp/. The new boundary

component arising from cutting out the open ball around p is parametrised by fp ,
restricted to †p D @Bp . We make the ansatz

(2-78) Z�.M/W Z.X/! Z.Y /; u 7! Z
�
M..fp/p2M0/

��
u˝

O

p2M0
 p

�
:

The proof of the proposition is complete once we show the following:

Claim Z�.M/ in (2-78) is independent of the choice of the fp .

It is enough to consider the case that in (2-77), M0 consists of a single point, the
general case follows from gluing. Let thus M0 D fpg and let fp; gpW Bp !M be
two choices of local neighbourhood.

Choose open subsets U; V �Bp such that ' WDg�1p ıfpjU W U !V is an isomorphism.
Pick h 2 Emb.Bp/ such that im.h/ � U. Then h0 WD ' ı h is equally an element of
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Emb.Bp/. With the thus-constructed maps we have the identities of bordisms

(2-79) M.fp/ ı .1X tHh/DM.fp ı h/DM.gp ı h0/DM.gp/ ı .1X tHh0/:
Now let  2 Y†p . Then

Z.M.fp//.u˝ /D Z.M.fp/ ı .1X tHh//.u˝ /(2-80)

D Z.M.gp/ ı .1X tHh0//.u˝ /
D Z.M.gp//.u˝ /;

where in the first and last step we used that  2 Y†p , so that it is left invariant by
Z.Hh/ and Z.Hh0/. This proves the claim.

Remark 2.18 (i) To justify the name “completion”, we note that if Z is already
D0–complete, then Z� is isomorphic to Z in TQFTdef

n , and so in particular
Z� � Z .

To see this, recall that, by construction, D�0.†/D Y† and that (2-73) states that
h0jD0.†/DY† . If Z is D0–complete, by definition the latter is an isomorphism,
so that hW D! D� is an isomorphism.

(ii) The construction of D� and Z� does not depend on the zero component D0 of D

at all. Furthermore, by Proposition 2.17 a defect TQFT for D factors through
one for D� , that is, every defect TQFT factors through a D0–complete one. In
this sense the label set D0 is superfluous in the description of defect TQFTs.

Let ZW Borddef
n .D/! Vectk be a D0–complete defect TQFT. We will now describe

how point defects on strata of dimension > 1 carry an algebra structure. This algebra
structure describes the fusion of point defects and will be instrumental in the next
section.

Fix an i 2 f1; : : : ; ng and a defect label x 2Di . Recall the open and closed x–defect
balls Bx and Bx from (2-29) and (2-30), and that by definition of the defect bordisms,
every point in an i –stratum labelled by x has a neighbourhood isomorphic to Bx . As
before we abbreviate †x D @Bx and

(2-81) Ax WDD0.†x/:
Recall that for D0–complete theories, as we assume here, Ax is a k–vector space.

For u; v 2 Ax let

(2-82) Mx.u; v/W ∅!†x
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be the bordism in Borddef
n .D/ obtained from Bx by adding two point defects p and q

on the i –stratum of Bx , that is, on the central fibre .f0g� Œ�1; 1�i /\Bx . The 0–strata
of Mx.u; v/ are then p and q , and we label p by u and q by v .

Suppose Bx contains a j –stratum .Bx/
˛
j with j ¤ i . Note that necessarily j > i .

Let y 2Dj be the defect label of .Bx/˛j . For w 2 Ay let

(2-83) N ˛
y;x.w/W ∅!†x

be the bordism in Borddef
n .D/ obtained from Bx by adding one point defect on .Bx/˛j

which is labelled w .

Proposition 2.19 Let x 2Di for i > 1.

(i) Ax with multiplication

(2-84) mx W Ax˝Ax! Ax; .u; v/ 7! Y �1†x
�
Z.Mx.u; v//

�
;

and unit 1Ax WD Y �1†x .Z.Bx// is a unital associative algebra. Ax is commutative
for i > 1.

(ii) The map

(2-85) b˛y;x W Ay! Ax; w 7! Y �1†x
�
Z.N ˛

x;y.w//
�
;

is an algebra homomorphism.

We call Ax the algebra of point insertions on x . For i Dn�1 the above map Ay!Ax

can be thought of as a variant of the familiar bulk-boundary map in open–closed TQFTs,
to which it reduces if the defect label x 2Dn�1 is in fact a “boundary condition”.

The proof of Proposition 2.19 relies on the next lemma, which allows us to move point
defects on connected components without changing the value of the functor. We need
to prepare a bit of notation to state it.

Let M W X!Y be a bordism in Borddef
n .D/ and let p1; : : : ; pm 2M be distinct points

such that pk 2M ˛k
ik

for some ik –stratum M
˛k
ik

of dimension ik > 0 with defect label
xk 2Dik . Let u1; : : : ; um 2D0 be point defect labels such that uk 2 Axk . Write

(2-86) M.p1; : : : ; pmIu1; : : : ; um/W X ! Y

for the bordism obtained from M by declaring p1; : : : ; pm to be new 0–strata such
that pk is labelled by uk 2D0 . We have the following lemma, which holds also for
non-D0–complete defect TQFTs:
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Lemma 2.20 Let p1; : : : ; pm 2M and q1; : : : ; qm 2M be two choices of m distinct
points such that pk and qk lie in the same ik –stratum M

˛k
ik

. For a 1–dimensional
stratum we demand in addition that all qk on that stratum occur in the same order along
that stratum as the pk . Then

(2-87) Z.M.p1; : : : ; pmIu1; : : : ; um//D Z.M.q1; : : : ; qmIu1; : : : ; um//:

Proof It is enough to show that we can replace p1 by q1 , ie that

(2-88) Z.M.p1; p2; : : : ; pmIu1; : : : ; um//D Z.M.q1; p2; : : : ; pmIu1; : : : ; um//:
Pick a smooth path  W Œ0; 1�!M such that .0/D p1 , .1/D q1 and  lies entirely
in the stratum M

˛1
i1

and does not intersect any of the other points p2; : : : ; pm . For
each point .t/ of the path there is an isomorphism-onto-its-image map gt W Bx1!M

such that gt .0/D .t/ and im.gt / does not contain any of p2; : : : ; pm . Pick a finite
collection 0D t0; t1; : : : ; tN D 1 such that the images im.gtj / cover  .

It is now enough to show that p1 can be moved to a point r in the intersection of
im.gt0/ and im.gt1/. Repeating this procedures allows one to move p1 to q1 .

Both p1 and r lie in the image of gt0 . Let zp1 and zr be their preimages in Bx1 .
There is an isomophism � of the decorated stratified manifold Bx1 which is the
identity in some neighbourhood of the boundary of Bx1 and which maps zp1 and zr .
Using � we obtain an isomorphism of decorated stratified manifolds M !M which is
the identity outside im.gt0/ and which equals gt0 ı � ı g�1t0 on the image. This
isomorphism maps p1 to r , showing that Z.M.p1; p2; : : : ; pmIu1; : : : ; um// D
Z.M.r; p2; : : : ; pmIu1; : : : ; um//.

A different way of stating the above lemma is that Z.M.p1; : : : ; pmIu1; : : : ; um//
depends on p1; : : : ; pm only up to homotopy in the configuration space of m ordered
distinct points, where during homotopies all points must remain in their respective
strata.

Proof of Proposition 2.19 (i) Commutativity for i > 1 is immediate from Lemma
2.20. For unitality, pick a chart gW Bx ! Bx around p such that g.0/ D p and
q … im.g/. Let W be the bordism obtained from Mx.u; v/ by cutting out g.Bx/ and
parametrising the boundary by gj@Bx . Recall that @Bx D†x . By definition of Y†x
(see (2-67)) we have

(2-89) Z.Mx.u; v//D Z.W /.Y†x .u// 2 Z.†x/:
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Denote by Mx.v/ the bordism obtained from Bx by adding a v–labelled 0–stratum
at the point q . For uD 1Ax one obtains

Z.Mx.1Ax ; v//D Z.W /.Y†x .1Ax //D Z.W / ıZ.Bx/(2-90)

D Z.Mx.v//D Y†x .v/;
where in the last equality we used once more Lemma 2.20.

The verification of associativity works along the same lines. One shows that the
compositions mx.mx.u; v/; w/ and mx.u;mx.v; w// are equal to Z evaluated on the
bordism given by Bx with three additional 0–strata p , q and r labelled u, v and w ,
respectively. We omit the details.

(ii) We need to show b˛y;x.my.u; v//Dmx.b˛y;x.u/; b˛y;x.v//. Writing out both sides
as a single bordism gives Bx with additional 0–strata p and q inserted on M ˛

j and
labelled u and v . Applying Lemma 2.20 gives the result; we again skip the details.

Considering the algebras of point defects provides another justification for our notion
of equivalence of defect TQFTs from Definition 2.12.

Lemma 2.21 Let ZW Borddef
n .D/ ! Vectk and Z 0W Borddef

n .D
0/ ! Vectk be D0–

complete defect TQFTs. Suppose Z � Z 0 via .h; '/W Z� Z 0 W.g;  /. Then for every
x 2Di the map h0jAx W Ax! Ahi .x/ is an isomorphism of algebras.

Proof Recall the definitions (2-30) and (2-31). Evaluating the naturality square of
'W Z! Z 0 ı h� for the bordism Bx W ∅!†x shows that the diagram

(2-91)

D0.†x/ D0
0.†hi .x//

Z.†x/ Z 0.†hi .x//

h0

Z.Bx/ Z 0.Bhi .x//

'†x

commutes. Since Z is D0–complete, the image of Z.Bx/ equals the subspace Y†x
of invariant states. By Lemma 2.15, '†x therefore induces a map 'Y W Y†x ! Y†hi .x/
such that the diagram

(2-92)

D0.†x/ D0
0.†hi .x//

Y†x Y†hi .x/

h0

Y†x Y†hi .x/

'Y
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commutes. Since the bottom path of the square consists of three (linear) isomorphisms,
also h0 restricted to D0.†x/DAx is a linear isomorphism. To show that h0jAx is an
algebra isomorphism, we compute, for u; v 2 Ax ,

m0hi .x/.h0.u/; h0.v//D Y
�1
†hi .x/

ıZ 0�Mhi .x/.h0.u/; h0.v//
�

(2-93)

D .'Y ıY†x ı h�10 /�1 ı'Y ıZ.Mx.u; v//

D h0 ımx.u; v/;
where in the second step we used that ' is natural.

2.5 Euler-completing defect TQFTs

In the Euler defect TQFTs discussed in Example 2.14, each stratum contributed a
weight calculated from its Euler character. Tensoring an arbitrary defect TQFT Z with
an Euler theory allows one to attach such weights to defect strata for Z as well. One
may ask if one can enlarge the set of defect labels of Z in such a way that assigning
different weights just amounts to choosing a different defect label. This is indeed
possible by “internalising” the construction of Example 2.14. As an additional bonus,
this internal version allows for weights that are not just scalars, but arbitrary invertible
point defects.

Given a D0–complete defect TQFT ZW Borddef
n .D/! Vectk (recall Definition 2.16)

we will define Euler-completed defect data Dˇ together with an injection �ˇW D!Dˇ ,
as well as the Euler-completed TQFT

(2-94) ZˇW Borddef
n .D

ˇ/! Vectk:

The Euler completion has the following properties, which justify its name:

(i) Z factors through Zˇ as Z D Zˇ ı ��̌ .

(ii) Zˇ is equivalent to .Zˇ/ˇ in the sense of Definition 2.12.

(iii) Zˇ˝Zeu
‰ is equivalent to Zˇ .

Therefore, let ZW Borddef
n .D/! Vectk be a D0–complete defect TQFT. Recall from

Proposition 2.19 that the set of point defect labels on an i –stratum decorated with
x 2Di naturally acquires the structure of an algebra, denoted by Ax in (2-81). We
write A�x for the set of invertible elements in this algebra.

We would now like to say that the new sets Dˇi of defect labels for i –strata consist
of pairs .x; �/, where x 2 Di and � 2 A�x describes the modified weight given to
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x–labelled i –strata. However, this is not quite enough, as one has to keep track of the
thus-extended defect labels in the defect sphere fi .x/. The correct definition below
makes use of the notation

(2-95) Strat.M/D
n[

iD0

[

˛i

fM ˛i
i g

to denote the set of strata M ˛i
i of a bordism M.

