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We construct new examples of quasi-asymptotically conical (QAC) Calabi–Yau
manifolds that are not quasi-asymptotically locally Euclidean (QALE). We do so by
first providing a natural compactification of QAC–spaces by manifolds with fibered
corners and by giving a definition of QAC–metrics in terms of an associated Lie
algebra of smooth vector fields on this compactification. Thanks to this compacti-
fication and the Fredholm theory for elliptic operators on QAC–spaces developed
by the second author and Mazzeo, we can in many instances obtain Kähler QAC–
metrics having Ricci potential decaying sufficiently fast at infinity. This allows us to
obtain QAC Calabi–Yau metrics in the Kähler classes of these metrics by solving a
corresponding complex Monge–Ampère equation.

53C55, 58J05

Introduction 30

1. Manifolds with fibered corners 40

2. Manifolds with fibered corners coming from Sasaki–Einstein
orbifolds 58

3. The Ricci-flat Kähler cone metric seen as a QAC–metric 68

4. Existence of Kähler QAC–metrics asymptotic to the Ricci-flat
Kähler cone metric 76

5. Solving the complex Monge–Ampère equation 86

Appendix. More examples of Kähler–Einstein orbifolds admitting a
crepant resolution 95

References 97

Published: 5 March 2019 DOI: 10.2140/gt.2019.23.29

http://msp.org
http://www.ams.org/mathscinet/search/mscdoc.html?code=53C55, 58J05
http://dx.doi.org/10.2140/gt.2019.23.29


30 Ronan J Conlon, Anda Degeratu and Frédéric Rochon

Introduction

A complete Kähler manifold .X;g;J / of complex dimension m is Calabi–Yau if it
is Ricci-flat and has a nowhere vanishing parallel holomorphic volume form �X 2
H 0.X IKX /. In this case, the holonomy of .X;g/ is contained in SU.m/ and we
say that g is a Calabi–Yau metric. Since the resolution of the Calabi conjecture by
Yau [43], we know that a compact Kähler manifold admits a Calabi–Yau metric if and
only if its canonical line bundle is trivial, in which case every Kähler class contains a
unique Calabi–Yau metric obtained by solving a complex Monge–Ampère equation.
As subsequently shown by Tian and Yau in [41; 42], on noncompact complete Kähler
manifolds, one can also obtain many examples of complete Calabi–Yau metrics by
solving a corresponding complex Monge–Ampère equation, but the triviality of the
canonical line bundle is not the only required condition. One also needs to take into
account the asymptotic behavior of the metric at infinity.

For example, if � � SU.m/ is a finite subgroup acting freely on Cm n f0g and if
X !Cm=� is a crepant resolution, then, as pointed out by Joyce [25], the results of
Tian and Yau or of Bando and Kobayashi [6; 7], combined with the results of Bando,
Kasue and Nakajima [5], allow one to construct examples of Calabi–Yau metrics on X

that are asymptotically locally Euclidean (ALE for short). In fact, Joyce, in [25; 24],
gave a more direct and self-contained proof of the existence of these metrics by using a
Moser iteration with weights which yields better control of the solution of the complex
Monge–Ampère equation at infinity. His approach was subsequently generalized by
various authors to obtain examples of asymptotically conical (AC for short) Calabi–Yau
manifolds; see van Coevering [11; 12], Conlon and Hein [13; 14], and Goto [21].

In [24; 26], Joyce generalized this approach in another direction by considering a
crepant resolution � W X ! Cm=� with � � SU.m/ not acting freely on Cm n f0g,
that is, with Cm=� having nonisolated singularities going off to infinity. For that
purpose, Joyce introduced the notion of quasi-asymptotically locally Euclidean metrics
(QALE–metrics for short). As the name suggests, away from the singularities, these
metrics resemble ALE–metrics. However, near rays of singularities going off to infinity,
the crepant resolution introduces some topology and we can no longer use the Euclidean
metric as a local model. More precisely, if p 2 .Cm=�/ n f0g is a singular point, then
there is a neighborhood V of p of the form

V Df.z; �/2Cm�1=�p�C W j�j>ı; � < arg�<�Cı; jzj<ıj�jg �Cm�1=�p�C;
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with p corresponding to the point .0; �/ 2 Cm�1=�p �C for some � 2 C�, where
�p � SU.m�1/ is the stabilizer of this point in � , ı > 0 and � 2R. Now, the type of
crepant resolutions � W X !Cm=� that Joyce considers are local product resolutions
in the sense that ��1.V / corresponds to a subset of

Yp �C;

with Yp a (local product) crepant resolution of Cm�1=�p . Suppose now for simplicity
that �p acts freely on Cm�1nf0g, which is automatic if mD3. Then, in this case, an ex-
ample of a QALE–metric on ��1.V / is given by the restriction to ��1.V / of the Carte-
sian product of an ALE–metric gYp

on Yp and the Euclidean metric gE on C , that is,

(1) gQALE D gYp
CgE :

More generally, if �p does not act freely on Cm�1, we can assume inductively that
QALE–metrics have been defined in dimension m� 1, so that one can still use (1)
as a model of a QALE–metric on V , this time however with gYp

a QALE–metric
on Yp instead of an ALE–metric. Using local models as in (1), one can then define the
quasi-isometric class of QALE–metrics as the class of complete metrics which, outside
a compact set, are quasi-isometric to an ALE–metric away from the singularities and
quasi-isometric to the model (1) in the neighborhood ��1.V / near a given singular point
p 2Cm=� . However, to solve the complex Monge–Ampère equation and construct
Calabi–Yau QALE–metrics, it is important to have some control on the derivatives
of the metric. For this reason, in his definition of QALE–metrics, Joyce also imposes
some control on the asymptotic behavior of the derivatives of a QALE–metric with
respect to the local model (1). With these extra assumptions, Joyce [24, Theorem 9.3.3]
proves the following theorem.

