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(Log-)epiperimetric inequality and regularity over
smooth cones for almost area-minimizing currents

MAX ENGELSTEIN

LUCA SPOLAOR

BOZHIDAR VELICHKOV

We prove a new logarithmic epiperimetric inequality for multiplicity-one stationary
cones with isolated singularity by flowing any given trace in the radial direction along
appropriately chosen directions. In contrast to previous epiperimetric inequalities for
minimal surfaces (eg work of Reifenberg, Taylor and White), we need no a priori
assumptions on the structure of the cone (eg integrability). If the cone is integrable
(not only through rotations), we recover the classical epiperimetric inequality. As
a consequence we deduce a new regularity result for almost area-minimizing cur-
rents at singular points where at least one blowup is a multiplicity-one cone with
isolated singularity. This result is similar to the one for stationary varifolds of Leon
Simon (1983), but independent from it since almost-minimizers do not satisfy any
equation.

53A10

1 Introduction

In this paper we prove a new (log-)epiperimetric inequality for multiplicity-one smooth
minimal cones. To give the precise statement, we recall the notion of spherical graph
over a cone and of integrability. Let C �RnCk be a multiplicity-one stationary cone
and suppose that † WDC \ @B1 is a smooth embedded compact submanifold of @B1 .
Given a function u 2 C 1;˛.C ;C?/, where C? denotes the normal bundle over C,
we define its spherical graph over C, in polar coordinates, and its renormalized volume
to be, respectively,

GC .u/ WD

�
r

r�Cu.r; �/p
r2Cju.r; �/j2

Wr� 2C

�
and AC .u/ WDHn.GC .u//�Hn.C\B1/:

Given a cone C, we say that C is integrable if every Jacobi field on C is generated
by a one-parameter family of minimal cones, that is, if for every 1–homogeneous
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514 Max Engelstein, Luca Spolaor and Bozhidar Velichkov

solution, � , of the second variation ı2AC .0/, there exists a 1–parameter family
.ˆt /jt j<1 of diffeomorphisms such that ˆ0 D Id, dˆt=dt D �.ˆt / and

(1-1) ˆt .C / is a minimal cone with Sing.ˆt .C //D f0g for every jt j< 1 :

The (log-)epiperimetric inequality then says, roughly, that stationary cones are quanti-
tatively isolated (as measured by AC ) in the space of cones:

Theorem 1.1 ((log-)epiperimetric inequality for multiplicity-one smooth cones) Let
C �RnCk be an n–dimensional multiplicity-one stationary cone. There exist constants
"; ı > 0 and 
 2 Œ0; 1/ depending on the dimension and C such that the following
holds. Let c 2 C 1;˛.†;C?/ be such that kckC 1;˛ � ı ; then there exists a function
h 2H 1.C \B1;C

?/ such that hj@B1
D c and

(1-2) AC .h/� .1� "jAC .z/j

 /AC .z/;

where z.x/ WD jxjc.x=jxj/ is the one-homogeneous extension of c . If the cone C is
integrable, then we can take 
 D 0.

An epiperimetric inequality (ie (1-2) with 
 D 0) was first proven for regular points
in the celebrated work of Reifenberg [10], and later extended to branch points of
2–dimensional area-minimizing currents by White [16] and to singular points of
2–dimensional area-minimizing flat chains modulo 3 and .M ; "; ı/–minimizers by
Taylor [14; 15]. In all these situations, the admissible blowups are cones which are
integrable through rotations (see Remark 1.3). However, there exist cones with isolated
singularities which are not integrable and for which the rate of blowup has logarithmic
decay (see Nagura [9] and Adams and Simon [1, Remarks 5.3 and 5.4]). Since a
(classical) epiperimetric inequality implies an exponential rate of decay, we cannot
hope that (1-2) with 
 D 0 holds for all cones. Instead we prove what is called a
(log-)epiperimetric inequality, that is, (1-2), with 
 2 Œ0; 1/.

We remark that (log-)epiperimetric inequalities were introduced by the second and
third authors with Maria Colombo in the context of the obstacle and thin-obstacle
problems [5; 4]; however, the proof in that setting is substantially different (and
simpler). The proof of Theorem 1.1 bears more similarity to our recent work on
isolated singularities of the Alt–Caffarelli functional [7]. This method seems to be very
flexible and we hope to apply it to other problems (for example Yang–Mills) and to the
more difficult case of higher-order singularities.
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(Log-)epiperimetric inequality and regularity over smooth cones 515

Remark 1.2 The final steps of the proof of Theorem 1.1 are inspired by the beautiful
work of Simon [12], where the author proved uniqueness of blowup at singularities
of stationary varifolds in which at least one blowup is a multiplicity-one cone with
isolated singularity. A similar approach for generic singularities of the mean curvature
flow, but with an entirely new proof of an infinite-dimensional Łojasiewicz inequality,
has recently been given by Colding and Minicozzi (see [3]). However, our approach
doesn’t need the surface to satisfy any PDE and is purely variational, thus allowing us
to deal with almost-minimizers.

Remark 1.3 Recall that a cone C is integrable through rotation if the family .ˆt /jt j<1

in (1-1) is given by ˆt D exp.tA/, where A is any fixed n�n skew symmetric matrix.
We observe that a simple modification of White’s proof of the epiperimetric inequality
for 2–dimensional area-minimizing cones (see [16]) would establish an epiperimetric
inequality for multiplicity-one cones with isolated singularity that are integrable through
rotations. However, our proof of Theorem 1.1 is different than that of White [16] and
Taylor [15; 14], and allows us to assume the more general notion of integrability (1-1),
under which no epiperimetric inequality exists in the literature. In particular, this allows
us to give an alternative proof of the beautiful work of Allard and Almgren [2].

As a consequence of Theorem 1.1, we prove a new uniqueness of the blowup result for
almost area-minimizing currents. This result is similar to the one of Simon for stationary
varifolds (see [12]), however, as mentioned above, the two results are independent from
each other since stationarity and almost-minimality are independent properties. We use
here standard notations for integral currents (see for instance Simon [13]).

Definition 1.4 (almost-minimizers) An n–dimensional integer rectifiable current T

in RnCk is almost (area-)minimizing if for every x0 2 spt.@T / there are constants
C0; r0; ˛0 > 0 such that

(1-3) kT k.Br .x0//� kT C @Sk.Br .x0//CC0rnC˛0

for all 0< r < r0 and all integral .nC1/–dimensional currents S supported in Br .x0/.

For any given integer rectifiable current R 2 In.RnCk/ we define the flat norm of R

to be

F.R/ WD inffM .Z/CM .W / WZ 2 In; W 2 InC1;ZC @W DRg:

Theorem 1.5 (uniqueness of smooth tangent cone for almost-minimizers) Let T 2In

be an almost area-minimizing current and let x0 2 spt.T /. Suppose that there exists a
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multiplicity-one area-minimizing cone C such that C \ @B1 is a smooth embedded
orientable submanifold of @B1 and C is a blowup of T at x0 . Then C is the unique
blowup of T at x0 and there exist constants 
 2 .0; 1/ and C; r0 > 0, depending on
C and n, such that

F..T �C / Br /� C
�
�log

�
r

r0

��.
�1/=2

; 0< r < r0;(1-4)

dist
�
spt.T Br .x//;C

�
� C

�
�log

�
r

r0

��.
�1/=2

; 0< r < r0:(1-5)

If the cone C is integrable, then the above logarithms can be replaced by powers
of r=r0 .

