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Tori detect invertibility of topological field theories

CHRISTOPHER J SCHOMMER-PRIES

A once extended d–dimensional topological field theory Z is a symmetric monoidal
functor (taking values in a chosen target symmetric monoidal .1; 2/–category)
assigning values to .d�2/–manifolds, .d�1/–manifolds, and d–manifolds. We
show that if Z is at least once extended and the value assigned to the .d�1/–torus
is invertible, then the entire topological field theory is invertible, that is, it factors
through the maximal Picard 1–category of the target. Similar results are shown to
hold in the presence of arbitrary tangential structures.

18D05, 57R15, 57R56, 57R65; 81T45

1 Introduction

1.1 Summary of results

A topological field theory, following the axiomatization of Atiyah [1] and Segal [35],
is a symmetric monoidal functor

ZW Cobd ! Vect;

where the source is the symmetric monoidal category Cobd whose objects are closed
compact .d�1/–dimensional manifolds, morphisms are equivalences classes of d–
dimensional bordisms between these and the monoidal structure is given by the disjoint
union of manifolds, and where the target is the category of vector spaces with its
standard tensor product monoidal structure.

A topological field theory associates a vector space Z.M/ to each closed .d�1/–
manifold M, and the dimensions of these vector spaces form a very coarse measure of
the complexity of the topological field theory. The simplest theories, the invertible field
theories, assign one-dimensional vector spaces to every .d�1/–dimensional manifold.1

It is natural to ask if there are any constraints on the allowed values of these dimensions

1If a topological field theory assigns one-dimensional (ie ˝–invertible) vector spaces to every .d�1/–
manifold, then it automatically assigns invertible linear maps to every d–dimensional bordism. Thus every
manifold is assigned an invertible value. This explains the name invertible field theory.
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or, in the same vein, if there are criteria which ensure a theory is invertible. Indeed, this
very question was raised by Chao-Ming Jian [21] on the mathematical question-and-
answer website MathOverflow,2 where Jian asks whether a d–dimensional theory Z
which assigns one-dimensional vector spaces Z.Sd�1/ and Z.T d�1/ to the sphere and
torus3 must also assign one-dimensional vector spaces to all other .d�1/–manifolds.

A direct consequence of the results of this paper give a positive answer to Jian’s question
under the assumption that the topological field theory is at least once extended, meaning
that it assigns data to d –, .d�1/– and .d�2/–manifolds.4 In this case the vector space
Z.T d�1/ assigned to the .d�1/–torus is one-dimensional if and only if the theory
assigns one-dimensional vector spaces to all closed .d�1/–manifolds. In particular it is
sufficient to consider only the torus; the invertibility of Z.Sd�1/ automatically follows
from the invertibility of Z.T d�1/. The invertibility of these topological field theories
is completely determined by the dimension assigned to the single manifold T d�1.

As we will explain presently, there are many ways to generalize topological field theories
beyond the original Atiyah–Segal framework. Our results apply in this generality. The
first and simplest generalization is to allow the target category to vary. Thus we let
the target be any symmetric monoidal category C . Next we can allow our manifolds
to be equipped with general tangential structures. A type of tangential structure for
d–dimensional manifolds is determined by a fixed fibration �W X ! BO.d/. Given
such a fibration, an .X; �/–structure for a d–manifold M is a lift � :

M

X

BO.d/

�
�

�M

where �M is the classifying map of the tangent bundle of M.56 Tangential structures
for lower-dimensional manifolds are defined in the same way, by stabilizing the tangent

2This MathOverflow question was the start of the author’s interest in this problem.
3We mean the torus T k D .S1/�k.
4For example, it might associate linear categories to .d�2/–manifolds and functors to .d�1/–

dimensional bordisms. A precise definition appears later.
5To make the map �M well defined (and not just well defined up to homotopy) we need to make

additional choices, such as an embedding of M into R1 . We will suppress this during the introduction.
6Typical examples include orientations (X D BSO.d/), spin structures (X D BSpin.d/), tangential

framings (X D EO.d/), stable framings (X DO=O.d/), G–bundles (X D BG �BO.d/), and many
others.
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bundle with enough trivial line bundles to make it d–dimensional. We will return to
this with more detail in Section 6.

Evaluating a topological field theory on a closed d–manifold W gives an invariant
Z.W / 2 EndC.1/ (in the case where C D Vect, this is a number), and these invariants
were one of the original motivations for studying topological field theories. The
invariants from topological field theories enjoy a degree of locality. If we cut W in
a linear fashion along parallel codimension-one submanifolds we may view it as a
composite of bordisms. Then the axioms ensure that we can recover the value of Z
on W from the values on these smaller pieces; this is the algebraic fact that functors
send composites of morphisms to composites of morphisms.

Many topological field theories enjoy a higher degree of locality. In these theories we
are allowed to cut our manifolds along nonparallel slices thereby cutting up our manifold
into even simpler and smaller pieces. At the same time this introduces manifolds with
corners. Algebraically this can be captured by the notion of extended topological field
theory by Freed [13] and Lawrence [25], a notion which has been extensively developed
by Baez and Dolan [2], Bartlett, Douglas, Schommer-Pries and Vicary [3], Douglas,
Schommer-Pries and Snyder [11], Feshbach and Voronov [12], Kapustin [22], Kerler
and Lyubashenko [24], Lurie [26], Schommer-Pries [33], Segal [36] and Tsumura [38].

Higher categories provide the core underlying algebraic structure governing extended
field theories, and the strongest form of our results is cast in the language of symmet-
ric monoidal .1; n/–categories. For each dimension d and each category number
1� n� d (which we will suppress from our notation), there is a symmetric monoidal
.1; n/–category which we will denote by Bord.X;�/

d
to distinguish from the nonex-

tended case. Philosophically it has objects which are closed compact .d�n/–manifolds,
1–morphisms which are .d�nC1/–dimensional bordisms, 2–morphisms which are
.d�nC2/–dimensional bordisms between bordisms, etc up until dimension d . Above
dimension d we have invertible morphisms, encoded by the classiying spaces of the
group of diffeomorphisms of bordisms, rel boundary. In addition all of the manifolds
and bordisms making up Bord.X;�/

d
will be equipped with .X; �/–structures.

To make this philosophy precise we should fix a model of .1; n/–categories, of
which there are many equivalent choices; see Barwick and Schommer-Pries [4]. One
possible model is based on n–fold simplicial spaces. For example, this multisimplicial
approach to the higher bordism categories is taken in [26], and also by Calaque and
Scheimbauer [7] and Nguyen [28], and we refer the reader to these sources for more
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details. From this point of view our results can be interpreted in classical algebraic
topology as statements about maps between certain multisimplicial spaces. We will
see shortly, however, that while the strongest and most general statements of our
results are expressed using .1; n/–categories, the crucial mathematical ingredients,
and indeed most of our computations, can actually be established just using the standard
and long-established theory of weak 2–categories (aka bicategories in the sense of
Bénabou [5]).

We will prove:

Theorem 11.1 Fix n� 2 and a tangential structure .X; �/ for d–manifolds. Assume
either that d � 3 or that .X; �/ is spherophilic (Definition 8.1). Let Z be an extended
d–dimensional topological field theory

ZW Bord.X;�/
d
! C

taking values in the symmetric monoidal .1; n/–category C . Let T d�1 D .S1/�d�1

be the .d�1/–torus. If for each Œx� 2 �0X we have that Z.T d�1; x��C1�Lie/ is
invertible, then Z is an invertible topological field theory.

Here, a theory is invertible if it assigns invertible values to all manifolds (and
˝–invertible objects to .d�n/–manifolds). This is the natural generalization of
invertible theory in the extended context. For each point x 2 X we get an induced
map, denoted by x� , from d–framings to .X; �/–structures, and �C1�Lie denotes
the product d–framing on the .d�1/–torus which is the C1 (bounding) 2–framing
on the first S1–factor and the Lie group 1–framing on the remaining factors. When
d D 2, the term spherophilic, or “sphere-loving”, means a tangential structure where
the 2–sphere admits such a structure (this is discussed in Section 8.2). In the course of
this text we will discuss many details of this theorem and its statement. In short, even
in this generality, the invertibility of the entire theory is completely governed by the
invertibility of a single value of the theory (for each component of X ).

A key geometric fact which is an ingredient in the above theorem, and which partly
explains why the above results hold when the category number n� 2, is that handle-
decompositions for manifolds use handles with codimension-two corners. When n� 2
this allows us to implement certain geometric arguments in categorical terms, completely
inside the higher category Bord.X;�/

d
. This includes handle decomposition and handle

moves for d–manifolds, and surgery for .d�1/–manifolds.
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Similar unpublished results have been obtained by Dan Freed and Constantin Teleman.
Their work has focused on the oriented and fully local (nD d ) case, and was described
briefly by Freed in a footnote in [16, page 9] and in a lecture [14].

Theorem 1.1 (Freed–Teleman) Let ZW BordSO
n ! C be a fully extended oriented

topological field theory valued in the symmetric monoidal .1;n/–category C. If either

(1) Z.Sk/ is invertible for some k � 1
2
n, or

(2) Z.Sn/ is invertible and Z.Sp �Sn�p�1/ is invertible for all p ,

then Z is invertible.

In the situation where our theorem and theirs both apply (oriented fully local theories),
it is easy to deduce our result from their case (1). However one of the features which we
find interesting is precisely that we do not need to assume the topological field theory
is fully local. Our result also applies to theories with arbitrary tangential structures.

1.2 Invertible field theories

Invertible topological field theories are the simplest and among the most computable
topological field theories that are known. They naturally occur in many contexts:

� The most basic example of an oriented topological field theory which exists in all
dimensions is the Euler theory. This theory assigns the trivial 1–dimensional vector
space to each .d�1/–manifold and assigns the (exponential of the) relative Euler
characteristic

Z.Yin
W
��! Yout/D �

�.W;Yin/

to each bordism (here � 2 k� is a fixed nonzero scaler parametrizing the theory).

� Another example which exists in all dimensions is classical Dijkgraff–Witten
theory. This theory, which in dimension d is parametrized by a finite group G and a
characteristic class ! 2Hd .BGIC�/, assigns data to oriented manifolds equipped
with principal G–bundles. It assigns trivial 1–dimensional vector spaces to each
.d�1/–manifold, and to a closed oriented d–manifold M with principal G–bundle P ,
it assigns

hŒM �; !.P /i;

the !–characteristic number of P .

Geometry & Topology, Volume 22 (2018)



2718 Christopher J Schommer-Pries

� An invertible spin theory, a version of the Euler theory based on the Arf invariant,
appears in Gunningham’s work [20] on spin Hurewicz numbers.

� Similar theories give local or partially local formulas for many bordism invariants
such as characteristic classes and the signature.

