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Rigidity of convex divisible domains in flag manifolds
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In contrast to the many examples of convex divisible domains in real projective
space, we prove that up to projective isomorphism there is only one convex divisible
domain in the Grassmannian of p–planes in R2p when p > 1 . Moreover, this
convex divisible domain is a model of the symmetric space associated to the simple
Lie group SO.p; p/ .
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1 Introduction

The Lie group PGLdC1.R/ acts naturally on real projective space P .RdC1/ and for
an open set �� P .RdC1/ we define the automorphism group of � as

Aut.�/D f' 2 PGLdC1.R/ W '�D�g:

An open set � is then called a convex divisible domain if it is a bounded convex open
set in some affine chart of P .RdC1/ and there exists a discrete group � � Aut.�/
which acts properly, freely and cocompactly on �. The fundamental example of a
convex divisible domain comes from the Klein–Beltrami model of real hyperbolic
d –space Hd

R :

Example 1.1 Let B � P .RdC1/ be the unit ball in some affine chart. The group
PSO.d; 1/ � PGLd .R/ acts transitively (and by projective transformations) on B ,
and the stabilizer of a point is PSO.d/. This gives a natural identification B Š
PSO.d; 1/=PSO.d/.

Further, there is a natural metric on B , called the Hilbert metric, such that PSO.d; 1/D
Isom.B/0 . Equipped with this metric, B is isometric to hyperbolic d –space. Any
torsion-free cocompact lattice � in PSO.d; 1/ will act properly discontinuously, freely
and cocompactly on B .

There are many more examples of convex divisible domains, for instance:

(1) The symmetric spaces associated to SLd .R/, SLd .C/, SLd .H/ and E6.�26/
can all be realized as convex divisible domains. For instance, consider the convex
set

P D fŒX� 2 P .Sd;d / WX is positive definiteg;

where Sd;d is the vector space of real symmetric d � d matrices. Then the
group SLd .R/ acts transitively on P by g � ŒX�D ŒgXgt � and the stabilizer of
a point is SO.d/. Hence, if � � PSLd .R/ is a cocompact torsion-free lattice
then � acts properly, freely and cocompactly on P .

(2) Let B�P .RdC1/ be the Klein–Beltrami model of Hd
R . Results of Johnson and

Millson [31] and Koszul [38] imply that the domain B can be deformed to a di-
visible convex domain � where Aut.�/ is discrete (see Benoist [5, Section 1.3]
for d > 2 and Goldman [26] for d D 2).

(3) There are many examples in low dimensions (see for instance Vinberg [46] and
Vinberg and Kac [47]).
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Rigidity of convex divisible domains in flag manifolds 173

(4) For every d � 4, Kapovich [32] has constructed divisible convex domains
�� P .RdC1/ such that Aut.�/ is discrete, Gromov hyperbolic, and not quasi-
isometric to any symmetric space.

(5) Benoist [9] and Ballas, Danciger and Lee [2] have constructed divisible convex
domains �� P .R4/ such that Aut.�/ is discrete, not Gromov hyperbolic, and
not quasi-isometric to any symmetric space.

(6) For d D 4; 5; 6, Choi, Lee and Marquis [17] have constructed divisible convex
domains �� P .Rd / such that Aut.�/ is discrete, not Gromov hyperbolic, and
not quasi-isometric to any symmetric space.

More background can be found in the survey papers by Benoist [10], Choi, Lee and
Marquis [18], Marquis [39] and Quint [43].

There is a more general setting in which convex divisible domains can be studied,
namely in flag manifolds: Suppose G is a connected semisimple Lie group with
trivial center and compact factors. If P �G is a parabolic subgroup then G acts by
diffeomorphisms on the compact manifold G=P, which is called a flag manifold. Given
an open set ��G=P we define the automorphism group of � to be

Aut.�/D fg 2G W g�D�g:

The manifold G=P admits natural affine charts given by translates of a Bruhat big
cell, and a domain � is convex if it is convex in some affine chart. There are many
examples of convex divisible domains in flag manifolds coming from symmetric spaces:
The Harish-Chandra embedding shows that every noncompact Hermitian symmetric
space X embeds as a domain �X into a flag manifold G=P (and this flag manifold
can be identified with the compact dual of X ) such that Aut.�X /D Isom0.X/; see
eg Helgason [30, 8.7.14]. More generally, Nagano [40, Theorem 6.1] has characterized
all the noncompact symmetric spaces X whose compact dual X� can be identified
with a flag manifold G=P and X embeds as a domain �X into G=P such that
Aut.�X /D Isom0.X/. In all these examples the images are bounded convex domains
in some affine chart of G=P [40, Theorem 6.2].

There also exist examples of symmetric spaces which embed into a flag manifold which
cannot be identified with their compact dual. In particular, we have already seen above
that the symmetric spaces associated to SLd .R/, SLd .C/, SLd .H/ and E6.�26/ can
all be realized as convex divisible domains in real projective spaces.

Given theses examples it is natural to ask:
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174 Wouter Van Limbeek and Andrew Zimmer

Question 1.2 If G=P is a flag manifold, are there nonsymmetric convex divisible
domains in G=P ?

Outside of the case when G=P can be identified with real projective space or the
complex projective plane, we suspect that the answer is no. In particular, outside of
those two cases the action of G on G=P usually preserves some special structure.
For instance, if G D PSLpCq.R/ and P is the stabilizer of a p–plane then G=P
can be identified with Grp.RpCq/ the Grassmannians of p–planes in RpCq . In this
case the action of G on G=P preserves an “algebraic distance” given by d.V;W /D
dim.V \W /. Despite this source of rigidity, the above question seems difficult to
answer in full generality.

In this paper we specialize to the particular case of real Grassmannians. As above let
G D PSLpCq.R/ and P is the stabilizer of a p–plane then G=P can be identified
with Grp.RpCq/ the Grassmannians of p–planes in RpCq . The set of q � p real
matrices Mq;p.R/ can be naturally identified with an affine chart of Grp.RpCq/ via

X $ Im
�

Idp
X

�
:

Now let Bq;p be the unit ball (with respect to the Euclidean operator norm) in Mq;p.R/.
As in the real projective setting, Bq;p is a symmetric domain; in fact, Bq;p can be
identified with the symmetric space PSO.p; q/=PS.O.p/�O.q//. Further, under the
above identification we have Aut.Bq;p/Š PSO.p; q/.

In contrast to the many examples of convex divisible domains in real projective space,
we prove that every convex divisible domain in Grp.R2p/ is symmetric and even more
precisely that, up to projective isomorphism, Bp;p is the only convex divisible domain
in Grp.R2p/. The following is our main result:

Theorem 1.3 Suppose p > 1 and �� Grp.R2p/ is a bounded convex open subset
of some affine chart, and there exists a discrete group � � Aut.�/ such that � acts
cocompactly on �. Then � is projectively isomorphic to Bp;p .

Remark 1.4 There is much more flexibility for domains which are not bounded in an
affine chart:

(1) If � is an entire affine chart, there exists a discrete group � � Aut.�/ which
acts freely, properly and cocompactly on � (see Section 3.5 below).
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(2) If P � Q are parabolic subgroups in G, then there is a natural projection
� W G=P ! G=Q . Then, for any divisible domain � � G=Q , the preimage
��1.�/ is a divisible domain in G=P. This shows that for many flag manifolds,
classifying divisible domains is at least as difficult as classifying divisible domains
in real projective spaces.

(3) There are recent constructions by Guichard and Wienhard [28; 29], Guéritaud,
Guichard, Kassel and Wienhard [27] and Kapovich, Leeb and Porti [33] of
open domains � in certain flag manifolds where there exists a discrete group
� � Aut.�/ that acts properly, freely and cocompactly on �. These construc-
tions come from the theory of Anosov representations, and give many examples
of nonsymmetric divisible domains �. However, these constructions often
produce domains whose complement has positive codimension and hence are
not bounded in any affine chart (see for instance [29, Proposition 8.2]).

Remark 1.5 It is well known that convex domains in real projective space are very
similar to nonpositively curved Riemannian manifolds (see for instance Benoist [8; 9],
Crampon [20] or Cooper, Long and Tillmann [19]). In particular, the flexibility of
domains in real projective space and the rigidity of domains in Grp.R2p/ when p > 1
can be compared to the well-known dichotomy for the rigidity of a nonpositively curved
metric based on its Euclidean rank. Nonpositively curved metrics of rank one are very
flexible (eg negatively curved metrics), but in higher rank there is an amazing amount
of rigidity. Namely, the higher-rank rigidity theorem of Ballmann [3] and Burns and
Spatzier [15; 16] states that any nonpositively curved, irreducible, closed Riemannian
manifold whose Euclidean rank is at least two is isometric to a locally symmetric
space. In this sense convex divisible domains in Grp.R2p/ behave like irreducible
nonpositively curved manifolds of higher Euclidean rank.

Remark 1.6 In Theorem 1.3 we only assume that there is a discrete group ��Aut.�/
acting cocompactly on �. However, this implies that there exists a discrete group
�0�Aut.�/ that acts freely, properly discontinuously and cocompactly on �. Namely,
we construct an invariant metric for the action of Aut.�/ (see Step 1 below and
Proposition 4.8), and hence Aut.�/ acts properly on �. Thus, if � � Aut.�/ is a
discrete group and � acts cocompactly on � then � is finitely generated (by the
Švarc–Milnor lemma; see Bridson and Haefliger [13, Chapter I.8, Proposition 8.19]).
Then Selberg’s lemma (see Alperin [1]) implies that � has a finite-index, torsion-free
subgroup �0 � � . Then �0 acts freely, properly discontinuously and cocompactly
on �.
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1.1 Outline of the proof of Theorem 1.3

The proof of Theorem 1.3 uses a variety of techniques from real projective geometry,
several complex variables, Riemannian geometry, Lie theory and algebraic topology.
Here is an outline of the three main steps:

Step 1 (constructing an invariant metric) A convex domain � in an affine chart of
P .RdC1/ that is proper (that is, does not contain any affine real lines) has a complete
metric called the Hilbert metric. One of the main steps in the proof is the construction
of a metric K� that generalizes this classical construction.

We say a convex domain � in an affine chart of Grp.RpCq/ is R–proper if it does
not contain any “rank-one affine real lines” (see Definition 4.3 below).

Theorem 1.7 (Theorem 4.6 and Theorem 5.1 below) Suppose M� Grp.RpCq/ is
an affine chart and � �M is an R–proper convex open subset of M. Then there
exists a complete length metric K� with the following properties:

(1) Invariance The group Aut.�/ acts by isometries on .�;K�/.

(2) Equivariance If ˆ 2 PGLpCq.R/, then

K�.x; y/DKˆ�.ˆx;ˆy/:

(3) Continuity in the local Hausdorff topology If �n � M is a sequence of
R–proper convex open sets converging in the local Hausdorff topology to an
R–proper convex open set ��M, then K�n converges to K� uniformly on
compact subsets of �.

(4) If p D 1, then K� coincides with the classical Hilbert metric.

The above theorem allow us to establish an analogue of the powerful “rescaling” method
from several complex variables (see the survey articles by Frankel [23] and Kim and
Krantz [36]). See Remark 1.13 below for further details on this analogy (or lack thereof).
We prove:

Theorem 1.8 (Theorem 5.2 below) Suppose M � Grp.RpCq/ is an affine chart,
� �M is an R–proper convex open subset of M, and Aut.�/ acts cocompactly
on �. If An 2 Aff.M/\ PGLpCq.R/ and An� is a sequence of R–proper convex
sets converging in the local Hausdorff topology to an R–proper convex open set y�,
then there exists some ˆ 2 PGLpCq.R/ such that ˆ.�/D y�.
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Remark 1.9 An affine chart M�Grp.RpCq/ can be identified with the vector space
Mq;p.R/ of q �p real matrices in a way that is unique up to an affine automorphism
of Mq;p.R/ (see Section 3.3 for details). In particular, the group Aff.M/ of affine
transformations of M is well defined (see Definition 3.3).

To explain how the properties of the metric K� imply Theorem 1.8, let us sketch the
proof:

Proof sketch Suppose that An� ! y�. Fix a point x0 2 �. Since Aut.�/ acts
cocompactly on �, we can pass to a subsequence and find 'n 2 Aut.�/ such that
An'nx0 ! yx0 2 y�. Now consider the maps fn WD An'n . By parts (1) and (2) of
Theorem 1.7, each fn induces an isometry .�;K�/! .�n; K�n/. Then by part (3)
of Theorem 1.7, one can pass to a subsequence such that fn! f and f will be an
isometry .�;K�/! . y�;Ky�/. A simple argument then shows that f is actually the
restriction of a element in PGLpCq.R/.

Theorem 1.8 should also be compared to a theorem of Benzécri from real projective
geometry. Let Xd be the space of proper convex open sets in P .Rd / with the Hausdorff
topology. Then Xd is closed in the Hausdorff topology and PGLd .R/ acts on Xd .
With this notation Benzécri proved:

Theorem 1.10 [11] Suppose � is a proper convex open set in P .Rd /. If Aut.�/
acts cocompactly on �, then PGLd .R/ �� is a closed subset of Xd .

It is important to note that unlike in the real projective setting, when p; q >1, convexity
is not invariant under the action of PGLpCq.R/ on Grp.RpCq/: if � is a convex subset
of some affine chart M � Grp.RpCq/ and �.�/ �M for some � 2 PGLp.RpCq/,
then �.�/ may not be a convex subset of M. Thus, to preserve convexity we are
forced to consider the orbit of � under the group Aff.M/\PGLpCq.R/. We compute
this group and its action in Observation 3.4.

Step 2 (the automorphism group is nondiscrete) In the second step of the proof we
use the rescaling theorem (Theorem 1.8) from Step 1 to show that Aut.�/ is nondiscrete
when �� Grp.R2p/ is a convex divisible domain.

We can identify Mp;p.R/ with the affine chart��
Idp
X

�
WX 2Mp;p.R/

�
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of Grp.R2p/. Recall that the unit ball Bp;p �Mp;p.R/ (with respect to the Euclidean
operator norm) can be identified with the symmetric domain

PSO.p; p/=PS.O.p/�O.p//:

Note that Bp;p is a convex set and the extreme points of Bp;p are exactly the orthogonal
matrices. Given an orthogonal matrix A 2 @Bp;p , define the projective transformation

F.X/ WD

�
� Idp A�1

Idp A�1

�
�X D .A�1X C Idp/.A�1X � Idp/�1:

Then we see that

F.Bp;p/D fX 2Mp;p.R/ WX t CX > 0g

and F.A/D 0. Now F.Bp;p/ is a cone and in particular Aut.F.Bp;p// contains a one-
parameter group of homotheties. Translating this back to Bp;p shows that A 2 @Bp;p
is the attracting fixed point of a one-parameter group of automorphisms of Bp;p .

Using the rescaling theorem (Theorem 1.8) from Step 1 we will recover these one-
parameter groups for a general divisible domain. The key result is the following:

Theorem 1.11 (Theorem 7.4 below) Suppose M � Grp.R2p/ is an affine chart,
��M is an R–proper convex subset of M, and Aut.�/ acts cocompactly on �. If
e 2 @� is an extreme point, then the tangent cone of � at e is R–proper.