Definition 2.22 Let D 2 Dn . The Euler-completed defect data Dˇ 2 Dn is given as
follows:

� The label sets Dˇi for i 2 f1; : : : ; ng consist of triples

(2-96) .x; �;‰/;

where x 2Di , � 2 A�x and ‰ D . S /S2Strat.fi .x// . Here,  S 2 A�y , where y
is the label of the stratum S of the defect sphere fi .x/. The set Dˇ0 consists of
pairs .x;‰/ with x 2D0 and ‰ as above.

� The value f ˇi .x; �;‰/ of the adjacency map f ˇi is given by the defect sphere
fi .x/, except that a j –stratum S 2 Strat.fi .x// with label y 2Dj is decorated
by .y;  S ; z‰/, where z‰ is determined from ‰ by the defect labels and weights
adjacent to S. For i D 0, we set f ˇ0 .x;‰/D f0.x/ with decorations from ‰ .

It is clear that Dˇ is again a set of defect data. We can realise D as a retract of Dˇ
via the injection �ˇ and surjection �ˇ of defect data: for i > 0 we have

(2-97) �ˇi W Di !Dˇi ; x 7! .x; 1Ax ; ‰1/; �ˇi W Dˇi !Di ; .x; �;‰/ 7! x;

where ‰1 assigns to each stratum of the defect sphere fi .x/ the unit 1Ay in the
corresponding algebra Ay ; for i D 0 we set �ˇ0 .x/D .x;‰1/ and �ˇ0 .x;‰/D x .

We now describe the (nonfunctorial) map “insertion of point weights”

(2-98) W W Borddef
n .D

ˇ/! Borddef
n .D/

on objects and morphisms of Borddef
n .D

ˇ/. To indicate the decoration with weights, we
use the notation †ˇ and Mˇ for objects and morphisms of Borddef

n .D
ˇ/, respectively.

We write Strat>0.M/ for the set of all strata of M of dimension > 0.

� On objects, W D ��̌ , that is, W.†ˇ/ agrees with †ˇ as stratified manifold,
but labels .x;‰/ and .x; �;‰/ are replaced by just x .
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� On morphisms, W maps the class ŒMˇ� to the class ŒM..pS /; .�
�sym.S/

S //�,
where the latter is defined as follows. Let M represent the D–decorated bordism
��̌ .ŒMˇ�/. For each S 2 Strat>0.M/, pS is a choice of one point on S, �S
is the corresponding component of the defect label .xS ; �S ; ‰S / that S carries
in Mˇ , and the product ��sym.S/

S is computed in AxS . The defect bordism
M..pS /; .�

�sym.S/

S // is defined as in (2-86): each pS becomes an additional
0–stratum labelled by ��sym.S/

S (with the symmetric Euler characteristic �sym.S/

introduced in (2-57)). By Lemma 2.20 the class ŒM..pS /; .�
�sym.S/

S //� is inde-
pendent of the choice of the pS .

Even though W itself is not a functor (composition of bordisms may result in more
than one additional 0–stratum on a given j –stratum), we have:

Lemma 2.23 Z ıW W Borddef
n .D

ˇ/! Vectk is a defect TQFT.

Proof It is easy to see that W is strictly monoidal and symmetric (these conditions
can be formulated without W being compatible with composition), so it is enough to
verify that Z ıW is functorial.

Since all strata S in the cylinder X D†ˇ�Œ0; 1� over an object †ˇ have �sym.S/D 0,
the additional 0–strata in W.X/ are labelled by �0S D 1. Thus, Z.W.X// D id, as
required.

Given two composable bordisms Mˇ and Nˇ we need to show

(2-99) Z.W.Mˇ// ıZ.W.Nˇ//D Z.W.Mˇ ıNˇ//:

This will follow directly from additivity of �sym under gluing. Indeed, suppose two
strata S 2Strat>0.Mˇ/ and T 2Strat>0.Nˇ/ with common label .x; �;‰/ get glued
together, resulting in the stratum U of MˇıNˇ . Then �sym.S/C�sym.T /D�sym.U /.

Let p (labelled ��sym.S/ ) and q (labelled ��sym.T / ) be the additional 0–strata in S
and T , respectively, that are added by W . By Lemma 2.20 and by the definition of the
product of Ax in (2-84), under Z the two point defects can be replaced by a single point
defect anywhere on U, which is labelled by the product ��sym.S/��sym.T / D ��sym.U / .
But the latter is the 0–stratum added on U in W.Mˇ ıNˇ/.

The above lemma allows us to define:
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Definition 2.24 Let ZW Borddef
n .D/! Vectk be a D0–complete defect TQFT. The

defect TQFT

(2-100) Zˇ WD Z ıW W Borddef
n .D

ˇ/! Vectk

is called the Euler completion of Z .

It is immediate from the definition that

(2-101) Zˇ ı ��̌ D Z:

The Euler completion is also compatible with our notion of equivalence of defect
TQFTs:

Lemma 2.25 If Z and Z 0 are equivalent D0–complete defect TQFTs, Z � Z 0, then
also Zˇ � Z 0ˇ .

Proof Let .h; '/W Z � Z 0 W.g;  / be maps witnessing the equivalence between
Z and Z 0. The maps of defect data h and g extend to maps of Euler-completed
defect data as follows. We define hˇW Dˇ ! D0ˇ by mapping .x; �;‰/ 2 Dˇi to
.h.x/; h.�/; h.‰//, where h on Ax is as defined in Lemma 2.21 and we do not
display indices on h for convenience. Since it is shown there that hW Ax! Ah.x/ is
an algebra isomorphism, it follows that h.�/ 2 A�

h.x/
. Proceeding componentwise

defines also h.‰/. As the symmetric Euler characteristics remain the same under
h�̌ W Borddef

n .D
ˇ/! Borddef

n .D
0ˇ/, it follows that ' induces a natural transformation

'ˇW Zˇ) Z 0ˇ ı h�̌ . The same argument applied to .g;  / concludes the proof.

In the next two lemmas we investigate the structure of the point defects of Zˇ , working
towards the equivalence .Zˇ/ˇ � Zˇ .

Lemma 2.26 Zˇ is D0–complete.

Proof We proceed in two steps.

Step 1 We start with showing that

(2-102) Y†ˇ D f 2 Zˇ.†ˇ/ j Zˇ.Hˇf /. /D  for all f 2 Emb.B/g

is equal to Y† , as in Section 2.4 for †ˇ 2 Spheredef
n�1.@Dˇ/.
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By definition, Zˇ.†ˇ/D Z.†/ and we are left with showing that �sym.S/D 0 for
all .jC1/–strata S of Hˇ

f
for all j . Indeed, then Zˇ.Hˇ

f
/ D Z.Hf / and thus

Y†ˇ D Y† .

Fix a j –stratum T and of † and f 2 Emb.B/. There is a unique j –stratum T 0
of † such that f restricted to the cone C.T / is a map C.T / ! C.T 0/. By con-
struction we have B D Hf ı f .B/ as stratified bordisms. The symmetric Euler
characteristics are related by �sym.C.T

0// D �sym.S/C �sym.C.T //, where S WD
C.T 0/ n f .C.T //. Since C.T / is contractible we have �.C.T // D 0 and thus
�sym.CT /D2�.C.T //��.@C.T //D��.T / and analogously �sym.C.T

0//D��.T 0/.
Thus, we conclude that �sym.S/D �.T /��.T 0/ and we are done with the first step
once we established the following result:

Claim The Euler characteristics of T and T 0 are equal.

To establish this, we consider the smooth embedding

(2-103) fT W T �R! T 0 �R;

which is obtained from the above map C.T /! C.T 0/ by removing the cone points
and then composing with a map which inflates the interval .0; 1/ to the real line R

(with 1 corresponding to the cone point and �1 corresponding to the boundary
of B ). We will show that fT is a homotopy equivalence, thus proving the claim.

The map fT induces a map �k.fT /W �k.T �R/! �k.T
0 �R/ between homotopy

groups for all k 2ZC . Then by the Whitehead theorem, fT is a homotopy equivalence
if �k.fT / is an isomorphism for all k .

Since we can find an " > 0 such that a ball B" of radius " is contained in f .B/, there
exists an r 2 R such that T 0 � .r;1/� f .T �R/. Choosing some z > r guarantees
that around T 0�fzg also a collar lies in f .T �R/. Pick a basepoint f .p/ on T 0�fzg.
To show surjectivity of �k.fT /, let bW Sk!T 0�R be a based map. It is homotopic to a
map b1W Sk!T 0�fzg by bt .x/D

�
bT 0.x/; bR.x/Ct .z�gR.x//

�
for t 2 Œ0; 1�, where

we write b.x/D .bT 0.x/; bR.x// 2 T 0 �R. Clearly, Œb1� is in the image of �k.fT /.

To show injectivity, consider now a continuous map gW Sk! T �R such that there
is a homotopy in T 0 �R from fT ıg to the constant map. Pick such a homotopy h.
Since h will in general leave the image f .T �R/, we will “shift it above z”, where z
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is as in the previous paragraph. By continuity of f , there exists an R 2 R such that
f .T � .R;1//� T 0 � .z;1/. First we apply the homotopy

(2-104) gt .x/D
�
gT .x/; gR.x/C t .R�gR.x//

�

from g to a map g1 . Then fT .g1.x// 2 T 0 � .z;1/ for all x 2 Sk , and fT ı g1
is homotopic to fT ı g , but it does in general not preserve the basepoint. However,
since T 0 is connected, fT ı g1 is homotopic in T 0 � .z;1/ to a based map g0
that is also in the image of fT . Composing the homotopies we obtain a homotopy
h0W Sk � Œ0; 1� ! T 0 � R from g0 to the constant map to f .p/. By compactness
of Sk and by using the collar of T 0 � fzg, which is still in f .T �R/, there exists an
interval Œa; b�� Œ0; 1� such that h0.x; t/ 2 T 0 � .r;1/ for t 2 Œ0; 1� n Œa; b�. Consider
a smooth function �W Œ0; 1�! Œ0; 1� with �.0/ D 0 D �.1/ and �jŒa;b� D 1, and set
zh.x; t/D �h0T 0.x; t/; h0R.x; t/C�.t/.z�h0R.x; t//

�
. By construction, zh is a homotopy

in f .T �R/ to the constant map, and injectivity of fT follows.

We conclude that Zˇ.Hˇ
f
/D Z.Hf /, and thus Y†ˇ D Y† .

Step 2 Next we construct the inverse to the map Y†ˇ W Dˇ0 .†ˇ/!Y†ˇ . Let .x;‰/2
Dˇ0 and consider the ball B DC.†ˇ/ whose cone point is decorated with .x;‰/. By
definition, Y†ˇ.x;‰/D Zˇ.B/. After application of W , a stratum T 2 Strat>0.B/
contains a point defect with label  �sym.T /

@T
, where @T D T \†ˇ is the boundary of

the stratum T . We define a defect bordism X† as follows: first take the cylinder †�I,
then insert on each stratum S � I a defect point with decoration  ��sym.T /

S , with T
the stratum in B bounded by S. This yields X† 2 Borddef

n .D/. Applying Z.X†/ to
an invariant vector in Y†ˇ yields again an invariant vector. The linear maps Zˇ.B/
and Z.X†/ can be composed and, by construction, the diagram

(2-105)

Dˇ
0 .†

ˇ/ Y†ˇ Y†ˇ

D0.†/ Y†

Y†ˇ Z.X†/

id id

Y†

commutes. By assumption, Y† is an isomorphism and Z.X†/ is an isomorphism by
construction, and so we conclude that Y†ˇ is an isomorphism as well.

We now turn to the algebra of point defects. For .x; �;‰/ 2Dˇi we have so far two
point-set isomorphisms between A.x;�;‰/ and Ax . However, neither the isomorphism
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Y �1† ıY†ˇ nor the map �ˇW Dˇ0 .†ˇ/!D0.†/ from (2-97) are algebra isomorphisms.
Instead we have:

Lemma 2.27 For i > 0, let .x; �;‰/ 2Dˇi be an i –dimensional defect label. Con-
sider the map

(2-106) �.x;�;‰/W A.x;�;‰/! Ax; a 7! �Ei ��ˇ.a/ ��Ei ;
where Ei WD �.S i�1/� 1 D .�1/i�1 and the multiplication on the right-hand side
takes place in Ax . The map �.x;�;‰/ is an algebra isomorphism.