� Invertible field theories govern and control anomalies in more general quantum
field theories. See for example the work of Freed [15].

� There are also recent real-world applications of invertible topologial field theories
to condensed-matter physics. Specifically the low-energy behavior of gapped systems
experiencing short-range entanglement are well modeled by invertible topological field
theories; see for example Freed [16] and Kapustin and Turzillo [23].

� One approach to quantum Chern–Simons theory describes it as an invertible 4–
dimensional theory coupled together with a 3–dimensional boundary theory. See for
instance Freed, Hopkins, Lurie and Teleman [17] and Walker [39].

� Invertible field theories are also one of the key ingredients in the study of what are
called relative field theories by Freed and Teleman [18] and twisted field theories by
Stolz and Teichner [37].

For extended topological field theories and those valued in general targets, we will
say that a topological field theory is invertible when it assigns invertible values to all
manifolds and bordisms. In this case it takes values in an 1–Picard subcategory of
the target. An 1–Picard category is a symmetric monoidal .1; n/–category E in
which all objects and morphisms are invertible. It can also be defined as a symmetric
monoidal .1; n/–category E in which the shear map

.˝; proj1/W E �E!E �E

is an equivalence. In this second definition it is clear that every object is ˝–invertible,
but in fact it also implies that every 1–morphism, 2–morphism, etc is also invertible.
Hence E is in actuality a symmetric monoidal .1; 0/–category.

Another reason to single out the class of invertible topological field theories is that it is
possible to completely classify them using stable homotopy theory. Grothendieck’s ho-
motopy hypothesis is the equivalence of homotopy theories between .1; 0/–categories
and topological spaces. This induces an equivalence between the homotopy theories
of Picard 1–categories and group-like E1–spaces, aka connective spectra. It then
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follows (see for example the discussion in [26, Section 2.5]) that extended field theories
valued in the Picard 1–category E are in natural bijection with

�0 MapE1.kBord.X;�/
d
k; E/:

That is, they are in bijection with homotopy classes of infinite loop maps from the
E1–space kBord.X;�/

d
k to E , where kBord.X;�/

d
k denotes the geometric realization

of the .1; n/–category Bord.X;�/
d

.

The celebrated theorem of Galatius, Tillmann, Madsen and Weiss [19] concerns the
case nD 1 and in that case identifies kBord.X;�/

d
k '�1�1MT� , a shifted cover of

the Madsen–Weiss spectrum. Bökstedt and Madsen [6] generalize this to a variant
of Bord.BO.d/;id/

d
. In the current higher categorical parlance they consider the n–

uple bordism category (an n–dimensional generalization of a double category), and
identify its geometric realization with �1�nMTO.d/. It is widely anticipated that the
geometric realization of the .1; n/–category Bord.X;�/

d
is the E1–space �1�nMT� ,

and an account of this is forthcoming; see Schommer-Pries [34].

This reduces the classification of invertible field theories to a problem in stable homotopy
theory. In many cases, depending on E , this can be completely computed (see [16] for
several examples where these computations are carried out).

1.3 An application: Crane–Yetter TQFTs are invertible

The Crane–Yetter topological field theory [10] is an oriented 4–dimensional field
theory originally constructed from a modular tensor category. In Crane, Kauffman
and Yetter [9], this TQFT was shown to arise via a state-sum construction, and the
input was generalized to allow arbitrary balanced braided fusion categories, also called
premodular categories.

This topological field theory is also known to be an extended field theory, as expected
for any state-sum theory. Its description as an extended field theory has been given
by Walker [39] (see also [40]). It was also studied by Walker and Wang [41] (and is
sometimes called the Walker–Wang model). In that work they provide a skein-theoretic
formula for the vector space associated to each 3–manifold. In the case of the 3–torus
the vector space has a natural basis spanned by the indecomposable transperent objects,
those objects which braid trivially with all other objects.7

7Specifically, X is transparent if for each Y we have cX;Y ı cY;X D idY˝X , where c�;� is the
braiding morphism.
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Given a braided fusion category C , the subcategory of transparent objects will be a
symmetric monoidal category which is called the Müger center Z2.C/. In the case of
unitary categories, Müger showed [27, Proposition 2.11] that a balanced braided fusion
category is modular precisely if there is one irreducible transparent object, the unit
object. This is known to hold also in the nonunitary case.

Putting these facts together we see that the Crane–Yetter theory associated to a modular
tensor category is an extended 4–dimensional theory in which the value associated to
the 3–torus is a one-dimensional, hence invertible, vector space. It follows from our
main theorem that the whole theory must then be invertible. Following the approach
outlined above to classifying invertible theories using stable homotopy, we see that
such theories are classified by

H 0
˝.MT SO.4/;HC�/ŠH 4.BSO.4/IC�/ŠC� �C�

with the two factors corresponding to the Euler class and the first Pontryagin class.
Hence we quickly recover the previously known result that the Crane–Yetter invariant
is classical; see Crane, Kauffman and Yetter [8] and Roberts [31]:

Corollary 1.2 If C is a modular tensor category, then there exist (nonzero) constants
�1; �2 2C such that the Crane–Yetter invariant of any closed oriented 4–manifold W
is given by

CY.W /D ��.W /1 ��
p1.W /
2 ;

where �.W / and p1.W / are the Euler characteristic and first Pontryagin number,
respectively.

The numbers �1 and �2 are derived from the central charge and global dimension of
the modular tensor category.

1.4 Overview

Our main Theorem 11.1 is a general result about extended field theories valued in
symmetric monoidal .1; n/–categories. However in Section 11 we will show how the
general case can be deduced from the case where nD 2, that is, where Bord.X;�/

d
is a

symmetric monoidal .1; 2/–category. We will call the corresponding field theories
once extended topological field theories to indicate they have one additional categorical
layer beyond the original Atiyah–Segal formulation.
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Every symmetric monoidal .1; 2/–category C has an underlying symmetric monoidal
weak 2–category h2C , often called the homotopy 2–category of C . This 2–category
has the same objects and 1–morphisms as C , but the 2–morphisms are the equiva-
lence classes of 2–morphisms in C . The question of whether an .1; 2/–categorical
topological field theory

ZW Bord.X;�/
d
! C

is invertible is completely determined by the corresponding 2–categorical theory

h2ZW h2Bord.X;�/
d
! h2C:

Z is invertible if and only if h2Z is invertible.

This permits us to eschew the world of .1; 2/–categories and work entirely in the
theory of symmetric monoidal bicategories. From now on, unless otherwise stated,
Bord.X;�/

d
will denote the corresponding symmetric monoidal weak 2–category of

bordisms, as constructed in [33] (see Scheimbauer [32] for a comparison between this
notion and the .1; 2/–categorical notion).

After making these simplifications, our main theorem is proven inductively. One of the
crucial tools which we use to compare theories of different dimensions is the technique
of dimensional reduction. Dimensional reduction is usually encountered in the context
of oriented theories. If we fix a k–dimensional oriented manifold M, then this gives
rise to a symmetric monoidal functor

.�/�M W BordSO
d�k! BordSO

d

which sends a manifold Y to Y �M. If we are given a d–dimensional field theory Z ,
then by precomposing with the above map, we obtain a .d�k/–dimensional theory.
Thus theorems about lower-dimensional theories have direct consequences for higher-
dimensional theories as well.

In the presence of general tangential structures, the process of dimensional reduction
is much more subtle. More importantly both our induction strategy and the base
case .d D 2/ become significantly more complicated. For this reason we will first
concentrate on the oriented version of the main theorem, and then explain how to adapt
the argument in the presence of general tangential structures.

We have organized this paper as follows:

In Section 2 we establish a few fundamental algebraic/categorical results about detecting
invertibility in monoidal categories.
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In Section 3 we prove the key Lemma 3.1, which shows that if the bottom two layers
of a once extended topological field theory are invertible, then so is the top layer
(invertibility can be “pushed upward”).

In Section 4 we prove the base case (d D 2) of our theorem for oriented theories. The
argument in this section is due to Freed and Teleman [14].

In Section 5 we give the inductive argument establishing our main theorem, again only
in the oriented setting.

In Section 6 we discuss general tangential structures.

In Section 7 we adapt the results of Section 3 to the case of general tangential structures.

In Section 8 we discuss two-dimensional theories with general structures. We review
some basic facts about 2–framed bordisms, we introduce the notion of spherophilic
tangential structures (those such that the 2–sphere admits such a structure), and we
prove the base case (d D 2) when the tangential structure is spherophilic.

In Section 9 we describe the various forms of dimensional reduction that we will need
to use in the presence of general tangential structures.

In Section 10 we describe how to modify our previous inductive argument (given for
oriented theories) to the case of general tangential structures.

In Section 11 we show how to use the .1; 2/–categorical results already established
to obtain the .1; n/–categorical results stated in Theorem 11.1.
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2 Categorical observations

The following lemma will be used repeatedly.

Lemma 2.1 Let C be a monoidal category. Let f W x!y and gW y!z be morphisms
in C . Suppose that the objects x , y , and z are invertible in C and that the composite
g ıf is an isomorphism. Then both f and g are isomorphisms.
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Proof Composition with isomorphisms preserves and reflects the property of being
an isomorphism. Thus, by postcomposing g with .gf /�1 , we may assume without
loss of generality that z D x and that g ıf D idx . In other words f and g exhibit x
as a retract of y .

Each object w 2 C gives rise to an endofunctor w˝ .�/W C! C , and if w is invertible,
then this is an equivalence of categories; it then reflects isomorphisms. It follows that,
by tensoring with the inverse of y and composing with the isomorphism y˝y�1 Š 1,
we may assume that y D 1, the unit object.

In short we have reduced to the case that f and g exhibit x as a retract of the unit
object. The morphisms f ˝f and g˝g exhibit x˝x as a retract of 1˝ 1Š 1, and
the diagram

1

x Š x˝ 1

1˝ 1

x˝ x

g

Š

g˝g

id˝g

f f ˝f

then exhibits the arrow .id˝g/W x Š x˝ 1! x˝ x as a retract of the isomorphism
1Š 1˝1. Since retracts of isomorphisms are isomorphisms, we conclude that .id˝g/
gives an isomorphism x Š x˝ x . However, since x is invertible, we may cancel the
left-hand copy of x and conclude that gW 1! x is an isomorphism. It follows that
both f and g are isomorphisms, as desired.

Remark 2.2 In fact this lemma can be generalized a bit further. It also holds when
x , y , and z are invertible parallel morphisms in a weak 2–category.

Recall the following standard fact:

Lemma 2.3 A 1–morphism f in a 2–category is invertible if and only if it admits an
adjoint such that the unit and counit 2–morphisms of the adjunction are invertible.