Now the tangent cone of � at e is precisely the limit of the rescaled domains

n.�� e/C e

in the local Hausdorff topology. In particular, combining Theorems 1.8 and 1.11 implies
the following:

Corollary 1.12 (Corollary 7.11 below) Suppose M� Grp.R2p/ is an affine chart,
� �M is an R–proper convex subset of M, and Aut.�/ acts cocompactly on �.
Then Aut.�/ is nondiscrete.

Remark 1.13 In the several complex variable setting, rescaling can also be used to
find one-parameter groups of automorphisms (see Frankel [22, Section 6] or Kim [35]).
However, in this setting one obtains these automorphisms by rescaling at a point in the
boundary with either C 1 or C 2 regularity. This procedure actually finds automorphisms
because a complex line has two real dimensions (see the proof of [23, Lemma 6.8]).
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In contrast we find a one-parameter group of automorphisms by rescaling at a point
where the tangent cone is R–proper and hence very far from being C 1 . Finally, we
should observe that the rescaling method cannot be used to find one-parameter groups
of automorphisms in the real projective setting.

Remark 1.14 If p ¤ q , an explicit computation for Bp;q shows that Theorem 1.11
fails in this setting. This is one of the main problems that prevent us from extending
our methods to the general case.

Step 3 (showing the automorphism group is simple and acts transitively) In the final
part of the proof we show that Aut0.�/, the connected component of the identity of
Aut.�/, is a simple Lie group which acts transitively on �.

Our approach for this step is based on work of Farb and Weinberger [21], who prove a
number of remarkable rigidity results for compact aspherical Riemannian manifolds
whose universal covers have nondiscrete isometry groups. In particular, we combine
their approach with the representation theory of Lie groups to establish: Whenever �
is a bounded and convex domain in an affine chart and � � Aut.�/ is discrete such
that �n� is compact, at least one of the following holds (see Theorem 8.2):

(1) A finite-index subgroup of � has nontrivial centralizer in PGL2p.R/,

(2) There exists a nontrivial abelian normal unipotent group U � Aut.�/ such that
� \U is a cocompact lattice in U,

(3) p D 2 and there exists a finite-index subgroup G0 of Aut.�/ such that G0 D
Aut0.�/�ƒ for some discrete group ƒ. Further, up to conjugation,

Aut0.�/D
��
A 0

0 A

�
W A 2 SL2.R/

�
and

ƒ�

��
a Id2 b Id2
c Id2 d Id2

�
W ad � bc D 1

�
:

(4) p D 2, Aut0.�/� Aut.�/ has finite index and acts transitively on �, and, up
to conjugation,

Aut0.�/D
��
aA bA

cA dA

�
W A 2 SL2.R/; ad � bc D 1

�
:

(5) Aut0.�/ is a simple Lie group with trivial center that acts transitively on �.
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In Sections 9, 10 and 11, we use the dynamics of the action of PGL2p.R/ on Grp.R2p/
to show that the first four cases are impossible. Finally, in Section 12 we use the
classification of simple Lie groups and the representation theory of simple Lie groups
to complete the proof of Theorem 1.3.
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2 Preliminaries

2.1 Notation

Given some object o we will let Œo� be the projective equivalence class of o, for instance:
if v 2 RdC1 n f0g let Œv� denote the image of v in P .RdC1/; if � 2 GLdC1.R/ let
Œ�� denote the image of � in PGLdC1.R/; if T 2 Hom.Rd1C1;Rd2C1/ n f0g let ŒT �
denote the image of T in P .Hom.Rd1C1;Rd2C1//.

2.2 The Hilbert metric

The Hilbert metric is classically only defined for convex domains in real projective
space, but Kobayashi [37] gave a construction that works for any open connected
domain in real projective space. In this subsection we recall Kobayashi’s construction.

Given four points a; x; y; b 2 P .Rd / that are collinear, that is contained in a projective
line, one can define the cross-ratio by

ŒaI xIyI b�D log
jx� bjjy � aj

jx� ajjy � bj
:

The cross-ratio is PGLd .R/–invariant in the sense that

ŒaI xIyI b�D Œ'aI'xI'yI'b�

for any ' 2 PGLd .R/.

Next consider the interval

I WD fŒ1 W t � 2 P .R2/ W jt j< 1g
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Rigidity of convex divisible domains in flag manifolds 181

and the function HI W I � I !R�0 given by

HI .s; t/D jlogŒ�1I sI t I 1�j:

Then HI is a complete Aut.I /–invariant length metric on I.

Now suppose that �� P .Rd / is an open connected set. Let

Proj.I;�/� P .End.R2;Rd //

be the set of projective maps T such that I \ kerT D∅ and T .I /��. Then define
a function ��W ���!R[f1g as follows:

��.x; y/ WD inffHI .s; t/ W there exists f 2 Proj.I;�/ with f .s/D x and f .t/D yg:

Finally, using �� , one defines the pseudometric K� as

K�.x; y/D inf
�N�1X
iD0

��.xi ; xiC1/ WN > 0; x0; : : : ; xN 2�; x0 D x; xN D y

�
:

Note that if x; y 2� are such that the projective line through x and y has unbounded
intersection with �, then K�.x; y/D 0. Kobayashi proved the following:

Theorem 2.1 [37] Suppose �� P .Rd / is an open connected set. Then:

(1) K� is an Aut.�/–invariant pseudometric on �, ie K� is finite, symmetric and
satisfies the triangle inequality.

(2) If � is bounded in an affine chart, then K� is a metric.

(3) If � is convex and bounded in some affine chart, then K� coincides with the
Hilbert metric.

(4) K� is a complete metric if and only if � is convex and bounded in some affine
chart.

3 The Grassmannians

In this expository section we recall the two standard models of the Grassmannians,
define affine charts and describe the projective lines contained in the Grassmannians.
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182 Wouter Van Limbeek and Andrew Zimmer

3.1 The matrix model

We can identify Grp.RpCq/ with the quotient

fX 2MpCq;p.R/ W rankX D pg=GLp.R/;

where GLp.R/ acts on MpCq;p.R/ by multiplication on the right and the identifica-
tion with Grp.RpCq/ is given by X 7! Im.X/. Note that in this model the action
of PGLpCq.R/ on Grp.R/ is given by the action by multiplication on the left on
MpCq;p.R/.

3.2 The projective model

We have a natural embedding Grp.RpCq/! P
�VpRpCq

�
defined by

Span.v1; : : : ; vp/! Œv1 ^ � � � ^ vp�:

Remark 3.1 The image of Grp.RpCq/ is a closed smooth algebraic subvariety of
dimension pq in P .ƒpRpCq/, which has dimension

�
pCq
p

�
� 1. Nevertheless, if

O � Grp.RpCq/ is open, then the cone over the image of O in P
�Vp RpCq

�
spansVp RpCq .

Remark 3.2 The following characterization of the image will also be useful: for
x 2

Vp RpCq , we have that Œx� belongs to Grp.RpCq/ if and only if the linear map
Tx W RpCq!

VpC1RpCq given by Tx.v/D v^ x has rank q .

It is also straightforward to describe the action of PGLpCq.R/ on Grp.RpCq/: any
element g2PGLpCq.R/ induces a natural projective linear map

Vp
g of P

�Vp RpCq
�

defined by Vp
gŒv1 ^ � � � ^ vp� WD Œgv1 ^ � � � ^gvp�:

The image of Grp.RpCq/ in P
�Vp RpCq

�
is invariant under the action of PGLpCq.R/.

3.3 Affine charts

Suppose W0 is a q–dimensional subspace of RpCq . Then consider the set

M WD fU 2 Grp.RpCq/ W U \W0 D .0/g:

Note that M is an open dense subset of Grp.RpCq/. We call M an affine chart.
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If we fix a subspace U0 2M, we can identify M with the set Hom.U0; W0/ via

Hom.U0; W0/!M; T 7! Graph.T / WD f.IdCT /u W u 2 U0g:

Fixing bases of U0 and W0 gives an identification of M with the space of q �p real
matrices. Notice that a different choice of bases or of U0 only changes this identification
by a map of the form

(3-1) X 7! AXBCC;

where A 2 GLq.R/, B 2 GLp.R/ and C is a q �p matrix. This observation leads to
the next definition:

Definition 3.3 For an affine chart M�Grp.RpCq/ let Aff.M/ be the transformations
of M that are affine maps with respect to some (and hence any) identification of M

with the space of q �p real matrices.

We end this subsection with some basic facts about affine charts.

Observation 3.4 For an affine chart M� Grp.RpCq/, the group

Aff.M/\PGLpCq.R/

coincides with the stabilizer of M in PGLpCq.R/.

Proof It is straightforward to see that

Aff.M/\PGLpCq.R/D
��
A 0

C D

�
W A 2 GLp.R/; C 2Mq;p.R/; D 2 GLq.R/

�
and that Aff.M/\PGLpCq.R/ stabilizes M. So suppose that g.M/DM and

g D

�
A B

C D

�
for some A 2 GLp.R/, B 2 Mp;q.R/, C 2 Mq;p.R/ and D 2 GLq.R/. Then
det.ACBX/ ¤ 0 for every X 2Mq;p.R/, which is only possible if B D 0. Thus,
g 2 Aff.M/\PGLpCq.R/.

If M is an affine chart then there exists g 2 PGLpCq.R/ such that

gMD

��
Idp
X

�
WX 2Mq;p.R/

�
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in the matrix model. Moreover, if e1; : : : ; epCq is the standard basis of RpCq then

(3-2) gMD fŒ.e1C v1/^ � � � ^ .epC vp/� W v1; : : : ; vp 2 SpanfepC1; : : : ; epCqgg

in the projective model.

3.4 Projective lines in the two models

The description of an affine chart of Grp.RpCq/ as a subset of P
�Vp RpCq

�
, given

by equation (3-2), shows that a generic line in M is not contained in a projective line
in P

�Vp RpCq
�
. However, there is a natural set of lines in M which are. In this

subsection we characterize these lines.

Lemma 3.5 If ` is a projective line in P
�Vp RpCq

�
contained in Grp.RpCq/, then

there exist v1; : : : ; vp; w 2RpCq such that

`D fŒv1 ^ � � � ^ vp�1 ^ .vpC tw/� W t 2Rg[ fŒv1 ^ � � � ^ vp�1 ^w�g:

Proof Recall that for x 2
Vp RpCq , we have that Œx� belongs to Grp.RpCq/ if and

only if the linear map Tx W RpCq!
VpC1RpCq given by Tx.v/D v^ x has rank q .

Now since ` is a projective line there exist w1; : : : ; wp; v1; : : : ; vp 2RpCq such that

`D fŒ.v1 ^ � � � ^ vp/C t .w1 ^ � � � ^wp/� W t 2Rg[ fŒw1 ^ � � � ^wp�g:

Let
V D Spanfv1; : : : ; vpg\Spanfw1; : : : ; wpg

and r D dimV . We claim that r D p� 1.

We can assume that vi D wi for 1� i � r and thus v1; : : : ; vp; wrC1; : : : ; wp are all
linearly independent. So, if

xt D .v1 ^ � � � ^ vp/C t .w1 ^ � � � ^wp/

and v^ xt D 0 then either v 2 V or

v^ v1 ^ � � � ^ vp D�t .v^w1 ^ � � � ^wp/¤ 0:

This last case is only possible when rDp�1 and vDvp�twp . Since dim kerTxt Dp
and dimV D r � p� 1, this implies that r D p� 1. Then

Œ.v1 ^ � � � ^ vp/C t .w1 ^ � � � ^wp/�D Œv1 ^ � � � ^ vp�1 ^ .vpC twp/�

for all t 2R, which implies the lemma.
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Corollary 3.6 Suppose x; y 2 Grp.RpCq/. Then the following are equivalent:

(1) There exists a projective line ` in P
�Vp RpCq

�
contained in Grp.RpCq/ such

that x; y 2 `.

(2) dim.x\y/� p� 1.

Lemma 3.7 Suppose M is an affine chart in Grp.RpCq/ and we identify M with the
set of q �p matrices. Then:

(1) If ` is a projective line in P
�VpRpCq

�
contained in Grp.RpCq/ and `\M¤∅

then
`\MD fX C tS W t 2Rg

for some X;S 2M with rank.S/D 1.

(2) Conversely, if X;S 2M and rank.S/D 1 then the closure of

fX C tS W t 2Rg

in P
�Vp RpCq

�
is a projective line contained in Grp.RpCq/.

Proof First suppose that ` is a projective line contained in Grp.RpCq/ and `\M¤∅.
There exists some W0 2 Grq.RpCq/ such that MD fU 2 Grp.V / W U \W0 D .0/g.
By Lemma 3.5 we can assume

`D fŒv1 ^ � � � ^ vp�1 ^ .vpC tw/� W t 2Rg[ fŒv1 ^ � � � ^ vp�1 ^w�g:

for some w; v1; : : : ; vp 2 RpCq . By modifying these vectors we can assume that
Œv1 ^ � � � ^ vp� 2 M and w 2 W0 (in particular Œw ^ v2 ^ � � � ^ vp� … M). Let
U0 D Spanfv1; : : : ; vpg and identify M with Hom.U0; W0/. Under this identification,
Œv1 ^ � � � ^ vp�1 ^ .vpC tw/� corresponds to the homomorphism tS, where S is the
linear map

S

� pX
iD1

˛ivi

�
D ˛1w:

Then `\MD ftS W t 2Rg. Then the first part of the lemma follows from the change
of coordinates formula (3-1).

Next suppose that X;S 2M and rank.S/D 1. There exists a basis v1; : : : ; vp 2Rp

such that v1; : : : ; vp�1 2 kerS and Svp¤ 0. Then XCtS corresponds to the subspace

Spanfv1CX.v1/; : : : ; vp�1CX.vp�1/; vpCX.vp/C tS.vp/g
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and hence in the projective model the line

Œ.v1CX.v1//^ � � � ^ .vp�1CX.vp�1//^ .vpCX.vp/C tS.vp//�:

So the closure of fX C tS W t 2Rg in P
�Vp RpCq

�
is a projective line.

Since the lines in M that arise from projective lines in P
�VpRpCq

�
will play an

important role, it is convenient to make the following definition:

Definition 3.8 A rank-one line is a line ` in Grp.RpCq/ of the form of Lemma 3.7,
ie such that the image of ` in P

�Vp RpCq
�

is a line.

3.5 A trivial example

In this subsection we observe that an entire affine chart is an example of a convex
divisible domain. Using the matrix model of Grp.RpCq/ let

�D

��
Idp
X

�
WX 2Mq;p.R/

�
:

Then

� D

��
Idp 0

Y Idq

�
W Y 2Mq;p.Z/

�
� Aut.�/

is a discrete group which acts freely, properly discontinuously and cocompactly on �.
Notice that the quotient �n� can be identified with the torus of dimension pq .

Part I An invariant metric

4 The metric

The purpose of this section is to extend Kobayashi’s definition of the Hilbert metric to
domains in Grp.RpCq/.