Proof We first compute the change in the symmetric Euler characteristic when remov-
ing a point from a manifold. From covering an n–manifold X by X DX n fpg[B
with B a ball around p 2 X, one sees that the conventional Euler characteristic �
satisfies �.X/ D �.X n fpg/ C �.B/ � �.B n fpg/. Thus, using �.B/ D 1 and
�.B n fpg/ D �.Sn�1/, we obtain �.X n fpg/ D �.X/� 1C �.Sn�1/. Hence, we
have (recalling (2-57))

(2-107) �sym.X n fpg/D �sym.X/C 2�.Sn�1/� 2D �sym.X/C 2En:
For simplicity we assume first that i>2. The multiplication m.x;�;‰/ of a; b2A.x;�;‰/
is defined by m.x;�;‰/.a; b/ D Y �1

†ˇ
�
Zˇ.B.p; qI a; b//�. Write a D .a0; ‰0/ and

b D .b0; ‰0/, so that �ˇ.a/D a0, etc. We compute further, omitting the location of
the 0–strata from the notation and denoting by M the i –stratum on which the point
defects a and b are inserted,

Zˇ.B.a; b//D Z.B.a0; b0; ��sym.M/C4Ei ; : : : //(2-108)

D Z.B.a0 � b0; ��sym.M/C2Ei ; �2Ei ; : : : //;

where c D .a0 ��2Ei � b0; ‰0/ 2Dˇ0 .†ˇ/, and where “: : : ” indicates the point defect
Euler weights inserted in B by W that are not located on the i –stratum M. Thus,
m.x;�;‰/.aI b/D .a0 � �2Ei � b0; ‰0/. From this expression the claimed isomorphism
follows straightforwardly. In the case i D 1 it follows along the same lines (but taking
more care when inserting Euler weights disconnects a stratum) that the multiplication
takes the same form m.x;�;‰/.aI b/D .a0 ��2Ei � b0; ‰0/.

Euler weights on line defects play a special role since inserting them disconnects the
line defect. To obtain the equivalence Zˇˇ � Zˇ of defect TQFTs, they need to be
treated separately. The next lemma shows that they do not add anything new to a given
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defect TQFT, ie we show that it suffices to consider Euler weights just for defects of
dimension i >2. To this end we consider the truncation Dˇ>2 of Dˇ with defect labels
D
ˇ>2
i DDˇi for i > 2, and with Dˇ>2

1 D f.x;‰/ j x 2D1; ‰D . S /S2Strat.f1.x//g.
The set Dˇ0 consists of pairs .x;‰/ with x 2D0 and ‰ as before, where adjacent
line defects have no Euler weights. Dˇ>2 is a set of defect data, and we have a map
of defect data kW Dˇ>2 ! Dˇ which is given by the identity on Dˇ>2

i for i > 2,
and by choosing the Euler weight 1x 2 Ax for i D 1. We thus obtain a defect TQFT
Zˇ>2 D Zˇ ı k�W Borddef

n .D
ˇ>2/! Vectk .

Lemma 2.28 Let ZW Borddef
n .D/! Vectk be a D0–complete defect TQFT. Then the

defect TQFTs Zˇ and Zˇ>2 are equivalent.

Proof We already have that, by definition, Zˇ>2 D Zˇ ı k� . Below we construct a
map of defect data l W Dˇ! Dˇ>2 such that Zˇ D Zˇ>2 ı l� . This establishes the
equivalence (with identity natural isomorphisms).

The maps li for i > 2 are again taken to be the identity. For i D 1 we define l1 to
map .a; �;‰/ 2 Dˇ1 to .a;‰/ 2Dˇ>2

1 , ie it forgets the Euler weights on line defects.
Those will be absorbed in the point defects D0 by the map l0 :

Using the natural decomposition of Strat.M/ according to the dimension of the strata,
we can write a point defect as .a;‰/D .a; .. 

M
˛1
1

/˛1 ; . M˛2
2

/˛2 ; : : : // 2Dˇ0 , where,
in particular, . 

M
˛1
1

/˛1 indicates the tuple of Euler-weights on the adjacent line defects.
We define

(2-109) l0..a;‰//D Y�1† ıZ
�
Ba.. M˛1

1

/˛1/
�
;

where Ba is the defect ball for a and in Ba.. M˛1
1

/˛1/ we understand that for each ˛1 ,
the Euler weight  

M
˛1
1

is inserted on the 1–stratum M
˛1
1 .

We claim that Zˇ is equal to Zˇ>2 ı l� . To this end we consider Zˇ.M/ D
Z
�
M..pS /; .�

�sym.S/

S //
�

for a bordism M 2Borddef
n .D

ˇ/. For 1–stratum S in M the
symmetric Euler characteristic can either be �sym.S/D 0 if S is a closed circle or if S
has two boundary points on @M , or we can have �sym.S/D 1 if S has one endpoint
on an inner 0–stratum of M and one endpoint in @M ; or, finally, �sym.S/ D 2 if
both endpoints of S are an inner 0–stratum of M (which could be the same for both
ends). In this last case we replace the single point defect with Euler weight �2S by
two point defects on S, each labelled with �S . This produces a new bordism M 0 but
does not affect the value of the TQFT: Zˇ.M/D Z.M 0/. We can now choose small
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balls around all inner 0–strata of M 0 which contain exactly one 0–stratum labelled
with an Euler weight for each adjacent 1–stratum. Using functoriality of Z we can
first evaluate these small balls and then the remaining bordism to obtain Zˇ.M/. But
doing so is by definition of l� the same as evaluating Zˇ>2.l�.M//. This concludes
the proof.

Proposition 2.29 If ZW Borddef
n .D/! Vectk is a D0–complete defect TQFT then

Zˇˇ and Zˇ are equivalent: Zˇˇ � Zˇ .

Proof We show that .Zˇ>2/ˇ>2 � Zˇ>2 , the statement then follows by using
Lemmas 2.28 and 2.25 in the series of equivalences

(2-110) Zˇˇ � .Zˇ>2/ˇ � .Zˇ>2/ˇ>2 � Zˇ>2 � Zˇ:

From (2-101) we already have a map hˇˇW Dˇ!Dˇˇ such that Zˇˇ ıhˇˇ� DZˇ .
By restriction we obtain a map

(2-111) hˇ>2ˇ>2 W Dˇ>2 ! Dˇ>2ˇ>2

with Zˇ>2ˇ>2 ı hˇ>2ˇ>2� D Zˇ>2 . Below we provide a degreewise surjective map
of defect data t W Dˇ>2ˇ>2!Dˇ>2 such that Zˇ>2ˇ>2.M/D Zˇ>2.t�.M// for all
bordisms M in Borddef

n .D
ˇ>2ˇ>2/. Since both defect TQFTs agree on objects by

definition, this will imply Zˇ>2ˇ>2 D Zˇ>2 ı t� , and hence prove the proposition.

The component maps of t for i > 0 are

(2-112) ti W Dˇ>2ˇ>2
i !D

ˇ>2
i ; ..x; �;‰/; �0; ‰0/ 7! .x; � � �.x;�;‰/.�0/; ‰00/;

where �.x;�;‰/ is the algebra isomorphism (2-106) and ‰00 is obtained from ‰0 by
applying the map (2-112) in each dimension. More precisely, starting from i D n,
where ‰0 is not present in D

ˇ>2ˇ>2
n , the tuple ‰00 is determined by applying ti

inductively, passing from i to i � 1. Finally, for i D 0, t0W Dˇ>2ˇ>2
0 !D

ˇ>2
0 maps

..x;‰/;‰0/ to .x;‰00/.

We have to show that for every bordism M in Borddef
n .D

ˇ>2ˇ>2/, which we schemat-
ically write .M; ..x; �;‰/; �0; ˆ0// to indicate its decoration, we have

(2-113) Zˇ>2ˇ>2
�
M; ..x; �;‰/; �0; ˆ0/

�D Zˇ>2
�
M; t..x; �;‰/; �0; ˆ0/

�
:

To prove (2-113), we evaluate its left-hand side in two steps. Consider a stratum Mi

with i > 2 that is decorated by ..x; �;‰/; �0; ˆ0/ 2 D
ˇ>2ˇ>2
i . Below, by abuse of

notation we write Zˇ>2ˇ>2.Mi / instead of Zˇ>2ˇ>2.M/ to emphasise the changes
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in the strata of M. By definition, Zˇ>2ˇ>2.Mi /DZˇ>2.Mi ..�
0/�sym.Mi /ˇ//, where

the notation .�0/�sym.Mi /ˇ indicates that the power is computed in the algebra A.x;�;‰/ .
Computing further we obtain

Zˇ>2ˇ>2.Mi /D Z
�
Mi ..�

0/�sym.Mi /ˇ ; ��sym.Mi /C2Ei /
�

(2-114)

D Z
�
Mi ..�

0/�sym.Mi /ˇ ; ��sym.Mi /; �2Ei /
�
:

By Lemma 2.27 this last expression is equal to

(2-115) Z
�
Mi

�
�.x;�;‰/..�

0/�sym.Mi /ˇ/; ��sym.Mi /
��

D Z
�
Mi

�
.�.x;�;‰/.�

0//�sym.Mi /; ��sym.Mi /
��

D Z
�
Mi

�
.�.x;�;‰/.�

0/ ��/�sym.Mi /
��
;

where we used in the second step that �.x;�;‰/ is an algebra isomorphism. Now we
are done, since the last expression is by definition Zˇ>2.M; t..x; �;‰/; �0; ˆ0// and
this argument holds for all strata Mi .

We remark that the argument in the proof relies on commutativity of Ax and does not
work directly for i D 1. This is the reason for the detour via Zˇ>2 .

Finally, let us come back to point (iii) mentioned in the introductory paragraph of the
present subsection.

Lemma 2.30 Zˇ˝Zeu
‰ � Zˇ for any defect TQFT ZW Borddef

n .D/!Vectk and all
‰ D . 1; : : : ;  n/ 2 .k�/n as in (2-59).

Proof Recall that Zeu
‰ has defect data Did , but that it differs from the identity defect

TQFT by its action on bordisms as given in (2-60). We will show that Zˇ˝Zeu
‰ and

Zˇ are in fact isomorphic, not just equivalent.

First we give an isomorphism of defect data f W Dˇ˝Did! Dˇ (which is not the
standard unitor) such that Zˇ˝Zeu

‰ D Zˇ ı f� . We set f to be a composition of
the unitor Dˇ˝Did ! Dˇ from Lemma 2.7 with an isomorphism zf W Dˇ ! Dˇ .
The latter simply maps a defect label .x; �;ˆ/ 2 Dˇj to .x;  j�;ˆ

0/, using the
linear structure of Ax , where in ˆ0 all weights are multiplied by the scalar  k of
the corresponding dimension. This modification absorbs the factor (2-60) into the
evaluation of ZˇDZ ıW on f�.M/ for any object or bordism M. We conclude that
Zˇ˝Zeu

‰ D .Zˇ ı zf�/˝ 1Did .

In Remark 3.14 below we will spell out details of Euler weights for 3–dimensional
defect TQFT in relation to the orbifold construction, to which we now turn.
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3 Orbifolds

In this section we construct orbifolds for defect TQFTs. We start with some pre-
liminaries on oriented triangulations and Pachner moves in Section 3.1. Then we
introduce the concept of an “orbifold datum” A for an n–dimensional defect TQFT
ZW Borddef

n .D/! Vectk for arbitrary n 2 ZC in Section 3.2, and we explain how to
obtain the associated orbifold theory ZAW Bordn!Vectk . The case nD 2 had already
been treated in the literature, and in Section 3.3 we briefly discuss how it fits into our
broader picture. Our main example is the 3–dimensional case, which we study in detail
in Section 3.4.

3.1 Oriented triangulations and Pachner moves

Orbifolds are constructed by decorating the Poincaré dual of oriented triangulations
of bordisms. As preparation for that, below we recall basic facts about triangulations
of n–dimensional manifolds, Pachner moves between them, and the oriented versions
thereof which we will need. For illustration and later use, we spell out the cases nD 2
and nD 3 in some detail.

Let n 2 N. By an n–simplex K we mean the convex hull of nC 1 points p1; p2; : : : ,
pnC1 2 RN for some integer N > n such that fp2�p1; p3�p1; : : : ; pnC1�p1g is
linearly independent. Hence,

(3-1) K D
�nC1X

iD1
tipi

ˇ̌
ˇ ti 2 R>0 and

nC1X

iD1
ti D 1

�
:

The standard n–simplex �n is the special case where fp1; : : : ; pnC1g is the standard
basis of RnC1 . By a simplicial complex we mean a finite collection C of simplices
such that (1) all faces of all simplices in C are elements of C as well, and (2) if
�; � 0 2 C, then � \ � 0 is either empty or a face of both � and � 0.