3 First observations about invertible field theories

Our first result shows that invertibility can be pushed upward provided there are at least
two consecutive layers of invertibility.

Lemma 3.1 Let ZW BordSO
d
! C be a once extended topological field theory such that

Z.Y / is invertible for each .d�2/–dimensional manifold Y , and Z.†/ is invertible
for every .d�1/–dimensional bordism †. Then Z is invertible.
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Proof We must show that every d–dimensional bordism with corners is assigned an
invertible value under Z . To this end, let M0 and M1 be closed .d�2/–manifolds,
let †0 and †1 be .d�1/–dimensional bordisms from M0 to M1 , and let W be a
d–dimensional bordism with corners from †0 to †1 . We may choose a Morse function
f W W ! Œ0; 1� with critical points only on the interior of W , having distinct critical
values, and with f �1.i/D†i for i D 0; 1. By slicing in between the critical values,
we observe that W is a composite of d–dimensional bordisms with corners which
have only a single critical point. Thus it is sufficient to prove that such bordism are
invertible.

Every such bordism W (a d–dimensional bordism with corners which has only a single
Morse critical point) is given by a handle attachment. Specifically let pC q D d � 2
with p; q � �1. We may regard Sp �DqC1 and DpC1 �Sq as .d�1/–dimensional
cobordisms from Sp�Sq to the empty manifold ∅. We may also regard DpC1�DqC1

as a d–dimensional bordism with corners from Sp �DqC1 to DpC1 �Sq.

For every d–dimensional bordism with corners with a single Morse critical point,
there exists a pair of integers p and q with pC q D d � 2, p; q � �1, and a .d�1/–
dimensional bordism † from M0 to M1 tS

p �Sq such that

†0 D .M1 � I tS
p
�DqC1/ ı†;

†1 D .M1 � I tD
pC1
�Sq/ ı†;

W D .M1 � I
2
tDpC1 �DqC1/ ı†� I:

This decomposition is possible because our bordism category has codimension-two
corners, the same as handles. From this decomposition we see that it is sufficient to
show that each .pC1/–handle bordism DpC1 �DqC1 is assigned an invertible value
for �1� p � d � 1.

However, handles may be canceled. Specifically, consider an index-p handle

Dp �DqC2W Sp�1 �DqC2!Dp �SqC1:

We may “whisker” this with the bordism Dp�SqC1 thought of as a morphism from ∅
to Sp�1 �SqC1 . The result is a bordism

HpW S
d�1
ŠDp �SqC1[Sp�1�SqC1 S

p�1
�DqC2

!Dp �SqC1[Sp�1�SqC1 D
p
�SqC1 Š Sp �SqC1:

Since Dp �SqC1 is assigned an invertible 1–morphism, the p–handle is assigned an
invertible 2–morphism if and only if Hp is assigned an invertible 2–morphism.

Geometry & Topology, Volume 22 (2018)



Tori detect invertibility of topological field theories 2725

Similarly consider the pC1–handle

DpC1 �DqC1W Sp �DqC1!DpC1 �Sq:

We may whisker this with the bordism Sp �DqC1 , thought of as a bordism from ∅
to Sp �Sq, to obtain a bordism

HpC1W S
p
�SqC1 Š .Sp �DqC1/[Sp�Sq S

p
�DqC1

! .Sp �DqC1/[Sp�Sq D
pC1
�Sq Š Sd�1:

Again the .pC1/–handle will be assigned an invertible value if an only if HpC1 is
assigned an invertible value.

But the composite HpC1 ıHp is the identity bordism of Sd�1 , and since the source
and targets of both HpC1 and Hp are assigned invertible values (by assumption), it
follows from Lemma 2.1 that both HpC1 and Hp are assigned invertible values.

This has an important corollary for fully local field theories.

Corollary 3.2 In any oriented fully extended topological field theory, if the values of
all zero-manifolds are invertible, then the field theory is invertible.

Proof The values of �1–dimensional manifolds (ie the empty manifold) and 0–
dimensional manifolds are invertible. Thus applying the previous lemma, we see that
the value of each 1–dimensional bordism is invertible. Applying the lemma again, one
dimension higher, we see that the value of each 2–dimensional bordism is invertible.
Continuing in this way shows that every bordism is assigned an invertible value.

4 The base case: oriented version

We will now establish a very special case of our main theorem. We will consider
oriented 2–dimensional extended topological field theories Z and show that if the
value Z.S1/ of the circle is invertible, then the entire field theory is invertible. For
very particular target categories, this is an easy consequence of the classification in [33].
However the following proof for oriented field theories with general target categories is
due to Dan Freed and Constantin Teleman. We learned of it from Dan Freed’s Aspects
of topology lecture [14]. In Section 8 we will adapt these results to a slightly larger
class of tangential structures.
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common name positive point elbows cup cap saddle saddle

bordisms + � +- +-

Figure 1: Some 2–dimensional bordisms

Figure 1 depicts some important 2–dimensional bordisms. Each point is given an
orientation after stabilizing its (null) tangent bundle to the trivial rank-2 bundle. Thus,
up to isomorphism, there are precisely two oriented points: the positive point and
the negative point. These objects are dual in BordSO

2 , and the unit and counit of the
adjunction between them are given by the elbow bordisms8 depicted in Figure 1. The
elbows, in turn, are also adjoint to each other. In fact they are ambidexterously adjoint
(form both a left and right adjunction). The cup, cap, and saddles provide the units and
counits for these adjunctions.

Proposition 4.1 Let ZW BordSO
2 ! C be an oriented extended topological field theory.

Then Z is invertible if and only if Z.S1/ is invertible.

Proof The value Z.S1/ is invertible in any invertible field theory; the more important
implication is the converse. So we assume that Z.S1/ is invertible. By Corollary 3.2
it is sufficient to show that the value assigned to every zero manifold is invertible.
Every zero manifold is a disjoint union of positive and negative points, which are dual
to each other. Thus by Lemma 2.3 it is enough to show that the unit and counit of
the duality between the positive and negative point (that is, the elbow bordisms) are
assigned invertible values. Up to composing with an invertible “swap” bordism, the
elbow bordisms are adjoint, so again by Lemma 2.3 it is enough to show that the unit
and counit of this adjunction (that is, the cup and the saddle bordisms) are assigned
invertible morphisms.

We will first show that the cup bordism is assigned an invertible value. Observe that
the circle is a self-dual object in BordSO

2 . The unit and counit of this self-duality are
given by the annulus S1� Œ0; 1�, which can be read either as a bordism from the empty
1–manifold to S1tS1 or as a bordism the other way around. Since Z.S1/ is invertible,
it follows from Lemma 2.3 that the values of each of these annuli are invertible.

Each annulus can be written as a composite of a pair-of-pants bordism and a disk (cup
or cap). By Lemma 2.1 and the fact that Z.S1 tS1/D Z.S1/˝Z.S1/ is invertible,

8Actually we must compose one of the elbows by the “swap” bordism, which is the unique invertible
bordism from ptC t pt� to pt� t ptC .
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D D ˝ D ˝

�1 �1

Figure 2: Invertiblity of the saddle, one way

˝D˝DD

�1 �1

Figure 3: Invertiblity of the saddle, the other way

D ˝

�1

Figure 4: The cylinder in terms of a cup, cap, and inverse sphere

it follows that the values of both the disk and the pants are invertible, regardless of
which direction these bordisms are read. Every 2–dimensional bordism between closed
1–manifolds can be obtained as composites of these, and hence the value of Z on any
2–dimensional bordism between closed 1–manifolds is invertible. Note that a special
case of this is the cup bordism.

Now we will show that the saddle bordism is assigned an invertible value. We will
show that the reverse saddle gives a two-sided inverse to the saddle, after applying the
given field theory Z . The calculations are depicted in Figures 2 and 3, where these
pictures are meant to be taking place in C (after applying Z ); the key step in both is
the next to last, where we apply the identity depicted in Figure 4.
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5 The main theorem: oriented version

Theorem 5.1 Let ZW BordSO
d
! C be a once extended topological field theory. Then

Z is invertible if and only if the value of the .d�1/–torus, Z.T n�1/, is invertible.

Proof We will prove this theorem by induction. The base case d D2 is Proposition 4.1.
Thus we may assume that the theorem statement holds for all dimensions p < d . We
first consider the effect of dimensional reduction along the circle, ie precomposition with

.�/�S1W BordSO
d�1! BordSO

d :

Let ZS1 denote the dimensionally reduced theory. Thus ZS1.X/D Z.X �S1/. As a
.d�1/–dimensional theory we have that ZS1.T d�2/D Z.T d�2 � S1/D Z.T d�1/
is invertible. Thus, by our induction hypothesis, the entire theory ZS1 is an invertible
theory. It follows that for every closed oriented .d�2/–manifold M, we have that
ZS1.M/D Z.M �S1/ is invertible.

Now we will consider each oriented .d�2/–manifold M separately and contemplate
dimensional reduction along M, ie precomposition with

M � .�/W BordSO
2 ! BordSO

d :

Let ZM denote this dimensionally reduced theory. Since ZM .S1/D Z.M �S1/ is
invertible, by Proposition 4.1 the whole theory ZM is invertible. Hence ZM .pt/ D
Z.M/ is invertible. In particular we have now shown that the value of Z on every
.d�2/–manifold is invertible.

We will now consider when the value of Z on closed .d�1/–manifolds is invertible.
We first establish a lemma:

Lemma 5.2 Let ZW BordSO
d
! C be a once extended topological field theory such

that Z.M/ is invertible for each .d�2/–manifold M. Suppose that the closed .d�1/–
manifold N2 is obtained from N1 by surgery along an embedded Sk �Dd�1�k. If N1
is nonempty and Z.N1/ is invertible, then Z.N2/ is invertible.

Proof of lemma Consider N1 n Sk �Dd�1�k as a .d�1/–dimensional bordism
from ∅ to Sk � Sd�2�k . Let H1 be Sk � Dd�1�k viewed as a bordism from
Sk �Sd�2�k to ∅. Then the composition yields

H1 ı .N1 nS
k
�Dd�1�k/ŠN1;

and hence
Z.H1/ ıZ.N1 nSk �Dd�1�k/Š Z.N1/:
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Since Z.N1/ is invertible and the sources and targets of these morphisms are invertible
by assumption, it follows from Lemma 2.1 that both Z.H1/ and Z.N1nSk�Dd�1�k/
are invertible.

Now let H2 be DkC1 � Sd�2�k viewed as a bordism from Sk � Sd�2�k to ∅.
Since N1 is nonempty, we can choose an embedding of DkC1�Sd�2�k into N1 (for
example such an embedding exists in a sufficiently small ball). The same argument
as above shows that Z.H2/ is invertible as well. But now we have (by the definition
of surgery)

N2 ŠH2 ı .N1 nS
k
�Dd�1�k/;

which implies that Z.N2/ is a composite of two invertible morphisms, hence invertible.
This establishes the lemma.