Suppose that � � Grp.RpCq/ is open and connected. Recall from Section 2.2 that
I � P .R2/ is the open interval

I WD fŒ1 W t � 2 P .R2/ W jt j< 1g

and HI is the Hilbert metric on I. Using the projective model of the Grassmannians,
view � as a subset of P

�Vp RpCq
�

and let

Proj.I;�/� P
�
End

�
R2;

Vp RpCq
��
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be the set of projective maps such that I \ kerT D∅ and T .I /��. Then define a
function ��W ���!R[f1g as follows:

��.x; y/ WD inffHI .s; t/ W there exists f 2 Proj.I;�/ with f .s/D x and f .t/D yg:

We then define

K
.n/
� .x; y/ WD inf

�n�1X
iD0

��.xi ; xiC1/ W x D x0; x1; : : : ; xn�1; xn D y 2�

�
:

In particular K.n/� .x; y/ is finite precisely when there is a path in � from x to y
consisting of at most n segments of projective lines. Further, we evidently have
K
.nC1/
� �K

.n/
� for any n, so we set

K�.x; y/ WD lim
n!1

K
.n/
� .x; y/:

Note that at the moment it is not clear that K� is finite, but we will prove this in
Proposition 4.2(4).

Remark 4.1 For x; y 2� it is possible to explicitly compute ��.x; y/:

(1) If dim.x\y/ < p� 1 then ��.x; y/D1.

(2) If dim.x \ y/ � p � 1, let ` be the projective line in Grp.RpCq/ contain-
ing x and y . If x and y are in different connected components of ` \�,
then ��.x; y/D1. Finally, if x and y are contained in the same connected
component O of `\�, then

��.x; y/D jlogŒaI xIyI b�j;

where a and b are the endpoints of O .

Proposition 4.2 If �� Grp.RpCq/ is an open connected set then:

(1) If ' 2 PGLpCq.R/ then K�.x; y/DK'�.'x; 'y/ for all x; y 2�.

(2) K�.x; y/�K�.x; z/CK�.z; y/ for any x; y; z 2�.

(3) If �1 ��2 then K�2.x; y/�K�1.x; y/ for all x; y 2�1 .

(4) For any compact set K �� there exists N > 0 such that K.N/� .x; y/ <1 for
every x; y 2K ,

(5) K� is continuous.
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Proof Parts (1)–(3) follow from the definition of K� and the invariance of the cross-
ratio.

To establish part (4) it is enough to show the following: for any x 2� there exist an
open neighborhood U of x and a number nD n.x/ such that K.n/� .z; y/ <1 for any
z; y 2 U. Suppose that x D Œv1 ^ v2 ^ � � � ^ vp�. Then there exists � > 0 such that

U WD fŒw1 ^w2 ^ � � � ^wp� W kvi �wik< � for 1� i � pg ��:

But then clearly K.p�1/� .z; y/ <1 for any z; y 2 U.

To establish part (5), first observe that

jK�.x0; y0/�K�.x; y/j �K�.x0; x/CK�.y; y0/;

so it is enough to show that the map x 7! K�.x0; x/ is continuous at x0 . But if
x0 D Œv1 ^ v2 ^ � � � ^ vp� then there exists � > 0 such that

U WD fŒw1 ^w2 ^ � � � ^wp� W kvi �wik< � for 1� i � pg ��:

But then for Œw1 ^ � � � ^wp� 2 U we have

K�.x0; Œw1^w2^� � �^wp�/�KU .x0; Œw1^w2^� � �^wp�/�

pX
iD2

log
�Ckvi �wik

��kvi �wik

and so
lim
x!x0

K�.x0; x/D 0:

The above proposition shows that K� is an Aut.�/–invariant pseudometric. We will
next show that K� is a complete metric for certain convex subsets.

Definition 4.3 (1) Let L be the space of rank-one lines in Grp.RpCq/, that is, the
space of projective lines in P

�Vp RpCq
�

which are contained in Grp.RpCq/.

(2) An open connected set �� Grp.RpCq/ is called R–proper if

j` n `\�j> 1

for all ` 2 L.

Remark 4.4 The definition of R–properness should be compared to properness of
a convex domain U � P .RpC1/, which can be characterized by the property that
j` n `\U j> 1 for every projective line `. Since in projective geometry every line has
rank one, R–properness is thus a generalization of properness in projective space.
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Example 4.5 If M�Grp.RpCq/ is an affine chart and � is a bounded subset of M,
then � is an R–proper subset of Grp.RpCq/ (see Lemma 3.7 above).

Theorem 4.6 Suppose M � Grp.RpCq/ is an affine chart and � �M is an open
convex set. Then the following are equivalent:

(1) � is R–proper.

(2) K� is a complete length metric on �.

(3) K� is a metric on �.

Remark 4.7 The above theorem should be compared to two well-known results in
real projective geometry and several complex variables:

(1) For an open convex set ��RdC1 the Hilbert metric is complete if and only if
� does not contain any real affine lines.

(2) For an open convex set ��CdC1 the Kobayashi metric is complete if and only
if � does not contain any complex affine lines (see Barth [4]).

Proof Clearly (2) implies (3). Moreover, if there exists a projective line ` 2 L such
that

j` n `\�j � 1

then ��.x; y/ D 0 for all x; y 2 ` \�. Thus, if � is not R–proper then K� is
not a metric. Thus, (3) implies (1). The proof that (1) implies (2) can be found in
Appendix A.

The existence of an invariant metric implies that the action of Aut.�/ on � is proper:

Proposition 4.8 Suppose M� Grp.RpCq/ is an affine chart and ��M is an open
convex set. If � is R–proper, then

(1) Aut.�/ is a closed subgroup of PGLpCq.R/,

(2) Aut.�/ is a closed subgroup of Isom.�;K�/, and

(3) Aut.�/ acts properly on �.

Proof We first observe that Aut.�/ is closed in PGLpCq.R/. Suppose that 'n 2
Aut.�/ and 'n ! ' in PGLpCq.R/. Then '.�/ � �. Since � is convex in an
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affine chart, int.�/D�. Then, since ' induces a homeomorphism Grp.RpCq/!
Grp.RpCq/, we must have

'.�/� int.�/D�:

But the same argument implies that '�1.�/��. So '.�/D� and ' 2 Aut.�/.

We next show that the action of Aut.�/ on � is proper. Suppose that 'n 2 Aut.�/ is
a sequence of automorphisms such that

'nx0 2 fy 2� WK�.x0; y/�Rg

for some x0 2� and R � 0. We need to show that a subsequence of 'n converges in
PGLpCq.R/.

Since Aut.�/ acts by isometries on the metric space .�;K�/, by the Arzelà–Ascoli
theorem there exist an isometry f W .�;K�/! .�;K�/ and a subsequence nk!1
such that

f .x/D lim
k!1

'nk .x/

for all x 2�. Since f is an isometry, it is injective.

Now let Tk 2 GL
�Vp RpCq

�
be representatives of

Vp
'nk 2 PGL

�Vp RpCq
�
. We

normalize Tk such that kTkk D 1, where k � k denotes the operator norm. By passing
to another subsequence we can suppose that Tk! T 2End

�Vp RpCq
�

with kT kD 1.
Now for x 2� n kerT we have

T .x/D lim
k!1

'nk .x/D f .x/

and so T is injective on � n kerT . This implies that T 2 GL
�Vp RpCq

�
; see

Remark 3.1. Hence, 'nk ! ' in PGLpCq.R/ for some ' with
Vp

' D ŒT �. So
Aut.�/ acts properly.

Notice that the above argument to prove that T D f also implies that Aut.�/ is a
closed subgroup of Isom.�;K�/.

5 Limits in the local Hausdorff topology and rescaling

Given a set A�Rd , let N �.A/ denote the �–neighborhood of A with respect to the
Euclidean distance. The Hausdorff distance between two bounded sets A and B is
given by

dH .A;B/D inff� > 0 W A�N �.B/ and B �N �.A/g:
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Equivalently,

dH .A;B/Dmax
˚

sup
a2A

inf
b2B

ka� bk; sup
b2B

inf
a2A

ka� bk
	
:

The Hausdorff distance is a complete metric on the space of compact sets in Rd .

The space of closed sets in Rd can be given a topology from the local Hausdorff
seminorms. For R > 0 and a set A � Rd let A.R/ WD A\BR.0/. Then define the
local Hausdorff seminorms by

d
.R/
H .A;B/ WD dH .A

.R/; B.R//:

Finally, we say that a sequence of open convex sets An converges in the local Hausdorff
topology to an open convex set A if there exists some R0�0 such that d .R/H . xAn; xA/!0

for all R �R0 .

Theorem 5.1 Let M be an affine chart of Grp.RpCq/ and suppose �n �M is a
sequence of R–proper convex open sets converging to an R–proper convex open set
��M in the local Hausdorff topology. Then

K�.x; y/D lim
n!1

K�n.x; y/

for all x; y 2� uniformly on compact sets of ���.

We provide the proof of Theorem 5.1 in Appendix B.

Theorem 5.2 Let M be an affine chart of Grp.RpCq/ and suppose ��M is an R–
proper open convex subset. Assume in addition that there exist a subgroup H �Aut.�/
and a compact set K �� such that H �K D�.

If there exists a sequence An 2 Aff.M/\ PGLpCq.R/ such that An� converges in
the local Hausdorff topology to an R–proper open convex set y��M, then there exist
nk!1 and hk 2H such that

� D lim
k!1

Ankhk

exists in PGLpCq.R/ and y�D �.�/.

Proof Fix y0 2 y�. Then we have y0 2 An� for n sufficiently large. Pick hn 2H
and kn 2K such that y0 D An'nkn . Let Tn WD An'n 2 PGLpCq.R/. Then

�n WD Tn.�/D An.�/
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is an R–proper open convex subset and Tn is an isometry .�;K�/! .�n; K�n/.
By Theorem 5.1,

K�n !Ky�

uniformly on compact sets on y�, so we can pass to a subsequence such that Tn
converges uniformly on compact sets to an isometry T W .�;K�/! . y�;Ky�/. Since
T is an isometry, it is injective. On the other hand, since the metrics converge and
closed metric balls are compact, we also see that T is onto.

Now we can pick a representative ˆn 2 GL
�Vp RpCq

�
of
Vp

Tn 2 PGL
�Vp RpCq

�
such that kˆnk D 1. By passing to a subsequence we can assume that ˆn ! ˆ

in End
�Vp RpCq

�
. The set

Vp End.RpCq/ � End
�Vp RpCq

�
is closed and so

ˆ D
Vp

� for some � 2 End.RpCq/. Moreover, ˆ.x/ D T .x/ for any x … kerˆ.
Since Grp.RpCq/ n kerˆ is an open dense set and � is open, this implies that ˆ
is injective on Grp.RpCq/ n kerˆ. It follows that ˆ 2 GL

�Vp RpCq
�

and hence
� 2 GLpCq.R/. Finally, we have that � D T on �, so that y�D �.�/.

6 The geometry near the boundary

For the classical Hilbert metric on a convex divisible domain in real projective space,
there are many connections between the shape of the boundary and the behavior of
the metric (see eg [8; 7; 34]). In a similar spirit, we will prove some basic results
connecting the geometry of K� with the geometry of @�.

As before, let L be the set of projective lines `� P
�VpRpCq

�
which are contained

in Grp.RpCq/.

Definition 6.1 Suppose �� Grp.RpCq/ is an open connected set.

(1) Two points x; y 2 @� are adjacent, denoted by x � y , if either x D y or there
exists a projective line ` 2 L such that x and y are contained in a connected
component of the interior of `\ @� in `.

(2) The R–face of x 2 @�, denoted by RF.x/, is the set of points y 2 @� where
there exists a sequence x D y0; y1; : : : ; yk D y with yi � yiC1 .

(3) A point x 2 @� is called an R–extreme point if RF.x/D fxg.

(4) Let ExtR.�/� @� denote the set of R–extreme points of �.

As the next two results show, this relation on the boundary is connected with the
asymptotic geometry of the intrinsic metric.
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Proposition 6.2 Suppose M � Grp.RpCq/ is an affine chart and � �M is an R–
proper open convex set. If xn; yn 2 � are sequences such that xn ! x 2 @� and
yn! y 2 @�, and there exists N � 0 such that

lim inf
n!1

K
.N/
� .xn; yn/ <1;

then RF.x/DRF.y/.

Proof For each n, choose a sequence xn D x
.0/
n ; x

.1/
n ; : : : ; x

.N/
n D yn with

lim inf
n!1

X
0�i�N�1

��.x
.i/
n ; x

.iC1/
n / <1:

By passing to subsequences, we can assume that x.i/n ! x.i/ for each 1� i �N � 1.
By inducting on N, it therefore suffices to consider the case N D 1 and y D x.1/ , so
that

lim
n!1

K
.1/
� .xn; yn/D lim

n!1
��.xn; yn/ <1

and x ¤ y . For each n let `n be the projective line in P
�Vp RpCq

�
containing xn

and yn . Also let fan; bng D `n\@� with labeling such that the ordering of the points
along `n is given by an , xn , yn , bn . Then

��.xn; yn/D log
jxn� bnjjyn� anj

jxn� anjjyn� bnj
:

By passing to a subsequence we can suppose that an! a and bn! b . Then, by the
hypothesis we must have that a¤ x and b ¤ y . So x � y .

Corollary 6.3 Suppose M� Grp.RpCq/ is an affine chart, ��M is an R–proper
open convex set, and Aut.�/ acts cocompactly on �. If xn; yn 2 � are sequences
such that xn! x 2 @�, yn! y 2 @� and

lim inf
n!1

K�.xn; yn/ <1;

then RF.x/DRF.y/.

Proof By passing to a subsequence we can suppose that

M D sup
n2N

K�.xn; yn/ <1:

For R� 0 and x 2�, let BR.x/ denote the ball of radius R and center x with respect
to the metric K� . Since Aut.�/ acts cocompactly on � there exists R � 0 such that

Aut.�/ �BR.x0/D�:
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Let B WD BRCM .x0/ be the ball with center x0 and radius RCM. By compactness
of B and Proposition 4.2, we know there exists N > 0 such that

sup
x;y2B

K
.N/
� .x; y/ <1

for all x; y 2 B . But this implies that

sup
n2N

K
.N/
� .xn; yn/ <1

because for any n 2N there exists some ' 2 Aut.�/ such that 'xn; 'yn 2 B .

Part II The automorphism group is nondiscrete

7 Extreme points and symmetry

7.1 The geometry of extreme points

In this subsection we provide a number of characterizations of R–extreme points for
domains �� Grp.R2p/ where Aut.�/ acts cocompactly. But first a few definitions.

Suppose � is a convex set in a vector space and x 2 @�, then the tangent cone of �
at x is the set

T Cx� WD xC
[
t>0

t .�� x/:

Notice that the sets xC t .�� x/ converge to T Cx� in the local Hausdorff topology
as t !1.

We will also define natural hypersurfaces in Grp.RpCq/.

Definition 7.1 Given � 2 Grq.RpCq/ define the hypersurface

Z� WD fx 2 Grp.RpCq/ W x\ � ¤ .0/g:

Remark 7.2 If p D 1, then Z� � P .RqC1/ D Gr1.RqC1/ is the image of � in
P .RqC1/. In particular, if a set �� P .Rd / is convex and bounded in an affine chart
then for any x 2 @� there exists � 2 Grd�1.Rd / such that x 2Z� and Z� \�D∅.

In [48], the second author proved that symmetry also implies the existence of such
“supporting hypersurfaces”:
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Theorem 7.3 [48, Theorem 1.12] If �� Grp.RpCq/ is a bounded connected open
subset of some affine chart and Aut.�/ acts cocompactly on �, then for all x 2 @�
there exists � 2 Grq.RpCq/ such that x 2Z� and Z� \�D∅.

Henceforth we will only consider the case p D q . With this notation we will prove the
following:

Theorem 7.4 Suppose p > 1 and M� Grp.R2p/ is an affine chart, � is a bounded
open convex subset of M, and Aut.�/ acts cocompactly on �. If e 2 @�, then the
following are equivalent:

(1) e 2 @� is an R–extreme point.