Theorem (Joyce [24]) Let � be a finite subgroup of SU.m/ and X a crepant
resolution of Cm=� . Then each Kähler class of QALE–metrics on X contains a
unique Kähler Ricci-flat QALE–metric.

Since the complex Monge–Ampère equation is used to obtain these Calabi–Yau metrics,
the form of these metrics is not explicit, but Joyce in [24, Section 9.3] expressed
the hope that QALE–metrics with holonomy Sp.m/ should also admit an explicit
construction using hyper-Kähler quotients. A first example in this direction was obtained
by Carron [9], who showed that the Nakajima metric, constructed by Nakajima [38] via
hyper-Kähler quotients on the Hilbert scheme of n points on C2, is a QALE–metric
in the sense of Joyce.
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Besides the Moser iteration with weights that generalizes almost immediately to QALE–
metrics, one of the key ingredients in the proof of [24, Theorem 9.3.3] is the bijectivity
of the Laplacian of a QALE–metric when acting on some suitable weighted Hölder
space, a result that Joyce [24, Section 9] obtained using the maximum principle and
barrier functions. Joyce also made a more general conjecture [24, Conjecture 9.5.16]
on the mapping properties of the Laplacian of a QALE–metric. This conjecture has
recently been proven by the second author and Mazzeo [17] by obtaining heat kernel
estimates via the methods of Grigor’yan and Saloff-Coste [23]. In fact, in [17], the
second author and Mazzeo introduce a much wider class of Riemannian metrics for
which their results hold, namely the class of quasi-asymptotically conical metrics
(QAC–metrics for short) which generalizes the class of QALE–metrics in the same
way that the class of AC–metrics generalizes the class of ALE–metrics. For example,
a Cartesian product of ALE–metrics is a QALE–metric, and likewise, a Cartesian
product of AC–metrics is a QAC–metric (see Example 1.22).

The goal of the present paper is to extend Joyce’s program [24, Section 9] to the wider
setting of QAC–metrics and exhibit new examples of Calabi–Yau QAC–metrics, in
particular, examples of Calabi–Yau QAC–metrics that are neither QALE–metrics nor
Cartesian products of AC–metrics. To achieve this, one of the key ingredients is to
introduce a natural compactification of QAC–manifolds by manifolds with fibered
corners in the sense of Albin, Leichtnam, Mazzeo and Piazza [1] and Debord, Lescure
and Rochon [16]. On the one hand, as in several works of Melrose and collaborators for
other types of geometries, this allows one to give a simple description of QAC–metrics
in terms of a natural Lie algebra of vector fields on the compactification; see Epstein,
Mazzeo, Melrose and Mendoza [34; 35; 31; 18; 30; 32]. More importantly, when it
comes to solving the complex Monge–Ampère equation, it allows us to solve iteratively
the equation on each face of the compactification, which in turn allows us to reduce
the equation to a situation where the Ricci potential decays fast enough at infinity so
that the methods of Tian and Yau [41; 42] can be applied.

Remark For the Nakajima metric on the Hilbert scheme of n points on C2, such a
compactification has been independently obtained by Melrose [37] using the hyper-
Kähler quotient construction of the metric.

Postponing to Section 1 a detailed description of the compactification, let us begin by
explaining how to construct it for a QALE–metric on a crepant resolution X of Cm=�

in the simple case where the singularities going off to infinity are all of complex
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codimension k � 2. In this situation, we first radially compactify Cm=� to an orbifold
with boundary Cm=� by adding a boundary @Cm=� Š S2m�1=� at infinity as
in [35, Section 1.8]. The boundary itself is then an orbifold, but by our simplifying
assumption, its singularities correspond to a disjoint union S DSSi of singular edges
S1; : : : ;S` . A first step in constructing the compactification is to blow up in the sense
of Melrose [33; 36] each singular edge of the boundary within Cm=� , that is,

(2) zXsc WD ŒCm=�IS �D ŒCm=�IS1; : : : ;S`�;

with blow-down map
ˇW zXsc!Cm=�:

As illustrated in Figure 1, this yields an orbifold with corners with one boundary
hypersurface Hi WD ˇ�1.Si/ for each singular edge Si and one boundary hypersurface
H`C1 D ˇ�1.@Cm=�/ nS corresponding to the lift of the boundary of Cm=� .

H1

H2

H3

H4

zXsc

H`C1 D H5

ˇ S1

S2

S3

S4

Cm=�

Figure 1: The blow-down map ˇW zXsc!Cm=� in a case where `D 4 , with
the dotted lines corresponding to the singularities of Cm=�

Moreover, for i � `, the blow-down map ˇ restricts on Hi to induce a fiber bundle
structure

(3)

Ck=�i
// Hi

�i

��

Si

with base Si smooth, but with fibers singular at the origin, where �i � SU.k/ is some
finite subgroup acting freely on Ck n f0g.
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The manifold with corners yXQAC compactifying X is then obtained by observing that
the crepant resolution � W X !Cm=� naturally extends to a resolution � W yXQAC!
Cm=� with (3) replaced by

(4)

Y i
// yHi

y�i

��

Si

where Y i is the radial compactification of a crepant resolution �i W Yi!Ck=�i . Given
a suitable Kähler QAC–metric g on X, our strategy to construct a Calabi–Yau QAC–
metric is to first solve the complex Monge–Ampère equation on each fiber Y i of y�i ,
which amounts to finding a Calabi–Yau ALE–metric on Yi . Using these solutions, one
can then replace the metric g with another Kähler QAC–metric g0 in the same Kähler
class, but with the extra property that its Ricci potential, given by

(5) r 0 D log
�

.!0/m

c� yXQAC
^� yXQAC

�
;

decays sufficiently fast at infinity, where !0 is the Kähler class of g0, � yXQAC
is some

nowhere vanishing holomorphic volume form on yXQAC and c is a nonzero constant.
One can then use standard techniques to solve the complex Monge–Ampère equation

log
�
.!0Cp�1@x@u/m

.!0/m

�
D�r 0

and obtain a Calabi–Yau QAC–metric with Kähler form !0Cp�1@x@u.