Similar results for almost area-minimizers are the one of Taylor [15] and of the second
author together with De Lellis and Spadaro [6]. However, there are two additional
difficulties in our situations. First of all, our epiperimetric inequality is logarithmic
and not a classical one, since the cone is not assumed to be integrable. Secondly, in
both [15; 6] the admissible blowups are rotations of a fixed cone, so that one can assume,
through a simple compactness argument, that (1-2) holds at every scale. However,
we do not require this to be the case, and in fact we ask for only one of the possible
blowups to have the required structure.

We also stress that the combined works of Allard–Almgren and Simon (eg [2; 12])
prove the analogue of Theorem 1.5 for multiplicity-one stationary varifolds. However,
their proofs do not apply to almost-minimizers as they require a PDE to be satisfied.
Moreover, our approach unifies the situations of integrability and nonintegrability of
the cone; this relationship is investigated in Section 2.4.

The following corollary is a consequence of Theorem 1.5, since in codimension 1 the
multiplicity-one assumption on the blowup is always guaranteed:

Corollary 1.6 (uniqueness for 7–dimensional hypersurfaces) Suppose that T 2

I7.U / is almost area-minimizing in an open set U �N , where N is a C 2 orientable
smooth manifold of dimension 8 with .N nN /\U D∅. Then T has a unique tangent
cone at every point and is locally C 1;log diffeomorphic to it.

1.1 Idea of the proof of Theorem 1.1

Let z be the function of Theorem 1.1, that is, the one-homogenous extension of the
trace c . We need to construct a competitor function h whose volume is smaller than
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that of z . Our first step is a slicing lemma (Lemma 2.2), which says that for every
g 2 C 1;˛.C ;C?/ we have

(1-6) AC .rg/�AC .rc/

�

Z 1

0

.A†.g/�A†.c//rn�1 dr CC

Z 1

0

Z
†

j@r gj2 dHn�1 rnC1 dr„ ƒ‚ …
DWEr

;

where A† is the renormalized area on the sphere defined in (2-1). In order to gain in the
first term, we build h by “flowing” c along r , so that the area of its spherical slices is
decreasing. To choose good directions for the flow we use the Jacobi operator for A† ,
which we denote by ı2A† . This is an operator with compact resolvent, therefore we
can decompose c as

c D cK C cCC c�;

where cK is the projection of c on the kernel of ı2A† , c� is the projection on the
index of ı2A† and cC is the projection on the positive eigenspaces of ı2A† . Since †
is stationary in the sphere (being the trace of a stationary cone), the positive directions
increase the volume of † at second order, and so we want to move c towards zero
in these directions, while the negative directions decrease it, and so we don’t want to
move them. In general, we cannot assume that any of cK , cC or c� is zero, but to
better explain the argument, let us address the two opposing cases, when cK D 0 and
when cCC c� D 0.

If cK D 0, we define

h.r; �/ WD r�C.r/cC.�/C rc�.�/;

for a suitably chosen function �C , with �0C D ". Then, using (1-6), we have

AC .h/� .1� "/AC .z/� .".��CC��/CCkckC 1;˛.†/CC "2/kck2
H 1.†/

< 0;

where �C > 0 is the smallest positive eigenvalue of ı2A† and �� < 0 the biggest
negative eigenvalue, and " depends only on the dimension and the spectral gap, and
so on C. Note that the first term on the right-hand side above comes from our choice
of �C and the aforementioned properties of the positive and negative eigenspaces
of ı2A† . The second term on the right-hand side comes from the Taylor expansion of
the area, while the third bounds the radial error coming from (1-6).

When C is integrable through rotations we can take cK D 0 by a simple reparametriza-
tion (using for instance the implicit function theorem as in White [16]). In the more
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general setting of integrability, we can also take cK D0, but we must use a slightly more
complicated Lyapunov–Schmidt reduction and the analyticity of the area functional
over graphs (see Section 2.4).

If c D cK , we cannot hope to gain to second order as above. Instead, following
Simon [12], we consider the function A.�1; : : : ; �l/ WD A†.�1�1 C � � � C �l�l/,
where �1; : : : ; �l are the Jacobi fields of † and l WD dim ker.ı2A†.0// < 1. To
decrease this quantity we let the coordinates �D .�1; : : : ; �l/ flow according to the
negative gradient flow of A (that is, a finite-dimensional mean curvature flow) in the
following way:

(1-7)
�
�0.t/ WD �rA.�.t//=jrA.�.t//j;

�.0/D �0 D coordinates of cK ;

and we define

h.r; �/ WD r
X̀
jD1

�j .�.r//�j .�/:

Clearly the function r 7!A.�.r// is decreasing, but to make it quantitative we use the
Łojasiewicz inequality to deduce that for some 
 2 .0; 1/ and constant CC > 0 we
have

A.�.�.r///� .1� "/A.�0/� �.CC �.r/� "A.�
0/
 /A.�0/1�
 :

If we choose � and " cleverly (both proportional to a small constant times A.�0/1�
 ),
then the gain above will be larger than the radial error caused by the flow, which
according to (1-6) is proportional to Œ�0.r/�2 . This in turn will imply the logarithmic
epiperimetric inequality (1-2).

Organization of the paper

The paper is divided in two parts: In the first part we give the proof of Theorem 1.1.
In the second, we show how to use Theorem 1.1 to deduce Theorem 1.5. Finally, in
the appendix (for the sake of completeness), we compute the Taylor expansion of the
area for spherical graphs and construct the Lyapunov–Schmidt reduction. Let us point
out that the proof of Theorem 1.1 requires no familiarity with the language of currents.
However, when we apply the epiperimetric inequality to obtain regularity, we will use
some theorems and notations which are standard in the literature. For an introduction
to currents and their relevant properties, see [13].
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2 The (log-)epiperimetric inequality via deformations along
positive directions and gradient flow

In this section we first recall some basic notations and facts about the area functional
for spherical graphs. After that we give the proof of Theorem 1.1.

2.1 Preliminaries

Let † WD C \ @B1 be a smooth embedded submanifold of @B1 . Given a function
u 2 C 1.†;C?/, we define its spherical graph over † and its (renormalized) volume
to be, respectively,

(2-1) G†.u/ WD

�
� Cu.�/p
1Cju.�/j2

W � 2†

�
; A†.u/ WDHn�1.G†.u//�Hn�1.†/:

Next we recall the Euler–Lagrange and Jacobi operators of these functionals.

Lemma 2.1 (first and second variations of area) Let g 2 C 1;˛.†;C?/, with † a
closed smooth minimal surface in SnCk�1 , then we have the Taylor expansion formula

(2-2)
ˇ̌̌̌
A†.g/�

1

2

Z
†

�
j.Dg/?j2�

nX
i;jD1

.B.�i ; �j / �g/
2
� .n� 1/jgj2

�
dHn�1

ˇ̌̌̌
� CkgkC 1;˛.†;C?/kgk

2
H 1.†;C?/

;

where j.Dg/?j2 D
Pn�1

iD1 j.Dig/
?j2 , B is the second fundamental form of † and

.Dg/? is the projection of Dg on the normal bundle of † in the sphere.