Returning to the proof of Theorem 5.1, we know that Z.T d�1/ is invertible by as-
sumption. By repeatedly applying Lemma 5.2, this implies that if N is a closed
.d�1/–manifold which can be obtained from T d�1 by repeated surgeries (ie such that
N is bordant to T d�1 ), then Z.N / is invertible.

In general not every closed .d�1/–manifold N is bordant to the .d�1/–torus (which
itself is null-bordant). The obstruction to this is the class ŒN � 2�SO

d�1
in the oriented

bordism group. However if N is any oriented closed .d�1/–manifold, and xN denotes
the orientation reversal of N, then ŒN t xN�D ŒN ��ŒN �D 02�SO

d�1
, and hence N t xN

may be obtained from T d�1 by repeated surgeries. It then follows from Lemma 5.2 that

Z.N t xN/Š Z.N /˝Z. xN/Š Z. xN/˝Z.N /

is invertible, and hence both Z.N / and Z. xN/ are invertible. So we have just established
that the value of Z on every closed .d�1/–manifold is invertible.

Next we note that if W is a .d�1/–dimensional bordism such that either the source or
the target is the empty manifold ∅, then Z.W / is invertible. We see this as follows.
Without loss of generality assume the source of W is the empty manifold, and the
target is M. Then W [M W is a closed .d�1/–manifold, and hence

Z.W [M W /Š Z.W / ıZ.W /

is invertible. Since the sources and targets of these morphisms are invertible, it again
follows from Lemma 2.1 that both Z.W / and Z.W / are invertible.

Finally we will consider an arbitrary .d�1/–dimensional bordism W from M1 to M2 .
Since Z. SM1/ is an invertible object, tensoring with Z. SM1/ is an equivalence and
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hence preserves and reflects invertibility. It follows that Z.W / is invertible if and
only if

idZ. SM1/˝Z.W /Š Z. SM1 � I /˝Z.W /Š Z. SM1 � I tW /

is invertible, where SM1 � I is the identity bordism of SM1 . But we can also view
SM1 � I as a bordism from ∅ to SM1 tM1 , which we will denote simply by X to

distinguish from the identity. Both X and the composite

. SM1 � I tW / ıX

are bordisms with source the empty manifold ∅. Hence their values under Z are
invertible, and it follows that Z. SM1 � I tW /, and hence also Z.W /, is invertible.

So at last we have established that the value of Z on every .d�2/–manifold and every
.d�1/–dimensional bordism is invertible. The theorem now follows directly from
Lemma 3.1.

6 Tangential structures

Careful constructions of the bordism higher category [30; 32] use bordisms embedded
into a large- or infinite-dimensional Euclidean space. In particular, for the .1; n/–
categorical version, the top-dimensional d–manifolds will be embedded into Rn�R1 .
The lower-dimensional manifolds corresponding to lower-dimensional morphisms of
Bordd will be embedded into Rk �R1 with k � n.

Thus in the remainder of this paper we will tacitly assume that all our manifolds
are embedded into these spaces as well. We will use the Grassmannian of d–planes
Grd .Rn �R1/ as our model for the classifying space BO.d/. In particular since all
of our d–manifolds are embedded in Rn�R1, the tangent bundle yields a Gauss map

�M W M ! Grd .R
n
�R1/' BO.d/;

which is well defined at the point-set level, not just up to homotopy. Moreover, our
lower-dimensional manifolds (say of dimension d � k ) have well-defined stabilization
Gauss maps

.�y ˚ "
˚k/W Y ! Grd .R

n
�R1/' BO.d/:

These maps will be used to define tangential structures at the point-set level.

A space �W X ! BO.d/ over the classifying space BO.d/ determines a type of
tangential structure for manifolds of dimension � d . If �W X ! BO.d/ is a fibration
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than a tangential structure for M is given by a lift � :

M

X

BO.d/

�
�

Tangential structures for lower-dimensional manifolds are defined the same way, using
the stabilized Gauss map.

The natural notion of equivalence of .X; �/–structure is that of isotopy, which means
homotopy over the space BO.d/. We will write �0 ' �1 when �0 is isotopic to �1 .
Manifolds with isotopic .X; �/–structures are equivalent in Bord.X;�/

d
. Moreover a

commutative triangle
X

BO.d/

X 0

�

�

�0

in which X!X 0 is a homotopy equivalence induces, for each M, a bijection between
isotopy classes of .X; �/–structures on M and .X 0; � 0/–structures on M.

If �W X ! BO.d/ is not a fibration, then it is customary to replace it by one. For
example, we can replace it by X �BO.d/ PBO.d/. Here PY denotes the free path
space on Y . Tangential structures are then defined using the replacement. For example,
with the suggested choice of replacement, a tangential structure is a diagram as above,
but where the triangle only commutes up to a specified homotopy.

There are many examples of tangential structures (we omit � when it is clear from
context):

� X D BSO.d/, orientations;

� X D BSpin.d/, spin structures;

� X DEO.d/ or pt, tangential framings (here EO.d/ will mean the frame bundle
of the tautological bundle over Grd .Rn �R1/);

� X DO=O.d/D hofib.BO.d/! BO/, stable framings;

� X D BG �BO.d/, via � D projection, G–principal bundles;

� X DK �BO.d/, via � D projection, maps to K ;

� etc.
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In particular we will not assume that X is connected.9

Assume that � is a fibration. Given a point x 2 X, we may chose a point in EO.d/
which maps to the image of x in BO.d/. We get a commutative diagram:

pt

EO.d/

X

BO.d/

'

Since the left-hand arrow is an acyclic cofibration and the right-hand side is a fibration,
we may choose a diagonal lift as indicated in the diagram. These choices thus yield a
map x� from tangential framings to .X; �/–structures.

We will use this map to phrase the conditions of our results for field theories with
arbitrary tangential structure. Up to isotopy of .X; �/–structures, the map x� is inde-
pendent of the above choices and only depends on the component of x in X. Thus
if ZW Bord.X;�/

d
! C is a field theory and � denotes a d–framing of the torus T d�1 ,

then the invertibility of Z.T d�1; x��/ is independent of the above choices (and only
depends on the component of x 2X ).

7 Moving up: general tangential structures

The first result we need to generalize is Lemma 3.1. We will use the notation from the
proof of that lemma, and we suggest that the reader reread the proof of Lemma 3.1
before continuing. The first part of the proof of this lemma works without change
even in the presence of tangential structures. The d–dimensional bordism W with
corners still admits the necessary Morse function and can be written as a composite of
handle attachements. Each handle is now equipped with an .X; �/–structure, which is
inherited from the ambient manifold W . Thus it is enough to show that each handle,
equipped with an .X; �/–structure is mapped to an invertible morphism.

Moreover the basic philosophy for why these handles should map to invertible morphism,
namely that they can be canceled, remains the same. However the specific argument
must be modified slightly. The problem is that the bordism Hp�1 may not admit an
.X; �/–structure extending the one on the given .p�1/–handle.

9If X does happen to be connected, then there exists a topological group G with X ' BG , and � is
induced from a homomorphism of topological groups G!O.n/ . In that case, .X; �/–structures can be
interpreted as lifts of the structure group of the tangent bundle to G .
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We will modify the construction slightly. First in the construction of Hp�1 , instead of
whiskering with the bordism Dp �SqC1 , we whisker with the bordism

.Dp �SqC1 nDd�1/W Sd�2! Sp�1 �SqC1:

This is the same as in Lemma 3.1, except that we have removed a disk from this
bordism. Let us call the result H 0p�1 . Similarly in the construction of Hp we instead
whisker with

.Sp �DqC1 nDd�1/W Sd�2! Sp �Sq:

We will call result H 0p . Now the composition yields

H 0p ıH
0
p�1 Š .Hp ıHp�1/ n .D

d�1
� I /Š .Sd�1 � I / n .Dd�1 � I /ŠDd�1 � I;

that is, the identity bordism on Dd�1 .

The effect of these changes is that the inclusion of the .p�1/–handle Dp �DqC2 ,!
H 0pıH

0
p�1 is now a homotopy equivalence. Hence any .X; �/–structure on this .p�1/–

handle can be extended to an .X; �/–structure on all of H 0p ıH
0
p�1 , and hence on each

of H 0p and H 0p�1 , as well as the p–handle. Now the proof proceeds precisely as before
and yields:

Lemma 7.1 Let ZW Bord.X;�/
d
! C be a once extended topological field theory such

that Z.Y / is invertible for each .d�2/–dimensional .X; �/–manifold Y , and Z.†/ is
invertible for every .d�1/–dimensional .X; �/–bordism †. Then Z is invertible.

The proof of Corollary 3.2 works identically in the presence of general tangential
structures and yields:

Corollary 7.2 In any fully extended topological field theory, if the values of all zero-
manifolds are invertible, then the field theory is invertible.

8 Two-dimensional theories: general tangential structure

8.1 Some 2–framings

In Lurie’s formulation and proof of the bordism hypothesis [26], tangentially framed
topological field theories play a key role. It is perhaps for this reason that they have
received renewed interest in recent years. The existence and enumeration of framings
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for low dimensional manifolds is a classical algebraic topology problem. In the context
of framed topological field theories, 2–framed bordisms and the 2–framed bordism
category have been carefully discussed in [11; 29], and we refer the reader to these
sources.

However there is one special class of framings which we want to highlight: 2–framings
on the circle. Up to 2–framed isomorphism (which includes isotopy of 2–framing)
there are a countably infinite number of 2–framed circles. We can see this as follows.
Suppose that � and � 0 are two 2–framings of a fixed circle (ie framings of �S1 ˚ ").
The difference between these two framings is given by a map

S1! GL2.R/'O.2/;

and so up to homotopy the difference lies in fS1; O.2/g DZÌZ=2. Thus on any fixed
circle, up to isotopy, there are precisely jZÌZ=2j framings. The Z=2–factor simply
measures whether the two framings induce the same orientation.

However, since the circle admits an orientation-reversing diffeomorphism, the number
of abstract framed circles is divided in half. In fact there is a canonical bijection
between 2–framed isomorphism classes of 2–framed circles and the integers. In other
words, each abstract 2–framed circle has an intrinsically defined integer associated to
it. This is obtained as follows. The 2–framing � of the abstract circle Y induces and
orientation of �Y (namely the orientation which makes the isomorphism �Y ˚ "Š "

˚2

orientation-preserving, using the standard orientation of "). Since Y is a 1–manifold,
an orientation of �Y is the same as a 1–framing, which may be stabilized to obtain a
new 2–framing x� . Since � and x� induce the same orientation, the difference (up to
homotopy) of these framings is an integer

Œ� �� Œx�� 2 ZŠ ŒY;SO.2/�;

which is canonically associated to the 2–framing � .10 Thus we have well-defined
2–framings �k of S1 for each k 2Z (they all produce the same underlying orientation
of S1 ). The 2–framing �0 corresponds to the Lie group framing of S1 Š U.1/.