Of course, as long as we are considering QALE–metrics, this is essentially the ap-
proach of Joyce rephrased in terms of the compactification yXQAC . In particular, the
compactification is not really needed, since in this simpler setting the bundles (3) and (4)
are in fact trivial and to construct a Kähler QALE–metric near yHi with Ricci potential
decaying at infinity, one can simply glue directly the Cartesian product

(6) gEi
CgYi

on .RC�Si/�Yi

to the Euclidean metric on Cn=� , where

gEi
D dr2C r2gSi

is the Euclidean metric on RC�Si and gYi
is a Calabi–Yau ALE–metric on Yi .
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yHiyH`C1

gC

gEi
C gYi

Figure 2: Gluing of gEi
CgYi

to gC , with the gluing region in gray

Now, if we replace Cm=� with the Euclidean metric by a more general orbifold
Calabi–Yau cone .C;gC /, gluing the Cartesian product (6) in a neighborhood of the
singularities corresponding to Hi can still be done directly. However, if gC is not
Euclidean, then the QAC–metric introduced in this way will usually fail to have a Ricci
potential that decays at the boundary face yH`C1 . This is illustrated in Figure 2, where
the region in bold on yH`C1 corresponds to the directions in which the Ricci potential
fails to decay.

One could instead try to glue gEi
CgYi

to gC as illustrated in Figure 3, but then the
Ricci potential fails to decay on yHi , in this case even if gC is the Euclidean metric.

Instead, if one uses the compactification, it suffices to put the model (6) on yHi and keep
the model given by gC on H`C1 . Provided that the two models agree on Hi \H`C1 ,
one can then extend the Kähler form in the interior as a closed .1; 1/–form. By
continuity, this form will then be positive definite in a neighborhood of yHi and yH`C1 .
More precisely, it will be the Kähler form of a QAC–metric with Ricci potential
decaying at both yHi and yH`C1 .

Thanks to this natural compactification of QAC–manifolds by manifolds with fibered
corners, we prove the following result, where we refer the reader to Definition 3.6 for
some of the terminology and to Theorem 5.7 and Corollary 5.8 for a more precise and
slightly more general statement.

yHiyH`C1

gC gEi
C gYi

Figure 3: A second way of gluing gEi
CgYi

to gC , with the gluing region in gray
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Theorem A Let Z be a compact orbifold of real dimension 2nC 1 and .C;gC ;JC /

a quasiregular Calabi–Yau cone on C D RC�Z with parallel holomorphic volume
form �C . Let X be a Kähler orbifold with nowhere vanishing holomorphic volume
form �X and with singular set of complex codimension � � 2. Suppose that there
is a compact set K � X such that X nK is biholomorphic to ..�;1/�Z;JC / for
some � > 0. Finally, suppose that there is a crepant resolution � W yX ! X with �X

admitting a lift � yX 2H 0. yX IK yX /. Then, for any Kähler QAC–metric g asymptotic
to gC with rate ˛ such that 4� ˛ � 2�, the complex Monge–Ampère equation

log
�
.!Cp�1@x@u/nC1

.!/nC1

�
D�r

has a solution u such that ! Cp�1@x@u is the Kähler form of a Calabi–Yau QAC–
metric asymptotic to gC with rate ˛ , where ! is the Kähler form of g and r is its
Ricci potential defined in terms of � yX as in (5).

When one takes X D CnC1=� in Theorem A for a choice of finite subgroup � �
SU.nC1/ for which X admits a local product Kähler crepant resolution, a subtle point
hidden in Definition 3.6 is that Theorem A is not quite the same as the result of Joyce
[24, Theorem 9.6.1]. Indeed, in [24, Theorem 9.6.1], one of the hypotheses on the
initial QALE–metric g is that its Ricci potential decays at each boundary hypersurface
of yXQAC , whereas in Theorem A, our result is stronger in that the Ricci potential
only has to decay at the maximal boundary hypersurface ( yH`C1 in the simpler setting
described above), but weaker in that the rate of decay ˛ at that face has to be at least 4

(Theorem 9.6.1 of [24] only requires that ˛ be strictly larger than 2).

More interestingly, Theorem A applies to situations where the geometry at infinity
is QAC, but not QALE. As described in Example 2.4, our main source of examples
is given by applying the Calabi ansatz [8; 29] to a Kähler–Einstein Fano orbifold D,
which yields an orbifold Calabi–Yau cone metric gC on C DKD nD. One can then
take X DKD in Theorem A provided that KD admits a local product Kähler crepant
resolution in the sense of [24]. This is the case for instance if D itself admits a local
product Kähler crepant resolution yD, in which case K yD is automatically a local product
Kähler crepant resolution of KD .