A triangulation of a topological manifold M is a simplicial complex C together with
a homeomorphism jC j !M, where jC j is the geometric realisation (or polyhedron)
of C. A manifold together with a choice of triangulation is called a triangulated
manifold.

A smooth triangulation of a smooth manifold M is a triangulation f W jC j!M where,
for each simplex S�C, the restriction f jS is smooth and satisfies an extension property
and a nondegeneracy condition on differentials; see [36, Definition 8.3] for details.
To compare different triangulations we need that, given two smooth triangulations
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f W jC j !M and f 0W jC 0j !M, there exists a ı–approximation zf W jC 0j !M to f 0
such that f �1 ı zf W jC 0j ! jC j is piecewise linear [36, Corollary 10.13].

An oriented n–simplex is an n–simplex together with an equivalence class of total
orders of its vertices. Two total orders are equivalent if they are related by an even
permutation of vertices. Given an n–simplex K as in (3-1) together with a total order
.p1; p2; : : : ; pnC1/ of its vertices pi , one obtains an orientation of the n–dimensional
tangent space (seen as a linear subspace of RN ) at each point of K from the oriented
basis .p2�p1; p3�p1; : : : ; pnC1�p1/.
By a triangulation with total order we mean a triangulation jC j!M of an n–manifold
M with a total order of the vertices of C. In a triangulation with total order, every
k–simplex with k 2 f1; 2; : : : ; ng is oriented by restricting the total order.

We will often work in the Poincaré dual picture for oriented n–manifolds. For k 2
f0; 1; : : : ; n�1g, the orientation of a k–stratum in the dual of a triangulation is induced
by that of the corresponding .n�k/–simplex by the rule that together (first the k–
stratum, then the .n�k/–simplex) they produce the orientation of the underlying
manifold M. We take the orientation of an n–stratum to be that of the underlying
manifold M. As a consequence, a vertex in the Poincaré dual stratification is oriented
positively if the orientation of the corresponding n–simplex agrees with the orientation
of the manifold, and negatively otherwise.

It is convenient to describe the total order on the vertices by a “height function”, that is,
an injective function hW C0! R from the set of vertices of the simplicial complex C
to R . Let us illustrate the orientation of a complex and its dual in the cases nD 2 and
nD 3.

Example 3.1 (i) For nD 2, an n–simplex obtains a total order by assigning numbers
h.pi / to the vertices p1 , p2 and p3 . Then the edges are oriented towards the “higher”
vertices, and the face is oriented such that the induced boundary orientation agrees
with two of the edge orientations. For example,

(3-2)
	

1 2

3

is a 2–simplex with total order from a height function which takes values 1, 2 and 3,
respectively.
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If we take the standard orientation of M D R2 , ie the ordered basis
��
1
0

�
;
�
0
1

��
, then

according to our rule the oriented Poincaré dual of (3-2) is

(3-3) C
	 	

	

1 2

3

where we also show the heights of the vertices corresponding to the 2–strata. The
0–stratum is oriented by C since the vertex order in (3-2) induces the same orientation
as that of M.

(ii) For nD 3, an example of a 3–simplex (or tetrahedron) with total order is

(3-4) 3

1

2

4

where the orientation of the interior agrees with that induced from the standard ori-
entation of R3 , and the orientations of the edges and faces are induced as in the
2–dimensional case. Thus, for this orientation of R3 the Poincaré dual of (3-4) is

(3-5)

˚

C

1
2
3

4

˚
˚

˚ ˚
˚

:

The orientation of the 2– and 1–strata in the dual are deduced with the right-hand rule:

(3-6)
1

2

˚

;
1

3

˚̊ ˚
˚

2 rotate 3

1

		 	
	

2
:

Here and below we indicate opposite orientations of 2–strata by a stripy pattern.
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We note that the oriented 2– and 3–simplices with total order

(3-7) ˚

1

23

;
2

1

3

4

are not equivalent to (3-2) and (3-4) for nD 2 and nD 3, respectively. This is a special
case of part (ii) of the following lemma, which will be important in determining the
amount of defect data necessary as an input for the orbifold construction.

Lemma 3.2 Let K be an n–simplex in RN as in (3-1), with 16 n6N.

(i) If n 6 N � 1, any two total vertex orders of K are related by an orientation-
preserving affine linear automorphism of RN which maps K to K .

(ii) If nDN, two total orders are related by an automorphism as in (i) if and only if
the two total orders induce the same orientation on K .

(iii) In both cases, the restriction of the automorphism to K is unique.

Proof For part (ii), let .p1; p2; : : : ; pnC1/ be the ordered set of vertices of K with
respect to the first order, and let .p�.1/; : : : ; p�.nC1// for � 2SnC1 be the second order.
There is a unique affine linear automorphism F of RN such that F.pi /D p�.i/ for
i 2 f1; : : : ; nC1g. Then F maps K to K by definition, and it is orientation-preserving
if and only if � is even.7 This proves part (ii).

To get part (i), it is enough to add to the above argument one orientation-preserving
affine automorphism of RN which reverses the orientation of K . To do so, first extend
.p1; p2; : : : ; pnC1/ to an affine basis of RN, that is, pick pnC2; : : : ; pNC1 such that
.p2�p1; p3�p1; : : : ; pNC1�p1/ is a basis of RN. The affine linear automorphism
which exchanges p1 and p2 and keeps p3; : : : ; pNC1 fixed maps K to K and is
orientation-reversing on K and on RN. Compose this automorphism with an affine
linear reflection along a hyperplane containing K . The resulting affine automorphism
maps K to K , reverses the orientation of K , but is orientation-preserving on RN.

Part (iii) is clear.

7To see this, first assume that � has a fixed point, say �.i0/D i0 . Write F.x/D A.x �pi0/Cpi0
for a linear map A . Abbreviating vi WD pi �pi0 we see that A.vi /D v�.i/ , showing that det.A/ > 0
if and only if � is even. For n > 2 , if � has no fixed point, it can be written as the composition of two
permutations, each of which has a fixed point. For nD 1 the statement is clear.
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We now turn to Pachner moves. For an n–dimensional triangulated manifold M we
consider a subcomplex K � M that is isomorphic to a collection of n–simplices
F � @�nC1 of the standard .nC1/–simplex; we write 'W K!F for the isomorphism.
Then a Pachner move by definition is the replacement

(3-8) M 7! .M nK/['j@K .@�nC1 n
ı
F /:

Put differently, “it glues the other side of �nC1 into M instead of K ”. Since �nC1
has only finitely many (namely nC 2) faces, there are only finitely many such moves.

Pachner’s theorem [38] states that if two triangulated PL manifolds are PL isomorphic,
then there exists a finite sequence of Pachner moves from one triangulation to the
other. For fixed n and k 2 f1; 2; : : : ; nC 1g, we will refer to the Pachner move which
replaces k faces F � @�nC1 by the other nC2�k faces in @�nC1 as a k–.nC2�k/
Pachner move.

Since any two smooth triangulations of a smooth n–manifold are PL isomorphic (up to
an arbitrarily small ı–approximation), Pachner’s result directly holds in our setting — if
orientations are discarded. To relate triangulations with total order, we have to consider
Pachner moves for all possible orders on the vertices of simplices. We will refer to
Pachner moves between triangulations with total order as oriented Pachner moves.

Proposition 3.3 For n 2 ZC and any two finite smooth triangulations with total
order of a smooth n–manifold, there is a finite sequence of oriented Pachner moves
which takes both to a common refinement with total order, up to an arbitrarily small
ı–approximation.

Proof Given Pachner’s theorem, it is sufficient to show that the total order of a given
triangulation can be changed to any other total order with finitely many oriented Pachner
moves. For this it is enough to see how the height of any given vertex in the triangulation
can be changed.

Let f W jC j !M be a triangulation with total order, and let hW C0! R be its height
function. For a vertex v 2 C0 , we want to change the value h.v/DW  to  0 for any
 0 2Rnfh.�/ j � 2C0g. Denote by h0W C0!R the height function which only differs
from h in v , where it takes the value  0.
Let Sv � M be the image under f of the star of v and let p D f .v/. Choose a
diffeomorphism � of M which is the identity on the complement of Sv and which
maps p to zp ¤ p (by construction of � , we must have zp 2 Sv ). Let the triangulation
zf W jC j ! M be given by zf D � ı f . Note that f .v/ ¤ zf .v/, and that in fact
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f .v/ … zf .C0/. We can find [36, Corollary 10.13] a ı–approximation f 0W jC 0j !M

to zf such that f 0�1 ı f W jC j ! jC 0j is a PL isomorphism. For ı small enough we
maintain the property f .v/ … f 0.C 00/.
Thanks to Pachner’s theorem, there is a finite sequence of Pachner moves from the
triangulation f W jC j !M to f 0W jC 0j !M. We turn this into a sequence of oriented
Pachner moves by applying the rule that whenever a new vertex is created at the position
of one of the vertices in C0 , it must have the corresponding height from C (while the
choice of heights at new vertices is arbitrary). Running the same argument (with the
same choices for new heights, etc) but starting from h0 instead of h, we arrive again
at C 0, equipped with the same height function as before. Indeed, the only difference
between h and h0 was in the vertex v , which is no longer present in C 0.

Example 3.4 We illustrate oriented Pachner moves and their Poincaré dual stratifica-
tions for nD 2 and nD 3.

(i) For nD 2, the .nC1/–simplex has four faces, and accordingly there are two types
of Pachner moves: those replacing two triangles sharing a single edge by the “other”
two faces of the tetrahedron �3 , and those replacing one triangle by the “other” three
faces of �3 meeting at a single vertex — as well as the inverse operations. These are
the 2–2 and 1–3 moves, respectively, and locally they look as follows:

(3-9)

a b

cd

2–2 !
a b

cd

;

a b

c

1–3 !
a b

c

d

where a; b; d; c 2 R are pairwise distinct. Hence, for fixed heights a , b and c ,
the unoriented 1–3 Pachner move yields four inequivalent oriented Pachner moves
depending on the relative value of d . The Poincaré dual moves are

(3-10)
a b

cd

2–2
a b

cd

;

a b

c

1–3
a b

c

d

with the induced orientations as explained in Example 3.1(i).
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(ii) For nD 3, there are again only two types of Pachner moves and their inverses.
The 2–3 move is applied to two tetrahedra sharing precisely one face, and replaces
them with the “other” tetrahedra on the boundary of �4 , ie with three tetrahedra that
share a single edge:

(3-11) c

a

b

d

e

2–3 c

a

b

d

e

:

The remaining operation is the 1–4 move, which replaces one tetrahedron by four
tetrahedra meeting at a single vertex:

(3-12) c

a

b

d

1–4 c

a

b

d

e
:

There are five inequivalent oriented 1–4 moves for fixed a , b , c and d , depending on
the relative value of the height e . The Poincaré dual move to (3-11) is

(3-13)

a
b
c

d

e

2–3

a
b
c

d

e

;

with the induced orientations as explained in Example 3.1(ii). We will not have need
in this article to work with the move Poincaré dual to (3-12) directly.
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3.2 Orbifolds of n–dimensional TQFTs

For any n 2 ZC , we fix an n–dimensional defect TQFT

(3-14) ZW Borddef
n .D/! Vectk:

We want to use Z to construct a new closed n–dimensional TQFT, the “orbifold theory”

(3-15) ZAW Bordn! Vectk;

which depends on a choice of “orbifold datum” A. In this section we will first define
what an orbifold datum A for a given defect TQFT Z is, and then construct the
associated orbifold theory ZA .8

Recall from Lemma 3.2 that for k <n any two oriented k–simplices can be rotated into
one another, while there are precisely two oriented n–simplices up to rotation. Hence,
from the perspective of a topological QFT, there are only two oriented n–simplices
and only one oriented k–simplex for every k 2 f1; : : : ; n� 1g. Thus, with j WD n�k ,
the j –strata of the Poincaré dual of a triangulation in n dimensions can be decorated
with the following data:

Definition 3.5 An orbifold datum A for a defect TQFT ZW Borddef
n .D/! Vectk is a

choice of

� an element Aj 2Dj for all j 2 f1; 2; : : : ; ng,
� two elements AC0 ;A�0 2D0 ,

subject to the following constraints (using the notation of Section 2.2):

(i) Compatibility For j 2 f1; 2; : : : ; n � 1g, the representatives of the class
fj .Aj / 2 ŒSpheredef

n�j�1.@jC1D/� are homeomorphic (as stratified topological
manifolds) to the Poincaré dual (in n� j � 1 dimensions) of the boundary of
an .n�j /–simplex. The i –strata in fj .Aj / are decorated by AiCjC1 for all
i 2f0; : : : ; n�j�1g. Similarly, the classes f0.AC0 /; f0.A�0 /2 ŒSpheredef

n�1.@D/�

have representatives that are homeomorphic to the .n�1/–dimensional Poincaré
dual of the boundary of the two inequivalent oriented n–simplices, respectively,
and both f0.AC0 / and f0.A�0 / have their i –strata decorated by AiC1 for all
i 2 f0; : : : ; n� 1g.