(2) Ze \�D∅.

(3) T Ce� is an R–proper cone.

(4) There exist 'n 2 Aut.�/ and representatives y'n 2 GL
�Vp R2p

�
such that

y'n! S in End
�Vp R2p

�
and Im.S/D e .

Remark 7.5 (1) The implication (1)D)(3) fails for the symmetric domains Bp;q �
Grp.RpCq/ when p ¤ q ; see Remark 1.14.

(2) The implication (4)D)(1) fails for convex divisible domains in real projective
space. In particular, by a result of Benoist [9], if � � P .R4/ is a convex
divisible domain and x 2 @�, then there exist 'n 2 Aut.�/ and representatives
y'n 2 GL4.R/ such that y'n! S in End.R4/ and Im.S/D x . However, there
are examples of convex divisible domains in P .R4/ whose boundary contains
nonextreme points (see [9; 2; 17]).

Proof We first show that (1)D)(4). Suppose that e 2 @� is an R–extreme point.
Pick a sequence xn 2� such that xn! e . Since Aut.�/ acts cocompactly on �, we
can find R � 0 and 'n 2 Aut.�/ such that

K�.xn; 'nx0/�R

for all n� 0. Now for any x 2� we have

K�.'nx; xn/�K�.'nx; 'nx0/CRDK�.x; x0/CR

and so by Corollary 6.3 we see that 'nx! e . Pick representatives y'n 2GL
�Vp R2p

�
of
Vp

'n such that ky'nkD1. By passing to a subsequence we can suppose that y'n!S
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in End
�Vp R2p

�
. Now if x2O WDGrp.R2p/nkerS then S.x/D limn!1 'nx . Since

O is open and dense, we see that �\O is dense in �. In particular, �\O contains
a basis of

VpR2p . However, for every x 2�\O we have S.x/D e . So Im.S/D e .
So (1)D)(4).

We next show that (4)D)(2). So suppose there exist 'n 2 Aut.�/ and representatives
y'n 2GL

�VpR2p
�

such that y'n! S in End
�VpR2p

�
and Im.S/D e . Notice that if

x 2O WD Grp.R2p/ n kerS then S.x/D limn!1 'n.x/. Now, similar to the case of
properly convex sets in projective space, we can consider the dual of �,

�� WD f� 2 Grp.R2p/ WZ� \�D∅g:

Note that, unlike the case of domains in projective space, � and �� are both subsets
of Grp.R2p/. Since � is open, �� is compact. Moreover, since � is bounded in an
affine chart, �� has nonempty interior: MD Grp.R2p/ nZ� for some � and since �
is bounded in M we see that �� contains an open neighborhood of � . In particular,
��\O is nonempty. But then for � 2��\O we have e D S.�/D limn!1 'n.�/.
Since �� is Aut.�/–invariant, we then see that e 2�� . So (4)D)(2).

We next show that (2)D)(3). So suppose that e 2 @� and Ze \� D ∅. We can
assume that

��M WD

��
Idp
X

�
WX 2Mp;p.R/

�
and e D 0 in M. Then since Ze \�D∅ we see that

��

��
Idp
X

�
W det.X/¤ 0

�
:

Since � is connected, by making an affine transformation, we may assume that

��

��
Idp
X

�
W det.X/ > 0

�
:

Then, since T C0� is open, we see that

T C0��
��

Idp
X

�
W det.X/ > 0

�
:

Now suppose for a contradiction that T C0� is not R–proper. Then by Lemma 3.7 and
convexity there exists a rank-one endomorphism S such that��

Idp
T C tS

�
W t 2R

�
� T C0�
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whenever
�
Idp T

�t
2 T C0�. So

det.T C tS/ > 0

for any
�
Idp T

�t
2 T C0� and t 2R. Now

det.T C tS/D det.T / det.IdpCtT �1S/D det.T /.1C t tr.T �1S//

since T �1S has rank one. But since T C0� is open there exists some ŒIdp T0�
t 2T C0�

such that trT �10 S is nonzero. But then

det.T0C tS/D 0

when t D�.trT �10 S/�1 . So we have a contradiction, and so (2)D)(3).

Finally, we show that (3)D)(1) by contraposition. If e 2 @� is not an R–extreme point
then T Ce� contains an entire rank-one line. Since T Ce� is convex and open this
implies that T Ce� contains an entire rank-one line and so T Ce� is not R–proper.

Corollary 7.6 Suppose p > 1 and M�Grp.R2p/ is an affine chart, � is a bounded
open convex subset of M, and Aut.�/ acts cocompactly on �. Then ExtR.�/� @�
is closed.

Remark 7.7 This corollary fails for convex divisible domains in real projective space
by the same argument as Remark 7.5(2).

Proof By the above proposition, the set of extreme points coincides with

fe 2 @� WZe \�D∅g;

which is obviously closed.

7.2 Constructing extreme points

Proposition 7.8 Suppose M� Grp.RpCq/ is an affine chart and ��M is an open
bounded convex set. Then ExtR.�/ spans

Vp RpCq .

Proof Identify M with Mq;p.R/. For x 2 @� let

Vx D xCSpanfv 2Mq;p.R/ W vC x is adjacent to xg �Mq;p.R/:
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See Definition 6.1 for the notion of adjacency. Notice that x 2 @� is an R–extreme
point if and only if dimVx D 0.

Now, since rank-one lines in Mq;p.R/ are mapped to projective lines in P
�Vp RpCq

�
,

we have the following: if v is a rank-one matrix, t < 0< s , and a; b; c 2P
�Vp RpCq

�
are the images of xCtv; x; xCsv 2Mq;p.R/, respectively, then the line b is contained
in the span of the lines a and c . Thus, it is enough to show: for any x 2 @� with
dimVx > 0 there exist a rank-one matrix v 2 Mq;p.R/ and t < 0 < s such that
xC tv; xC sv 2 @� and

(7-1) dimVxCtv; VxCsv < dimVx :

Let Fx D @�\Vx . This is a convex set which has nonempty interior in Vx .

We claim that Vy � Vx for y 2Fx . Suppose that vCy 2 Vy , that is, v 2Mq;p.R/ and
vCy is adjacent to y . Then there exists � >0 such that tvCy 2 @� for t 2 .��; 1C�/.
Moreover, since y 2 @�\ Vx there exists ı > 0 such that �xC .1� �/y 2 @� for
� 2 Œ0; 1C ı�. Then, by convexity, there exists �1 > 0 such that x C tv 2 @� for
t 2 .��1; �1/. Thus, xC v 2 Vx . Since y 2 Vx , we then see that

xC vC .y � x/D xCy 2 Vx :

Since vCy 2 Vy was arbitrary, we then see that Vy � Vx .

Notice that the above claim implies that if y 2 @Fx , then dimVy < dimVx .

So, for x 2 @� and dimVx > 0, pick a rank-one matrix v such that xCRv � Vx .
Then, if

fxC sv; xC tvg D @Fx \ .xCRv/;

we have
dimVxCtv; VxCsv < dimVx;

which establishes equation (7-1) and thereby completes the proof.

Suppose ' 2 PGLd .R/. Let x' 2 GLd .R/ be a representative of ' with det.x'/D˙1.
Next let

�1.'/� �2.'/� � � � � �d .'/

be the absolute values of the eigenvalues (counted with multiplicity) of x' (notice
that this does not depend on the choice of x' ). Let mC.'/ be the size of the largest
Jordan block of x' whose corresponding eigenvalue has absolute value �1.'/. Next let
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ECC .'/�Cd be the span of the eigenvectors of x' whose eigenvalue have absolute value
�1.'/ and are part of a Jordan block with size mC.'/. Then let EC.'/DECC .'/\Rd .
Since ' is a real matrix, the nonreal eigenvalues come in conjugate pairs and so we
always have

ECC .'/DE
C.'/C iEC.'/:

Also define E�.'/DEC.'�1/.

Given y 2 P .Rd / let L.'; y/ � P .Rd / denote the limit points of the sequence
f'nygn2N . With this notation we have the following observation:

Proposition 7.9 Suppose ' 2 PGLd .R/ and f'ngn2N � PGLd .R/ is unbounded,
then there exists a proper projective subspace P ¨ P .Rd / such that L.'; y/� ŒEC.'/�
for all y 2 P .Rd / nP.

Proof We can write x' D gJg�1 , where g 2 GLd .C/ and J is a Jordan matrix. We
can further assume that

J D

�
J1 0

0 J2

�
;

where J1 consists of the blocks of J whose eigenvalues have absolute value �1.'/
and have size mC.'/. Then let

V DRd \

�
g ker

�
J1 0

0 0

��
and P D ŒV � � P .Rd /. A straightforward calculation then shows that L.'; y/ �
ŒEC.'/� for all y 2 P .Rd / nP.

Corollary 7.10 Suppose � is an open connected set of Grp.R2p/, there exists an
affine chart which contains � as a bounded convex set, and Aut.�/ acts cocompactly
on �. If ' 2Aut.�/ and f'ngn2N �PGL2p.R/ is unbounded, then EC

�Vp
'
�
\@�

is nonempty and contains an R–extreme point.

Proof Let P � P
�Vp R2p

�
be as in the above proposition for

Vp
' . Since the set

of R–extreme points of @� spans
Vp R2p , there exists an R–extreme point e 2 @�

such that e … P. Then any limit point of 'ne belongs to EC
�Vp

'
�

and is also an
R–extreme point by Corollary 7.6.
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7.3 Finding symmetry

Our goal is now to use Theorems 5.2 and 7.4 to show that for suitable domains �, the
group Aut.�/ is not discrete.

Corollary 7.11 Suppose ��Grp.R2p/ is an R–proper open convex set in the affine
chart

MD

��
Idp
X

�
WX 2Mp;p.R/

�
and H � Aut.�/ acts cocompactly on �. If

e D

�
Idp
X0

�
2 @�

is an R–extreme point, then there exist hn 2H and tn!1 such that

' D lim
n!1

�
Idp 0

.1� etn/X0 e
tn Idp

�
hn

exists in PGL2p.R/ and '.�/D T Ce�. In particular, � is invariant under the one-
parameter group

'�1
��

Idp 0

.1� et /X0 e
t Idp

�
W t 2R

�
':

Proof Let

At D

�
Idp 0

.1� et /X0 e
t Idp

�
I

then

At �

�
Idp
X

�
D

�
Idp

et .X �X0/CX0

�
:

So At 2 Aff.M/\ PGL2p.R/ and At� converges in the local Hausdorff topology to
T Ce� as t !1. So the corollary follows from Theorems 5.2 and 7.4.

Part III The automorphism group is simple

8 Initial reduction

For the rest of this section suppose p>1 and M�Grp.R2p/ is an affine chart, ��M

is a bounded convex open subset of M, and there exists a discrete group � � Aut.�/
such that � acts cocompactly on �. Set G WD Aut.�/ and let G0 be the connected
component of the identity of G.
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Warning 8.1 Note that unlike in the introduction, henceforth G does not a priori
denote a connected semisimple Lie group.

By Corollary 7.11, we know that G0 ¤ 1. The goal of this section is to use the fact
that G0 ¤ 1 to obtain that either G0 is simple and acts transitively on �, or we are
in one of four very constrained situations (cases (1)–(4) in Theorem 8.2 below). In
Sections 9, 10 and 11, we will prove that cases (1)–(4) cannot occur.

Theorem 8.2 With the notation above, at least one of the following holds:

(1) A finite-index subgroup of � has nontrivial centralizer in PGL2p.R/.

(2) There exists a nontrivial abelian normal unipotent group U �G such that �\U
is a cocompact lattice in U.

(3) p D 2 and there exists a finite-index subgroup G0 of G such that G0 DG0�ƒ
for some discrete group ƒ. Further, up to conjugation,

G0 D

��
A 0

0 A

�
W A 2 SL2.R/

�
and

ƒ�

��
a Id2 b Id2
c Id2 d Id2

�
W ad � bc D 1

�
:

(4) pD2, G0�G has finite index and acts transitively on �, and, up to conjugation,

G0 D

��
aA bA

cA dA

�
W A 2 SL2.R/; ad � bc D 1

�
:

(5) G0 is a simple Lie group with trivial center that acts transitively on �.

Since the statement of Theorem 8.2 may seem unmotivated at first, let us sketch the
argument. First suppose that G0 is not semisimple. Let Gsol � G0 be the solvable
radical of G0 (that is, the maximal connected, closed, normal, solvable subgroup
of G0 ) and let N be the nilpotent radical of Gsol (that is, the maximal connected,
normal, closed, nilpotent subgroup of Gsol ).

Note that N contains the unipotent radical Ru.G
0/ of G0 (ie all unipotent elements

of Gsol ), and hence is an extension

1!Ru.G
0/!N !N=Ru.G

0/! 1:
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The group N=Ru.G
0/ is the subgroup of Gsol=Ru.G

0/ whose action on the Lie algebra
ru.g/ is unipotent. Let Z be the center of N. We distinguish two cases, depending on
whether Z is contained in Ru.G/:

(1) If Z only consists of unipotent elements, we will show that � intersects some nor-
mal unipotent subgroup in a lattice. This corresponds to case (2) in Theorem 8.2.

(2) Otherwise, we show that a finite-index subgroup of � centralizes some semi-
simple torus in the Zariski closure of Z . This corresponds to case (1) in
Theorem 8.2.

Suppose now that G0 is semisimple. We want to show G0 actually has to be simple
and acts transitively on �. We do this by using the virtual cohomological dimension
vcd(� ) of � (see below for more information). We know that vcd.�/D dim.�/D p2 .
Then we relate vcd(� ) to the structure of G0 to show that G has to have finitely many
components, and G0 is simple. This latter argument only fails if p D 2, in which case
we obtain very specific information on the structure of G0 and its action on � (cases
(3) and (4) in the above Theorem 8.2).

We start with the following lemma.

Lemma 8.3 � is a cocompact lattice in G and �0 WD � \G0 is a cocompact lattice
in G0 .

Proof Since � acts cocompactly on � and G acts properly on � (see Proposition 4.8),
we see that � �G is a cocompact lattice. Since G0�G is a connected component, the
set � �G0 is closed in G. So �0nG0 is closed in �nG. Then, since �nG is compact,
so is �0nG0 .

The rest of this section will be devoted to the proof of Theorem 8.2. We will assume
that cases (1), (2), (3) and (4) do not hold and show that case (5) occurs.

Lemma 8.4 �0\Z is a cocompact lattice in Z .

Proof Let Gss � G be a semisimple subgroup such that G0 D GssGsol is a Levi–
Maltsev decomposition of G0 . Then let � W Gss! Aut.Gsol/ be the action of Gss by
conjugation on Gsol . If ker � has no compact factors in its identity component, then
�0\N is a cocompact lattice in N (see [25, Theorem 1.3(i)]). In this case, �0\Z�Z
is a cocompact lattice by [44, Proposition 2.17].
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Therefore, it suffices to show ker � contains no compact factors. Since ker � � Gss

is a normal subgroup, we see that ker � is semisimple. So there is a unique maximal
connected, compact, normal subgroup K0 in ker � . Assume for a contradiction that
dimK0 > 0. Then K0 is also a connected normal subgroup of Gss and hence of G0 ,
which is impossible by an argument of Farb and Weinberger [21, Claim II]. Let us
sketch this proof for completeness.