Although standard, we give the proof of this lemma in Appendix A for the reader’s
convenience. In the codimension one case, that is, when g D �� , with � normal to †
in the sphere, the bound above becomesˇ̌̌̌
A†.g/�

1

2

Z
†

�
jr�j2�.jBj2�.n�1//j�j2

�
dHn�1

ˇ̌̌̌
�Ck�kC 1;˛.†;C?/k�k

2
H 1.†;C?/

;

since Di.��/
? DDi��C �Di� DDi�� , because Di� 2 T†.

2.2 Slicing lemma

In this section we estimate the difference between the area of a general graph and
a cone, by bounding the additional radial error. Although simple, this lemma is the
starting point of our proof, as it suggests how to modify the trace.
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Lemma 2.2 (slicing lemma) For every function g D g.r; �/ 2 C 1;˛.C ;C?/,

(2-3) AC .rg/�

Z 1

0

A†.g.r; � //rn�1 dr

CC
�
1C sup

r2.0;1/

kg.r; � /kC 1;˛.†;C?/

� Z 1

0

Z
†

j@r gj2 dHn�1 rnC1 dr:

In particular, if g.r; �/D c.�/, then we have

(2-4) AC .rc/D
1

n
A†.c/:

Proof Consider the function G.r; �/ WD r.� Cg.r; �//=
p

1Cg2.r; �/. We can com-
pute

AC .rg/ WD

Z 1

0

Z
†

ˇ̌̌
Dr G ^

1

r
D�G

ˇ̌̌
d� rn�1 dr �Hn.C \B1/:

In particular, notice that if g.r; �/D c.�/, then we have jGj D r , so that

1DDr jGj D
G

jGj
�Dr G and jDr Gj D 1:

Using again jGj D r and the first equality above, which implies that Dr G DG=jGj,
we deduce that

0DD� jGj D
G

jGj
�D�G DDr G �D�G;

so that jDr G^D�Gj D jDr GjjD�Gj D jD�Gj. From this and the fact that r�1D�G

is independent of r , we deduce the well-known formula

AC .rc/D
1

n

Z
†

1

r
jD�Gj d��

1

n
Hn�1.†/D

1

n
.Hn�1.G†.c//�Hn�1.†//D

1

n
A†.c/:

Now assume g has no special structure; we can estimate

(2-5) AC .rg/�

Z 1

0

Z
†

jDr Gj
ˇ̌̌
1

r
D�G

ˇ̌̌
d� rn�1 dr �

Z 1

0

Hn�1.†/ rn�1 dr:

A simple computation gives

Dr GD
1

.1Cjgj2/3=2

�
�.1Cjgj2�rg �@r g/Cg.1Cjgj2�rg �@r g/Cr@r g.1Cjgj2/

�
;
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so that, using the orthogonality between � and each of g and @r g , where the second
follows by the fact that C is a cone, we deduce

jDr Gj D

p
.1Cjgj2� rg � @r g/.1Cjgj2C rg � @r g/C .r@r g/2.1Cjgj2/2

.1Cjgj2/

D

p
.1Cjgj2/2� .rg � @r g/2C .r@r g/2.1Cjgj2/2

.1Cjgj2/

�

s
1C

.r@r g/2

1Cjgj2
� 1C r2.@r g/2:

Using this bound in (2-5), together with r�1jD�Gj � C.1CkgkC 1;˛ / and the fact
that D�G is the Jacobian of the graph in the � variables, concludes the proof.

2.3 Proof of Theorem 1.1

As outlined above, Lemma 2.2 suggests that to construct the competitor function, h,
we should change c radially by flowing in the directions that decrease the volume A† ,
that is, by decreasing radially the directions corresponding to positive eigenvalues
of ı2A† (and leaving alone those directions which correspond to negative eigenvalues).
However, there is the possibility that c 2 ker.ı2A/ (or merely that “most of” c is in
the kernel), in which case we cannot hope to gain at second order and must use the
analyticity of the area functional to construct a finite-dimensional gradient flow to
achieve the desired gain.

We begin constructing the competitor function h 2H 1.C ;C?/\C 1;˛.†;C?/. Let
K D ker ı2A†.0/ � L2.†;C?/, where the second variation of A†.0/ is the self-
adjoint operator with compact resolvent defined by

ı2A†.0/Œ�; � � WD ��?†� �
n�1X

i;jD1

.B.�i ; �j / � �/B.�i ; �j /� .n� 1/�

for every � 2 C 2.†;C?/:

This is a system of equations, with as many equations as the dimension of the normal
bundle of † in the sphere. Let ‡ 2 C!.K;K?/, where K? is the orthogonal
complement of K inside L2.†;C?/, be the operator given by the Lyapunov–Schmidt
reduction in Appendix B, and write the trace c as

c DPK cCPK?c DPK cC‡.PK c/C .PK?c�‡.PK c//�PK cC‡.PK c/C c?‡ ;
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where PK and PK? are the projections on K and K? , respectively. By the spectral
theory for operators with compact resolvent, we know that there exists an orthonormal
basis f�j g

1
jD1

of H 1.†;C?/ and numbers f�j g
1
jD1

accumulating at C1 such that

ı2A†.0/Œ�j ; � �D �j�j for every j 2N;

where each eigenvalue has finite multiplicity. In particular, we set ` WD dim K and K is
spanned by the eigenfunctions �1; : : : ; �l . Then we can decompose, up to relabelling,

c?‡ WD
X

fj j�j<0g

cj�jC

X
fj j�j>0g

cj�jDWc
?
�Cc?C; PK .c/ WD

X
fj j�jD0g

�0
j�jD

X̀
jD1

�0
j�j :

We then define the competitor function, h, by

(2-6) rh.r�/ WD

r

�X̀
jD1

�j .�.r//�j .�/C‡

�X̀
jD1

�j .�.r//�j .�/

�
C c?� .�/C �C.r/c

?
C.�/

�
;

where �.�.r// WD
�
�1.�.r//; : : : ; �`.�.r//

�
is the vector field defined by the renor-

malized gradient flow

(2-7)
�0.t/D

�
�rA.�.t//=jrA.�.t//j if A.�.t// > 1

2
A.�.0//;

0 otherwise;

�.0/D .�0
1; : : : ; �

0
l /DW �

0;

and A.�/ WDA†
�P
fj j�jD0g �j�jC‡

�P
fj j�jD0g �j�j

��
is an analytic function from

R` to R. Note that if A.�.0//� 0 then the flow is constant throughout. We will show
below, using the Łojasiewicz inequality, that this flow is well defined for all times.