8It turns out that it is often useful to take Z in the orbifold construction described in this section to be
the Euler completion of some other TQFT Z 0, that is, Z D .Z 0/ˇ ; see Sections 2.5 and 3.4. Indeed, we
will see in [16] that certain examples of orbifold data only become available after this completion.
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(ii) Invariance Let j 2 f1; : : : ; nC 1g. For any oriented j –.nC 2� j / Pachner
move, consider its Poincaré dual move between n–balls B and B 0, viewed as
stratified bordisms in Bordstrat

n with ∅ as their common source. B and B 0 also
have a common target, and there is a unique way to make them into defect
bordisms by decorating their k–strata with Ak for all k 2 f0; 1; : : : ; ng. Then
we demand the equality of vectors

(3-16) Z.B/D Z.B 0/:

In Sections 3.3 and 3.4 we will spell out both conditions for nD 2 and nD 3 in detail.
For now we note that condition (i) of Definition 3.5 ensures that, as a stratified manifold,
the Poincaré dual of a triangulation with total vertex order has a unique decoration by
the data in A, and thus that condition (ii) can be consistently stated. In particular,

(3-17) .fAng; fAn�1g; : : : ; fA1g; fAC0 ;A�0 gIfn�1; fn�2; : : : ; f0/
is a set of defect data in the sense of Definition 2.4. Condition (ii) itself implies
that for any bordism M in Bordn , if we decorate the Poincaré dual of any oriented
triangulation t of M with the defect labels from the orbifold datum A, then the
evaluation on the resulting defect bordism in Borddef

n .D/ does not depend on the
choice of t (after a limit construction to obtain source and target). This makes the
orbifold theory ZA well defined, which is the content of Constructions 3.7–3.9 and
Theorem/Definition 3.10.

Remark 3.6 We denote orbifold data by A as they are to be thought of as certain
types of algebras: The element An�1 , which labels .n�1/–strata that are Poincaré
dual to edges, appears as the underlying “space” of the algebra; its “multiplication” is
provided by the element An�2 , which decorates .n�2/–strata that are Poincaré dual to
a 2–simplex whose three edges (two “ingoing” and one “outgoing” for n> 2, and both
options for nD 2) correspond to the .n�1/–strata associated with An�1 . This will be
made precise for n 2 f2; 3g in the categorical formulation of Section 4. For example,
for n D 2, A1 is literally an algebra (and coalgebra) with multiplication AC0 (and
comultiplication A�0 ), while for nD 3, A2 is a monoidal category — ie an algebra in
a higher category — with tensor product A1 ; see also Sections 3.3 and 3.4.

We begin by defining ZA.M/ for a closed oriented n–manifold M, ie a morphism
∅!∅ in Bordn . This is a special case of Construction 3.9 below, but it serves as a
good warm-up and it highlights the core part of the full construction:
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Construction 3.7 (evaluation of ZA on closed manifolds M ) Let A be an orbifold
datum for a defect TQFT ZW Borddef

n .D/!Vectk . The number ZA.M/ is constructed
as follows:

(i) Choose a triangulation t with total order of M, and denote the Poincaré dual
stratification by M t .9

(ii) Decorate M t with the orbifold datum A to obtain a bordism M t;A in Borddef
n .D/.

More precisely, decorate

� every j –stratum with Aj for all j 2 f1; 2; : : : ; ng,
� every 0–stratum with either AC0 or A�0 , as dictated by the orientation of the
0–stratum.

(iii) Apply Z :

(3-18) ZA.M/ WD Z.M t;A/:

By Theorem/Definition 3.10 below, ZA.M/ is independent of the choice of triangula-
tion with total order.

After the special bordisms M W ∅!∅, we will now define the functor ZA on all of
Bordn . We will obtain ZA as a limit construction, which is well established in the
literature on state sum constructions (see eg [43; 6; 34; 32]). In fact in [16] we will
show that, for nD 3, models of Turaev–Viro type are the special case of ZA where Z
is taken to be “the trivial defect TQFT”, and the orbifold datum A is extracted from a
spherical fusion category.

Construction 3.8 (evaluation of ZA on objects) Let A be an orbifold datum for a
defect TQFT Z , and let † 2 Bordn . We define ZA.†/ 2 Vectk as follows:

(i) For every triangulation � with total order of †, denote the Poincaré dual strat-
ification by †� . Decorate †� with the orbifold datum A. More precisely,
decorate every j –stratum of †� with AjC1 . This makes † into an object
†�;A 2 Borddef

n .D/ for every triangulation � .10

9As for any Poincaré dual of a triangulation, the stratification M t of M is only unique up to isotopy,
but this ambiguity will be rendered inconsequential in point (iii) below.

10Here again the stratification †� of † is only unique up to isotopy. However, as opposed to
Construction 3.7, evaluating Z on the object †�;A now may depend on the choice of stratification in the
isotopy class. But, since different choices lead to isomorphic spaces Z.†�;A/ , the ambiguity disappears
in the limit construction. We will use this to just speak of “the Poincaré dual” rather than of “a choice of
Poincaré dual”.
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(ii) Let � and � 0 be triangulations as in (i). Consider the cylinder C† D†� Œ0; 1�
viewed as a bordism † ! † in Bordn . Choose an oriented triangulation t
of C† extending the triangulations � and � 0 on the ingoing and outgoing
boundaries, respectively. Decorate the Poincaré dual C t† with the orbifold
datum A (analogously to Construction 3.7) to obtain a morphism

(3-19) C
t;A
† W †�;A!†�

0;A

in Borddef
n .D/.

(iii) Note that Z.C t;A† / is independent of the choice of t . We define ZA.†/ to be
the limit of Z applied to (3-19) over all � , ie ZA.†/ is the universal cone

(3-20)

ZA.†/

Z.†�;A/ Z.†� 0;A/
Z.C t;A

†
/

for all triangulations � and � 0.

To compute ZA.†/ explicitly, note that for � D � 0 the linear map Z.C t;A† /

is an idempotent. One may take ZA.†/ D imZ.C zt ;A† / for a fixed choice of
triangulation z� and C zt ;A† W †z�;A ! †z�;A . The diagonal arrows in (3-20) are
then given by evaluating Z on C t;A† for appropriate t .

Construction 3.9 (action of ZA on morphisms) Let A be an orbifold datum for a
defect TQFT Z , and let M W †1! †2 be a morphism in Bordn . We define M[ to
be M viewed as a bordism ∅!† WD†rev

1 t†2 .

(i) For any fixed oriented triangulation � 0 of †, choose an oriented triangulation t 0
of M[ extending the triangulation � 0 on the boundary.

(ii) Decorate the Poincaré dual stratification M t 0[ with the orbifold datum A to
produce a morphism M

t 0;A
[ W ∅!†�

0;A in Borddef
n .D/.

(iii) Repeat steps (i) and (ii) for every triangulation � 00 of † to produce a morphism
M
t 00;A
[ W ∅!†�

00;A in Borddef
n .D/.
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(iv) Note that the defining properties of A (ensuring triangulation invariance) imply
that the diagrams

(3-21)

Z.∅/

Z.†� 0;A/ Z.†� 00;A/

Z.
M
t
0 ;A
[
/ Z

.M t 00
;A[
/

Z.C t;A
†

/

commute, where the cylinders C t;A† are as in Construction 3.8.

(v) Since Z.∅/D k and because ZA.†/ was defined to be the universal cone, we
have that every face in the associated diagram

(3-22)

k

ZA.†/

Z.†� 0;A/ Z.†� 00;A/

9Š

Z.
M
t

0 ;A
[

/ Z
.M
t 00
;A

[
/

Z.C t;A
†

/

commutes. Let us write vM 2 ZA.†/ for the image of 1 2 k under the above
unique map k! ZA.†/. Then we define the linear map

(3-23) ZA.M/W ZA.†1/! ZA.†2/

to be the image of vM under the canonical isomorphism Homk.k;ZA.†//D
Homk.k;ZA.†rev

1 /˝k ZA.†2//Š Homk.ZA.†1/;ZA.†2//.

To compute vM (and hence ZA.M/) explicitly, use the definition of ZA.†/ in
part (iii) of Construction 3.8 as the image of C zt ;A† W †z�;A!†z�;A under Z . Let
yt be an extension of z� to M[ . The universal arrow in (3-22) is then given by
Z.M yt ;A[ /. Thus, for this choice of ZA.†/ we find

(3-24) vM D Z.M yt ;A[ /:

In summary, we have established the following:
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Theorem/Definition 3.10 Let ZW Borddef
n .D/! Vectk be a defect TQFT and let A

be an orbifold datum for Z . Then the output of Constructions 3.8 and 3.9 is a closed
TQFT ZAW Bordn! Vectk , which we call the A–orbifold theory.

In Sections 3.3 and 3.4 we will discuss the cases nD 2 and especially nD 3 in detail.

Remark 3.11 For any symmetric monoidal category C, an n–dimensional defect
TQFT valued in C is a symmetric monoidal functor ZW Borddef

n .D/! C. Apart from
the existence of limits, the above orbifold construction does not depend on special
properties of the case C D Vectk .

3.3 Orbifolds of 2–dimensional TQFTs

Let us briefly consider the case of a 2–dimensional defect TQFT ZW Borddef
2 .D/!

Vectk (see also [21; 13] and Section 4.1 below). According to Definition 3.5, an
orbifold datum A for Z is a list of elements Aj 2 Dj for j 2 f1; 2g as well as
AC0 ;A�0 2D0 such that, in particular,

(3-25)

A2 ; A2 A2
A1

;

A2 A2

A2A1 A1

A1
AC
0C

;

A2 A2

A2A1 A1

A1
A�
0

�

are local patches of bordisms in Borddef
2 .D/. For any bordism M in Bord2 together

with a choice of triangulation t with total order, we can decorate the Poincaré dual
with A to obtain a bordism M t;A in Borddef

2 .D/. Each inner point of M t;A now has
a neighbourhood isomorphic to one of the patches shown in (3-25). The constraints
on A imply that evaluation of Z on any A–decorated bordism is invariant under the
Poincaré dual oriented Pachner moves (3-10).

A “special” type of solution to the constraints on the data in (3-25) to be an orbifold
datum for Z has a well-studied purely algebraic description. Indeed, there is a natural
monoidal category BZ.a; a/ associated to every element a 2D2 (see [19]), and we
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may rewrite (3-25) as

� WDA2; A WDA1 2 BZ.�;�/;

� WD Z
 

AC
0

!
W A˝A! A;(3-26)

� WD Z
 

A�
0

!
W A! A˝A:

It was shown in [13, Proposition 3.4] that a sufficient condition for (3-25) to form an
orbifold datum is that (3-26) together with

(3-27) " WD Z
 

A�
0

!
W 1! A; � WD Z

 

A0

!
W A! 1

form a �–separable symmetric Frobenius algebra in BZ.�;�/ (whose definition we
will recall in Section 4.1). The condition of �–separability means that � ı�D id; in
terms of line defects, this amounts to leaving out a bubble (see the first identity below
in (4-2)). While not itself Poincaré dual to a triangulation (instead the dual cell complex
has triangles glued to each other along two edges), this “bubble-move” implies the 3–1
Pachner move.

Quite generally, if invariance under the .nC 1/–1 Pachner move — the only move
that changes the number of simplices — in Definition 3.5 is replaced by invariance
under appropriate “bubble moves”, we refer to such an orbifold datum as “special”.
Hence, we define a 2–dimensional special orbifold datum for Z to be a �–separable
symmetric Frobenius algebra in BZ . (Note that �–separable Frobenius algebras are
closely related to special Frobenius algebras [24, Definition 2.3], which is another
reason for the term “special orbifold datum”.)

3.4 Orbifolds of 3–dimensional TQFTs

Being able to treat 3–dimensional orbifolds was our main motivation for developing
the general formalism in Section 3.2. Important earlier work on the significance of
defects in 3–dimensional TQFT includes studies of examples in Rozansky–Witten
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theory [30; 29], Dijkgraaf–Witten theory [22], Chern–Simons theory [31] and a general
analysis of defects in Reshitikhin–Turaev TQFTs [26]. There is a close connection
between 3–dimensional TQFTs and .2C1/–dimensional topological phases of matter.
In the latter context, defects, group symmetries and orbifolding have been investigated
eg in [33; 4; 25; 3; 18]. A general 3–categorical algebraic framework to accommodate
the structure of defects in 3–dimensional TQFTs is developed in [5; 11], and in
Section 4.2 we will place the present approach to orbifolds in this framework.