Let K be a maximal compact factor of G0 . Since dimK0 > 0, we see that dimK > 0.
Consider the natural quotient map �!�=K . Since � permutes the maximal compact
factors of G0 , we see that a finite-index subgroup of � normalizes K . Then it is not
hard to see that there is a continuous quasi-isometric inverse �=K!� to this quotient
map. Consider the maps induced by the composition

�!�=K!�

on locally finite simplicial homology. On the one hand, since this composition is a
bounded distance from the identity map, the induced map on locally finite simplicial
homology is the identity map. On the other hand, since � is the universal cover of
a closed aspherical manifold, there is a fundamental class in top degree. But since
dimK > 0, the image of this fundamental class in H�.�=K/ vanishes. This is a
contradiction. For full details, see the proof of Claim II in [21].

Lemma 8.5 G0 is semisimple.

Proof As above let N be the nilpotent radical of Gsol and Z the center of N. If
N D 1, then G0 is semisimple. So suppose for a contradiction that N ¤ 1. Then
Z ¤ 1. Next let C be the Zariski closure of Z in PSL2p.R/ and let C 0 be the
connected component of the identity in C. Since G normalizes Z , it also normalizes
C and C 0 .

Since Z , is abelian so is C 0 . Then, since C 0 is an abelian real algebraic group, we
can write

C 0 D CssCu;

where Css is the subset of semisimple elements in C 0 and Cu is the subset of unipotent
elements of C 0 (see eg [12, Theorem 4.7]). By [12, Corollary 4.4] both Css and Cu

are actually groups. Since G normalizes C 0 it also normalizes Css and Cu .

If Css D 1, then each element of C 0 is unipotent and thus each element of Z is
unipotent. Thus, we are in case (2), which is a contradiction. Therefore we have
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Css ¤ 1. But the normalizer of any semisimple torus T in PGL2p.R/ contains the
centralizer of T with finite index [12, Corollary 8.10.2], so we know that a finite-index
subgroup of G centralizes Css . Hence, we are in case (1), which contradicts our initial
assumption. Thus, G0 is semisimple.

Lemma 8.6 G0 has trivial center.

Proof Let Z be the center of G0 . First, we observe that Z is finite. Indeed, the
center of any connected semisimple linear group is finite (see eg [41, page 146]). We
already know that G0 is connected and semisimple, and G0 is linear because it is a
subgroup of the linear group PGL2p.R/.

Next we show Z is trivial. Since G normalizes G0 , G also normalizes Z . Since Z
is finite, a finite-index subgroup of G centralizes Z . Thus, if Z¤ 1 we are in case (1),
which has been excluded by assumption.

Next we use an argument of Farb and Weinberger to deduce:

Lemma 8.7 [21, Proposition 3.1] G has a finite-index subgroup G0 such that G0 Š
G0 �ƒ for some discrete group ƒ and � has a finite-index subgroup � 0 such that
� 0 Š �0 �ƒ. Moreover, by possibly passing to a finite-index subgroup of G0 we may
assume that ƒ is either trivial or infinite.

Remark 8.8 The above lemma follows from the “triviality of the extension” part of
the proof of Proposition 3.1 in [21]. This part of their proof only involves the groups
and not the Riemannian metric in the statement of Proposition 3.1. In particular, this
part of the argument adapts to our situation verbatim.

Now let
SL˙2p.R/D fg 2 GL2p.R/ W detg D˙1g:

Then let yG be the inverse image of G under the map � W SL˙2p.R/! PGL2p.R/ and
let yG0 be the connected component of the identity of yG.

Decompose the representation yG0Õ R2p as a direct sum of irreducible representations
of the semisimple group yG0 :

(8-1) R2p Š
M
�

V
n�
� :
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Here the direct sum is over nonisomorphic irreducible representations � of yG0 and
n� � 0 is the multiplicity of � . Now since yG normalizes yG0 we see that yG preserves
each V n�� .

First let us consider the situation that multiple irreducible representations contribute,
say �1; : : : ; �k , where k > 1. Consider the 1–parameter group fbt W t 2Rg, where bt
acts by et on the V

n�1
�1 factor and by the identity on all other factors. Then bt is not a

scalar matrix, and centralizes G, so we are in case (1).

Therefore, there is only one irreducible representation and R2p Š V n� for some irre-
ducible representation � and some n.

Lemma 8.9 nD 1.

Proof Suppose for a contradiction that n > 1. We first claim that p D 2. Let us
now consider the virtual cohomological dimension vcd.�/ of � . Recall that the
cohomological dimension cd.�/ of � is the supremum of all numbers m such that
Hm.�;M/¤ 0 for some � –module M (see for instance [14, Chapter VIII] for more
information). We will only need the following properties of cd.�/:

(1) cd.�/ > 0 if � ¤ 1.

(2) If � acts freely and properly discontinuously on a contractible CW–complex X,
then cd.�/� dim.X/, with equality if and only if X=� is compact.

(3) If �� � , then cd.�/� cd.�/.

(4) If � D �0 ��1 , then cd.�/� cd.�0/C cd.�1/.

The virtual cohomological dimension of � is then the infimum of cd.�/ as � ranges
over finite-index subgroups of � .

Now write dimV� D d . Since �0 can be identified with a discrete subgroup of
PGL.V�/, we have, by property (2) above,

(8-2) vcd.�0/� dim SLd .R/=SO.d/D 1
2
d.d C 1/� 1:

Further, since ƒ commutes with G0 and � is an irreducible representation of yG0 , we
can identify ƒ with a discrete subgroup of PGLn.R/. Therefore,

(8-3) vcd.ƒ/� dim SLn.R/=SO.n/D 1
2
n.nC 1/� 1:
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On the other hand, vcd.�/D dim�D p2 by property (2) above. Combining this with
property (4) and equations (8-2) and (8-3), we have

2p2 D 2vcd.�/� 2.vcd.�0/C vcd.ƒ//

� d.d C 1/� 2Cn.nC 1/� 2

D d2C d Cn2Cn� 4:

Using that 2p D dn (from the dimension count in R2p Š V n� ), we find that

2p2 �
4p2

n2
C
2p

n
Cn2Cn� 4:

The right-hand side is a convex function of n, so that on the interval Œ2; p�, it is
maximal at one of the endpoints. At either endpoint the inequality reduces to

p2�p� 2� 0;

which is only possible if p D 2.

Then .n; d/ 2 f.2; 2/; .1; 4/; .4; 1/g. We assumed that n > 1 and, since the representa-
tion yG0 ,! SL.V�/ is injective, we must have d > 1. So nD d D 2.

Thus, yG0 is a semisimple Lie group which has a faithful irreducible representation
into SL2.R/. Thus, yG0 has to be isomorphic to SL2.R/ and �D Id. With respect to
the decomposition R4 D V ˚V we have

yG0 D f.'; '/ 2 SL.V /�SL.V /g

and hence we are in case (3), which is a contradiction.

Since nD 1, we have that yG0 Õ R2p is an irreducible representation. Note that ƒ
centralizes G0 in PGL2p.R/, and hence any element of GL2p.R/ lying over ƒ has
to be scalar by Schur’s lemma. It follows that ƒ is trivial, so that G0 DG0 and thus
G0 has finite index in G. Then �0 has finite index in � and hence acts cocompactly
on �. Thus, vcd.�0/D dim.�/D p2 .

Lemma 8.10 G0 acts transitively on �.

Proof Let x 2� be any point and let Kx denote its stabilizer in G0 . Then Kx is a
compact subgroup of G0 by Proposition 4.8 and the G0–orbit X of x is diffeomorphic
to G0=Kx . Now let K be a maximal compact subgroup of G0 containing Kx . Then
�0nG

0=K is a closed aspherical manifold with fundamental group �0 , so by property (2)
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of cohomological dimension we have vcd.�0/D dim.G0=K/. On the other hand, since
Kx �K and G0=Kx ŠX ��,

vcd.�0/D dim.G0=K/� dim.G0=Kx/D dim.X/� dim.�/D vcd.�0/:

We conclude that dim.X/D dim.�/, so that X is a codimension 0 closed submanifold
of �. Connectedness of � then implies that X D�, as desired.

Remark 8.11 The above proof shows that the stabilizer of any point x 2� has finite
index in a maximal compact subgroup of Aut.�/.

Lemma 8.12 G0 is simple.

Proof Since G0 has trivial center, either G0 is simple or G0 Š G1 �G2 for some
semisimple nontrivial Lie groups G1 and G2 .

So suppose that G0 Š G1 �G2 . Let yGi be the inverse image of Gi � fIdg under
the map SL2p.R/! PSL2p.R/. Next decompose the representation yG1 Õ R2p as a
direct sum of irreducible representations of the semisimple group yG1 :

R2p Š
M
�

V n�� :

Here the direct sum is over nonisomorphic irreducible representations � of yG1 , and
n� � 0 is the multiplicity of � . Using the fact that yG2 centralizes yG1 and arguing as
in Lemma 8.9, we see that p D 2 and R4 D V 2� for some irreducible representation �
of yG1 . So dimV� D 2 and thus yG1 is isomorphic to SL2.R/. Applying the same
argument to yG2 shows that yG2 is also isomorphic to SL2.R/. Up to conjugation, we
have

yG1 D

��
A 0

0 A

�
W A 2 SL2.R/

�
:

An easy computation shows that the centralizer of yG1 is exactly��
a Id2 b Id2
c Id2 d Id2

�
W ad � bc D 1

�
Š SL2.R/:

Since yG2 centralizes yG1 and is isomorphic to SL2.R/, we must have that

yG2 D

��
a Id2 b Id2
c Id2 d Id2

�
W ad � bc D 1

�
:

Hence, we are in case (4), which is a contradiction.
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9 The centralizer

In this section we prove that case (1) in Theorem 8.2 is impossible. For a subgroup
H � PGLpCq.R/, let

(1) yH D fh 2 GLpCq.R/ W Œh� 2H; det hD˙1g,

(2) CH D fc 2 End.RpCq/ W chD hc for all h 2 yH g, and

(3) C 0H be the connected component of IdpCq in CH \GLpCq.R/.

Remark 9.1 CH is the centralizer of H in End.RpCq/, and hence is a subalgebra
of End.RpCq/, whereas C 0H is a subgroup of GLpCq.R/.

With this notation we will prove the following:

Theorem 9.2 Suppose ��Grp.R2p/ is an open set which is convex and bounded in
some affine chart. If � � Aut.�/ is a discrete group that acts cocompactly on �, then
C 0� DR>0 Id2p .

9.1 The centralizer in the general case

We begin by proving the following (which holds for any Grassmannian):

Theorem 9.3 Suppose � � Grp.RpCq/ is an open R–proper set that is convex in
some affine chart. If H � Aut.�/ acts cocompactly on �, then C 0H � Aut.�/ and
there is a decomposition RpCq D

Lm
iD1 Vi such that

CH D

mM
iD1

R IdVi :

Remark 9.4 In the special case where p D 1, the above theorem is due to Vey
[45, Theorem 5]. In both proofs the main step is to show that the elements of C 0H are
real diagonalizable, however the methods for accomplishing this are very different.

For the rest of this subsection assume that �� Grp.RpCq/ and H � Aut.�/ satisfy
the hypothesis of Theorem 9.3.

Lemma 9.5 With the notation above, C 0H � Aut.�/.

Proof Vey [45, page 645] proved this lemma in the case when p D 1 and his proof
works verbatim here: Fix a compact set K �� such that HK D�. Then there exists
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a neighborhood O of IdpCq in C 0H such that O generates C 0H and uK �� for all
u 2 O . Without loss of generality, we can assume that O is symmetric, ie for any
u 2O , we have u�1 2O . Then, for u 2O , we have

u�D uHK DHuK �H�D�:

Since O is symmetric we also see that u�1���. Thus, u restricts to a diffeomorphism
�!� and u 2 Aut.�/. Since O generates C 0H , we then see that C 0H � Aut.�/.

Lemma 9.6 With the notation above, if c 2 C 0H then

sup
x2�

K�.cx; x/ <1:

Proof Fix some x0 2�. Since H acts cocompactly on �, there exists R > 0 such
that [

h2H

BR.hx0/D�:

If x 2�, pick h 2H such that K�.x; hx0/�R . Then

K�.cx; x/�K�.cx; chx0/CK�.chx0; hx0/CK�.hx0; x/

�K�.x; hx0/CK�.cx0; x0/CR

� 2RCK�.cx0; x0/:

Lemma 9.7 With the notation above, if c 2 C 0H then c fixes every R–extreme point
of �.

Proof For an R–extreme point x 2 @�, choose points pn 2 � with pn! x . By
Lemma 9.6, we have

lim sup
n!1

d�.cpn; pn/ <1:

Then, by Corollary 6.3, we have cpn! x . Since c acts continuously on Grp.R2p/
and pn! x , we must have that cx D x .

We will need the following elementary facts:

Lemma 9.8 Let p; q > 0. The homomorphism
Vp
W GLpCq.R/! GL

�Vp RpCq
�

(i) maps unipotents to unipotents and semisimple elements to semisimple elements,
and

(ii) has kernel given by fIdpCqg if p is odd and f˙ IdpCqg if p is even.
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Proof Assertion (i) is obvious from the definition of
Vp . To see (ii), consider some

g 2GLpCq.R/ with
Vp

gD 1. Let �1; : : : ; �pCq be the eigenvalues of g (listed with
multiplicity). Then the eigenvalues of

Vp
g are exactly given by the product of p

eigenvalues of g , ie �i1 � � ��ip for any choice of 1� i1 < � � �< ip � pC q . We claim
that �1D �2D � � � D �pCq . To see this fix 1� i; j � pCq distinct and then fix some
i1; : : : ; ip�1 such that i , j , i1 , : : : ; ip�1 are all distinct. Since

Vp
g D 1, we have

�i�i1 � � ��ip�1 D 1D �j�i1 � � ��ip�1 ;

so that �i D �j . Since i and j were arbitrary, we then have �1 D �2 D � � � D �pCq .
So

�
p
1 D �1 � � ��p D 1:

In addition, �1 is real, so it follows that �1 2 f�1; 1g. We conclude that gD˙ IdpCq .

Lemma 9.9 With the notation above, every c 2 C 0H is semisimple and C 0H is abelian.

Proof Fix a basis v1; : : : ; vD of
Vp RpCq such that each Œvi � is an R–extreme

point of � (this is possible by Proposition 7.8). Then for any c 2 C 0H , each vi is an
eigenvector of

Vp
c and so

Vp
c is diagonalizable with respect to the basis v1; : : : ; vD

of
Vp RpCq . Hence,

Vp
C 0H is an abelian group.

Now, since
Vp

C 0H is an abelian group, we see that
Vp

ŒC 0H ; C
0
H �D 1. Then, since

ker
Vp
� f˙ IdpCqg, we see that ŒC 0H ; C

0
H �� f˙ IdpCqg. But since C 0H is connected,

ŒC 0H ; C
0
H � is connected and hence must be trivial. We conclude that C 0H is abelian.

Next, we claim that any c 2 C 0H is semisimple. If c D su is the Jordan decomposition
of c then

Vp
c D

�Vp
s
��Vp

u
�

and by uniqueness this is the Jordan decomposition
of

Vp
c . It follows that

Vp
u D 1, and hence u D 1. We conclude that c D s is

semisimple.

Lemma 9.10 With the notation above, every c 2 C 0H has all real eigenvalues.