Now consider a 2–framed bordism between 1–manifolds. There is a compatibility
requirement between the 2–framing of the bordism and the 2–framing of the in-
coming/outgoing boundary; namely, they must agree. However, to compare the two
2–framings, we must choose a trivialization of the normal bundle of the boundary

10Note: the identification ŒY;SO.2/�Š Z also uses the orientation of Y induced by ‚ .
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components. There are two possibile choices, and these choices differ depending on
whether the boundary is incoming or outgoing: for inward boundary components the
normal bundle is trivialized using an inward pointing normal vector, while for outgoing
boundary components it is trivialized using an outward pointing normal vector.

The cup and the cap bordisms (see Figure 1) are contractible, hence admit unique
2–framings up to isotopy. Restricting to the boundary gives us canonical 2–framings
of the circle. However, because in one case the circle boundary component is incoming
while in the other it is outgoing, they induce distinct 2–framings on the circle. These
are the 2–framings �C1 and ��1 , respectively.

8.2 Spherophilia

We do not know if the statement of our main theorem holds for all tangential structures in
dimension d D2. However it does hold for a large class of such structures, namely those
in which the 2–sphere admits such a structure. We call such structures spherophilic,
meaning “sphere-loving”.

Definition 8.1 Let �W X ! BO.2/ be a tangential structure for 2–manifolds. If X
is connected, the we say that .X; �/ is spherophilic if the 2–sphere S2 admits an
.X; �/–structure. If X is disconnected, then we say it is spherophilic if each component
is spherophilic.

Example 8.2 Tangential 2–framings are not spherophilic. Orientations, spin struc-
tures, and stable framings are spherophilic. An important example: 3–framings
are spherophilic. Here a 3–framing means we first stabilize until the bundle is
3–dimensional and then frame it.

Lemma 8.3 Let �W X ! BO.2/ be a tangential structure for 2–manifolds. The
following are equivalent:

(1) .X; �/ is spherophilic.

(2) For each Œx0� 2 �0X, the image of �2.X; x0/ in �2BO.2/ Š Z contains the
even integers 2Z.

(3) For each Œx� 2 �0X, the .X; �/–structures x��C1 and x���1 are isotopic.

Proof For simplicity we will consider the case where X is connected. The case of
many components only requires more bookkeeping. We let x 2X be any point. In this
case we note that the cup and cap bordisms, being contractible, admit unique .X; �/–
structures up to isotopy, which are induced (via x� ) from their unique 2–framings.

Geometry & Topology, Volume 22 (2018)



2736 Christopher J Schommer-Pries

Thus the boundaries of these cup and cap bordisms have .X; �/–structures given by
x��C1 and x���1 , respectively. If these are isotopic, then the isotopy itself may be
read as an .X; �/ bordism between these circles. Composing this with the cup and cap
gives an .X; �/–structure on the 2–sphere. Conversely, given an .X; �/–structure on
the 2–sphere we may remove the cup and cap to obtain a cylindrical bordism between
.S1; x��C1/ and .S1; x���1/. This bordism in turn may be reread as the isotopy
between x��C1 and x���1 . This shows (1) () (3).

The equivalence (1) () (2) follows by obstruction theory. There is a single primary
obstruction to equipping S2 with an .X; �/–structure which lives in

H 2.S2I coker.�2X ! �2BO.2///:

It may be identified with the image of the Euler class

e.S2/D 2 2H 2.S2I�2BO.2//Š Z;

and hence the primary obstruction vanishes if and only if 2Z is contained in the image
of �2X in �2BO.2/Š Z.

Example 8.4 Let �W X ! BO.d/ be a tangential structure for d–manifolds with
d > 2. Consider the tangential structure for 2–manifolds .X2; �2/ defined by the
homotopy pullback square:

X2

BO.2/

X

BO.d/

�2 �
p

Then .X2; �2/ is a spherophilic tangential structure.

An .X2; �2/–structure on a 2–manifold is an .X; �/–structure on that manifold after
stablizing the tangent bundle with a rank-.d�2/ trivial bundle. We can see that it
is spherophilic by comparing the following portion of the long exact sequences in
homotopy groups (here F is the homotopy fiber of �W X ! BO.d/):

�2X2

�2X

ZŠ �2BO.2/

Z=2Š �2BO.d/

�1F

�1F

D

A simple diagram chase shows that 2Z� im.�2X2/, and hence .X2; �2/ is spherophilic
by Lemma 8.3.
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8.3 The base case with spherophilic tangential structures

Proposition 8.5 Let �W X ! BO.2/ be a spherophilic tangential structure for 2–
manifolds, and let ZW Bord.X;�/2 ! C be an extended topological field theory. Then Z
is invertible if and only if for each x 2X we have that Z.S1; x��1/ is invertible.

Proof For spherophilic tangential structures the proof of Proposition 4.1, which is the
oriented case, carries over with very minor changes. By Corollary 7.2 it is enough to
show that each point with .X; �/–structure is given an invertible value under Z (each
.X; �/ 0–manifold is a disjoint union of these).

Let F be the (homotopy) fiber of �W X ! BO.2/. The set of .X; �/–structures on
the point is in bijection with �0F. If �1X ! �1BO.2/ is surjective, this coincides
with �0X ; otherwise it is two copies of �0X. In either case, the set of .X; �/–structures
on the point is exhausted by .pt; x��C/ and .pt; x���/, where �˙ denotes the pos-
itive/negative 2–framing of the point and Œx� 2 �0X ranges over all components
of X.

For each Œx� 2 �0X , the objects .pt; x��C/ and .pt; x���/ are dual in Bord.X;�/2 , and
the duality is witnessed via the elbow bordisms (which serve as the unit and counit).
By Lemma 2.3 the points will take invertible values precisely if these elbow bordisms
take invertible values under Z .

As an abstract manifold, each elbow is just a contractible disk and so admits a unique
.X; �/–structure for each component Œx� 2 �0X. However as a bordism we must
parametrize the boundary, and this means that as bordisms there may be multiple “left-
elbows” and multiple “right-elbows” with the same source and target objects. In fact,
it is easy to see via obstruction theory that set of left-elbow bordisms (respectively
right-elbow bordisms) is a torsor over �1F . Fortunately each of these elbows differs
by composition with an invertible 1–morphism in Bord.X;�/2 , and so for questions of
invertibility it is sufficient to show that any single pair of left-elbow and right-elbow
takes an invertible value under Z , for then they all take invertible values.

For this we will consider a pair of elbows which are adjoint to each other. The unit
and counit of the adjunction are witnessed by a saddle and cup bordism. Again by
Lemma 2.3 it is enough to show that these saddle and cup bordisms take invertible
values under Z .

Fix a left-elbow bordism. The inclusion of the left-elbow into the cup is a homo-
topy equivalence. Hence an .X; �/–structure on the left-elbow bordism extends to a
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unique .X; �/–structure on the cup, which then restricts to an .X; �/–structure on the
other half its circle boundary, a right-elbow. This determines an adjoint pair of left-
and right-elbrows with .X; �/–structure.

By assumption we know that the boundary of the cup bordism, .S1; x��1/, takes an
invertible value under Z . Thus the annulus, which witnesses the duality between
.S1; x��1/ and .S1; x���1/, is assigned an invertible value under Z . The annulus
is a composite of the cup bordism and a particular pair of pants bordism. All the 1–
morphisms which are sources and targets of these pants and cup bordisms are assigned
invertible values under Z and so by Lemma 2.1, it follows that both this pair of pants
and the cup bordism are assigned invertible values under Z . The dual argument shows
that the cap bordism is also assigned an invertible value.

So all that remains is to show that the saddle bordism takes an invertible value. This is
where we need to use the face that .X; �/ is a spherophilic tangential structure. For a
general tangential structure the left and right adjoint of a fixed left-elbow bordism may
be distinct. But for a spherohilic tangential structure they are necessarily the same (and
the composite of these elbows into a circle yields the .X; �/–structure x��1 ' x���1
on the circle). Thus all of the saddle bordisms used in the caclulations depicted in
Figures 2 and 3 admit (unique) .X; �/–structures making them composable. Moreover
the key identity, depicted in Figure 4, also holds, and so these computations remain
valid when .X; �/ is spherophilic.

It would be interesting to know if the above result is sharp. As of this writing, we have
been unable to decide either way, and so we offer a conjecture:

Conjecture 8.6 There exists some symmetric monoidal bicategory C and a 2–framed
2–dimensional topological field theory

ZW Bordfr
2 ! C

such that Z.S1; �1/ is invertible, but such that Z is not invertible.

9 Dimensional reduction, revisited

One of the key techniques which we used to prove our main theorem in the oriented case
was the technique of dimensional reduction. There are many versions of dimensional
reduction, and while we only needed a simple form in the oriented case, we will need
more complicated versions in the case of general tangential structures.

Geometry & Topology, Volume 22 (2018)



Tori detect invertibility of topological field theories 2739

9.1 Basic dimensional reduction

The simplest form of dimensional reduction which works for arbitrary tangential
structures happens by taking the product with a tangentially framed manifold. Let
BO.k/!BO.d/ be the map induced by adding d �k trivial line bundles, and let Xk
denote the pullback:

Xk

BO.k/

X

BO.d/

�k �
p

If .M; �/ is a tangentially framed .d�k/–manifold and .Y;  / is a k–manifold with
an .Xk; �k/–structure, then the product .Y �M; ��/ is naturally a d–manifold with
an .X; �/–structure. This gives rise to a functor

.�/� .M; �/W Bord.Xk ;�k/
k

! Bord.X;�/
d

;

which can be used to preform dimensional reduction. Dually, the same construction
also gives rise to a functor

.Y;  /� .�/W Bordfr
d�k! Bord.X;�/

d

from the tangentially framed .d�k/–dimensional bordism higher category.

These dual forms of dimensional reduction are actually part of a more general context.
Consider the following situation. Suppose that �aW Xa ! BO.k/ is a tangential
structure for k–manifolds, and �bW Xb ! BO.d � k/ is a tangential structure for
.d�k/–manifolds. Suppose further that we have a commutative diagram:

Xa �Xb

BO.k/�BO.d � k/

X

BO.d/

�a � �b

f

�

Then we have a pairing. If .Y;  / is a y–manifold with .Xa; �a/–structure and .M; �/
is a .d�k/–manifold with .Xb; �b/–structure, then .Y �M;f�. ��// is a d–manifold
with .X; �/–structure. This gives rise to the functors

.�/� .M; �/W Bord.Xa;�a/
k

! Bord.X;�/
d

;

.Y;  /� .�/W Bord.Xb;�b/
d�k

! Bord.X;�/
d

:
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This was exactly the sort of dimensional reduction used in the oriented case where
.Xa; �a/ and .Xb; �b/ both corresponded to the structure of orientations.