Nevertheless, given such a D, one still needs to find a suitable Kähler QAC–metric in
order to apply Theorem A. For AC–metrics, it is very easy to produce examples of
Kähler AC–metrics thanks to a standard trick comprising cutting off the model metric
at infinity by using a convex function. In Lemma 4.1, we do in fact use this trick to
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construct orbifold Kähler AC–metrics on X. Unfortunately though, this trick does
not seem to generalize to QAC–metrics or QALE–metrics, the reason being that the
crepant resolution � W yX !X introduces some topology at infinity, so that there are
typically no model QAC–metrics with Kähler form near infinity given by

p�1@x@u
for some smooth real-valued function u. In particular, just knowing that yX is Kähler
is not sufficient to conclude that yX admits Kähler QAC–metrics.

To overcome this difficulty, we develop a method that allows one to construct a Kähler
QAC–metric from an orbifold AC–metric g on X by gluing suitable local models
near each singularity, effectively implementing geometrically the crepant resolution.
In simple cases, this can be done directly by using cut-off functions. However, in order
to be able to tackle situations where the singularities have arbitrary depth relatively
easily, we have chosen to proceed with a systematic approach similar to what Kottke
and Singer [27] do for gluing monopoles, that is, the gluing is implemented by using a
manifold with corners with the various faces describing the metrics that need to be glued.

Deferring to Section 4 a detailed description of this manifold with corners, let us for the
moment give the main intuitive idea behind its construction by restricting to the simple
setting of (2). To simplify even further, suppose moreover that the crepant resolution
of Cm=� is obtained by first blowing up the origin (in the sense of algebraic geometry)
to obtain KD with D WDCPm�1=� 0 for some finite subgroup � 0 � SU.m/, so that
one can replace (2) with

(7) zXsc WD ŒKD IS �D ŒKD IS1; : : : ;S`�;

where KD is the radial compactification of KD using the Calabi–Yau cone metric. In
this case, the singularity Si on the boundary of zXsc corresponds to the boundary @†i

of a singular edge †i of complex codimension k in zXsc , and the singular set of zXsc is
given by the disjoint union

†D
[

i

†i :

Introducing a parameter of deformation " 2 Œ0; 1/, one can then consider the orbifold
with corners

X WD Œ zXsc � Œ0; 1/I†1 � f0g; : : : ; †` � f0g�:

This orbifold with corners has one boundary hypersurface Hi coming from the lift
of Hi � Œ0; 1/ to X. For each i , the blow-up of †i � f0g also introduces a boundary
hypersurface Bi . Notice in particular that the blow-down map X ! zXsc � Œ0; 1/
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naturally induces a fiber bundle structure,

(8)

Ck=�i
// Bi

'i

��

†i � f0g
Finally, as illustrated in Figure 4, the lift of the boundary hypersurface zXsc�f0g induces
the boundary hypersurface B`C1 on X.

Bi

B`C1

Hi
H`C1

"

Figure 4: The orbifold with corners X

The manifold with corners implementing the gluing is then obtained by observing
that the resolution � W yXQAC! zXsc naturally extends to a resolution � W yX ! X. In
particular, the resolution extends in such a way that the fiber bundle (8) is replaced by

(9)

Y i
// yBi

y'i

��

†i

with Y i the radial compactification of a crepant resolution Yi of Ck=�i . To see how yX
can be used to implement the gluing, notice that an orbifold Kähler AC–metric g

on KD naturally induces a metric on the boundary hypersurface B`C1 of X. It also
induces an orbifold Kähler metric gi on Bi with Kähler form

(10) !i D '�i !†i
C!'i

;

where !†i
is a Kähler form on †i and !'i

is a .1; 1/–form which restricts on each
fiber of (8) to a Euclidean metric. On yX and yBi , one can therefore replace (10) with

(11) y!i D '�i !†i
C!y'i

;
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where !y'i
is a .1; 1/–form which restricts on each fiber of (9) to the Kähler form of

an ALE–metric asymptotic to the corresponding Euclidean metric induced by !'i
. In

other words, the metric ygi with Kähler form (11) is the local model that we want to glue
to g at the singularity †i . In terms of the manifold yX, this gluing can be implemented
by considering a closed .1; 1/–form y! on (each level set of " in) yX which restricts
to y!i on yBi and to the Kähler form of g on yB`C1 D B`C1 . By continuity, for ı > 0

sufficiently small, y!j"Dı will then be positive definite and will induce the desired
Kähler QAC–metric on yX j"Dı Š yXQAC . Strictly speaking, to make this continuity
argument rigorous, one must also introduce a suitable vector bundle on yX. We refer
the reader to Section 4 for its detailed description.

The biggest advantage of gluing using the manifold with corners yX is that it is relatively
easy to generalize to singularities of arbitrary depth. Referring to Theorem 4.8 for the
precise statement, let us mention some examples of the Kähler QAC–metrics that it
produces.

Theorem B (Corollary 4.10) Let .D1;g1/; : : : ; .Dq;gq/ be Kähler–Einstein orb-
ifolds with at worst isolated singularities of complex codimension at least 2. Suppose
that each .Di ;gi/ admits a Kähler crepant resolution yDi . Consider the Cartesian
products

D WDD1 � � � � �Dq and yD WD yD1 � � � � � yDq:

Let gC be the orbifold Calabi–Yau cone metric on KD nD given by the Calabi ansatz.
Then, on K yD , there exist Kähler QAC–metrics that are asymptotic to gC at any
rate ˛ > 0.

Combining with Theorem A yields the following.

Corollary C On K yD as in Theorem B, there are Calabi–Yau QAC–metrics asymptotic
to gC with rate ˛ D 2�, where � is the complex codimension of the singular set of D.