Let us comment briefly on the strategy of the proof of Lemma 9.10 before carrying out
the algebraic manipulations. Notice that the proof of Lemma 9.9 implies that if c 2C 0H ,
then

Vp
c has all real eigenvalues. Therefore the product of any p distinct eigenvalues

of c (counted with multiplicity) is real. Unfortunately this does not directly imply
that the eigenvalues of c are real; for example, if g 2 GL4.R/ has eigenvalues ˙i ,
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each with multiplicity 2, then
V2
g has eigenvalues ˙1. The strategy in the proof of

Lemma 9.10 is to argue by contradiction, ie assume there exists some element c 2 C 0H
which has a nonreal eigenvalue and then use c to construct some other c0 2C 0H , whereVp

c0 has a nonreal eigenvalue.

Proof For n 2N , �> 0 and � 2 Œ0; 2�/, let En.�; �/ be the 2n�2n block diagonal
matrix whose blocks are �

� cos � �� sin �
� sin � � cos �

�
:

Now suppose for a contradiction that there exists some c2C 0H with a nonreal eigenvalue.
Then there exist g2SLpCq.R/; n1; : : : ; nk 2N ; �1; : : : ; �r >0; �1; : : : ; �r 2 Œ0; 2�/;
and �rC1; : : : ; �k 2R such that

c D g

0BBBBBBBB@

En1.�1; �1/
: : :

Enr .�r I �r/

�rC1 IdnrC1
: : :

�k Idnk

1CCCCCCCCA
g�1:

We can further assume that the pairs .�i ; �i / are all distinct and the �i are all distinct.
Then we have

yH �

8̂<̂
:g

0B@A1 : : :

Ak

1CAg�1 W Ai 2 GLni .R/

9>=>; ;
which implies that�

g

�
En1.�; �/

Idn2C���Cnk

�
g�1 W �; � 2R

�
� C 0H :

Then it is easy to construct some c0 2 C 0H such that
Vp

c0 has a nonreal eigenvalue.
So we have a contradiction.

Lemma 9.11 With the notation above, there is a decomposition RpCq D
Lm
iD1 Vi

such that

CH D

mM
iD1

R IdVi :
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Proof Since C 0H is abelian and every element in C 0H is semisimple with all real
eigenvalues, there exist some g 2 SLpCq.R/ and n1; : : : ; nk 2N such that

C 0H �

8̂<̂
:g

0B@�1 Idn1
: : :

�k Idnk

1CAg�1 W �1; : : : ; �k > 0
9>=>; :

We may further assume that for every 1� i < j � k there exists c 2 C 0H such that

c D g

0B@�1 Idn1
: : :

�k Idnk

1CAg�1
and �i ¤ �j . Then we have

yH �

8̂<̂
:g

0B@A1 : : :

Ak

1CAg�1 W Ai 2 GLni .R/

9>=>;
and hence

C 0H D

8̂<̂
:g

0B@�1 Idn1
: : :

�k Idnk

1CAg�1 W �1; : : : ; �k > 0
9>=>; :

Now if X 2 CH , then there exists some t 2R such that IdpCqCtX 2 C 0H . Hence,

CH D

8̂<̂
:g

0B@�1 Idn1
: : :

�k Idnk

1CAg�1 W �1; : : : ; �k 2R

9>=>; ;
which implies the lemma.

9.2 The centralizer in Grp.R2p/

We now specialize to the case in which p D q and prove Theorem 9.2. We begin by
showing that we can assume that � is a cone in some affine chart.

Proposition 9.12 Suppose � � Grp.RpCq/ is an open set which is convex and
bounded in some affine chart. If H � Aut.�/ acts cocompactly on � and C 0H ¤

R>0 Id2p , then there exists ' 2 PGL2p.R/ such that

'��MD

��
Idp
X

�
WX 2Mp;p.R/

�
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and '� is a convex cone in M based at 0. Moreover, we can select ' such that either

C 0
'H'�1

D

��
et Idp 0

0 es Idp

�
W s; t 2R

�
:

or C 0
'H'�1

contains the subgroup��
et IdpC` 0

0 es Idp�`

�
W s; t 2R

�
for some 0 < ` < p .

Remark 9.13 By Corollary 7.11, there exists ' 2 GL2p.R/ such that '��M and
'� is a convex cone in M based at 0. The key part of the proposition is that we can
pick ' such that the centralizer C'H'�1 has a subgroup of a particularly nice form.

Proof We can assume that � is a convex bounded subset of M. Throughout the
argument we will replace � by translates of the form�

A 0

B C

�
�:

This transformation preserves the affine chart M and acts on M by affine transforma-
tions.

By Theorem 9.3, there exist g0 2 GL2p.R/ and 0� ` < p such that

T WD

�
g0

�
et IdpC` 0

0 es Idp�`

�
g�10 W s; t 2R

�
� C 0H :

Notice that we can choose ` > 0 except when

C 0H D

�
g0

�
et Idp 0

0 es Idp

�
g�10 W s; t 2R

�
:

So, in the case when `D 0 we can also assume that C 0H D T .

Now let W WD g0 Spanfe1; : : : ; epC`g. Notice that hW DW for all h 2H. We claim
that there exists an R–extreme point e of � in Grp.W /. Consider some

c D g0

�
et IdpC` 0

0 es Idp�`

�
g�10 2 T

with et > es . Then EC
�Vp

c
�
\Grp.R2p/� Grp.W / and by Corollary 7.10 there is

an R–extreme point e of � in EC
�Vp

c
�
\ @�� Grp.W /.
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Now by replacing � with an affine translate we can assume that

e D

�
Idp
0

�
;

which implies that Spanfe1; : : : ; epg�W . By construction, if a2T then ajW Det IdW
for some t 2R. So any a 2 T can be written as

aD

�
et Idp B

0 C

�
for some t 2R and B;C 2 GLp.R/.

Since e is an extreme point, by Corollary 7.11 there exist tn!1 and hn 2H such
that

' D lim
n!1

�
Idp 0

0 etn Idp

�
hn

in PGL2p.R/ and '.�/D T C0�. Let y' 2 GL2p.R/ be a representative of ' and,
for each n 2N , choose a representative yhn 2 GL2p.R/ of hn such that

y' D lim
n!1

�
Idp 0

0 etn Idp

�
yhn

in GL2p.R/.

Then if

aD

�
et Idp B

0 C

�
2 T;

we have

y'ay'�1 D lim
n!1

�
Idp 0

0 etn Idp

�
yhn

�
et Idp B

0 C

�
yh�1n

�
Idp 0

0 e�tn Idp

�
D lim
n!1

�
Idp 0

0 etn Idp

��
et Idp B

0 C

��
Idp 0

0 e�tn Idp

�
D

�
et Idp 0

0 C

�
:

In the second equality we used that a 2 C 0H .

Then, since T is abelian, we can find some g0 2 GLp.R/ such that if

g D

�
Idp 0

0 g0

�
;
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then

gy'T .gy'/�1 D

��
et IdpC` 0

0 es Idp�`

�
W s; t 2R

�
:

So, replacing ' by g' (and hence replacing y' by gy' ), we can assume

y'T y'�1 D

��
et IdpC` 0

0 es Idp�`

�
W s; t 2R

�
:

Since y'T y'�1 � C 0
'H'�1

, this completes the proof.

Proof of Theorem 9.2 By Proposition 9.12, we can assume that

��MD

��
Idp
X

�
WX 2Mp;p.R/

�
is a convex cone in M based at 0, and that C 0� contains the subgroup��

et IdpC` 0

0 es Idp�`

�
W s; t 2R

�
for some 0� ` < p . Then

� �

��
A 0

0 B

�
W A 2 GLpC`.R/; B 2 GLp�`.R/

�
:

Throughout the argument we will write a matrix X 2Mp;p.R/ as

X D

�
X1
X2

�
;

where X1 2M`;p.R/ and X2 2Mp�`;p.R/. Let

�2 D

8<:
24Idp
0

X2

35 W there exists X1 such that

24Idp
X1
X2

35 2�
9=; :

Lemma 9.14 �2 is a proper convex cone in M, ie �2 does not contain any affine
lines.

Proof Since �2 is open and convex, it is easy to see that

fxC tv W t 2Rg ��2 for some x 2�2 () fxC tv W t 2Rg ��2 for all x 2�2:
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Hence, �2 contains an affine line if and only if there exists some nonzero v 2M such
that 24Idp 0 0

0 Id` 0

v 0 Idp�`

35 2 Aut.�/:

Thus, to complete the proof, it suffices to show that

fId2pg D
��

IdpC` 0

Y Idp�`

�
W Y 2Mp�`;pC`.R/

�
\Aut.�/:

So suppose that

g WD

�
IdpC` 0

Y Idp�`

�
2 Aut.�/

for some Y 2Mp�`;pC`.R/. Since � is a cocompact lattice in Aut.�/, there exist

n WD

�
An 0

0 Bn

�
2 �

such that fngngn is bounded in PGL2p.R/. By picking representatives of n and gn

in GL2p.R/ correctly, we can assume that�
An 0

0 Bn

��
IdpC` 0

nY Idp�`

�
D

�
An 0

nBnY Bn

�
is a bounded sequence in GL2p.R/. This implies fBngn and fnBnY gn are bounded
sequences in GLp�`.R/ and Mp�`;pC`.R/, respectively. Therefore we must have
Y D 0, as desired.

Since Proposition 9.12 yields different conclusions depending on whether ` D 0 or
` > 0, we will consider these two situations separately below.

Case 1 First suppose that ` D 0. Then � D �2 is a proper convex cone and by
Proposition 9.12 we may assume that

C 0� D

��
et Idp 0

0 es Idp

�
W s; t 2R

�
:

Then

� �

��
A 0

0 B

�
W A;B 2 GLp.R/

�
:

So � acts by linear transformations on �. We will now use the theory of linear
automorphisms of a proper convex cone to establish a contradiction.
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Define a homomorphism

ˆW

��
A 0

0 B

�
2 PGL2p.R/ W A;B 2 GLp.R/

�
! GL.M/

by

ˆ

��
A 0

0 B

��
.X/D BXA�1:

Notice that ˆ is injective and well-defined.

Then ƒ WDˆ.�/ acts cocompactly on ��M. Let �Z be the Zariski closure of � in
PGL2p.R/ and xƒZ the Zariski closure of ƒ in GL.M/. Then

ˆ.�Z/D xƒZ :

By possibly passing to a finite-index subgroup we can assume that �Z is connected in
the Zariski topology.

Recall that a convex cone C � V in a real finite-dimensional vector space V is called
reducible if there exist a pair of proper subspaces Vi � V and convex cones Ci � Vi
for i D 1; 2 such that V D V1˚V2 and C D C1C C2 . A convex cone C � V is called
irreducible if it is not reducible.

Let Cƒ � GL.M/ denote the centralizer of ƒ in GL.M/. By a result of Vey
[45, Theorem 5] either � is an irreducible cone and Cƒ D R� IdM or dimCƒ > 1.
By [6, Theorem 1.1], we see that Cƒ � xƒZ . Now, if ŒC 0� � is the image of C 0� in
PGL2p.R/, we see that

ˆ�1.Cƒ/� ŒC
0
� �:

Since dimŒC 0� �D 1, so we see that dimCƒD 1. Thus, � is an irreducible cone. Then
by [45, Theorem 3] (see also [6]) there exists a simple group H � GL.M/ such that

xƒZ D .R� Id/H:

So �Z ŠR� �H.

Now consider the projections

�1; �2W �
Z
! PGLp.R/

given by

�1

��
A 0

0 B

��
D A and �2

��
A 0

0 B

��
D B:
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Since H is simple, we see that ker�i D �Z or

ker�i D
��
et Idp 0

0 es Idp

�
2 PGL2p.R/ W s; t 2R

�
:

Since

ker.�1 ��2/D
��
et Idp 0

0 es Idp

�
2 PGL2p.R/ W s; t 2R

�
we must have that ker�i ¤ �Z for some i 2 f1; 2g. Then we see that

�i ıˆ
�1
W H ! PGLp.R/

is an injection and thus we obtain an injective homomorphism

�Z ,!R�PGLp.R/:

But then

p2D dim.�/D vcd.�/� 1Cdim.SLp.R/=SO.p//D 1
2
p.pC1/D 1

2
p2C 1

2
p <p2;

which is a contradiction.

Case 2 Suppose that C 0� contains the subgroup��
et IdpC` 0

0 es Idp�`

�
W s; t 2R

�
for some 0 < ` < p .

Let

�1 D

8<:
24Idp
X1
0

35 W there exists X2 such that

24Idp
X1
X2

35 2�
9=; :

Lemma 9.15 �D�1C�2:

Proof By construction,
���1C�2:

Now �
IdpC` 0

0 es Idp�`

�
�

24Idp
X1
X2

35D
24 Idp
X1
esX2

35 :
So, by sending s!�1, we see that

���1:
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On the other hand,�
Idp 0

0 e�s Idp

��
IdpC` 0

0 es Idp�`

�
�

24Idp
X1
X2

35D
24 Idp
e�sX1
X2

35 :
So, sending s!1, we see that

���2:

Then if X1 2�1 and X2 2�2 , we have

X1CX2 D
1
2
.2X1/C

1
2
.2X2/ 2�:

Thus, �D�1C�2 , which by convexity implies that

�D�1C�2:

Now if  2 � then we can write

 D

24A1 A2 0

A3 A4 0

0 0 B

35
for some A1 2 Mp;p.R/, A2 2 Mp;`.R/, A3 2 M`;p.R/, A4 2 M`;`.R/ and
B 2 GLp�`.R/. With this decomposition,24A1 A2 0

A3 A4 0

0 0 B

35 �
24Idp
X1
X2

35D
24 Idp
.A3CA4X1/.A1CA2X1/

�1

BX2.A1CA2X1/
�1

35 :
Now by identifying Mp�`;p.R/ with R.p�`/p we can view �2 as a convex subset
of P .R.p�`/pC1/. Let e be an extreme point of �2 in P .R.p�`/pC1/ nR.p�`/pC1 .
Fix a sequence of points yn 2�2 which converges to e in P .R.p�`/pC1/

Next fix some x0 2�1 and consider the sequence

zn D

24Idp
x0
yn

35 2�;
where we view x0 2M`;p.R/ and yn 2Mp�`;p.R/.

Since � acts cocompactly on �, there exist n 2 � and a compact subset K of �
such that

�1n zn 2K:
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Suppose

n D

264
0B@A

.n/
1 A

.n/
2 0

A
.n/
3 A

.n/
4 0

0 0 B.n/

1CA
375 :

Now let
GL.�2/D fT 2 GL.Mp�`;p.R// W T .�2/D�2g:

Since �2�Mp�`;p.R/ is a proper convex cone, the Hilbert metric H�2 is a complete
GL.�2/–invariant metric on �2 . Moreover, since � D �1 C�2 , we see that the
linear map

Tn.X/D B
.n/X.A

.n/
1 CA

.n/
2 x0/

�1

is in GL.�2/ for all n � 0, where we again view x0 2Mp�`;p.R/. So there exists
R � 0 such that

H�2.yn; B
.n/y0.A

.n/
1 CA

.n/
2 x0/

�1/�R

for all n � 0. Since yn converges to an extreme point of �2 , we see that ŒTn� 2
P .End.Mp�`;p.R/// converges to some T1 2P .End.Mp�`;p.R/// and rankT1D 1
(see either Vey [45, Lemma 4] or Theorem 7.4 above).