The two cut-off functions, �C and �, are chosen to be

�C.r/ WD 1� .1� r/
"

nC2
and �.r/ WD "AA.�0/1�
C.1� r/;

where ", "A , C and 
 will be chosen later in the proof, depending only on †, and
so on C. Notice that h.1; � /D c. � /, so the first property required of our competitor
is satisfied. Also note that h 2 C 1;˛.C ;C?/ as each �j 2 C 1;˛.†;C?/ (by elliptic
regularity) and ‡.�/ 2 C 1;˛.†;C?/ (see Lemma B.1).
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Thus we can use Lemma 2.2, and estimate

(2-8) AC .rh/� .1� "/AC .rc/

�

Z 1

0

�
A†.h.r; � //� .1� "/A†.c/

�
rn�1 dr

CC
�
1C sup

r2.0;1/

kh.r; � /kC 1;˛.†;C?/

� Z 1

0

Z
†

j@r hj2 dHn�1 rnC1 dr„ ƒ‚ …
DWEr

:

By the definition of h (and (B-3)) we have that supr2.0;1/ kh.r; � /kC 1;˛.†;C?/ �

5kck



C 1;˛.†;C?/
� 1 (for more details see (2-13) and the discussion below) and,

moreover,Z 1

0

Z
†

j@r hj2 dHn�1 rnC1 dr

� 2

Z 1

0

rnC1
�
.�0C.r//

2
kc?Ck

2
C .�0.r//2.1Ckı‡.�/Œ�0�k21/

�
dr

� C

Z 1

0

rnC1
�
"2
kc?‡k

2
H 1.†;C?/

C .�0.r//2
�

dr;

where in the second inequality we used (B-3) to estimate kı‡.�/Œ�0�k1�Ck�0kDC.
It follows that

(2-9) jEr j � C."2
kc?‡k

2
H 1 C "

2
AA.�0/2�2
 /:

For the main term, we split the estimate in two parts:

A†.h/� .1� "/A†.c/

D
�
A†.h/�A†.�C‡.�//

�
� .1� "/

�
A†.c/�A†.PK cC‡.PK c//

�„ ƒ‚ …
DWE?

CA†.�C‡.�//� .1� "/A†.PK cC‡.PK c//„ ƒ‚ …
DWET

:

For the first part, denoting by h?
‡
WD h� .�C‡.�//, we have, by a simple Taylor

expansion,

(2-10) E? D ıA†.�C‡.�//Œh?‡ �C ı
2A†.�C‡.�/C sh?‡ /Œh

?
‡ ; h

?
‡ �

� .1� "/
�
ıA†.�0

C‡.�0//Œc?‡ �

C ı2A†.�0
C‡.�0/C tc?‡ /Œc

?
‡ ; c
?
‡ �
�
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� ı2A†.�C‡.�/C sh?‡ /

� Œh?‡ ; h
?
‡ �� .1� "/ı

2A†.�0
C‡.�0/C tc?‡ /Œc

?
‡ ; c
?
‡ �;

where s; t 2 .0; 1/ and the second inequality holds thanks to (B-2) and the fact that
h?
‡
; c?
‡
2K? . Using Lemma 2.1, we easily see that

jı2A†.f /Œ�; ��� ı2A†.0/Œ�; ��j D
ˇ̌̌̌

d2

dt2

ˇ̌̌
tD0

A†.f C t�/�
d2

dt2

ˇ̌̌
tD0

A†.t�/
ˇ̌̌̌

� Ckf kC 1;˛.†;C?/k�k
2
H 1.†;C?/

with

ı2A†.0/Œ�; ��D
1

2

Z
†

�
j.Dg/?j2�

nX
i;jD1

.B.�i ; �j / �g/
2
� .n� 1/jgj2

�
dHn�1:

Using this estimate in (2-10) and the fact that j�j; j�Cj � 1, we deduce

(2-11) E?� ı2A†.0/Œc?�C�Cc?C; c
?
�C�Cc?C��.1�"/ı

2A†.0/Œc?�Cc?C; c
?
�Cc?C�

CC
�
k�C‡.�/Csh?‡kC 1;˛Ck�0

C‡.�0/Ctc?‡kC 1;˛

�
kc?‡k

2
H 1.†;C?/

� "ı2A†.0/Œc?� ; c
?
� �C .�

2
C� .1� "//ı

2A†.0/Œc?C; c
?
C�

CC
�
2kc?‡kC 1;˛ Ck�kC 1;˛ Ck�0

kC 1;˛

�
kc?‡k

2
H 1.†;C?/

:

Integrating this error in the radii and recalling that, by our choice of �C , we haveR 1
0 .�

2
C.r/� .1� "//r

n�1 dr � �", we conclude

(2-12)
Z 1

0

E?rn�1 dr

� " max
�j<0

�jkc
?
�k

2
H 1.†;C?/

� " min
�j>0

�jkc
?
Ck

2
H 1.†;C?/

CC.kc?‡kC 1;˛ Ck�kC 1;˛ Ck�0
kC 1;˛ /kc?‡k

2
H 1.†;C?/

� �
�
CC "�C.kc?‡kC 1;˛ Ck�kC 1;˛ Ck�0

kC 1;˛ /
�
kc?‡k

2
H 1.†;C?/

;

where CC > 0 is a strictly positive constant depending only on the spectral gap
between 0 and the other eigenvalues of ı2A†.0/, that is, depending only on † and
so on C. Note in the first line of (2-12), we use the H 1 norm as opposed to the
more natural L2 norm. However, if �j is a eigenfunction of ı2A†.0/ associated to a
nonzero eigenvalue, �j , then it is an easy computation to see that kr�jkL2 � ck�jkL2

with a constant c that depends on j�j j
�1 . Thus, for c?

˙
the norms are comparable with

a constant depending on the gap in the spectrum between the zero and the eigenvalues
above and below it.
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Noticing that, by the definition of �, we have

(2-13)
j�.�.r//��0

j �

Z �.r/

0

j�0.t/j dt � j�.r/j � C "AA.�0/1�
 ;ˇ̌̌
d

dr
�.�.r//

ˇ̌̌
� j�0.�.r//jj�0.r/j � C "AA.�0/1�
 :

These estimates, combined with elliptic regularity applied to �j 2K , allow us to bound
k�kC 1;˛ � C "AA.�0/1�
 Ck�0kC 1;˛ � 2k�0k

1�


C 1;˛ (for "A > 0 sufficiently small
but depending only on C ).

By choosing kckC 1;˛ (which is bigger than k�0kC 1;˛ and kc?
‡
kC 1;˛ ) sufficiently

small, depending only on CC , we conclude

(2-14)
Z 1

0

E?rn�1 dr � �CC "kc
?
‡k

2
H 1.†;C?/

:

Next we estimate ET . If A.�0/ � 0, then ET � 0 trivially. When A.�0/ > 0, we
recall the Łojasiewicz inequality (see [8]) for the analytic function A, which says there
exists a neighborhood U of 0 and constants 
 2

�
0; 1

2

�
and c > 0 (which depend on

the cone C ) such that

(2-15) jA.�/�A.0/j1�
 D jA.�/j1�
 � cjrA.�/j for all � 2 U:

The inequality (2-15) implies that jrA.�.t//j> 0 whenever A.�.t// > 1
2
A.�0/ > 0,

and thus the flow given by (2-7) is well defined for all times.

We can estimate

A.�.t//�A.�0/D

Z t

0

d

d�
A.�.�// d� D

Z t

0

rA.�.�// ��0.�/ d�(2-16)

D�

Z t

0

jrA.�.�//j d� � 0;

so that the function t 7!A..�.t// is nonincreasing, and therefore there exists a first
time t1 > 0 such that �

A.�.t//� 1
2
A.�0/ if 0� t � t1;

A.�.t//D 1
2
A.�0/ if t � t1:

If �.r/� t1 then we have

ET
DA.�.�.r///�A.�0/C "A.�0/(2-17)

� �

Z �.r/

0

jrA.�.�//j d� C "A.�0/
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� �CC

Z �.r/

0

jA.�.�//j1�
 d� C "A.�0/

� �CC A.�.�.r//1�
�.r/C "A.�0/

� �
CC

21�

jA.�0/j1�
�.r/C "A.�0/

D�. zCC �.r/� "A.�
0/
 /A.�0/1�
 ;

where in the first inequality we used (2-16) and in the second inequality we use the
Łojasiewicz inequality, (2-15), for the analytic function A at the point 0 (it is here that
the constant depends on C ). Finally, in the third inequality we use the monotonicity
of A and in the fourth we use �.r/� t1 .