9.2 Total dimensional reduction

There is another kind of dimensional reduction which we will need to use in order to
prove our main theorem in the presence of general tangential structures. The basic
dimensional reduction, described above, splits the problem of constructing an .X; �/–
structure on Y �M into finding two different and separate tangential structures, one
on Y and one on M. However we don’t need to separate these. The bare (unstruc-
tured) .d�k/–manifold M defines a new kind of tangential structure .XM ; �M / for
k–manifolds. An .XM ; �M /–structure on Y is exactly an .X; �/–structure on Y �M.

To describe this new structure first fix a .d�k/–manifold M, and consider the induced
fiber sequence

FM !Map.M;X/!Map.M;BO.d//;

where the fiber is taken over the map �M ˚ "
˚k . The fiber FM is the “space of

.X; �/–structures on M ”. The components of FM are in natural bijection with isotopy
classes of .X; �/–structures on M.

There is a map BO.k/�Map.M;BO.d � k//!Map.M;BO.d// which is induced
by applying the direct sum map

BO.k/�BO.d � k/! BO.d/

pointwise in M. From this we can construct �M W XM ! BO.k/ via the following
pullback square:

XM

BO.k/� f�M g BO.k/�Map.M;BO.d � k//

Map.M;X/

Map.M;BO.d//

�M
p

A lift � W T !XM over �Y W Y !BO.k/ is the same as a lift of �Y ˚ �M W Y �M !
BO.d/ to X. This gives rise to a new dimensional reduction functor

.�/�M W Bord.XM ;�M /
k

! Bord.X;�/
d

:

Note that there is a surjective map �0FM ! �0XM . It is either a bijection or a
two-to-one mapping, and hence each .X; �/–structure on M singles out a component
of XM ; every component is realized this way.
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9.3 A variation on total dimensional reduction along a circle

Total dimensional reduction, described above, constructs a new tangential structure
.XM ; �M / from an initial tangential structure .X; �/ and a manifold M. However
the new tangential structure can have many components if M admits many .X; �/–
structures.

For example, consider the case M D S1 of total dimensional reduction along a circle.
Let us compute the number of components of XS1 . Let F be the homotopy fiber of
the map �W X ! BO.d/. We have the long exact sequence

� � � ! �2BO.d/! �1F ! �1X ! �1BO.d/! �0F � �0X:

The tangent bundle of S1 is trivializable; hence the stabilized map �S1˚"
˚.d�1/W S1!

BO.d/ is null-homotopic. If we choose a null-homotopy of this map, then this gives us
an identification of FS1 with LF DMap.S1; F /, the free loop-space. It then follows,
from the long exact homotopy sequence for the fibration FS1 !XS1 ! BO.d � 1/,
that we have a bijection

�0XS1 Š �0X ��1F:

Thus the number of components of XS1 grows multiplicatively by a factor of size �1F .
We would like to describe a modification of the total dimensional reduction which
will cut this number down but still allow more flexibility than the basic dimensional
reduction we have already seen.

The identification �0XS1 Š�0X ��1F is not canonical, but depends on our choice of
a null-homotopy of �S1 ˚ "

˚.d�1/ . Two such null-homotopies differ by an element in
�2BO.d/, and this may change the above identification by translation by the image of
�2BO.d/ in �1F . Thus we get an invariant of .X; �/–structures on the circle taking
values in

�0X � .�1F=�2BO.d//� �0X ��1X:

This invariant may be read off from a given .X; �/–structure (which recall is a certain
map � W S1!X ) by looking at the action on �0 and �1 induced by � . The circle is
connected and so � distinguishes a component of X, and the element in �1X is the
image of the generator of �1S1ŠZ (since � lifts the stable tangent bundle of S1, this
automatically lands in the above subgroup of �1X, the kernel of the map to �1BO.d/).

If we want to consider .X; �/–structures on any abstract circle, then we must further
quotient by the effect of �0 Diff.S1/Š Z=2 (the nontrivial component corresponds
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to orientation-reversing diffeomorphisms). This acts on the �1X factor by sending
an element to its inverse. Hence the unordered pair fg; g�1g is still a well-defined
invariant of an .X; �/–structure on an abstract circle. We will call this the holonomy of
the .X; �/–structure.

In the total dimensional reduction we consider .XS1 ; �S1/–structures on manifolds Y
which are the same as .X; �/–structures on Y �S1. For each point y 2 Y and each
framing of TyY we get an induced .X; �/–structure on fyg � S1, and we can read
off the holonomy of this factor. (If the holonomy is consider as an unordered pair of
elements fg; g�1g � �1X, then this doesn’t depend on the choice of framing of TyY .)

We will now describe a new tangential structure . xXS1 ; x�S1/ on .d�1/–manifolds Y ,
where such a structure is an .X; �/–structure on Y �S1 such that around each fyg�S1,
the induced .X; �/–structure has null-holonomy.

Let Map0.S
1; X/ denote the union of the components of Map.S1; X/ such that

the induced map �1S1 ! �1X is the zero-homomorphism. Then, mimicking the
construction for total dimensional reduction, we form . xXS1 ;

x�S1/ as the homotopy
pullback:

xXS1

BO.d � 1/� f�S1g BO.d � 1/�Map.S1; BO.1//

Map0.S
1; X/

Map.S1; BO.d//

x�S1
p

We get an induced functor which allows us to preform null-holonomic dimensional
reduction along S1 :

.�/�S1W Bord
. xX
S1
;x�
S1
/

d�1
! Bord.X;�/

d
:

Example 9.1 Let � be a k–framing of S1, and let .Y;  / be .d�k/–dimensional
manifold with an .X; �/–structure. Then we have an induced .X; �/–structure on
S1 �Y via

�S1 ˚ "
˚.k�1/

˚ �Y
�
Š "˚k˚ �Y

and then pointwise application of  . Since  is applied pointwise, the induced .X; �/–
structures on S1�fyg have null-holonomy. Hence this defines an . xXS1 ; x�S1/–structure
on Y .
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Remark 9.2 By construction, xXS1 consists of a collection of certain components
of XS1 . The number of components of xXS1 can also be computed, as we did above
for XS1 . We see that we have a noncanonical bijection

�0 xXS1 Š �0X � im.�2BO.d//� �0X ��1F:

Again this bijection depends on the choice of a null-homotopy of the stable tangent
bundle of S1. These are given by the null-holonomic .X; �/–structures on S1, and
we see, in particular, that up to isotopy these are exhausted by the .X; �/–structures
.S1; x��/, where � is a d–framing of S1. We also remark that since xXS1 consists of
a collection of certain components of XS1 , two . xXS1 ; x�S1/–structures are isotopic as
. xXS1 ;

x�S1/–structures if and only if they are isotopic as .XS1 ; �S1/–structures.

9.4 Dimensional reduction to spherophilic structures

Finally we will consider total dimensional reduction along a .d�2/–dimensional
manifold M. That is, we want to consider the functor

.�/�M W Bord.XM ;�M /2 ! Bord.X;�/
d

:

In view of Proposition 8.5 we would like to know when the new tangential structure
.XM ; �M / is spherophilic. Of course a complete answer to this might depend on the
particular tangential structure .X; �/ that we started with. However for certain choices
of M it turns out that .XM ; �M / will be spherophilic regardless of the initial tangential
structure.

Lemma 9.3 Let �W X ! BO.d/ be any tangential structure for d–manifolds. Let M
be a .d�2/–manifold. Let �M W XM ! BO.2/ be the corresponding dimension-
ally reduced tangential structure for 2–manifolds. If the top Stiefel–Whitney class
wd�2.M/D 0 vanishes (equivalently, �.M/ is even), then .XM ; �M / is spherophilic.

Proof If M does not admit any .X; �/–structures, then XM is empty and therefore
vacuously spherophilic. So we will suppose that  is an .X; �/–structure for M. This
structure corresponds to a component of FM and hence to a component of XM via
the projection �0FM ! �0XM . As we have seen, each component of XM gives a
map from 2–framings to .XM ; �M /–structures (and hence to .X; �/–structures on the
product of the manifold with M ). We will denote this map by  � . Thus, for example,
we have .XM ; �M /–manifolds .S1;  ��1/ and .S1;  ���1/, where �k denotes the
kth 2–framing of the circle (see Section 8.1). By Lemma 8.3 it is sufficient to show
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for each  (.X; �/–structure on M ) that  ��1 and  ���1 are isotopic as .XM ; �M /–
structures.

Let us consider the .XM ; �M /–structures further, viewing them as .X; �/–structures
on S1�M . Each structure is obtaining in two steps. First the 2–framings of the circle
give us two identifications

x�C1; x��1; W �S1 ˚ "˚ �M
Š
�! "˚2˚ �M :

Here we use x�˙1 to distinguish these induced maps from the 2–framings themselves.
After this identification, we use the .X; �/–structure  from M (pointwise in the
S1–coordinate) to get an .X; �/–structure on M � S1. Thus we would be done if it
happens that the first two identifications are isotopic.

The two 2–framings �C1 and ��1 become isotopic after stabilizing to 3–framings,
that is, after adding a trivial line bundle. Thus, for example, if the tangent bundle of M
splits off a trivial line bundle, �M Š "˚E , then the identifications x�C1 and x��1 are
isotopic, and we would be done.

The obstruction to �M decomposing in this way is well known to be the Euler class
of the manifold M, and hence such a splitting occurs only if the Euler characteristic
of M vanishes. This covers, for example, the case that d is odd.

However we can do better. In this argument it is not strictly necessary that �M splits a
trivial line bundle; this only needs to happen stably. That is, it is sufficient to know
that "˚ �M Š "˚2˚E for some rank-.d�3/ bundle E on M.

For .d�2/–manifolds there is a single obstruction to the existence of such a splitting
which may be identified with the mod 2 reduction of the Euler characteristic, aka the
.d�2/–dimensional Stiefel–Whitney class wd�2 . For example, we can obtain this
identification by using obstruction theory and comparing via the map of homotopy
fiber sequences:

Sd�3

V2.Rd�1/

BO.d � 3/

BO.d � 3/

BO.d � 2/

BO.d � 1/

The important map, in the nontrivial case that d is even, is the surjection

ZŠ �d�3S
d�3
! �d�3V2.R

d�1/Š Z=2:
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Thus if the characteristic number wd�1.M/D 0, the tangential structure .XM ; �M / is
spherophilic for any tangential structure .X; �/.