Fix a 3–dimensional defect TQFT ZW Borddef
3 .D/!Vectk . According to Definition 3.5,

an orbifold datum A for Z is a list of elements Aj 2Dj for j 2 f1; 2; 3g as well as
AC0 ;A�0 2D0 such that (with all A2–decorated 2–strata oriented by the blackboard
framing)

(3-28)

A2 A3

A3

;
A2A2 A2

A2

A1
2

A3A3

A3

;

A2
A1

AC
0

C
A2 A2

A2
A2

A2
T

T

T

A3
A3A3

A3

;
A1A2

A�
0 �

A2

A2
A2

A2

A2

A1

A1 A1

A3
A3A3

A3

are local patches of bordisms in Borddef
3 .D/. For any bordism M in Bord3 together

with a choice of triangulation t , we can decorate the Poincaré dual with A to obtain
a bordism M t;A in Borddef

3 .D/. By the constraints on A, Z is invariant under the
Poincaré duals of the oriented Pachner moves (3-11) and (3-12). In particular, Z.M t;A/

is independent of the choice of triangulation t .

Up to rotations there are precisely 20 inequivalent oriented 2–3 moves and ten inequiv-
alent 1–4 moves:

(3-29) c

a

b

d

e

2–3 c

a

b

d

e

, c

a

b

d

1–4 c

a

b

d

e

Indeed, for each of the ten inequivalent ways to assign heights d and e to the top
and bottom vertices in the 2–3 move, there are up to rotations two ways to assign the
remaining heights a , b and c (“clockwise” and “counterclockwise”). Similarly, for
each of the two inequivalent oriented tetrahedra on the left-hand side of the 1–4 move
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(recall Lemma 3.2(ii)), there are five possibilities to assign a height e to the new vertex
on the right-hand side.

3.4.1 Special orbifold data In this section we will describe a class of special orbifold
data for which we demand only ten constraints, which fall into three classes. We will
show that these ten constraints imply the above 30 constraints. To reflect the fact that
we are dealing with special orbifold data, we will use special notation: we shall from
now on write

� for A3; A (as in “algebra”) for A2; T (as in “tensor”) for A1;
˛ 2 Z.S2A;T / and x̨ 2 Z..S2A;T /rev/ (as in “associator”) instead of AC0 and rb�0 ;

where S2A;T ; .S
2
A;T /

rev 2 Borddef
3 .D/ are

(3-30) S2A;T WD
T T

TT
A

A
A

A

A

A
�

�

�
�
; .S2A;T /

rev D
T T

TT

AAAA

A

A

�

� �
�

:

We will now discuss and motivate the ten constraints imposed on the special orbifold
datum A � .�;A; T; ˛; x̨/. Then in Definition 3.13 we shall present the concise
characterisation.

The first constraint on A is a single 2–3 move, namely the one involving only vertices
of type ˛ (and none of type x̨):

(3-31) under ZW

AA

˛

˛

A A
A

AAAA

D

AA

˛

A

˛

˛

A A
A

AAAA

:

Put differently, the two stratified 3–balls containing the two sides of (3-31) (viewed as
bordisms from the empty set to their boundary spheres) evaluate identically under Z .
In examples, this amounts to a pentagon condition on ˛ .
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The next type of constraint on the data .�;A; T; ˛; x̨/ demands that “if two tetrahedra
in the cell decomposition Poincaré dual to the stratification by defects share two faces,
the tetrahedra may be replaced by just the other two faces”. We note immediately
that in a triangulation any two tetrahedra can share at most one face, so applying this
constraint leaves the realm of triangulations to one of more general stratifications. In
Section 3.4.2 we will show how transiently leaving the domain of triangulations in this
way will guarantee invariance under all 20 oriented 2–3 moves.

We want to make the above constraint precise. Let a; b; c; d 2 R be pairwise distinct
numbers, and consider the two tetrahedra

(3-32) d

b

c

a

;
d

b

c

a

:

In these pictures we took a tetrahedron as in (3-4) and moved all of its vertices into
the same 2–dimensional plane; in doing so we turned one of its edges into an arc to
keep the tetrahedron from becoming degenerate. We may either glue the two tetrahedra
along the two faces .abc/ and .acd/, or along .abd/ and .bcd/. (The second gluing
is easier to visualise if one moves the corresponding faces into the same plane, thereby
turning the opposite straight edge into an arc.) In either case we consider the move
which replaces the two tetrahedra with the two nonshared faces (note that these moves
decrease the number of 2– and 3–strata):

(3-33)

d

b

c

a

 !
d

b

c

a

;

d

b

c

a

 !
d

b

c

a

:
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Note that these two figures are just two different ways of visualising the same move,
but rotated by 90ı relative to each other.

Lemma 3.12 For fa; b; c; dg D f1; 2; 3; 4g a move between oriented stratifications of
the above type is up to rotation one of the following six (the figures are rotated so that
the highest vertex is the rightmost one):

1

4

2

3

 !
1

4

2

3

;
1

4

2

3

 !
1

4

2

3

;(3-34)

2

4

1

3

 !
2

4

1

3

;
2

4

1

3

 !
2

4

1

3

;(3-35)

3

4

1

2

 !
3

4

1

2

;
3

4

1

2

 !
3

4

1

2

:(3-36)

Proof Up to rotation, there are two choices where to place the highest number 4 on
the vertices of the two tetrahedra:

(3-37) 4 and

4

:

This amounts to the first and second column in the above list of moves.

Consider the left choice in (3-37). Up to rotation leaving the vertex with label 4 fixed,
there are two choices on which vertex to place the label 1. One of these choices leaves
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TA

x̨
A

A A
A

T

T

A

A

˛

T = T

A

T

A

A A
A

A

˛

A

A A
A

T

T

A

A

x̨

T

T

TT

=

AA

A A
A

T
T

Figure 1

two inequivalent options how to distribute the remaining labels 2 and 3, the other leaves
only one choice. This leaves us with the moves in the left column of (3-34)–(3-36).

The right column follows analogously from the right stratification in (3-37).

We now translate the moves of Lemma 3.12 into constraints on the data .�;A; T; ˛; x̨/.
For this we pass to the stratifications Poincaré dual to the stratifications in (3-34)–(3-36),
and demand that evaluation by Z is invariant under these moves. Hence, the constraints
corresponding to these moves are that under Z we have the equalities of Figures 1, 2
and 3, and the stripy patterns in Figure 2 again indicate 2–strata oriented opposite to
the paper plane.

Finally, we have to ensure invariance under a type of bubble move: Our last constraint
on .�;A; T; ˛; x̨/, is that, under the functor Z :
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(3-38) T

A
A

A D T

A
A

A D T

A
A

A D
A

where in the first three pictures two A–labelled hemispheres are glued together along a
T –line. In the first picture, all 2–strata have the same orientation as the paper plane,
in the second picture the rear hemisphere has opposite orientation, while in the third
picture it is the front hemisphere.

Now we collect all of the above in a single notion. As in Example 2.5 we shall work
with the source and target maps s; t W D2!D3 , defined via f2.x/D .s.x/; t.x//, and
the folding map f WD f1 , where fj are the adjacency maps of the defect data D.

Definition 3.13 Given a 3–dimensional defect TQFT ZW Borddef
3 .D/ ! Vectk , a

special orbifold datum A� .�;A; T; ˛; x̨/ for Z is a choice of

� � 2D3 ,

TA

A

˛

A

A A
A

T

T

A

x̨

T = T

A

T

A

A A
A

A

x̨
A

A A
A

T

T

A

A

˛

T

T

TT

=

AA

A A
A

T
T

Figure 2
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A

TA

˛

AA
A

A

A

T

T

x̨

T = T

A

T

AA
A

A

T

AA

A

A

TA
A

A
T

T

˛

x̨
T

T

= T

A A

T

A
A

A

Figure 3

� A 2D2 with s.A/D t .A/D �,

� T 2D1 with f .T /D .A;C/� .A;C/� .A;�/,
� ˛ 2 Z.S2A;T / and x̨ 2 Z.S2A;T / as in (3-30)

such that the constraints (3-31), Figures 1–3 and (3-38) are satisfied.

Remark 3.14 Here we spell out what a special orbifold datum for the Euler completion
ZˇW Borddef

n .D
ˇ/! Vectk of a TQFT ZW Borddef

n .D/! Vectk means in terms of Z
and D directly. Recall Definition 2.22 for the Euler-completed defect data Dˇ , and
Definition 2.24 for Zˇ .

(i) By definition, to specify a special orbifold datum Aˇ for Zˇ we first have to
provide one element in each of Dˇ3 , Dˇ2 and Dˇ1 as well as two elements ˛; x̨ 2Dˇ0 .
Recall that for i > 0, elements in Dˇi are tuples of the form .x; �;‰/, where x 2Di ,
� is an invertible element in the algebra of point insertions on x , ie � 2A�x (see (2-81)
and Proposition 2.19), and ‰ is a tuple . S /S2Strat.fi .x// with  S 2 A�y and y the
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label of the stratum S of fi .x/. In the top dimension i D 3, the tuple ‰ is empty, so
the 3–dimensional label of a special orbifold datum Aˇ for Zˇ is of the form

(3-39) .�; �/ 2Dˇ3 W � 2D3; � 2 Z
 

�
!�
:

The 2–dimensional label for Aˇ hence must be of the form

(3-40) .A;  ; .�; �//2Dˇ2 W A2D2; s.A/D t .A/D�;  2Z
 
� �A

!�

as the Euler weights on both sides of an .A;  /–labelled 2–stratum must be � .

Thanks to Lemma 2.28 (Zˇ>2 � Zˇ ), point insertions on line defects need not to
be considered. Hence, a 1–dimensional label for our Aˇ can always be taken to be
.T;‰/, where T is as in Definition 3.13, and the tuple ‰ D .��3;  �3/ keeps track
of the Euler weights inserted on the three 3–strata and the three 2–strata adjacent to
the T –labelled 1–stratum:

(3-41) .T; .��3;  �3// 2Dˇ1 W T 2D1; f .T /D .A;C/� .A;C/� .A;�/:
Finally, the 0–dimensional labels in the special orbifold datum Aˇ for Zˇ features
elements

(3-42) ˛ 2 Z
 

T T

TT
A

A
A

A

A

A
�

�

�
�

!�
; x̨ 2 Z

 

T T

TT

AAAA

A

A

�

� �
�

!�

such that we have

(3-43) .˛; .��4;  �6//; .x̨; .��4;  �6// 2Dˇ0 :
(ii) The constraints on a special orbifold datum of the form (3-39)–(3-41) and (3-43)
are that, under Z , we have the equalities of Figures 4–8, where in Figure 8 there is an
insertion of  2 on each of the two hemispheres ending on a T –line, and the enclosed
3–strata feature one �–insertion. Note that all of the above are identities between
elements in vector spaces Z.B/ for suitable decorated stratified 3–balls B.

(iii) A datum .�;A; T; ˛; x̨/ for Z that satisfies the constraints of Definition 3.13
only “up to normalisations” can sometimes be adjusted to form a special orbifold
datum for the completion Zˇ . This amounts to finding invertible elements � and  
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˛

˛

=

˛

 2

˛

˛

Figure 4

as in (3-39)–(3-40) which satisfy the constraints of Figures 4–8. If ˛ is invertible, such
field insertions � and  are “unique for practical purposes” in the sense that their
contribution to the orbifold theory .Zˇ/A can be determined from the data .�;A; T; ˛/
alone, as follows.

By pre- and postcomposing with ˛�1 in Figure 4 we find that Z evaluated on

(3-44)
 2

T

A

T

A

A A
A

is given by Z evaluated on a 3–ball containing only the known data .�;A; T; ˛; ˛�1/.

 TA

x̨
A

A A
A

 

T

T

A

A

˛

T
 2 = T

A

T

A

A A
A

,

˛

A

A A
A

T

T
A

x̨

T

T

TT
A

A

 

 2

 

=

AA

A A
A

T
T

Figure 5
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 TA

A

˛

A

A A
A

T

T

 
A

x̨

T
 2 = T

A

T

A

A A
A

,

x̨
A

A A
A

T

T
A

˛

T

T

TT
A

A

 

 2

 

=

AA

A A
A

T
T

Figure 6

Furthermore, in the construction of .Zˇ/A , the only local neighbourhood  will ever
appear in is that of (3-44). Hence, knowing the action of Z on the 3–ball containing it
is sufficient.