If �.r/ > t1 , then

ET
DA.�.�.r///� .1� "/A.�0/ < �

�
1
2
� "
�
A.�0/(2-18)

< �.CC �.r/� "A.�
0/
 /A.�0/1�
 ;

where the last inequality follows since j�j �C "AA.�0/1�
 < 1
2

as long as �0 is small
enough.

We now have two cases:

Case 1 A.�0/ < �2kc?k2
H 1.†;C?/

for some � > 0 small but universal (ie depending
only on C and n, but not on c ). Note this includes when A.�0/� 0. In this scenario,
let �� 0 (ie "A � 0), so that ET D "A.�0/, and combine (2-8), (2-9) and (2-14), to
deduce that

AC .rh/� .1� "/AC .rc/� �CC "kc
?
‡k

2
H 1 C ."A.�

0/C "2
kc?‡k

2
H 1/(2-19)

� �.CC � � � "/"kc
?
‡k

2
H 1 < 0

for a proper choice of " > 0 and � > 0 small enough depending only on n and C.

Case 2 Otherwise, we choose "D "AA.�0/1�
 for some "A > 0 small, depending
only on n and C. Using (2-17) and (2-18) we can estimate

(2-20)
Z 1

0

ET rd�1 dr � �A.�0/1�

Z 1

0

.CC �.r/� "A.�
0/
 /rd�1 dr

D�"AA.�0/2�2


Z 1

0

.CC C.1� r/�A.�0/
 /rd�1 dr

� �CC "AA.�0/2�2
 :
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Then, using (2-20) together with (2-8), (2-9) and (2-14), we deduce

(2-21) AC .rh/� .1� "/AC .rc/

� �CC "kc
?
‡k

2
H 1„ ƒ‚ …

E?

�CC "AA.�0/2�2
„ ƒ‚ …
ET

CC."2
kc?‡k

2
H 1 C "

2
AA.�0/2�2
 /„ ƒ‚ …

Er

� �.CC "� "
2/kc?‡k

2
H 1 � .CC "ACC "2

A/A.�
0/2�2
 < 0;

since we are in the case A.�0/ > 0 and by choosing "A small enough depending only
on n and C. Moreover, since we are in the case A.�0/1=2 � �kc?kH 1.†;C?/ , we can
use Lemma 2.2 to write

(2-22) AC .rc/D
1

n
A†.c/D

1

n

�
A†.c/�A.PK cC‡.PK c//CA.PK cC‡.PK c//

�
� CC kc

?
‡k

2
H 1CA.�0/� .CC �

�1
C1/A.�.0//;

where in the first inequality we used Lemma 2.1. Finally, combining (2-21) and (2-22)
we conclude

(2-23) AC .rh/� .1� "A.AC .rc//1�
 /AC .rc/ < 0:

Combining the two previous cases concludes the proof.

2.4 The integrability case

To finish the proof of the epiperimetric inequality for integrable cones we need the
following lemma, which is based on the analyticity of A and whose proof can be found
also in [1].

Lemma 2.3 (constant area on the kernel) A cone C is integrable if and only if
A.�/DA.0/D 0 in a neighborhood of 0.

Using this lemma it is immediate to see that if C is integrable then we always fall in
Case 1 of the proof of Theorem 1.1, so that we have (1-2) with 
 D 0.

Proof of Lemma 2.3 The integrability condition (1-1) is equivalent to

(2-24) 8� 2 ker ı2A†.0/ 9.‰s/s2.0;1/ � C 2.†;C?/8<:
lims!0‰s D 0;

ıA†.‰s/D 0 for s 2 .0; 1/;

d‰s=dsjsD0 D lims!0‰s=s D �:
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Assume (2-24) holds, and recall the definition A.�/ D A†.�C‡.�//. If A � 0

in a neighborhood of zero then we are done. Otherwise, we can write A.�/ D

Ap.�/ C AR.�/, where Ap 6� 0, Ap.��/ D �pA.�/ for � > 0 and AR.�/ is
the sum of homogeneous polynomials of degrees � pC 1 (here, again, we use the
analyticity of A). Note there exists some � 2 ker ı2A†.0/ such that rAp.�/¤ 0; let
‰s be the one-parameter family of critical points that is generated by � (as in (2-24)).

As ‰s is a critical point, Lemma B.1 allows us to write ‰s D �s C‡.�s/, where
�s 2K and �s=s! � as s # 0. We compute

0D ıA†.‰s/DrA.�s/DrAp.�s/CrAR.�s/D sp�1
rA.�/C o.sp�1/:

Divide the above by sp�1 and let s # 0 to obtain a contradiction to rAp.�/¤ 0.

In the other direction assume that A � 0 in a neighborhood of 0. This implies
that rA � 0 in a (perhaps slightly smaller) neighborhood of 0. Therefore, for any
� 2 ker ı2A†.0/, letting ‰s D s�C‡.s�/ and recalling (B-3) establishes (2-24).

3 Almost area-minimizing currents and applications

In this section we apply the (log-)epiperimetric inequality of Theorem 1.1 to deduce
Theorem 1.5. As mentioned in the introduction, for the classical epiperimetric inequality
this has been done in [6] by De Lellis, Spadaro and the second author. Here, however,
the strategy is slightly different since we do not know that every blowup is of the same
type (ie our uniqueness result not only determines a rotation, but actually prevents the
formation of additional singularities).

3.1 Technical preliminaries

We start by recalling the following well-known proposition, whose proof can be found
in [6, Proposition 2.1].

Proposition 3.1 (almost monotonicity [6, Proposition 2.1]) Let T 2 In.RnCk/ be
an almost-minimizer and x 2 spt.T / n spt.@T /. There are constants C; xr ; ˛0 > 0 such
that

(3-1)
Z

Br .x/nBs.x/

j.z�x/?j2

jz�xjnC2
dkT k.z/� C

�
kT k.Br .x//

!nrn
�
kT k.Bs.x//

!nsn
C r˛0

�
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for all 0< s < r < xr (in (3-1), .z�x/? denotes the projection of the vector z�x on
the orthogonal complement of the approximate tangent to T at z ). In particular, the
function r !kT k.Br .x//=.!nrn/CC r˛0 is nondecreasing.

Using (3-1) together with the almost-minimizing property, it is easy to see that the
same blowup analysis holds for almost-minimizing and minimizing currents. That
is, we can consider the blowup sequence of T at x defined by .�x;r /]T , where the
map �x;r is given by RnCk 3 y 7! .y�x/=r 2RnCk . Recall that an area-minimizing
cone S is an integral area-minimizing current such that .�0;r /]S D S for every r > 0.
Then, by the almost monotonicity of kTx;rk, Tx;r!S up to subsequences, with S an
area-minimizing cone. Furthermore, by the almost minimality of T , the convergence is
strong, ie their difference goes to zero in the flat norm, the support of Tx;r converges
to the support of S in the Hausdorff distance sense and the mass of Tx;r converges to
that of S.