As explained in the appendix, it is possible to push this construction further, giving
even more examples of Calabi–Yau QAC–metrics; see (A.1) and the discussion that
follows for details.

The paper is organized as follows. In Section 1, we give a definition of QAC–metrics
in terms of manifolds with fibered corners and we review some of their properties.
In Section 2, we describe how orbifold Calabi–Yau cones can be compactified by
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an orbifold with fibered corners and how one obtains a corresponding manifold with
fibered corners when there is a local product Kähler crepant resolution. In Section 3,
we explain how an orbifold Calabi–Yau cone metric can be seen as a QAC–metric
on the corresponding orbifold with fibered corners. In Section 4, we introduce the
manifold with corners yX and explain how it can be used to produce examples of Kähler
QAC–metrics. Finally, in Section 5, we prove our main result, Theorem A, by solving
the corresponding complex Monge–Ampère equation.
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1 Manifolds with fibered corners

Let M be a compact manifold with corners in the sense of Melrose [33; 36] with
boundary hypersurfaces H1; : : : ;Hk . In particular, we assume that each boundary
hypersurface of M is embedded in M and we denote by @M the union of all the
boundary hypersurfaces of M. Suppose that each boundary hypersurface Hi comes
endowed with a fiber bundle structure �i W Hi ! Si with base Si and with each fiber
a manifold with corners. We denote by � D .�1; : : : ; �k/ the collection of all fiber
bundle maps.

Definition 1.1 [2; 1; 16] We say that .M; �/ is a manifold with fibered corners if
there is a partial order on the boundary hypersurfaces such that:

� Any subset I of boundary hypersurfaces such that
T

i2I Hi ¤ ∅ is totally
ordered.
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� If Hi <Hj , then Hi\Hj ¤∅, the map �i jHi\Hj W Hi\Hj!Si is a surjective
submersion and Sji WD �j .Hi \ Hj / is one of the boundary hypersurfaces
of the manifold with corners Sj . Moreover, there is a surjective submersion
�ji W Sji! Si such that �ji ı�j D �i on Hi \Hj .

� The boundary hypersurfaces of Sj are given by the Sji for Hi <Hj .

It follows directly from this definition that each base Sj has a natural manifold with
fibered corners structure induced by the maps �ji W Sji! Si for each i with Hi <Hj .
Similarly, each fiber of �i W Hi ! Si has a natural manifold with fibered corners
structure. Moreover, Si is a smooth closed manifold whenever Hi is minimal with
respect to the partial order, whereas the fibers of �i are smooth closed manifolds
whenever Hi is maximal. This allows one to prove many assertions by proceeding by
induction on the depth of .M; �/, that is, the largest codimension that a corner of M

may have, or by induction on the relative depth of a boundary hypersurface, where
we recall that the relative depth of a boundary hypersurface Hi in M is the largest
integer j such that there exist j � 1 boundary hypersurfaces H�1

; : : : ;H�j�1
with

Hi <H�1
< � � �<H�j�1

:

The notion of a manifold with fibered corners is intimately related to the notion of a
stratified space, so let us recall briefly what is meant by this latter term.

Definition 1.2 A stratified space of dimension n is a locally compact separable
metrizable space X together with a stratification, which is a locally finite partition
SDfsig into locally closed subsets of X, called the strata, which are smooth manifolds
of dimension dim si � n such that at least one stratum is of dimension n and

si \xsj ¤∅ () si � xsj :

In this case we write that si � sj and si < sj if si ¤ sj . A stratification induces a
filtration

∅�X0 � � � � �Xn DX;

where Xj is the union of all strata of dimension at most j . The strata included in
X � WDX nXn�1 are said to be regular, whereas the strata included in Xn�1 are said
to be singular. Given a stratified space, notice that the closure of each of its strata is
also naturally a stratified space.

Geometry & Topology, Volume 23 (2019)



42 Ronan J Conlon, Anda Degeratu and Frédéric Rochon

Remark 1.3 In the present paper, it is crucial for us to impose no restrictions on
the codimension of the singular strata. Notice however that in other situations, it is
quite common and natural to require that the singular strata are always at least of
codimension 2; see for instance [20].

A good measure of the complexity of a stratified space is given by its depth, a notion
which we now recall.

Definition 1.4 The depth of a stratified space .X; S/ is the largest k such that one
can find kC 1 different strata with

s1 < s2 < � � �< sk < skC1:

On the other hand, the relative depth of a stratum s in X is the largest k such that
there exists k strata with

s < s1 < � � �< sk :

More generally, the relative depth of a point p 2X is the relative depth of the unique
stratum s containing p .

As observed by Melrose and described in [1; 16], a manifold with fibered corners M

always arises as a resolution of a stratified space SM given by SM DM=�, where �
is the relation

p� q () pD q or p;q 2Hi with �i.p/D�i.q/ for some hypersurface Hi :

In terms of the quotient map
ˇW M ! SM ;

which we call the blow-down map, the regular stratum is given by ˇ.M n @M /.
More importantly, the blow-down map gives a one-to-one correspondence between the
boundary hypersurfaces Hi of M and the closure of the singular strata xsi WD ˇ.Hi/

of SM. The base Si of the fiber bundle �i W Hi ! Si is in fact itself a resolution
of the stratified space xsi and we have that si D ˇ.��1

i .Si n @Si//. Moreover, the
correspondence between boundary hypersurfaces and singular strata is compatible with
the partial orders, ie

Hi <Hj () si < sj ;

so that the relative depth of a boundary hypersurface is equal to the relative depth of
the corresponding stratum. Notice also that the depth of SM as a stratified space is
equal to the depth of M as a manifold with corners.
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Definition 1.5 The stratified space SM is said to be the blow-down of the manifold
with fibered corners .M; �/. Conversely, the manifold with fibered corners .M; �/ is
said to be a resolution of the stratified space SM. More generally, a stratified space
which admits a resolution by a manifold with fibered corners is said to be smoothly
stratified.