The insertion � compensates for the T –rimmed bubble in Figure 8. In the examples
we are considering in [16], this condition amounts to the computation of a quantum
dimension and determines � uniquely.

A
 2

T

˛

A A
A

A

A
 

T

T

x̨

T = T

A

T

AA
A

A

,

T

AA

A

A

TA
A

A
T

T

˛

x̨
T

T
 

 2

 

= T

A A

T

A
A

A

Figure 7
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T

AA

AA  2
� 2

=
T

AA

AA  2
� 2

=
T

AA

AA  2
� 2

=

A
 2

Figure 8

3.4.2 Special orbifold data are orbifold data Let A� .�;A; T; ˛; x̨/ be a special
orbifold datum for a defect TQFT ZW Borddef

3 .D/! Vectk . In a series of lemmas
we will now show that A really is an orbifold datum in the sense of Definition 3.5.
Hence, the orbifold theory ZA of Theorem/Definition 3.10 is well defined. We start
with checking the remaining 19 oriented 2–3 moves:

Lemma 3.15 The invariance condition (ii) in Definition 3.5 holds for all oriented 2–3
Pachner moves.

Proof We need to show (3-16), ie that the Poincaré dual of the oriented 2–3 Pachner
moves holds inside 3–balls after evaluating with Z .

One of the defining conditions for special orbifold data A, namely the constraint (3-31),
is precisely (3-16) under the oriented 2–3 move

(3-45) 3

0

1
2

4

2–3 3

0

1
2

4

which only involves tetrahedra of type ˛ . To show invariance under the remaining 19
oriented 2–3 moves we use the conditions of Figures 1–3 repeatedly.

For example, we may glue another tetrahedron to two faces on both sides of (3-45)
by adding a new edge between the vertices labelled 4 and 0. The left-hand side then
isotopically deforms into three tetrahedra joined along the edge .1 2/:

(3-46) 3

0

1
2

4

�

0

2
3

1

4

� 3

2

0
4

1

:
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On the other hand, after gluing the new tetrahedron onto the right-hand side of (3-45),
we can first use condition (3-34) and then rearrange isotopically:

(3-47) 3

0

1
2

4

(3-34) ! 3

0

1
2

4

� 3

2

0
4

1

:

Combined, we have established invariance under the 2–3 move

(3-48) 3

2

0
4

1

2–3 3

2

0
4

1

:

Repeating this argument with all three possible new edges on all incrementally estab-
lished 2–3 moves produces all 20 inequivalent oriented 2–3 moves. More precisely, if
we use the shorthand notation

�
a
b

�
	 and

�
a
b

�
˚ for the moves

(3-49)

b

a

2–3

b

a

;

b

a

2–3

b

a

respectively, then we may abbreviate the above derivation of (3-48) from (3-45) as�
4
0

�
	!

�
1
2

�
˚ . By applying the moves of Lemma 3.12 to the other two shared edges

in (3-45), we obtain
�
2
3

�
˚ and

�
1
3

�
	 from

�
4
0

�
	 . We summarise this as

(3-50)
�
4
0

�
	!

�
1
2

�
˚;
�
2
3

�
˚;
�
1
3

�
	:

Similarly, one finds

(3-51)

�
1
2

�
˚!

�
3
4

�
	;
�
3
0

�
	;

�
2
3

�
˚!

�
1
0

�
˚;
�
1
4

�
	;

�
1
3

�
	!

�
2
0

�
	;
�
2
4

�
˚;�

1
0

�
˚!

�
2
4

�
	;
�
3
4

�
˚;

�
1
4

�
	!

�
3
0

�
	;�

2
0

�
	!

�
1
4

�
˚;

�
2
4

�
˚!

�
1
0

�
	;�

2
4

�
	!

�
1
3

�
˚;

�
3
4

�
˚!

�
1
2

�
	!

�
4
0

�
˚;

�
1
4

�
˚!

�
2
3

�
	;
�
2
0

�
˚;

establishing all 20 oriented 2–3 moves.

Geometry & Topology, Volume 23 (2019)



Orbifolds of n–dimensional defect TQFTs 849

To verify invariance under all oriented 1–4 moves, we use an auxiliary lemma which we
learned from [2]. It features the bubble moves, which are operations on oriented stratified
3–dimensional manifolds which locally act by replacing the two stratifications (2-1)
and (2-2) for all possible orientations,

(3-52) bubble :

These are Poincaré dual to

(3-53)
bubble

;

which we consider for all possible orientations that are consistent with A–decorations.

Lemma 3.16 A 1–4 move is a concatenation of a bubble move and a 2–3 move.

Proof Given a tetrahedron, we pick one of its faces and apply the bubble move (3-52)
to it. The result are three tetrahedra, one pair of which shares three faces, and another
pair shares a single face. To the latter pair we apply the 2–3 move (3-11), producing a
total of four tetrahedra meeting at a single vertex:

bubble ��! ' ! 2–3 ! ' !

Thus, the lemma is proved.

As a corollary, the above lemma shows that all oriented 1–4 moves are implied by the
oriented bubble and 2–3 moves.

Lemma 3.17 The invariance condition (ii) in Definition 3.5 holds for all oriented 1–4
Pachner moves.
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Proof Thanks to Lemmas 3.15 and 3.16 it suffices to show invariance under the bubble
moves (3-52). For example, let us consider

(3-54)

where here and below to avoid clutter, we do not show the labels A, T , ˛ and x̨ .
Using isotopy invariance of Z as well as the defining properties of orbifold data, we
find that, under Z ,

(3-55) D Fig 1D (3-38)D :

This establishes invariance under one of the oriented bubble moves and the proof of
the other ones works analogously.

Thanks to Lemmas 3.15 and 3.17, we can now conclude:

Proposition 3.18 A special orbifold datum for a TQFT ZW Borddef
3 .D/! Vectk in

the sense of Definition 3.13 is an orbifold datum in the sense of Definition 3.5.

In particular, by Theorem/Definition 3.10, a special orbifold datum A defines a closed
TQFT ZAW Bord3! Vectk .

Remark 3.19 In [16] we will construct several examples of special orbifold data A
and the associated orbifold theories. These include the following:

(i) A is extracted from the data of a spherical fusion category (which in turn is
precisely the input data for Turaev–Viro models [43; 6]). This is a 3–dimensional
analogue of viewing 2–dimensional state sum models [1; 27] as orbifolds via
�–separable symmetric k–algebras [19; 13]. More generally, one can think of
special orbifold data for a 3–dimensional defect TQFT Z as “spherical fusion
categories internal to a Gray category with duals” (see Section 4.2).
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(ii) A is extracted from a certain type of special symmetric Frobenius algebra internal
to a modular tensor category, using an extension of the Reshetikhin–Turaev
construction.

(iii) A is extracted from a “surface defect with invertible bubble”. This is an analogue
of the Barr–Beck-type construction with invertible quantum dimensions of [13],
which in fact generalises to arbitrary dimension n.

4 Higher categorical formulation

It is expected that the sets of defect labels in an n–dimensional defect TQFT arrange
themselves into a “fairly strict n–category with duals” for any n 2 ZC . This has been
made precise for nD 2 and nD 3:

� It was shown in [19] that one can naturally extract a strictly pivotal 2–category
from a 2–dimensional defect TQFT, and every bicategory with ambidextrous
duals for 1–morphisms is biequivalent to a strictly pivotal 2–category, as follows
from [7; 37]. Hence, for nD 2 “fairly strict” means strict, which in this case is
the same as “as strict as achievable by biequivalence”.

� For nD3, it was shown in [11] that one naturally obtains a Gray category with du-
als from every 3–dimensional defect TQFT. This is generically the strictest form
of 3–categorical structure (where the only nonidentity coherence 3–morphism
that is allowed is in the interchange law for 2–morphisms) with ambidextrous
duals for all 1– and 2–morphisms, and every tricategory with ambidextrous
duals is triequivalent to a Gray category with duals; see [28; 5; 41]. In this sense,
for nD 3 “fairly strict” means “as strict as achievable by triequivalence”.

For n> 3 we may expect a similar state of affairs. However, to extract a specific notion
of n–category from a given defect TQFT is no simple combinatorial task: Any flavour
of n–category comes with a prescribed shape that is used to define a notion of source
and target for all k–morphisms for k 6 n. An element x 2Dk should correspond to an
.n�k/–morphism, but it does so only after picking a certain decomposition of a sphere
in fk.x/ into the prescribed shape. The dualities in the category should then allow one
to relate the morphisms defined by different decompositions. Instead of formalising the
involved combinatorics, the notion of disc-like n–category was invented in [35], where
now a .k�1/–sphere serves as the combined source and target for a k–morphism; see
Remark 4.5 for a more detailed discussion.
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In Sections 4.1 and 4.2 below we will reformulate the orbifold constructions of Sections
3.3 and 3.4 in 2– and 3–categorical language, respectively. In fact, we formalise
the notion of special orbifold data internal to arbitrary pivotal bicategories and Gray
categories with duals (which need not be associatedwith defect TQFTs).

4.1 Special orbifold data in pivotal bicategories

Recall from [19] that to every defect TQFT ZW Borddef
2 .D/! Vectk one can naturally

associate a 2–category BZ . The objects of BZ are elements of D2 , and are to be thought
of as D2–decorated planes; 1–morphisms are lists of elements in D1�f˙g (the signs
encode the orientation of 1–strata), which we picture as parallel D1–decorated lines.
The 2–morphisms are k–vector spaces which Z assigns to certain decorated circles.
In fact, BZ has identical left and right adjoints for all 1–morphisms (corresponding to
orientation reversal of 1–strata) and is in fact a pivotal 2–category. This construction
is reviewed in detail in [10], which also discusses examples of pivotal bicategories
from algebraic and symplectic geometry, differential graded algebras and categorified
quantum groups.

Now let .�; A; �; �;�; "/ be a special orbifold datum for Z as in Section 3.3. In terms
of BZ , this means that A is a 1–endomorphism of the object � 2 BZ , and we have
2–morphisms �W A˝ A! A, �W 1� ! A, �W A! A˝ A and "W A! 1� . The
constraints on these data, written in standard graphical calculus (with diagrams read
from bottom to top), are as follows:

D ; D D ; D ; D D ;(4-1)

D ; D ; D :(4-2)

In other words, a special orbifold datum A for Z — the data needed to define the
orbifold TQFT ZAW Bord2! Vectk — is a �–separable symmetric Frobenius algebra
in BZ .

Remark 4.1 The above realisation, originally due to [21] in the context of conformal
field theory, is the starting point of the “orbifold completion” construction of [13]: The
defect TQFT Z restricted to Bord2 , viewed as a nonfull subcategory of Borddef

2 .D/

where all objects and morphisms are exclusively decorated by �2D2 , is a closed TQFT.
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One may ask whether there is a natural defect TQFT Zorb which analogously restricts
to the closed orbifold TQFT ZA . Indeed, as explained in [13], the orbifold construction
naturally lifts to produce the “complete” orbifold defect TQFT ZorbW Borddef

2 .D
orb/!

Vectk , where Dorb
2 and Dorb

1 are given by �–separable symmetric Frobenius algebras
in BZ and their bimodules, respectively. Algebraically, for every pivotal bicategory P
with idempotent complete morphism categories this construction motivates the definition
of the orbifold completion Porb as the bicategory of �–separable symmetric Frobenius
algebras, bimodules and bimodule maps internal to P [13, Section 5.1]. Then one has
B.Zorb/ Š .BZ/orb and .Porb/orb Š Porb .

4.2 Special orbifold data in Gray categories with duals

In analogy to the 2–dimensional case of Section 4.1, to a defect TQFT ZW Borddef
3 .D/!

Vectk one can naturally associate a 3–categorical structure TZ , as explained in [11].
Indeed, it was shown there that TZ has the structure of a Gray category with duals. We
refer to [11] for the detailed construction of TZ . Here we only recall some of the basic
structure, so that we can formulate the notion of special orbifold data for Z internal
to TZ .