Now if � .n/1 � � � � � �
.n/

p�`
are the singular values of B.n/ and �.n/1 � � � � � �

.n/
p are

the singular values of .A.n/1 CA
.n/
2 x0/

�1 then Tn has singular values

f�
.n/
i �

.n/
j W 1� i � p� `; 1� j � pg:

Then since ŒTn�! T1 and rankT1 D 1 we must have

lim
n!1

�
.n/
1 �

.n/
1

�
.n/
i �

.n/
j

D1

for all 1� i � p� ` and 1� j � p with .i; j /¤ .1; 1/.

In particular,

lim
n!1

�
.n/
1

�
.n/
2

D1:

So we will finish the proof by establishing the following:

Lemma 9.16 lim sup
n!1

�
.n/
1

�
.n/
2

<1:
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Proof Now view �1 as an open subset of Grp.V /, where V D Spanfe1; : : : ; epC`g.
By construction, �1 is an R–proper convex open subset of some affine chart of Grp.V /.
Thus, K�1 is a proper metric and there exists R1 � 0 such that

K�1.x0; .A
.n/
3 CA

.n/
4 x0/.A

.n/
1 CA

.n/
2 x0/

�1/�R1:

So the set �"
A
.n/
1 A

.n/
2

A
.n/
3 A

.n/
4

#
W n 2N

�
� PGL.V /

is relatively compact in PGL.V /. So we can pass to a subsequence and pick represen-
tatives such that  

A
.n/
1 A

.n/
2

A
.n/
3 A

.n/
4

!
!

�
A1 A2
A3 A4

�
in GL.V /. Now we claim that A1CA2x0 is an invertible matrix. Suppose this is not
the case. Then for each n we can find a unit eigenvector vn 2Cp such that

.A
.n/
1 CA

.n/
2 x0/vn! 0

Since .A.n/3 CA
.n/
4 x0/.A

.n/
1 CA

.n/
2 x0/

�1 stays within a compact subset of �2 , we
must have that .A.n/3 CA

.n/
4 x0/vn! 0. Then we can pass to a subsequence such that

vn! v . We have

0D lim
n!1

 
A
.n/
1 A

.n/
2

A
.n/
3 A

.n/
4

!�
vn
x0vn

�
D

�
A1 A2
A3 A4

��
v

q0v

�
;

which contradicts the fact that�
A1 A2
A3 A4

�
2 GLpC`.R/:

So A1CA2q0 is an invertible matrix. But this implies that there exists C > 0 such
that

f�
.n/
i W 1� i � pg � Œ1=C; C �;

which implies the lemma.

10 Unipotent subgroups

In this section we show that case (2) of Theorem 8.2 is impossible.
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Theorem 10.1 Suppose �� Grp.R2p/ is an open set which is bounded and convex
in some affine chart. If � � Aut.�/ is a discrete group which acts cocompactly on �,
then there does not exist a nontrivial abelian normal unipotent group U �Aut.�/ such
that � \U is a cocompact lattice in U.

For the rest of the section suppose � � Grp.R2p/ and � � Aut.�/ satisfy the
hypothesis of Theorem 10.1. Assume for a contradiction that there exists a nontrivial
abelian normal unipotent group U � Aut.�/ such that � \U is a cocompact lattice
in U.

Since � is finitely generated, by passing to a finite-index subgroup we can assume that
� is torsion-free. Then, since � acts properly on �, we see that � acts freely on �.
Then, using the fact that �n� is compact, we see that

(10-1) inf
2�;x2�

K�.x; x/ > 0:

The basic idea of the following argument is that if u 2 U \ � , then the translation
distance

inf
x2�

K�.ux; x/

should be zero, which then implies that U \� D 1. This approach is motivated by
Lemma 2.8 in [9] and Proposition 2.13 in [19].

The group
Vp

U � PGL
�Vp R2p

�
is also unipotent, so the set

E1 D fv 2 P
�Vp R2p

�
W
�Vp

u
�
v D v for all u 2 U g

is nonempty. Note that
Vp

U can be conjugated so that it is upper triangular. Since
U \� is a lattice in U, we can choose u0 2 U \� such that its Jordan decomposition
is generic among elements of U, that is to say

E1 D fv 2 P
�Vp R2p

�
W
�Vp

u0
�
v D vg:

Then, with the notation of Proposition 7.9,

EC
�Vp

u0
�
�E1

and by Corollary 7.10 there exists an R–extreme point e 2EC
�Vp

u0
�
\ @�.

Now suppose that � is a bounded convex open set in the affine chart

MD

��
Idp
X

�
WX 2Mp;p.R/

�
:

Geometry & Topology, Volume 23 (2019)



Rigidity of convex divisible domains in flag manifolds 223

Without loss of generality we can assume e D 0 in this affine chart. Then by
Corollary 7.11, there exist n 2 � and tn!1 such that

' D lim
n!1

�
Idp 0

0 etn Idp

�
n

exists in PGL2p.R/ and '��M is an R–proper convex open cone based at 0. In
particular, Aut.'�/ contains the one-parameter subgroup

at WD

�
Idp 0

0 et Idp

�
:

Now if
'n WD

�
Idp 0

0 etn Idp

�
n

then

'�1n .e/D �1n .e/ 2 �1n E1\ 
�1
n EC

�Vp
u0
�
DE1\E

C
�Vp

�1n u0n
�
;

so

'�1n .e/ 2E1\

� [
u2U

EC
�Vp

u
��
;

so sending n!1 we see that

'�1.e/ 2E1\
[
u2U

EC
�Vp

u
�
:

And thus
e 2 '.E1/\

[
u2'U'�1

EC
�Vp

u
�
:

In particular, since e D Spanfe1; : : : ; epg � '.E1/, we have

'U'�1 �

��
A B

0 C

�
W A;B;C 2Mp;p.R/

�
:

Lemma 10.2 If �
Idp X

0 Idp

�
2 'U'�1

then X D 0.

Proof Suppose for a contradiction that there exists

uD

�
Idp X

0 Idp

�
2 'U'�1
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with X ¤ 0. We claim there exist nk ! 1 and k 2 '.� \ U/'
�1 such that

�1
k
unk! Id2p . Indeed, consider the group ƒ WD h'.�\U/'�1; ui. If ƒ is discrete,

some power of u belongs to '.� \U/'�1 , in which case the claim obviously holds.
If ƒ is not discrete, we can find �1

k
unk D �k 2ƒ such that �k! Id2p . Further, it

is clear that nk !1, for otherwise �k lie in a union of finitely many translates of
'.� \U/'�1 , which is a discrete set. This proves the claim.

So let k 2 '.� \ U/'�1 and nk ! 1 such that �1
k
unk ! Id2p . By picking

representatives correctly we can assume that

k D

�
Ak Bk
0 Ck

�
and�

A�1
k
�A�1

k
Bk

0 C�1
k

��
Idp nkX

0 Idp

�
D

�
A�1
k

nkA
�1
k
X �A�1

k
Bk

0 C�1
k

�
!

�
Idp 0

0 Idp

�
in GL2p.R/. So Ak ! Idp and Ck ! Idp . But then there exist tk !1 such that
atkka�tk ! Id2p . But then, for any p 2 '�,

lim
k!1

K'�.ka�tkp; a�tkp/D lim
k!1

K'�.atkka�tkp; p/D 0;

which contradicts equation (10-1).

Lemma 10.3 'U'�1 �

��
A 0

0 B

�
W A;B 2 GLp.R/

�
:

Proof Suppose for a contradiction that there exists

uD

�
A C

0 B

�
2 'U'�1

with C ¤ 0.

Then

u0 D

�
A 0

0 B

�
D lim
t!1

atua�t 2 'U'
�1

and so �
Idp A�1C

0 Idp

�
D .u0/�1u 2 'U'�1;

which we just showed is impossible.
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Lemma 10.4 If u 2 'U'�1 is nontrivial then

EC
�Vp

u
�
\Grp.R2p/� Grp.R2p/ nM :

Proof Suppose uD
�
A
0
0
B

�
. Then both A and B are unipotent and

um �

�
Idp
X

�
D

�
Idp

BmXA�m

�
:

Since both B and A are unipotent, for a generic X 2Mp;p.R/ we have

lim
m!1

kBmXA�mk D1;

which implies that EC
�Vp

u
�
\Grp.R2p/� Grp.R2p/ nM.

Now we have a contradiction because

e 2 Grp.R2p/\
[

u2'U'�1

EC
�Vp

u
�
� Grp.R2p/ nM

and e 2M.

11 When p D 2

In this section we show that cases (3) and (4) of Theorem 8.2 are impossible.

Theorem 11.1 Suppose ��Gr2.R4/ is a bounded convex open subset of some affine
chart of Gr2.R4/ and there exists a discrete group � � Aut.�/ such that �n� is
compact. Then the connected component of the identity in Aut.�/ is a simple Lie
group with trivial center that acts transitively on �.

For the rest of the section let �� Gr2.R4/ and � � Aut.�/ be as in the hypothesis
of Theorem 11.1. As in Section 8, let G WD Aut.�/ and let G0 be the connected
component of the identity of G.

Define the subgroups

G1 WD

��
A 0

0 A

�
W A 2 SL2.R/

�
and

G2 WD

��
a Id2 b Id2
c Id2 d Id2

�
W ad � bc D 1

�
:

Geometry & Topology, Volume 23 (2019)



226 Wouter Van Limbeek and Andrew Zimmer

By Theorem 8.2 we may assume that either

(1) G0 is a simple Lie group with trivial center that acts transitively on �, or

(2) there exists a cocompact lattice ƒ � G2 such that G1 �ƒ has finite index in
Aut.�/, or

(3) G1 �G2 has finite index in Aut.�/ and acts transitively on �.

Lemma 11.2 With the notation above, case (2) cannot occur.

Proof Suppose not. Then there exists a cocompact lattice ƒ�G2 such that G1�ƒ has
finite index in Aut.�/. By possibly changing � , we may also assume that � D �1�ƒ
for some cocompact lattice �1 �G1 .

For a subgroup H � Aut.�/ let L.H/ denote the set of points x 2 @� where there
exist some y 2� and sequence hn 2H such that hny!x . Recall that ExtR.�/�@�
is the set of R–extreme points of �. Then define

ExtR.H/ WD L.H/\ExtR.�/:

Let e1; : : : e4 be the standard basis of R4 . Then a direct computation (using part (4)
of Theorem 7.4) shows that

ExtR.G1/D fŒ.˛e1Cˇe2/^ .˛e3Cˇe4/� W ˛; ˇ 2Rg

and
ExtR.ƒ/� fŒ.˛e1Cˇe3/^ .˛e2Cˇe4/� W ˛; ˇ 2Rg:

This description implies that ExtR.G1/ and ExtR.ƒ/ are disjoint and � –invariant sets.
Moreover, since ƒ � G2 is a cocompact lattice, there exists some � 2 ƒ such thatV2
� has a unique eigenvalue of maximum absolute value (see [42]). Then part (4) of

Theorem 7.4 implies that ExtR.ƒ/¤∅. So suppose that e 2 ExtR.ƒ/.

Now up to a projective isomorphism we can assume that � is a convex subset of the
affine chart

MD

��
Id2
X

�
WX 2M2;2.R/

�
:

and e D
�
Id2 0

�t
2 @�. Then by Corollary 7.11 there exist n 2 � and tn!1 such

that

' D lim
n!1

�
Id2 0

0 etn Id2

�
n
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exists in PGL4.R/ and '.�/ D T Ce�. In particular, � is invariant under the one-
parameter group

'�1
��

Idp 0

0 et Idp

�
W t 2R

�
':

This implies that '�1.e/ 2 ExtR.G1/. But

�1n

�
Id2 0

0 e�tn Id2

�
e D �1n e � ExtR.ƒ/

and thus
'�1.e/ 2 ExtR.G1/\ExtR.ƒ/:

This is a contradiction.

We rule out case (3) above by proving the following:

Lemma 11.3 With the notation above, case (3) cannot occur.

Proof Suppose not; then G1�G2 has finite index in Aut.�/. By possibly changing � ,
we may assume that � D �1 ��2 for some cocompact lattices �1 �G1 and �2 �G2 .

Define the subgroups

K1 D

��
A 0

0 A

�
W A 2 SO.2/

�
and

K2 D

��
a Id2 b Id2
c Id2 d Id2

�
W

�
a b

c d

�
2 SO.2/

�
:

Then K1 �K2 �G1 �G2 is a maximal compact connected subgroup. Moreover, the
action of K1 �K2 on Gr2.R4/ has no fixed points.

Next let Kx � Aut.�/ be the connected component of the stabilizer of some x 2�.
Since Aut.�/ acts properly on � (see Proposition 4.8), Kx is a compact subgroup.
Moreover, since G0 D G1 �G2 , we see that Kx � G1 �G2 . Thus, since maximal
compact subgroups are conjugate in semisimple Lie groups, there exists some g 2
G1 �G2 such that

gKxg
�1
�K1 �K2:

But dim.K1 �K2/D 2. Moreover,

6� dim.Kx/D dim.G1 �G2=Kx/� dim.�/D 4;

so dimKx � 2. Thus, gKxg�1 D K1 �K2 . This contradicts the fact that K1 �K2
has no fixed points in Gr2.R4/.
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12 Finishing the proof of Theorem 1.3

Theorems 8.2, 9.2, 10.1 and 11.1 reduce the proof of Theorem 1.3 to the following:

Theorem 12.1 Suppose p > 1 and �� Grp.R2p/ is a bounded convex open subset
of some affine chart of Grp.R2p/. If the connected component of the identity of
Aut.�/ is a simple Lie group with trivial center which acts transitively on �, then �
is projectively isomorphic to Bp;p .

For the rest of the section suppose that � satisfies the hypothesis of Theorem 12.1. As
in Section 8, let G WD Aut.�/ and let G0 be the connected component of the identity
of G. Also let e1; : : : ; e2p 2R2p be the standard basis.

Throughout the argument we will replace � by translates g� for some g 2PGL2p.R/.
This will have the effect of replacing G by gGg�1 .

Fix some x0 2� and let K �G0 be the identity component of the stabilizer of x0 . By
Remark 8.11, K is a finite-index subgroup of some maximal compact subgroup of G0 .
Moreover, since K is compact, by translating � we may assume that K � PSO.2p/.
Then, since PSO.2p/ acts transitively on Grp.R2p/, we can translate � and assume
that x0 D Œe1 ^ � � � ^ ep�. Then, using the fact that K is connected,

K �

��
A 0

0 B

�
W A;B 2 SO.p/

�
:

In particular, dim.K/� p.p� 1/.

Now let rankR.G
0/ be the real rank of G0 .

Lemma 12.2 With the notation above, rankR.G
0/� p .

Proof Using the Cartan decomposition, we see there exists a connected abelian group
A�G0 such that dim.A/D rankR.G

0/ and KAK DG0 . In particular, in the matrix
model of Grp.R2p/,

�DKAK �

�
Idp
0

�
DKA �

�
Idp
0

�
:

Thus, we must have

(12-1) dim.K/C dim.A/� dim.�/D p2:

Since dim.K/� p.p� 1/ we then have

rankR.G
0/D dim.A/� p:
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Lemma 12.3 With the notation above, G0 is isomorphic to PSO.p; p/.