Remark 1.6 Not all stratified spaces are smoothly stratified, but the property of being
smoothly stratified can be described intrinsically on the stratified space without referring
to a manifold with fibered corners; see for instance [1; 16].

Remark 1.7 The notion of resolution in Definition 1.5 should not be confused with
the notion of crepant resolution discussed in the introduction. In the first case, the
singularity is resolved using a manifold with corners and can be done quite generally,
while the latter case is much more specific, since the singularity must then be of a
particular complex geometric nature and is resolved by a smooth complex manifold
with suitable properties.

Example 1.8 An orbifold is naturally a smoothly stratified space — see for instance
[40, Section 4.4.10] or [19, pages 210–211] — and the corresponding manifold with
fibered corners is obtained by blowing up the singular strata in an order compatible
with the partial order.

Let x1; : : : ;xk be some boundary-defining functions for the boundary hypersurfaces
H1; : : : ;Hk of M; that is, xi is positive on M nHi , xi D 0 on Hi and dxi is
nowhere zero on Hi . For each i , we will usually assume, unless otherwise stated,
that the boundary-defining function xi is identically equal to 1 outside some tubular
neighborhood of Hi . This assumption is not restrictive, but turns out to be very
convenient. We also assume that the boundary-defining functions x1; : : : ;xk are
compatible with � in the following sense.

Definition 1.9 We say that the boundary-defining functions x1; : : : ;xk are compatible
with the collection of fiber bundle maps � if for each i and j with Hi < Hj , the
restriction of xi to Hj is constant along the fibers of �j W Hj ! Sj .

The assumption of compatibility with � certainly imposes some restrictions on the
choice of boundary-defining functions. However, it imposes no restriction on the type of
manifold with fibered corners, since by [16, Lemma 1.4], we know that manifolds with
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fibered corners always admit compatible boundary-defining functions. One important
advantage of this compatibility condition is that for each i , the other boundary-defining
functions xj naturally define boundary-defining functions for Si that are compatible
with the induced manifold with fibered corners structure. Another advantage, as the
next lemma shows, is that it gives a nice local product decomposition of the manifold
with fibered corners structure near a boundary hypersurface.

Lemma 1.10 If x1; : : : ;xk are boundary-defining functions compatible with � , then
for each i , there exists a tubular neighborhood

ci W Hi � Œ0; �/ ,!M

such that

(i) c�i xi D pr2 ;

(ii) c�i xj D xj ı pr1 for j ¤ i ;

(iii) c�1
i ı�j ı ci.h; t/D �j .h/ for h 2Hi \Hj and Hj <Hi ;

(iv) c�1
i ı�j ı ci.h; t/D .�j .h/; t/ for h 2Hi \Hj and Hj >Hi ;

where pr1W Hi � Œ0; �/!Hi and pr2W Hi � Œ0; �/! Œ0; �/ are the projections on the
first and second factors.

Proof Let � 2 C1.TM / be a vector field such that

� dxi.�/ > 0 everywhere on Hi ;

� dxj .�/D 0 in a neighborhood of Hj in M for j ¤ i ;

� �jHj is tangent to the fibers of �j WHj ! Sj for Hj <Hi .

Then, in a sufficiently small neighborhood Ni of Hi , the vector field � WD � =dxi.�/ is
well defined and satisfies the same properties as � with the extra feature that dxi.�/� 1

in Ni . By construction, the flow of � then generates the desired tubular neighborhood,
the last condition being satisfied thanks to the fact that the boundary-defining functions
x1; : : : ;xk are compatible with � .

Recall from [33] that

Vb.M / WD f� 2 TM j �xi 2 xiC1.M / for all ig
is the Lie algebra of b–vector fields on M, that is, smooth vector fields on M which
are tangent to all boundary hypersurfaces. Notice that this definition does not depend
on the choice of boundary-defining functions xi .
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Definition 1.11 A quasi fibered boundary vector field, or QFB–vector field for short,
is a b–vector field � such that for each i ,

� �jHi
is tangent to the fibers of �i ;

� �vi 2 v2
i C1.M /, where vi D

Q
Hj�Hi

xj .

We denote the space of QFB–vector fields by VQFB.M /.

Remark 1.12 This is closely related to the definition of an iterated fibered corners
vector field given in [16], the difference being that in [16], one requires that �xi 2
x2

i C1.M / for each i instead of asking that

�vi 2 v2
i C1.M /:

Example 1.13 If M is a manifold with boundary, �W @M ! S is a fiber bundle and
x2C1.M / is a boundary-defining function, then VQFB.M / is the Lie algebra of fibered
boundary vector fields (or �–vector fields) introduced by Mazzeo and Melrose [32].
If in fact S D @M and � D Id, then VQFB.M / is the Lie algebra of scattering vector
fields (or asymptotically conical vector fields) introduced by Melrose [35].