Corollary 9.4 Suppose that �W X ! BO.3/ is a tangential structure for 3–manifolds,
and let . xXS1 ; x�S1/ denote the corresponding null-holonomic dimensionally reduced
structure for 2–manifolds described in Section 9.3. Then . xXS1 ; x�S1/ is a spherophilic
tangential structure.

Proof Since the Euler characteristic of S1 is zero, the structure for total dimensional
reduction .XS1 ; �S1/ is spherophilic. In particular for each y 2 �0XS1 we have that
y��C1 and y���1 are isotopic .XS1 ; �S1/–structures on S1. Since xXS1 consists of
a collection of components of XS1 , it follows that y��C1 and y���1 are isotopic
as . xXS1 ; x�S1/–structures whenever y belongs to the componets making up xXS1 ; see
Remark 9.2. Thus . xXS1 ; x�S1/ is a spherophilic.

10 The main theorem: general tangential structure

We are now set to prove our main theorem in the presence of general tangential structures.
Let �Lie denote the Lie group .d�2/–framing of T d�2 and let �C1 be the positive
bounding 2–framing on S1. The framing �C1 differs from the Lie group framing by
twisting by a degree-one map S1! SO.2/. The product �C1 � �Lie is a d–framing
of T d�1 . Given any tangential structure �W X ! BO.d/ and any point x 2 X, we
have an induced .X; �/–structure x��C1 � �Lie on T d�2 .

Theorem 10.1 Fix d � 3 and any tangential structure �W X ! BO.d/. Consider a
once extended topological field theory

ZW Bord.X;�/
d
! C:

Then Z is invertible if and only if for each component Œx� 2 �0X , the value of
Z.T d�1; x��C1� �Lie/ is invertible.

Remark 10.2 The d–framing �C1 � �Lie of T d�1 is distinguished because it is
amenable to the proof techniques already used in Theorem 5.1. Specifically it is a
product framing: on the first circle it is the positive bounding 2–framing and on each
additional circle it is the Lie group 1–framing. The positive bounding framing arises
because of its role in the 2–dimensional base case Proposition 8.5. The remaining
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factors are framings which are induced by a product with a 1–framed circle, which
makes them a good candidate for dimensional reduction. However it is natural to ask for
which other framings does the theorem hold. We don’t have a complete answer at this
time. One easy observation is that we can act on the framings by the diffeomorphisms
of the torus. The resulting framed tori are isomorphic in the bordism category, and
hence one is invertible if and only if the other is so.

A related question is which framings of the torus induce the same .X; �/–structure.
This depends on the specific tangential structure .X; �/ but can be analyzed using
obstruction theory. We will not pursue these questions further.

Proof of Theorem 10.1 In very broad strokes the proof here is the same as for
Theorem 5.1 in the oriented case, however there are a number of small alterations
and side arguments that must be made when we are dealing with general tangential
structures. Recall that in the proof of the oriented case we had the following steps:

(1) We used dimensional reduction along S1 and induction to show that Z.M �S1/
is invertible for any .d�2/–manifold M .

(2) We used dimensional reduction along M and the base case to show that Z.M/

is invertible for any .d�2/–manifold M .

(3) We showed that the invertibility of closed .d�1/–manifolds under Z was in-
variant under surgery.

(4) We used a variety of tricks to extend this to all .d�1/–bordisms and hence
proved the theorem using Lemma 3.1.

The first and most significant difficulty with duplicating this argument in the presence of
general tangential structures is that we have only established the base case (d D 2) for
spherophilic tangential structures and not for all tangential structures; see Section 8.3.
This complicates both the argument in step (2) and the induction in step (1) (particularly
in the next-to-lowest d D 3 case).

This also necessitates using the more complicated dimensional reductions described in
Sections 9.2 and 9.3 rather than the basic dimensional reduction described in Section 9.1.
For example, in step (2), we want to conclude that Z.M; �/ is invertible for any .X; �/–
structure � on M. The basic dimensional reduction along .M; �/ yields a tangetially
framed 2–dimensional field theory

Z.M;�/W Bordfr
2 ! C:
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However 2–framings are not a spherophilic tangential structure, and hence we can’t
appeal to Proposition 8.5. Using total dimensional reduction instead allows us to correct
this in some cases (namely when wd�2.M/D 0; see Lemma 9.3).

However, total dimensional reduction also has its pitfalls. For example, in step (1), we
would like to dimensionally reduce along the circle and appeal to induction to show that
this new dimensionally reduced theory is invertible. Using total dimensional reduction
along the circle at first seems promising. For example, in the lowest case dD3, since the
Euler characteristic of the circle �.S1/D 0 vanishes, by Lemma 9.3 total dimensional
reduction along the circle yields a spherophilic tangential structure regardless of .X; �/.
However there is another, different problem in trying to apply induction.

Let ZS1 temporarily denote the effect of doing total dimensional reduction along S1

to the theory Z . By assumption we know that the value Z.T d�1; x��C1 � �Lie/ is
invertible for each component Œx� 2 �0X. However to apply our induction hypothesis
to we would need to know the invertibility of �0XS1–many morphisms. As we saw in
Section 9.3, �0XS1 Š �0X ��1F , where F is the homotopy fiber of �W X!BO.d/.
Depending on X , this can yield more conditions than we have assumptions, and so
we cannot apply induction in this way (at least not for general X ).

The solution for step (1) is to use the null-holonomic dimensional reduction which was
described in Section 9.3. That is, we precompose Z with the functor

.�/�S1W Bord
. xX
S1
;x�
S1
/

d�1
! Bord.X;�/

d

to obtain a new field theory, which we now denote by ZS1 , for manifolds with
. xXS1 ;

x�S1/–structures. As we saw, the components of xXS1 are in bijection with
null-holonomic .X; �/–structures on S1 and these are exhausted by .S1; x� /, where
 is a d–framing of S1.

Let y D .x;  / be a pair consisting of a point x 2 X and a d–framing of S1. Let
.T d�2; �1 � �Lie/ denote the .d�2/–torus with .d�1/–framing which is the positive
(bounding) 2–framing �1 on the first circle and the Lie group framing on the remaining
factors (see Section 8.1). For d > 3, to apply our induction hypothesis it suffices to
know that ZS1.T d�2; y��1 � �Lie/ is invertible for all y . Computing, we have

ZS1.T
d�2; y��1 � �Lie/D Z.T d�2 �S1; x�.�1 � �Lie ı //;

where �1 � �Lie ı denotes the d–framing on T d�2 �S1 obtained as a composite:

"˚ �T d�2 ˚ �S1
�1��Lie
 ���!
Š

"˚.d�1/˚ �S1
 
 !
Š
"˚d :
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We know by assumption that Z.T d�1; x��1 � �Lie/ is invertible. The d–framings
�1��Lie ı and �1��Lie on T d�1 may not be isotopic, but nevertheless the resulting
d–framed tori are framed diffeomorphic,11 and hence (provided d > 3) the conditions
of our induction hypothesis are satisfied. When d D 3 we need to check the additional
condition that the structure . xXS1 ; x�S1/ is spherophilic, but this is always the case by
Corollary 9.4.

Thus the dimensionally reduced theory ZS1 is an invertible theory. This implies that
for any .d�2/–manifold M and . xXS1 ; x�S1/–structure  on M, the value ZS1.M; /
is invertible. An example of such a  was given in Example 9.1: if � is any .X; �/–
structure on M and �k is any 2–framing of S1, then the induced .X; �/–structure on
M � S1, which we will denote by � � �k , constitutes such an . xXS1 ; x�S1/–structure
 on M. It follows that

Z.M �S1; � � �k/

is invertible for any .X; �/–structure � on M and 2–framing �k on S1.

Next, we proceed to step (2) and consider total dimensional reduction along .d�2/–
manifolds M. That is, we precompose Z with the functor

M � .�/W Bord.XM ;�M /2 ! Bord.X;�/
d

to obtain a new 2–dimensional theory ZM for .XM ; �M /–structures. We will attempt
to show that this theory is invertible by appealing to Proposition 8.5. To apply this
proposition we need to show two things, first that for each component y 2 �0XM
the value ZM .S1; y��1/ is invertible, and second that .XM ; �M / is a spherophilic
tangential structure.

Let us consider the first condition first. As explained in Section 9.2 the components
of XM receive a surjective map from the set of .X; �/–structures on M. If � is
such a structure (mapping to Œy� 2 �0XM ) and �k is a 2–framing of S1, then we
obtain an induced .XM ; �M /–structure y��k on S1. This corresponds precisely to the
.X; �/–structure on M �S1 which we denoted by � ��k above. In particular we have
already established that

ZM .S1; y��k/D Z.M �S1; � � �k/
is invertible.

11In fact, the framed diffeomorphism is supported on a 2–dimensional stably framed torus, and so it
suffices to consider that case. There are precisely four stable framings on T 2, and under the action of the
diffeomorphisms of T 2 , three of these are permuted. The Lie group framing is the single fixed point. In
the .d�1/–tori case, the relevant framings are products which differ only on at most a 2–torus, but since
there is always a �1–factor, these framings on 2–tori are give diffeomorphic framed tori.

Geometry & Topology, Volume 22 (2018)



Tori detect invertibility of topological field theories 2749

The second condition is more problematic, but Lemma 9.3 ensures that .XM ; �M /
is spherophilic provided that the top Stiefel–Whitney class vanishes: wd�2.M/D 0.
In that case Proposition 8.5 tells us that the dimensionally reduced theory ZM is
invertible. In particular we have shown that if M is any .d�2/–manifold such that
wd�2.M/D 0 (ie each component of M has even Euler characteristic), and � is any
.X; �/–structure on M, then Z.M; �/ is invertible. For example, when d is odd this
first condition is always satisfied. When d is even, this is not yet as comprehensive
a result as in the oriented case, but it is a start. In particular this shows that for all
pC q D d � 2 and all .X; �/–structures � on Sp � Sq, the value Z.Sp � Sq; �/ is
invertible.

Our next goal will be to prove an analog of Lemma 5.2. Since we only established
a partial version of step (2), we proceed with a different argument than in the ori-
ented case. We will use the basic dimensional reduction described in Section 9.1 to
show:

Lemma 10.3 Let pCqDd�2 be nonnegative integers, and fix an .X; �/–structure  
on Sp. There is a unique .qC2/–framing � on the bordism DqC1 , viewed as a bordism
from Sq to ∅. This induces (by the basic dimensional reduction map) an .X; �/–
structure  � � on the bordism

Sp �DqC1W Sp �Sq!∅:

Assume that Z is a field theory satisfying the assumptions of Theorem 10.1. Then
Z.Sp �DqC1;  � �/ is invertible.