Below, we will continue to denote by C an arbitrary multiplicity-1 area-minimizing
cone; occasionally we abuse notation slightly and identify the cone with its sup-
port. Moreover, T will be almost area-minimizing with parameters r0 and ˛0 (see
Definition 1.4). Finally, we set

‚M .T;x/ WD lim
r!0

kT k.Br .x//

!nrn
and ‚C WD kC k.B1/D

kC k.Br /

!nrn
:

We first prove a standard parametrization lemma over a multiplicity-1 cone.

Proposition 3.2 (spherical parametrization from a cone) Let �; " 2
�
0; 1

4

�
, C be

a multiplicity-1 area-minimizing cone, and T 2 In be an almost area-minimizing
current with ‚M .T; 0/ D ‚C . There are constants ı1; �; r1 > 0 (which depend on
� , ", the almost-minimizing parameters C , ˛0 and r0 and the dimension, n, and
codimension, k ) such that if r < r1 , and

(3-2)
kT k.B4r /

4rn!n
�‚M .0/� � and F.@..T2r �C / B1//� �;

then there exists u 2 C 1;˛.C \Br nB� r ;C
?/ such that

T .Br nB� r /DGC .u/ and sup
C\.Br nB� r /

3X
jD0

jDj uj � ":(3-3)

Proof Arguing by contradiction, we assume there exist sequences of almost area-
minimizing currents .T k/k , all with the same constants r0;C; ˛0 > 0, and radii .rk/k ,

Geometry & Topology, Volume 23 (2019)



530 Max Engelstein, Luca Spolaor and Bozhidar Velichkov

with rk ! 0, such that, if we consider Rk WD T k
rk

, then

(3-4)
kRkk.B4/

4n!n
�‚C �

1

k
and F

�
@..Rk �C / B2/

�
�

1

k
:

Notice that, by the first inequality above, we have a uniform bound for kRkk.B4/,
so that, up to subsequences, Rk ! V in B4 . By the same uniform bound and the
usual slicing theorem, passing to a subsequence there is a radius �0 2 .2; 4/ such that
M
�
@..Rk �V / B�0

/
�

is uniformly bounded. On the other hand, Rk �V converges
to 0 in the sense of currents and hence, by [13, Theorem 31.2], F..Rk�V / B�0

/! 0.
This means, for all � � �0 , that there are integral currents Hk and Gk (depending
on �) with M .Hk/CM .Gk/! 0 such that

.Rk �V / B� D @Hk CGk :

Taking the boundary of the latter identity, we conclude that @Gk D @..Rk �V / B�/.
Now, rescaling the almost minimality property of Tk , we conclude that

kRkk.B�/� kV k.B�/CM .Gk/CC�˛0r
˛0

k
:

Since .M .Gk/C rk/ # 0, we infer

lim sup
k!1

kRkk.B�/� kV k.B�/:

On the other hand, Rk ! V in B1 , so we also have

kV k.B�/� lim inf
k!1

kRkk.B�/:

Using the almost-monotonicity identity (3-1) and passing to the limit in k , we conclude
by a standard argument that V B2 is a cone. Passing to the limit in the second
inequality of (3-4) we get @.V B2/D @.C B2/. Since both V and C are integral
cones, we deduce that V D C. Finally, since C has multiplicity 1 and is smooth
away from 0, and Rk converges to C by Allard’s theorem for almost area-minimizing
currents (see for instance [11]), we get a contradiction.

Since the previous lemma gives graphicality in the interior of the ball, before we can
prove Theorem 1.5 we need a way to transfer small excess in B1 to small excess in B�

for some � 2
�

1
2
; 1
�
.

Lemma 3.3 (tangent cones at comparable scales) Let T be an almost area-minimiz-
ing integral current. Then, for all "2 > 0, there exists ı2 D ı2."2;C; ˛0; r0/ > 0 such
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that for all 0< 2r < ı2 and all � 2 Œr; 2r � we have

(3-5) F.@..T� �Tr / B1// < "2:

Proof We argue by contradiction. Assume there are sequences rn # 0 and �n # 0

with �n 2
�

1
2
rn; rn

�
and such that

F
�
@..T�n

�Trn
/ B1/

�
� "2:

As 1� rn=�n � 2 for every n 2N, we can assume (passing to subsequences) 0<LD

limn rn=�n <1. We then compute

F
�
@
��

V � lim
n!1

Trn

�
B1

��
D F

�
lim

n!1
.�L/]@..V �T�n

/ B1/
�
D 0;

where V is the tangent cone associated with the sequence .�n/n and we used the
fact that V is a cone. It follows that both sequences Trn

and T�n
approach the same

tangent cone V , and by the triangle inequality we get a contradiction for n sufficiently
big.

3.2 Proof of Theorem 1.5

Assume that x0 D 0 and recall that r0 > 0 is given by Definition 1.4. We divide the
proof into several steps.

Step 1 ((log-)epiperimetric inequality) Assume that for every 0< s < r < r0 , there
exists a c with small C 1;˛ norm such that @.Tr B1/DG†.c/. By Theorem 1.1 there
exist ";C; 
 > 0, with 
 2 Œ0; 1/ and h 2H 1.C ;C?/ such that

AC .h/� .1� "jAC .rc/j
 /AC .rc/:

Set f .r/ WD kT k.Br / � ‚C rn and recall that, since r 7! kT k.Br / is monotone,
the function f is differentiable a.e. and its distributional derivative is a measure. Its
absolutely continuous part coincides a.e. with the classical differential and its singular
part is nonnegative, so that

rnAC .rc/D k0 � @.T Br /k.Br /�‚C rn
�

r

n
f 0.r/:

Using the almost minimality of T and the previous two inequalities, we get

f .r/� rnAC .h/CC rnC˛
� .1� "jAC .rc/j
 /

r

n
f 0.r/CC rnC˛

� .1� "je.r/j
 /
r

n
f 0.r/CC rnC˛;
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where e.r/ WD f .r/=rn . Rearranging this inequality and dividing it by rnC1 , we get

e0.r/D

�
f 0.r/

rn
�f .r/

n

rnC1

�
� n"

je.r/j1C


r.1� "je.r/j
 /
�C

1

r1�˛
(3-6)

� n"
je.r/j1C


r
�C

1

r1�˛
:

We now define ze.r/D e.r/C2˛�1C r˛ and we notice that, from the previous inequality
and since a1C
 C b1C
 � 2�
 .aC b/1C
 , for any a; b � 0,

ze0.r/�
n"

r
je.r/j1C
 C

C

r1�˛
�

n"

r
Œje.r/jCC r˛=.1C
/�1C


�
n"

r
Œe.r/CC r˛=.1C
/�1C
 :

Note that by the almost-minimality of T , ze.r/� 0, so that for r sufficiently small, the
previous inequality implies that

(3-7) ze0.r/�
n"

r
ze.r/1C
 :