When there are corners of codimension 2 and higher, we can give a simple description
of QFB–vector fields in terms of coordinates adapted to the fibered corners structure.
If p 2 @M is contained in the corner H1\ � � � \H` , we can for simplicity label the
boundary hypersurfaces in such a way that

H1 < � � �<H`:

Let x1; : : : ;x` be the corresponding boundary-defining functions. In a neighborhood
of p in which each fiber bundle �i is trivial, consider tuples of functions yi D
.y1

i ; : : : ;y
ki

i / for i 2 f1; : : : ; `g and z D .z1; : : : ; zq/ such that

(1.1) .x1;y1; : : : ;x`;y`; z/

defines coordinates near p with the property that on Hi , .x1;y1; : : : ;xi�1;yi�1;yi/

induces coordinates on the base Si with �i corresponding to the map

.x1;y1; : : : ; yxi ;yi ; : : : ;x`;y`; z/ 7! .x1;y1; : : : ;xi�1;yi�1;yi/;

where the notation “ y ” above the variable xi denotes its omission. In these coordinates,
one can check that the Lie algebra VQFB.M / is locally spanned over C1.M / by
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the vector fields

(1.2) v1x1

@

@x1

; v1

@

@y
n1

1

; v2x2

@

@x2

� v1

@

@x1

; v2

@

@y
n2

2

; : : : ;

v`x`
@

@x`
� v`�1

@

@x`�1

; v`
@

@y
n`
`

;
@

@zp

for p 2 f1; : : : ; qg and ni 2 f1; : : : ; kig, where x DQ`
iD1 xi and vi D

Q`
mDi xm . In

other words, in these coordinates, a QFB–vector field � 2 VQFB.M / is of the form

(1.3) a1v1x1

@

@x1

C
X̀
iD2

ai

�
vixi

@

@xi
�vi�1

@

@xi�1

�
C
X̀
iD1

kiX
jD1

bijvi
@

@y
j
i

C
qX

pD1

cp
@

@zp
;

with ai ; bij ; cp 2 C1.M /; cf [16, equation (2.6)].

Definition 1.14 When the manifold with fibered corners .M; �/ is such that Si DHi

and �i D Id for each maximal boundary hypersurface Hi , we say that a QFB–vector
field is a quasi-asymptotically conical vector field (QAC–vector field for short) and
.M; �/ is a QAC–manifold with fibered corners.

The space VQFB.M / clearly depends on the fiber bundle structure of each boundary
hypersurface Hi . It also depends on the choice of boundary-defining functions.

Definition 1.15 If H1; : : : ;Hk is an exhaustive list of all the boundary hypersurfaces
of the manifold with fibered corners .M; �/, then two different choices x1; : : : ;xk

and x0
1
; : : : ;x0

k
of boundary-defining functions are said to be QFB–equivalent if they

yield the same Lie algebra of QFB–vector fields. If .M; �/ is a QAC–manifold with
fibered corners, then we will also say that they are QAC–equivalent when they are
QFB–equivalent.

The next lemma gives a criterion to determine when two collections of boundary-
defining functions are QFB–equivalent.

Lemma 1.16 If H1; : : : ;Hk is an exhaustive list of all the boundary hypersurfaces of
the manifold with fibered corners .M; �/, then two different choices x1; : : : ;xk and
x0

1
; : : : ;x0

k
of boundary-defining functions compatible with � are QFB–equivalent if

and only if for all i , the function

fi WD log
�
v0i
vi

�
D

X
Hj�Hi

log
�

x0j
xj

�
2 C1.M /

is such that for all Hj �Hi , fi jHj D ��j hij for some hij 2 C1.Sj /.

Geometry & Topology, Volume 23 (2019)



Quasi-asymptotically conical Calabi–Yau manifolds 47

Proof Consider the Lie algebra of vector fields

Vb;�.M / WD f� 2 Vb.M / j .�i/�.�jHi
/D 0 for all ig:

Clearly then, by Definition 1.11, the two choices of boundary-defining functions yield
the same space of QFB–vector fields if and only if for all � 2 Vb;�.M /,

(1.4)
dvi

v2
i

.�/ 2 C1.M / for all i () dv0i
.v0i/2

.�/ 2 C1.M / for all i:

Now, by definition of fi 2 C1.M /, we have that v0i D efi vi , so that

(1.5)
dv0i
.v0i/2

D e�fi

�
dvi

v2
i

C dfi

vi

�
:

In particular, if for all i and all Hj � Hi , fi jHj D ��j hij for some hij 2 C1.Sj /,
then we see from (1.5) that (1.4) holds. Conversely, if for some Hi and some Hj �Hi ,
fi jHj is not the pullback of some element of C1.Sj /, then we can find � 2 Vb;�.M /

such that dfi.�/jHj ¤ 0 and

dv`

v2
`

.�/ 2 C1.M / for all `;

so that by (1.5), .dv0i=.v0i/2/.�/ is not bounded near Hj , implying in particular that (1.4)
does not hold.

It is clear from the definition that VQFB.M / is in fact a Lie subalgebra of Vb.M /. In
particular, we can define the space Diff�QFB.M / of QFB–differential operators as the
universal enveloping algebra of VQFB.M / over C1.M /. Thus, Diffq

QFB.M / is the
space of operators generated by multiplication by elements of C1.M / and the action
of up to q QFB–vector fields.

Now, as described in (1.2), the Lie algebra VQFB.M / is a locally free sheaf of
rank dim M over C1.M /. Hence, by the Serre–Swan theorem, there exists a natural
smooth vector bundle, the QFB–tangent bundle, which we shall denote by �TM !M,
and a natural map �� W �TM !TM restricting to an isomorphism on M n@M such that

VQFB.M /D .��/�C1.M I �TM /:

More precisely, at a point p 2M, the fiber of �TM is given by

�TpM D VQFB.M /=Ip �VQFB.M /;

where Ip is the ideal of smooth functions vanishing at p . It is then natural to define
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the QFB–cotangent bundle to be the dual �T �M of the QFB–tangent bundle �TM.
In terms of the coordinates (1.1) near H1\ � � � \H` , a local basis of sections of the
QFB–cotangent bundle is given by

(1.6)
dv1

v2
1

;
dy

n1

1

v1

; : : : ;
dv`

v2
`

;
dy

n`
`

v`
; dzk ;

for k 2 f1; : : : ; qg and ni 2 f1; : : : ; kig.