Proof Now
dim.G0=K/D dim.�/D p2

and
rankR.G

0/� p:

In particular,

rankR.G
0/�

p
dim.G0=K/:

The only two simple Lie groups of noncompact type and with trivial center with this
property are PSLdC1.R/ for d � 3 and PSO.d; d/ for d � 2 (see the classification
of simple Lie groups in [30, Chapter X]).

If G0 is isomorphic to PSLdC1.R/ then K is isomorphic to PSO.dC1/. In particular,
K is a simple Lie group and

dimK D 1
2
d.d C 1/:

Next consider the natural projections

�1; �2W K! PSO.p/

given by

�1

��
A 0

0 B

��
D A and �2

��
A 0

0 B

��
D B:

Now since K is simple either .�1��2/W K! PSO.p/�PSO.p/ is trivial or injective.
But

ker.�1 ��2/�
�

Id2p;
�

Idp
� Idp

�
;

�
� Idp

Idp

��
;

so �1 � �2 is injective. Thus, at least one �i has nontrivial image. Then by the
simplicity of K we see that K Š �i .K/� PSO.p/. So

dimK � 1
2
p.p� 1/

and so
d.d C 1/� p.p� 1/:

Thus, d � pC 1. But then we have a contradiction, because by equation (12-1), we
have

p2 � rank.G0/C dim.K/� d C 1
2
p.p� 1/� pC 1C 1

2
p.p� 1/D 1

2
p2CpC 1;
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which is only true when p D 2. Then d D pC 1D 3, but

dim PSL4.R/=PSO.4/D 9¤ 4D dim�;

so this case is impossible.

Thus, we must have that G0 is isomorphic to PSO.p; p/.

Now the inclusion G0 � PGL2p.R/ induces a representation

�W PSO.p; p/! PGL2p.R/:

Notice that replacing � by g� for some g 2 PGL2p.R/ has the effect of replacing �
by Ad.g/ ı� .

At this point there are a number of ways to deduce that this representation is conjugate
to the standard inclusion, but we will use the representation theory of SO.2p;C/
because it appears explicitly in standard references (for instance [24]).

Now K has finite index in a maximal compact subgroup of G0 Š PSO.p; p/ and

K �

��
A 0

0 B

�
W A;B 2 SO.p/

�
;

so we see that

K D

��
A 0

0 B

�
W A;B 2 SO.p/

�
:

Then since maximal compact subgroups are conjugate in G0 we may translate � to
assume that

�
�
P.SO.p/�SO.p//

�
D P.SO.p/�SO.p//:

Now if K1DP.SO.p/�fIdpg/ and K2DP.SO.p/�fIdpg/ then, using the simplicity
of K1 and K2 and the fact that �.K1/; �.K2/ commute, we see that

f�.K1/; �.K2/g D fK1; K2g:

So by translating � we may assume that �.K1/DK1 and �.K2/DK2 . Now each
Ki is isomorphic to SO.p/.

It is well known that any automorphism of SO.p/ is given by conjugation by some
element of O.p/ (eg because such an automorphism is determined by the automorphism
of the Dynkin diagram). Therefore, by translating �, we can assume that �.k/D k
for all k 2K1[K2 .

Geometry & Topology, Volume 23 (2019)



Rigidity of convex divisible domains in flag manifolds 231

Now let d.�/W so.p; p/! sl2p.R/ be the corresponding Lie algebra representation.
We can complexify to obtain a representation d.�/W so.2p;C/! sl2p.C/. But then
by the classification of irreducible representations of SO.2p;C/ (see for instance
[24, Chapter 19]) we see that there exists g 2 SL2p.C/ such that

Ad.g/d.�/D �;

where �W so.2p;C/ ,! sl2p.C/ is the standard inclusion representation. Since

g�1
�
X1 0

0 X2

�
g D d.�/

�
X1 0

0 X2

�
D

�
X1 0

0 X2

�
for all X1; X2 2 so.p/, it is easy to see that

g D

�
˛ Idp 0

0 ˛�1 Idp

�
for some ˛ 2C� . Now

g

�
A B

C D

�
g�1 D

�
A ˛2B

˛�2C D

�
and gd.�/.so.p; p//g�1 D so.p; p/. So ˛2 2 R. So either ˛ 2 R� or ˛ D �i for
some � 2R� . In the latter case, we also have

Ad.�ig/d.�/D Ad.g/d.�/D �:

So by possibly replacing g by �ig we can assume that g 2 SL2p.R/.

Then, if we replace � by g�, then �W PSO.p; p/ ,! PGL2p.R/ is the standard
inclusion representation and so G0 D PSO.p; p/.

Finally,

�DG0 � x0 D PSO.p; p/ �
�

Idp
0

�
D Bp;p

and so Theorem 12.1 is proven.

Appendix A Proof of Theorem 4.6

In this section we prove that (1) implies (2) in Theorem 4.6:

Theorem A.1 Suppose M � Grp.RpCq/ is an affine chart and � �M is an open
convex set. If � is R–proper, then K� is a complete length metric on �.
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We will use some basic properties of the Hilbert metric HC on a convex set C �Rd .
In particular we will use:

(1) Equivariance If A 2 Aff.Rd / then HA C.Ax;Ay/DHC.x; y/.

(2) Properness If x 2 @ C and xn 2 C is a sequence with xn! x , then

HC.x0; xn/!1:

(3) Completeness If C contains no affine lines then HC is a complete metric.

(4) If C DRd � C0 , then

HC..x1; y1/; .x2; y2//DHC0.y1; y2/:

All these properties follow immediately from the cross-ratio definition of the Hilbert
metric.

Proof Identify M with the set of q �p matrices and let M1 �M be the subset of
rank-one matrices. Define a function ı�W ��M1!R�0 by

ı�.xI v/D inffky � xk W y 2 @�\ .xCRv/g:

Since � is R–proper, we must have that ı�.xI v/ <1 for all x 2 � and v 2M1 .
Moreover, since � is convex, ı� is a continuous function.

We will first show that K� is a metric; using Proposition 4.2 we only need show that
K�.x; y/ > 0 for x; y 2 � distinct. Now we can find � > 0 such that the closed
Euclidean ball

B�.x/D fz 2M W kx� zk � �g

is contained in � but y … B�.x/. Since ı� is continuous, there exists M > 0 such
that

ı�.zI v/�M

for all z 2 B�.x/ and v 2M1 .

We claim that if Œz1; z2��B�.x/, then ��.z1; z2/�kz1�z2k=.�CM/. If z2�z1…M1 ,
then ��.z1; z2/D1. So we may assume that z2�z12M1 . Then let .a; b/Dz1z2\�,
labeled so that a , z1 , z2 , b is the ordering along the line. By relabeling we may assume
that ka� z1k D ı�.z1; z1� z2/�M. Then

��.z1; z2/D jlog
kz1� akkz2� bk

kz1� bkkz2� ak
j � log

kz2� ak

kz1� ak

D

Z kz2�ak
kz1�ak

dt

t
�

1

kz2� ak
.kz2� ak�kz1� ak/:
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Since z1 , z2 and a are all collinear and kz1� z2k � � , we then have

��.z1; z2/�
1

MC�
kz1� z2k:

Now we wish to show that K�.x; y/ > 0. We claim that

��.x; a1/C

n�1X
iD1

��.ai ; aiC1/C ��.an; y/�
�

MC�

for any a1; : : : ; an 2 �. This will imply that d�.x; y/ > 0. Now, by definition, if
a; b 2M and c 2 Œa; b�, then

��.a; b/C ��.b; c/D ��.a; c/:

So without loss of generality there exists 1� l < n such that a1; : : : ; al 2 B�.x/ and
alC1 2 @B�.x/. Then, by the above calculation,

��.x; a1/C

lX
iD1

��.ai ; aiC1/�
1

MC�

�
kx� a1kC

lX
iD1

kai � aiC1k

�
�

�

MC�
:

This shows that K� is a metric.

We will next show that K� is a length metric. This follows from the fact that if
x; y 2� and x�y 2M1 , then

��.x; y/D ��.x; z/C ��.z; y/

for any z 2 Œx; y�. Thus, when x�y 2M1 , there is a curve of length at most ��.x; y/
joining x to y . Then, by definition, for any x; y 2 � there exists a sequence of
curves �n joining x to y whose length converges to K�.x; y/.

Next we show that K� is proper, that is, for any x0 2� and R � 0 the closed metric
ball B D fx 2� WK�.x; x0/ � Rg is compact. Let xn 2 B be a sequence. We will
show that a subsequence of xn converges in B . By passing to a subsequence we can
suppose that xn! x 2M or xn!1 (that is, xn leaves every compact subset of M).

First suppose that xn! x 2M. If x 2�, then x 2 B by part (5) of Proposition 4.2.
Otherwise x2@�. Let H� be the Hilbert metric on �; then H��K� by Kobayashi’s
construction of the Hilbert metric (described in Section 2.2). So

K�.x0; xn/�H�.x0; xn/!1;

which is a contradiction.
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Finally, suppose that the sequence xn leaves every compact subset of �. If � contains
no affine lines, then H� is a proper metric and so

K�.x0; xn/�H�.x0; xn/!1:

If � is not proper, then we can identify M with RD , where DDpq and find an affine
map ˆ 2 Aff.RD/ such that ˆ� D Rd ��0, where �0 is a proper convex set and
d �D. Notice that H�.z1; z2/DHˆ�.ˆz1; ˆz2/ for all z1; z2 2�, but the metrics
Kˆ� and K� have no clear relationship because ˆ will in general not preserve the
rank-one lines. Since � is R–proper we must have that d <D. Let � W RD!RD�d

be the projection onto the second factor. Next let �nW Œ0; 1�!� be a curve joining x0
to xn with K�–length less than RC � .

We claim that the set f�.ˆ�n.t// W n 2N; t 2 Œ0; 1�g is a compact subset of �0 . This
follows from the fact that

RC � �K�.x0; �n.t//�H�.x0; �n.t//DHˆ�.ˆx0; ˆ�n.t//

DH�0
�
�.ˆx0/; �.ˆ�n.t//

�
and the fact that H�0 is a proper metric on �0 . So if xnDˆ�1.yn; zn/, we must have
yn!1. But then notice that

ı�.xC aI v/D ı�.xI v/

for all a 2ˆ�1.Rd � f0g/ and v 2M1 . And so there exists M � 0 such that

ı�.�n.t/I v/�M

for all n 2N , t 2 Œ0; 1� and v 2M1 . But then, arguing as before, we see that

length.�n/�
1

M
kx0� xnk:

Since xn leaves every compact subset of � and length.�n/ < R C � , we have a
contradiction.

Finally, we observe that K� is a complete metric on �. If .xn/n2N is a Cauchy
sequence in .�;K�/, then we can pass to a subsequence such that

1X
nD1

kxn� xnC1k DR <1:

But then xn 2 fx 2� WK�.x1; x/�Rg, which is a compact subset of �.

Geometry & Topology, Volume 23 (2019)



Rigidity of convex divisible domains in flag manifolds 235

Appendix B Proof of Theorem 5.1

In this section we prove Theorem 5.1:

Theorem B.1 Let M be an affine chart of Grp.RpCq/ and suppose �n �M is a
sequence of R–proper convex open sets converging to an R–proper convex open set
��M in the local Hausdorff topology. Then

K�.x; y/D lim
n!1

K�n.x; y/

for all x; y 2� uniformly on compact sets of ���.

It will be helpful to introduce an infinitesimal version of �� . As in the proof of
Theorem A.1, identify M with the vector space of q�p matrices and let M1 �M be
the space of rank-one matrices. Next, for a R–proper convex open set ��M, define
a function k�W ��M1!R�0[f1g by

k�.xI v/D
1

tC
C
1

t�
;

where tC; t� 2R�0[f1g satisfy xCtCv; xCt�.�v/2 @� and we define 1=1D 0.
Notice that, by definition, k�.xI�v/D j�jk�.xI v/ for any � 2R.

Now if x; xC tv 2�, v 2M1 and t > 0, then it is easy to show that

(B-1) ��.x; xC tv/D

Z t

0

k�.xC svI v/ ds:

The following lemma is a simple consequence of this formulation of �� :

Lemma B.2 With the notation in Theorem B.1, for any compact subset K �� and
� > 0 there exists N > 0 such that

.1� �/��n.x; y/� ��.x; y/� .1C �/��n.x; y/

for all x; y 2K and n�N.

Proof By possibly increasing K , we can assume that K is convex. We first claim
that there exists N > 0 such that

.1� �/k�n.xI v/� k�.xI v/� .1C �/k�n.xI v/
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for all n > N, x 2K and v 2M1 . Suppose not; then there exist nk!1, xnk 2K
and vnk 2M1 such that

k�.xnk I vnk /

k�n.xnk I vnk /
… Œ1� �; 1C ��:

We can assume that kvnkk D 1 (where k � k is the operator norm). Then we can pass
to a subsequence and assume that xnk ! x 2K and vnk !M1 . But, using the fact
that �n converges to � in the local Hausdorff topology, we have

lim
k!1

k�.xnk I vnk /

k�n.xnk I vnk /
D
k�.xI v/

k�.xI v/
D 1:

So we have a contradiction.

Then the lemma follows from equation (B-1).

Proof of Theorem B.1 Now suppose that K � � is compact. Then we can pick
R > 0 and x0 2� such that K � fx 2� W d�.x; x0/�Rg. Let

K 0 D fx 2� WK�.x; x0/� .1C �/
2.RC 1/CRC �g:

Next pick N > 0 such that

.1� �/��n.x; y/� ��.x; y/� .1C �/��n.x; y/

for all x; y 2K 0 and n�N. Now we claim that

K�n.x; y/� .1C �/K�.x; y/

for x; y 2K and n � N. For x; y 2K and ı 2 .0; 1/, pick x D a0; a1; : : : ; am D y
such that

��.x; a1/C ��.a1; a2/C � � �C ��.am�1; y/�K�.x; y/C ı:

Then a0; : : : ; am 2K 0 and so

��n.x; a1/C ��n.a1; a2/C � � �C ��n.am�1; y/� .1C �/.K�.x; y/C ı/

for n�N. Since ı > 0 was arbitrary we see that

K�n.x; y/� .1C �/K�.x; y/

for x; y 2K and n�N.
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Now suppose n�N, x; y 2K , ı 2 .0; 1/ and xD a0; a1; : : : ; amD y 2�n are such
that

��n.x; a1/C ��n.a1; a2/C � � �C ��n.am�1; y/�K�n.x; y/C ı:

If a0; a1; : : : ; am 2K 0 then we immediately see that

K�.x; y/� ��.x; a1/C��.a1; a2/C� � �C��.am�1; y/� .1C �/.K�n.x; y/C ı/:

Otherwise we can assume that there is some al such that al 2 @K 0 . Then K�.al ; x0/D
.1C �/2.RC 1/CRC � and so

.1C �/2.RC 1/C � �K�.x0; al/�K�.x0; x/�K�.x; al/

� ��.x; a1/C ��.a1; a2/C � � �C ��.al�1; al/

� .1C �/.K�n.x; y/C ı/� .1C �/..1C �/K�.x; y/C 1/

� .1C �/2.RC 1/;

which is a contradiction. Thus, a0; a1; : : : ; am 2K 0 and

K�.x; y/� .1C �/.K�n.x; y/C ı/:

Since ı 2 .0; 1/ was arbitrary we see that

K�.x; y/� .1C �/K�n.x; y/:
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