From this inequality we obtain that

d

dr

�
�1


 ze.r/

� n" log r

�
D

1

ze.r/1C

ze0.r/�

n"

r
� 0

and this in turn implies that �ze.r/�
 �n"
 log r is an increasing function of r , namely
that e.r/ decays as

e.r/C 2˛�1C r˛ � ze.r/� .ze.r0/
�

C n"
 log r0� n"
 log r/�1=


�

�
�n"
 log

�
r

r0

���1=

;

which for r0 sufficiently small implies

(3-8) e.r/� 2
�
�n"
 log

�
r

r0

���1=

; s < r < r0:

Step 2 (decay of the flat norm) Under the same assumptions as Step 1, consider the
map F.x/ WD x=jxj and radii 0< s � r < r0 . By the area formula,

M
�
F].T .Br nBs//

�
�

Z
Br nBs

jx?j

jxjnC1
dkT k(3-9)
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�

�Z
Br nBs

jx?j2

jxjnC2
dkT k

�1
2
�Z

Br nBs

1

jxjn
dkT k

�1
2

„ ƒ‚ …
I2

� .e.r/� e.s/CC1t˛0/1=2I2;

where the last inequality is by (3-1). We estimate I2 using monotonicity:

(3-10) I2
2 �

Z
.Br nBs/\C

1

jxjn
dkT k D

Z r

s

1

tn

d

dt
.kT k.Bt // dt

�
kT k.Br /

rn
�
kT k.Bs/

sn
C n

Z r

s

1

t

kT k.Bt /

tn
dt

�

�
1C n log

�
r

s

���
kT k.Br /

rn
CC r˛0

�
:

In particular, we conclude that

(3-11) M
�
F].T .Br nBs//

�
� C.log r � log s/.e.r/� e.s/CC1t˛0/1=2

for all 0< s � r < r0

Let 0< s1=2< r1=2< r0 be such that s=r0 2 Œ2
�2iC1

; 2�2i

/ and t=r0 2 Œ2
�2jC1

; 2�2j /

for some j � i ; then, applying the previous estimate to the exponentially dyadic
decomposition, we obtain

(3-12) M
�
F].T .Bt nBs//

�
�M

�
F].T .Bt nB

2�2jC1
r0
//
�
CM

�
F].T .B

2�2i
r0
nBs//

�
C

i�1X
kDjC1

M
�
F].T .B

2�2kC1
r0
nB

2�2k
r0
//
�

� C

iX
kDj

.log.2�2k

/� log.2�2kC1

//1=2.e.2�2k

r0/� e.2�2kC1

r0//
1=2

� C

iX
kDj

2k=2e.2�2k

r0/
1=2
� C

iX
kDj

2.1�1=
/k=2

� C 2.1�1=
/j=2
� C

�
�log

�
t

r0

��.
�1/=.2
/
;

where C is a dimensional constant that may vary from line to line. Since

@F].T .Br nBs//D @.Tr B1/� @.Ts B1/
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for a.e. 0< s < r , from the definition of F we get, by (3-12),

(3-13) F
�
@..Tr �Ts/ B1/

�
� C

�
�log

�
r

r0

��.
�1/=.2
/
:

Step 3 (uniqueness of tangent cone) Let ı D ı.C / > 0 be the constant of the
epiperimetric inequality, Theorem 1.1, and let ı1 D ı1

�
ı0;

1
4
;C
�
> 0 be the constant

of Proposition 3.2 with � D 1
4

. Moreover, let ı2 D ı2."2/ > 0 be the constant of
Lemma 3.3. Thanks to the assumption that C is a blowup of T at 0, we can choose
"2 D "2.C / > 0 and r D r.C / > 0, with r <minfı2; ı1g, in such a way that

(3-14) .kT4rk.B1/�‚C /CC
�
�log

�
r

r0

��.
�1/=.2
/
C"2CF

�
@..T2r�C / B1/

�
��;

where � > 0 is the constant of Proposition 3.2, and C and 
 are constants depending
only on C chosen as in (3-13). Notice that by Proposition 3.2, the assumptions of
Steps 1 and 2 are satisfied, with t D r and s D 1

4
r , so that by (3-13) we get

F.@..Tr �Tr=4/ B1//� C
�
�log

�
r

r0

��.
�1/=.2
/
:

Thanks to our choice (3-14) and Lemma 3.3, we can then apply Theorem 1.1 at the
scales Œ2�22

r0; 2
�2r0�, and, proceeding inductively in this way to establish (3-13) on

exponentially dyadic scales, we conclude that the blowup is unique.

Step 4 (proof of (1-4) and (1-5)) The proofs of (1-4) and (1-5) are analogous to
[6, Theorem 3.1] using (3-12) instead of the power rate given by (3.13) there.

The whole proof when 
 D0 (ie the classical epiperimetric inequality) follows similarly,
but we get a power instead of logarithmic rate of convergence. For details, see [6].

3.3 Proof of Corollary 1.6

We start by observing that thanks to the decomposition lemma [13, Corollary 3.16],
we can decompose T D

P1
jD�1 @ŒŒUj ��, with each @ŒŒUj �� almost area-minimizing. It

follows that if C is a blowup of @ŒŒUJ �� at x0 2 spt T , then C is either a multiplicity-1
plane or a multiplicity-1 cone with C\@B1 a smooth embedded submanifold of @B1 . If
we can prove that each @ŒŒUJ �� is almost area-minimizing in some RnCk , the conclusion
then follows by Theorem 1.5.

To see this it is enough to prove that T is almost area-minimizing in RnCk , where
k is chosen so that by Nash’s theorem we can isometrically embed N in RnCk .
Indeed, consider x 2 N and a ball Br .x/ � RnCk . If xr is sufficiently small, there
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is a well-defined C 1 orthogonal projection pW Bxr .x/! N with the property that
Lip.p/� 1CC Ar , where C is a geometric constant and A denotes the L1 norm of
the second fundamental form of N. Consider T area-minimizing in N and assume
xr <dist.x; spt.@T //. Let r �xr and S 2InC1.R

nCk/ be such that spt.S/�Br .x/. We
set W WDTC@S. If kW k.Br .x//�kT k.Br .x//, there is nothing to prove; otherwise,
by the standard monotonicity formula we have kW k.Br .x//� kT k.Br .x//� C rn .
Then W 0 WDp]W is an admissible competitor for the almost-minimality property of T

and we have

kT k.Br .x//� kW
0
k.Br .x//CC rnC˛0 � .Lip.p//nkW k.Br .x//

� kW k.Br .x//CC rnCminf1;˛0g:

Appendix A The Taylor expansion of the area of a spherical
graph

In this section, for the reader’s convenience, we prove Lemma 2.1.