There are two cases: q D 0 or d � 2, and 0 < q < d � 2. In the first case (say q D 0),
the bordism in question is an annulus Sd�2� I read as a bordism from Sd�2tSd�2

to ∅. There is a dual annulus which goes the other way, and the composite gives
Sd�2 �S1, which as we have already seen takes an invertible value under Z . Since
the objects ∅ and Sd�2 tSd�2 also take invertible values under Z , it follows from
Lemma 2.1 that both annuli take invertible values. (The dual annulus covers the case
when q D d � 2.)

When 0 < q < d � 2, then we instead consider the basic dimensional reduction of
Section 9.1, in which we precompose Z with the functor

.Sp;  /� .�/W Bordfr
qC2! Bord.X;�/

d
:
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This gives rise to a tangentially framed .qC2/–dimensional field theory. Under
this functor, the .qC2/–framed torus .T qC1; �1 � �Lie/ gets mapped to the bor-
dism .Sp �T qC1;  � �1 � �Lie/, which we have already seen is invertible. Since
0 < q < d � 2, we have that 3 < q C 2 < d , and so by induction we can apply
Theorem 10.1 to conclude that this dimensionally reduced theory is invertible. It
follows that any bordism in its image, such as .Sp �DqC1;  ��/, takes an invertible
value under Z . This establishes the above lemma.

Corollary 10.4 Under the assumptions of Theorem 10.1, suppose that .N1; �1/ and
.N2; �2/ are parallel .d�1/–dimensional .X; �/–bordisms such that N2 is obtained
from N1 via .X; �/–surgery. Then Z.N1; �1/ is invertible if and only if Z.N2; �2/ is
invertible.

In fact Lemma 10.3 above shows a slightly stronger result. To say that .N1; �1/ and
.N2; �2/ are related by .X; �/–surgery means that they are related by a finite sequence
of moves, of the type to be explained. It suffices to assume that N2 is obtained by
one application of these moves. A move consists of the following: First an embedded
Sp�DqC1 (with induced .X; �/–structure) is removed from N1 to form a new .X; �/–
bordism

†DN1 nS
p
�DqC1W M1!M2 tS

p
�Sq;

where M1 and M2 are the sources and targets of N1. Next, compose † with DpC1�Sq

to obtain N2 . By Lemma 10.3 the values of Z.Sp �DqC1/ and Z.DpC1 �Sq/ are
invertible, and hence Z.N1/ is invertible if and only if Z.†/ is invertible, which is
true if and only if Z.N2/ is invertible. To actually count as surgery, we must further
require that the .X; �/–structures on Sp �DqC1 and DpC1 � Sq must glue to an
.X; �/–structure which extends to the handle DpC1�DqC1 . The above corollary does
not actually need this requirement, and is valid for this “generalized .X; �/–surgery”.
However if it is the case .N1; �1/ and .N2; �1/ are related by actual .X; �/–surgery,
then they are connected by an .X; �/–bordism, and conversely an .X; �/–bordism can
be used to obtain a sequence of surgeries relating N1 and N2 (for example by choosing
a Morse function on this bordism). If in addition M1 DM2 D∅ so that N1 and N2
are closed, then this means they represent the same element in the .X; �/–bordism
group, �.X;�/

d�1
.12

12 .X; �/ is not a stable tangential structure, but the relation of .X; �/–bordism still makes sense for
manifolds of dimension k � d � 1 , and yields abelian groups �.X;�/

k
defined in the usual way.
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Corollary 10.5 If N is any .d�1/–dimensional .X; �/–bordism from M1 to M2 ,
then Z.N / is invertible.

The bordism N is a 1–morphism in Bord.X;�/
d

and every 1–morphism in Bord.X;�/
d

has
a (say, left) adjoint. Thus there exists another .d�1/–dimensional .X; �/–bordism NL

from M2 to M1 and unit and counit morphisms witnessing the adjunction between N
and NL. These are .d�2/–dimensional .X; �/–bordisms

�W I �M2!N ıNL and "W NL
ıN ! I �M1:

Since the identity bordisms I �Mi are invertible in Bord.X;�/
d

, they map to invertible
values under Z . The existence of these .d�2/–dimensional bordisms means that
I �M2 is related by surgery to N ıNL and I �M1 is related by surgery to NL ıN.
Hence by Corollary 10.4, Z.N / ıZ.NL/ and Z.NL/ ıZ.N / are invertible. Since
invertible morphisms are closed under the 2-out-of-6 property, we have that both
Z.NL/ and Z.N / are invertible.

Now we can return to and complete step (2), showing that Z.M; �/ is invertible for all
.d�2/–dimensional .X; �/–manifolds .M; �/. It suffices to consider the case were M
is connected. Given such a manifold, we consider M � I as a bordism from M tM

to ∅. There is a unique .X; �/–structure on M �I which extends the .X; �/–structure
on the first copy of M. On the second copy this determines a dual .X; �/–structure x�
on M. We let SM D .M; x�/. The .X; �/–connect sum of M and SM yields the
manifold M # SM . This manifold is connected and satisfies wd�2.M # SM/D 0, and
hence Z.M # SM/ is invertible.

Moreover there is a .d�1/–dimensional .X; �/–bordism which witnesses the connect
sum operation. This is a higher-dimensional analog of the pair-of-pants bordism

P W M # SM !M t SM:

As we have just seen, Z.P /W Z.M # SM/! Z.M/˝Z. SM/ is invertible, and since
Z.M # SM/ is invertible, it follows that

Z.M/˝Z. SM/Š Z. SM/˝Z.M/

is invertible, and hence Z.M/ is invertible.

Thus we have shown that Z takes invertible values on all .d�2/–manifolds and all
.d�1/–bordisms. Theorem 10.1 now follows directly from Lemma 7.1.
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11 Extending downward

Now we will show how to extend our previous results about .1; 2/–categorical field
theories to more extended .1; n/–categorical theories. We will need to set up some
notation. Let Bord.X;�/

d In
symmetric monoidal .1; n/–category whose objects are closed

oriented .d�n/–manifolds, whose 1–morphisms are oriented .d�nC1/–dimensional
bordisms, etc, up to dimension d , and where everything is equipped with an .X; �/–
structure. Our previous results concerned the symmetric monoidal .1; 2/–category
Bord.X;�/

d I2
.

Theorem 11.1 Let ZW Bord.X;�/
d In
! C be an extended topological field theory valued

in the symmetric monoidal .1; n/–category C . Assume that either d � 3 or that .X; �/
is spherophilic. Suppose that n� 2 and that for every Œx� 2 �0X,

Z.T d�1; x��1 � �Lie/

is invertible. Then Z is invertible.

Proof We will induct on the category number n. The base case n D 2 is covered
by Theorem 10.1 and Proposition 8.5. So we assume that the above theorem holds
for all d and all k < n and we wish to show that it holds for k D n. From our given
topological field theory

ZW Bord.X;�/
d In
! C;

we can extract two additional field theories.

First, out of any symmetric monoidal .1; n/–category, we can obtain a symmetric
monoidal .1; n�1/–category by passing to the endomorphisms of the unit object. This
is functorial, and so the above functor induces a functor (also denoted by Z )

ZW HomBord.X;�/dIn
.∅;∅/! HomC.1; 1/:

The source .1; n�1/–category is precisely Bord.X;�/d In�1 . Thus by induction, this re-
stricted field theory is invertible. For example, Z.T d�2; x��1 � �Lie/ is invertible.

Next, there is a functor
Bord.Xd�1;�d�1/

d�1In�1
! Bord.X;�/

d In
:

Here .Xd�1; �d�1/ is the pullback of .X; �/ to BO.d � 1/ and defines a tangen-
tial structure for .d�1/–manifolds. The difference between Bord.Xd�1;�d�1/

d�1In�1
and

Bord.X;�/
d In

is that the former includes manifolds only up to dimension .d � 1/. The
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above functor simply includes the objects, morphisms, etc of Bord.Xd�1;�d�1/
d�1In�1

into
Bord.X;�/

d In
. By precomposing with this functor, we get a field theory which we again

denote by Z :
ZW Bord.Xd�1;�d�1/

d�1In�1
! C

(which lands in the maximal .1; n�1/–subcategory of C ). Recall Z.T d�2; x��1��Lie/

is invertible, and if d D 3, we have that .X2; �2/ is spherophilic by Example 8.4.
Hence by induction, this restricted field theory is also invertible. In particular every
object, 1–morphisms, etc, up to .n�1/–morphism of Bord.X;�/

d In
takes an invertible

value under Z .

It follows that the only morphisms of Bord.X;�/
d In

which could possibly take noninvertible
values under Z are the .n�1/–morphisms of the hom .1; n�1/–categories

HomBord.X;�/d In
.M1;M2/;

where M1;M2 are objects of Bord.X;�/
d In

. Moreover, these .n�1/–morphisms also take
invertible values if M1 DM2 D∅.

Since M1 is dualizable with dual SM1 , we have an equivalence of hom .1; n�1/–
categories

HomBord.X;�/dIn
.M1;M2/' HomBord.X;�/d In

.∅; SM1 tM2/:

This equivalence comes about by composing with the coevaluation of the duality
between M1 and SM1 . This equivalence is sometimes called the calculus of mates.

The functor Z , like any functor, preserves duality structures and hence the .n�1/–
morphisms of HomBord.X;�/dIn

.M1;M2/ take invertible values under Z precisely if
the corresponding .n�1/–morphisms of HomBord.X;�/dIn

.∅; SM1 t M2/ take invert-
ible values under Z . Thus it is sufficient to show that the .n�1/–morphisms of
HomBord.X;�/d In

.∅; SM1 tM2/ are invertible after applying Z .

Suppose that we are given a morphism f W SM1 tM2!∅ in Bord.X;�/
d In

. Composition
with f induces a functor

f ı .�/W HomBord.X;�/d In
.∅; SM1 tM2/! HomBord.X;�/dIn

.∅;∅/:

We know that Z.f / is invertible, and so composition with Z.f / is an equivalence.
Since the .n�1/–morphisms of HomBord.X;�/d In

.∅;∅/ take invertible values under Z , it
follows that the same is true of the .n�1/–morphisms of HomBord.X;�/dIn

.∅; SM1 tM2/.
This is exactly what we set out to show.
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So our theorem will be proven if we can show that a morphism f W SM1 tM2!∅
exists. If HomBord.X;�/dIn

.∅; SM1 tM2/ is empty, then we are already done, vacuously.
If it is nonempty, then there exists at least one morphism gW ∅! SM1 tM2 . We may
obtain the desired f as the (say, left) adjoint f D gL of g .
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