Roughly, the objects of TZ are elements of D3 , which we imagine as D3–decorated
patches of R3 , say 3–cubes. In this picture, 1–morphisms are stacks of D2–decorated
planes, with the spaces in between them decorated compatibly with the maps s and t .
Similarly, 2–morphisms can be represented as D1–decorated lines with D2–decorated
planes ending on them as allowed by the adjacency map f1 . Hence, we may depict
objects u, 1–morphisms ˛W u! v and 2–morphisms X W ˇ!  in TZ as decorated
cubes such as

u

y x

z

;

u
v

˛1
˛2
˛3 ;

X3
X1 X2

3
21

ˇ1
:

The functor Z is only used to construct the Hom sets for every two parallel 2–
morphisms X and Y , namely as the vector space which Z assigns to the sphere
around the potential meeting point of the lines X and Y , decorated accordingly.
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Composition of 1–morphisms in TZ , denoted by �, corresponds to stacking D2–
decorated planes such as

v
w

�

u v

D

u v

w

while horizontal composition of 2–morphisms, denoted by ˝, is concatenation in the
negative y–direction:

ˇ
˝ ˇ D ˇ

Vertical composition of 3–morphisms (as well as �– and ˝–composition of 3–
morphisms) corresponds to cutting and pasting appropriately decorated 3–balls.

Orientation reversal of planes (1–morphisms) and lines (2–morphisms) gives rise to two
distinct notions of duals in TZ , #–duals and �–duals, respectively, which are compatible
with one another in a natural way. In the graphical calculus, for 1–morphisms and
2–morphisms we have

u
v

˛1
˛2
˛3

#

D

v
u

˛3
˛2
˛1 ;

�

D ;

respectively, and the associated units of adjunction are the 2– and 3–morphisms

coev˛ D

v

u

; coevX D Z

0
BBBBBBB@

1
CCCCCCCA
:
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It is natural to express the constraints on special orbifold data for Z in terms of TZ , or
for any Gray category with duals:

Definition 4.2 Let G be a Gray category with duals. A set of special orbifold data in
G is

� an object � 2 G,

� a 1–morphism A 2 G.�;�/,
� a 2–morphism T W A�A!A,

� two 3–isomorphisms ˛W T ˝ .1A�T /� T ˝ .T � 1A/ W x̨ ,

�
;

� �
A ;

� ��

T

A
A A

;

A
T

˛

A A
AAA

T
T

T

� � �
�

such that there are 3–isomorphisms � 2 Aut.11�/ and  2 Aut.1A/, and:

(i)
˛

˛

=

˛

 2

˛

˛

(ii)
 

x̨

 
˛

 2 D

(iii)
 

 2

x̨0

 
˛0

D
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(iv)
 2

˛00

x̨00

 

 

D

(v)  2 �
 2 D  2

together with the opposite versions of (ii)–(iv) as in Figures 5–7, and with the two other
orientations of the hemispheres in (v) as in Figure 8. The vertices ˛0, x̨0, ˛00 and x̨00
are determined from ˛ and x̨ using the duals in G (drawing only the T –lines around
0–strata for clarity):

(4-3) ˛0 WD x̨ ; x̨0 WD ˛ ; ˛00 WD ˛ ; x̨00 WD x̨ :

In detail, ˛0 is the 3–morphism (suppressing identities in the right column) in Figure 9,
where � and � are the tensorator and triangulator of G, respectively, using the con-
ventions of [11, Definitions 3.4 and 3.8]. There are similar expressions for x̨0, ˛00
and x̨00.

Note that in the special case  D 11A and � D ı � 111� for some ı 2 k, the last
condition (v) says that the quantum dimension of T is invertible.

By construction, in three dimensions a special orbifold datum A for a defect TQFT Z
may be identified with a special orbifold datum A in TZ . As we will explain in [16], the
latter can be thought of as a spherical fusion category internal to the Gray category with
duals TZ , just as special orbifold data in two dimensions are �–separable symmetric
Frobenius algebras.

Remark 4.3 Parallelling the constructions for the 2–dimensional case summarised in
Remark 4.1, we expect there to be a natural defect TQFT Zorb which for A–decorated
bordisms restricts to the closed orbifold theory ZA : the surface defect labels for Zorb

are A0–A–bimodule categories internal to TZ , while line defect labels are compatible
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eevT

x̨

��evA;T �

eev �coevA

��1
A

coevT

Figure 9

bimodule functors. Furthermore, we expect there to be an associated notion of orbifold
completion Gorb for any Gray category with duals G which is idempotent complete in
an appropriate sense and such that .TZ/orb Š TZorb for G D TZ .

Next we address the relation between the Euler completion (see Definition 2.24) of
a defect TQFT ZW Borddef

3 .D/ ! Vectk and its Gray category TZ . We will show
that different point insertions on surface defects for Z correspond to different pivotal
structures on TZ .

To see this, we fix a collection

(4-4)  ˛ 2 AutTZ .1˛/ for all ˛ 2D2
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for the remainder of this section. Demanding  ˛�ˇ D  ˛� ˇ , we in fact have one
3–isomorphism for every 2–morphism ˛ in TZ . Restricting Dˇ to point insertions
only of type  ˛ gives us a set of defect data D with D 2 D f.˛;  ˛/ j ˛ 2D2g and
D
 
j DDj for j ¤ 2, and we write

(4-5) Z W Borddef
3 .D

 /! Vectk

for the restriction of Zˇ .

What is the relation between TZ and TZ ? The answer involves the following
natural notion: given any Gray category with duals G together with a collection
c D fc˛ 2 AutG.1˛/ j ˛ is a 1–morphism in Gg satisfying c˛�ˇ D c˛ � cˇ , the c–
twist Gc is the Gray category with duals whose underlying tricategory and #–duals are
those of G, while the pivotal structures of Gc are those with the adjunction 3–morphisms

(4-6)

evGc
X D c�1˛ ı evG

X ı .1X� ˝ cˇ ˝ 1X /W X�˝X ! 1˛;

coevGc
X D .1X ˝ c˛˝ 1X�/ ı coevG

X ı c�1ˇ W 1ˇ !X ˝X�;
eevGc
X D c�1ˇ ı eevG

X ı .1X ˝ c˛˝ 1X�/W X ˝X�! 1ˇ ;

ecoevGc
X D .1X� ˝ cˇ ˝ 1X / ıecoevG

X ı c�1˛ W 1˛!X�˝X
for every 2–morphism X W ˛! ˇ in G. Put differently, Gc is the same as G, except
that the pivotal structures are “twisted” by the maps c˛ .

Proposition 4.4 For a defect TQFT ZW Borddef
3 .D/ ! Vectk and a collection of

invertible 3–morphisms  ˛ as in (4-4), there is an equivalence

(4-7) TZ Š .TZ/ 

of k–linear Gray categories with duals.

Proof We will first express vertical composition in TZ in terms of TZ . Then we
will find a triequivalence �W TZ ! .TZ/ which maps the adjunction 3–morphisms
in TZ to those in .TZ/ .

Let f W X!Y and gW Y !Z be 3–morphisms in TZ . We denote the common source
of X , Y and Z by .˛;  /, and the common target by .ˇ;  /. By definition (see [11,
Section 3.3]), the vertical composition gı f in TZ is Z .Bg;f /2HomTZ .X;Z/,
where Bg;f is the following defect bordism: Bg;f is the solid 3–ball with two
smaller 3–balls Bf and Bg removed whose boundaries are ingoing for Bg;f and
decorated such that f 2 Z .@Bf / and g 2 Z .@Bg/, while the remaining boundary
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component of Bg;f is outgoing and its stratification is locally a cylinder over the
boundary stratifications. Schematically,

(4-8) Bg;f D .˛;  /.ˇ;  /

Z

Y

X

f

g

where the line-of-sight on the 3–ball is orthogonal to the two red 2–strata.

To evaluate Z .Bg;f / we note that the two 2–strata in (4-8) decorated with .˛;  / and
.ˇ;  / have two incoming and one outgoing boundary components. Thus, according
to our convention in Example 2.14 they have symmetric Euler characteristic �1, and it
follows that

(4-9) g ı f D . �1ˇ ˝ 1Z ˝ �1˛ / ıg ıf;
where gıf is the composition in TZ . Similarly, we find that the identity 3–morphisms
1
TZ 
X in TZ are

(4-10) 1
TZ 
X D Z 

 
X

.˛; /.ˇ; /

!
D  ˇ ˝ 1X ˝ ˛

as the .˛;  /– and .ˇ;  /–decorated 2–strata now have symmetric Euler characteris-
tic C1.

It follows that we obtain an equivalence � of Gray categories which is the identity on
objects, 1– and 2–morphisms by setting �.f /D . �1

ˇ
˝ 1Y ˝ �1˛ / ı f for every

3–morphism f W X ! Y . The equivalence automatically respects the #–duals, and to
verify that � also maps ev

TZ 
X to ev.TZ/

 

X , we compute

(4-11) ev
TZ 
X D Z 

 

X

.˛; /

.ˇ; /

!
D  ˛ ı evTZ

X ı .1X� ˝ ˇ ˝ 1X /

�7�!  �1˛ ı evTZ
X ı .1X� ˝ ˇ ˝ 1X /D ev.TZ/

 

X ;

where the last step is due to the definition in (4-6). The argument for the other three
types of adjunction maps is analogous.
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Remark 4.5 Here we give a sketch of a construction of a disc-like n–category DZ
from a defect TQFT ZW Borddef

n .D/! Vectk .

Recall that the main datum for a disc-like n–category is a map that assigns to a k–
ball B the set of “k–dimensional field configurations Ck.B/” for every k 2 f0; : : : ; ng.
The elements of Ck.B/ are thought of as the k–morphisms of the disc-like n–category.
This assignment has to be functorial with respect to diffeomorphisms of balls, giving a
functor

(4-12) Ck W Ballk! Set

from smooth k–balls and their diffeomorphisms to sets and bijections. For our defect
TQFT ZW Borddef

n .D/!Vectk we define Ck on a k–manifold X, for k2f0; : : : ; n�1g,
as

(4-13) Ck.X/D
˚
X 0 jX 0 a decorated stratified k–manifold

with underlying manifold X such that
ŒX 0�W ∅! @X 0 is a morphism in Borddef

k .@
n�kC1D/

	
:

Restricting to balls, this gives the functor Ck as in (4-12).

The combined source and target map for k–morphisms is specified by a natural trans-
formation @W Ck) Ck�1 with components

(4-14) @X W Ck.X/! Ck�1.@X/:

In the case of DZ we define @X .X 0/ to be the decorated stratified manifold @X 0 for
every X 0 2 Ck.X/.
Disc-like n–categories have many compositions of morphisms modelled by the gluing
of balls. If a k–ball B DB1ıY B2 is obtained as the gluing of two k–balls B1 and B2
along a (collar over a) .k�1/–ball Y with boundary .k�2/–sphere S D @Y , it is
required that there exists a map

(4-15) glY W C.B1/S �C.Y / C.B2/S ! C.B/S ;

where the index S denotes elements that are “splittable along S ”. This notion is
intrinsically defined, but in our case it has a clear candidate: in DZ the spaces C.Bi /S
are those k–morphisms that intersect S transversely, and the map glY is just given by
gluing the defects in B1 and B2 along Y . Thus, gluing is strictly associative.

The axioms related to the units of disc-like n–categories pose a technical issue: To
model all compositions with various units, Morrison and Walker [35] work in the PL
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setting. In the case of DZ the k–dimensional units should be cylinders over lower-
dimensional defect balls with certain singularities on the boundary. In this remark,
however, we do not attempt to translate the unit axioms of [35] into our setting.

Up to now we have described the k–morphisms for k < n without mentioning the
functor Z . Indeed, if we took isotopy classes of .n�1/–balls we should obtain a disc-
like .n�1/–category that is “free over the defect data @D” (compare [11, Section 3]).
Instead we use Z to define n–morphisms on an n–ball B as the coproduct over the
state spaces associated to all D–decorations of the boundary @B,

(4-16) Cn.B/D
a

ŒS�2Cn�1.@B/
Z.S/;

where the index runs over all representatives of diffeomorphism classes of stratified
decorated .n�1/–spheres.

The composition (4-15) of two n–balls B1 and B2 that are glued along an .n�1/–ball
Y to produce an n–ball B DB1 ıY B2 is given as follows. For each chosen decorated
stratifications of B1 and B2 that are glued to a stratification of B, we need to give a
map gl0Y W Z.@B1/�Z.@B2/! Z.@B/. From the coproduct of the maps gl0Y we then
obtain the gluing map glY . To this end we cut out one slightly smaller ball from the
interior of both B1 and B2 inside B. This produces a two-holed ball on which we can
evaluate Z , giving the map gl0Y . By diffeomorphism-invariance of Z we expect this to
satisfy all axioms of a disc-like n–category.
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