Proof of Lemma 2.1 Let H.r; �/ WD .� Cg.r; �//=
p

1Cjg.r; �/j2 , and let .�i/
n�1
iD1

be an orthonormal basis of T†. We observe that

D�i
H D

1

.1Cjgj2/3=2
..�i CDig/.1Cjgj

2/� .� Cg/.g �Dig//

and we consider the .n� 1/� .n� 1/ matrix M with entries

M ij
WDD�i

H �D�jH

D
1

.1Cjgj2/

�
ıij
C�i �Dj gC�j �DigCDig�Dj g�

1

.1Cjgj2/
.g�Dig/.g�Dj g/„ ƒ‚ …

Aij

�
;

where we used the orthogonality of �i ;g and � . Next, using the formula det.ICA/D

1C trace.A/C 1
2
.trace.A//2� 1

2
trace.A2/CO.jAj3/ and recalling that

�i �Dj gDrj .�i �g/�Dj�i �gD�B.�i ; �j / �g and tr.A/D�2H† �gCjDgT
j
2:

with B the second fundamental form of †, we deduce that

det M D
1

.1Cjgj2/n�1

�
1�2H†�gCj.Dg/?j2C2jH†�gj

2

�

nX
i;jD1

.�i �Dj g/.�j �Dig/CP1.g;Dg/

�
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D 1Cj.Dg/?j2�

nX
i;jD1

.B.�i ; �j /�g/
2
�.n�1/jgj2CP1.g;Dg/;

where jP1.s; t/j � C.st2C ts2/, and in the last inequality we used the fact, since †
is the spherical cross-section of a stationary cone, H† D .n� 1/� , so that H† �g D 0.
Now, using the fact that

p
1C t D 1C 1

2
t CP2.t/, with jP2.t/j � C t3 , we conclude

jD�H jD
p

det M D1C
1

2

�
j.Dg/?j2�

nX
i;jD1

.B.�i ; �j /�g/
2
�.n�1/jgj2

�
CP3.g;Dg/

with jP3.s; t/j � C.st2C ts2/. In conclusion we have

(A-1)
ˇ̌̌̌
A†.g/�

1

2

Z
†

�
j.Dg/?j2�

nX
i;jD1

.B.�i ; �j /�g/
2
�.n�1/jgj2

�
dHn�1

ˇ̌̌̌

D

ˇ̌̌̌Z
†

�
1C

1

2

�
j.Dg/?j2�

nX
i;jD1

.B.�i ; �j /�g/
2
�.n�1/jgj2

�
CP .g;Dg/�1

�

�
1

2

�
j.Dg/?j2�

nX
i;jD1

.B.�i ; �j /�g/
2
�.n�1/jgj2

�
dHn�1

ˇ̌̌̌

�

Z
†

jP3.g;Dg/j dHn�1
� CkgkC 1;˛.†;C?/kgk

2
H 1.†;C?/

;

which is (2-2).

Appendix B Lyapunov–Schmidt reduction for the area
functional

We prove the following lemma, which is a modification of the reduction in [12]. First
we need some notation; let K WD ker ı2A†.0/ and ` WD dim K , which is finite by
spectral theory (as ı2A†.0/ has compact resolvent). Let PK be the projection of
L2.†IC?/ onto K and similarly PK? the projection onto K? .

Lemma B.1 There exists a neighborhood U of 0 in C 2;˛.†IC?/ and an analytic
map ‡ W K!K? � C 2.†IC?/ such that

(B-1) ‡.0/D 0 and ı‡.0/D 0;
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and, in addition,

(B-2)
�

PK?
�
ıA†.�C‡.�//

�
D 0 for all � 2K\U;

PK

�
ıA†.�C‡.�//

�
DrA.�/ for all � 2K\U;

where A.�/DA.�C‡.�// for every � 2K\U. Furthermore, the critical points of A
inside U are given by

C WD f�C‡.�/ j � 2 U \K and rA.�/D 0g;

which is an analytic subvariety of the `–dimensional manifold given by

M WD f�C‡.�/ j � 2 U \Kg:

Finally, for all �; � 2 U \K , there is a constant C <1 such that

(B-3) kı‡.�/Œ��kC 2;˛ � Ck�kC 0;˛ :

Proof Define the operator

N .�/ WD PK?ıA†.�/CPK �W L
2.†IC?/!L2.†IC?/:

Since C is a critical point for A† we see that N .0/D 0. Furthermore,

ıN .0/Œ��D d

dt
N .t�/jtD0 D PK?ı

2A†.0/Œ�;��CPK �:

In particular, ıN .0/ has trivial kernel. Then Schauder estimates (applied to ��?
†
�

BTB� .n�1/CPK ) imply that ıN .0/ is an isomorphism (in a neighborhood of zero)
from C 2;˛.†;C?/ to C 0;˛.†;C?/.

We apply the inverse function theorem to N in this neighborhood, producing the map
‰ WDN�1 , which is a bijection from a neighborhood of 0, W � C 0;˛.†IC?/, to U,
a neighborhood of 0 in C 2;˛.†IC?/.

We claim our desired map is given by ‡ WD PK? ı ‰W K ! K? . In particular,
for � 2 K we have ‰.�/ D � C ‡.�/. The first conclusion of (B-1) is trivial as
‡.0/D ‡.N .0//D PK?

�
‰.N .0//

�
D 0.

To check (B-2), we first notice that

(B-4) � DN .‰.�//D PK?ıA†.‰.�//CPK‰.�/:

Applying PK or PK? to both sides of that equation we get

PK � D PK‰.�/; and PK?� D PK?ıA.‰.�//:
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Plugging the first identity into the second we obtain

PK?� D PK?ıA.PK �C‡.�//;

which implies, for � 2K\U, that

0D PK?ıA.�C‡.�//:

To prove the second line of (B-2), we compute, for any � 2K ,

hrA.�/; �i D ıA†.�C‡.�//Œ�C ı‡.�/Œ���D ıA†.�C‡.�//Œ��;

which implies the second claim of (B-2) (as � 2K is arbitrary). The second inequality
above follows from the fact that ı‡.�/Œ�� 2K? (as the image of ‡ is in K? ) and
then from the first line of (B-2).

To see that all critical points are given by � C‡.�/ we turn to (B-4). Let � be an
arbitrary critical point of A† , in a neighborhood of zero. We write � D ‰.�/, and
(B-4) reads � D PK�, which implies

�D PK�CPK?�D �CPK?‰.�/D �C‡.�/;

as desired (the condition on rA follows trivially from (B-2)).

Finally, to prove (B-3) we write

�D ıN .‰.�//Œı‰.�/Œ���D PK ı‰.�/Œ��CPK?ı
2A†.‰.�//Œı‰.�/Œ��;��;

which implies

PK ı‰.�/Œ��CPK?ı
2A.0/Œı‰.�/Œ��;��

D �CPK?
�
ı2A†.0/� ı2A†.‰.�//

�
Œı‰.�/Œ��;��:

When you apply PK to both sides of the above equation you get PK ı‰.�/Œ�� D

PK� D �. Applying PK? to both sides and taking C 0;˛ norms yields the more
complicated

kı‡.�/Œ��kC 2;˛ �kPK?ı
2A.0/Œı‰.�/Œ��;��kC 0;˛

�kPK?
�
ı2A†.0/� ı2A†.‰.�//

�
Œı‰.�/Œ��;��kC 0;˛

�"kı‰.�/Œ��kC 2;˛ ;

where " > 0 is a constant which can be taken arbitrarily small with the size of the
neighborhood U. Note the first inequality above follows from Schauder estimates on
the operator ��?

†
�BTB � .n� 1/CPK .
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Writing ı‰.�/Œ��D ı‡.�/Œ��CPK ı‰.�/Œ��, we have

kı‡.�/Œ��kC 2;˛ � CkPK ı‰.�/Œ��kC 2;˛ ' kPK ı‰.�/Œ��kC 0;˛ ;

as PK is a finite-dimensional projection (so all norms are equivalent). Recalling the
above observation, that PK ı‰.�/Œ��D �, finishes the proof.
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