Definition 1.17 A quasi fibered boundary metric (QFB–metric for short) is a choice
of Euclidean metric g� for the vector bundle �TM. A smooth QFB–metric on M n@M
is a Riemannian metric on M n @M induced by some QFB–metric g� via the map
�� W �TM ! TM. Hoping this will lead to no confusion, we will also denote by g�

the smooth QFB–metric induced by a QFB–metric g� 2 C1.M I �T �M ˝ �T �M /.

Remark 1.18 Because M is a compact space and all of the Euclidean metrics of a
vector bundle on a compact space are quasi-isometric, notice that all smooth QFB–
metrics are automatically quasi-isometric among themselves. Thus, more generally, if a
Riemannian metric on M n@M is quasi-isometric to a smooth QFB–metric gQFB and
if all of its derivative taken with respect to the covariant derivative of gQFB are bounded,
then we say that it is a QFB–metric. Similarly, we say that a QFB–metric g� is polyho-
mogeneous if g� is induced by a Euclidean metric on �TM which is polyhomogeneous
on M.

Example 1.19 In the local basis (1.6), an example of a QFB–metric is given by

(1.7)
X̀
iD1

dv2
i

v4
i

C
X̀
iD1

kiX
jD1

.dy
j
i /

2

v2
i

C
qX

kD1

dz2
k :

Example 1.20 If M is a manifold with fibered boundary �W @M ! S, then a QFB–
metric is a fibered boundary metric (or �–metric) in the sense of [32]. If moreover
S D @M and � D Id, then a QFB–metric is a scattering metric (also called an
asymptotically conical metric) in the sense of [35].

Notice that given a smooth QFB–metric gQFB , there is an alternative description of
the Lie algebra VQFB.M /, namely, it is given by the smooth vector fields on M which
are uniformly bounded with respect to gQFB :

(1.8) VQFB.M /D f� 2 C1.M ITM / j sup
Mn@M

gQFB.�; �/ <1g:
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In this paper, we are interested in the following particular example of a QFB–metric
first considered in [17].

Definition 1.21 A quasi-asymptotically conical metric (QAC–metric for short) is a
QFB–metric on a manifold with fibered corners such that Si DHi and �i D Id for
each maximal boundary hypersurface Hi with respect to the partial order.

Example 1.22 (cf [17, Section 2.3.5]) Let M1 and M2 be two smooth manifolds
with boundary and consider the manifold with corners M D ŒM1 �M2I @M1 � @M2�

obtained by blowing up the corner of M1 �M2 in the sense of Melrose [34]. Let
ˇW M !M1 �M2 denote the blow-down map. As illustrated in Figure 5, M has
three boundary hypersurfaces, H1 and H2 coming respectively from the old faces
@M1 �M2 and M1 � @M2 , and H3 coming from the blown-up corner.

H3

H3

H3

H3

H2

H2

H1 H1M
ˇ

M1 � @M2

M1 � @M2

@M1 � M2 @M1 � M2

Figure 5: The blow-down map ˇW M !M1 �M2

These faces come naturally with fiber bundle structures

�1W @M1 �M2! @M1; �2 WM1 � @M2! @M2; �3 D IdW H3!H3;

given respectively by the projections on the left and right factors for H1D@M1�M2 and
H2DM1�@M2 , and by the identity map on H3 . These fiber bundles �D .�1; �2; �3/

endow .M; �/ with a manifold with fibered corners structure with partial order given
by H1 < H3 and H2 < H3 . Let u1 and u2 be boundary-defining functions on
M1 and M2 respectively and denote also by u1 and u2 their pullbacks to M1 �M2

via the projections on the left and right factors. On M, consider the polar coordinates
u1 D r cos � , u2 D r sin � , so that x1 D cos � , x2 D sin � and x3 D r are boundary-
defining functions for H1 , H2 and H3 , respectively. In terms of these choices, the
functions vi of Definition 1.11 are given by

v1 D x1x3 D u1; v2 D x2x3 D u2; v3 D x3 D r:
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In terms of the local basis of sections (1.6) of the QAC–cotangent bundle, we thus
see that any pair of asymptotically conical metrics gi 2 C1.Mi I scTMi/, for i D 1; 2,
naturally induces a QAC–metric gQAC on M by taking their Cartesian product:

gQAC D ˇ�.g1 �g2/:

Remark 1.23 On a manifold with boundary M with fiber bundle structure on @M
given by the identity map, all choices of boundary-defining functions lead to the same
Lie algebra of scattering vector fields. In Example 1.22, this is reflected by the fact
that the Lie algebra of QAC–vector fields does not depend on the choice of u1 and u2 .
However, choosing boundary-defining functions xi not induced by the choices of u1

and u2 as in the previous example may change the Lie algebra of QAC–vector fields.

Proposition 1.24 Definition 1.21 is a particular case of the notion of a QAC–metric
introduced in [17].

Proof Let .M; �/ be a manifold with fibered corners such that Si DHi and �i D Id
for each maximal hypersurface. The simplest way to see that Definition 1.21 is a special
case of [17] is to proceed by recurrence on the depth of M. If the depth of M is one,
that is, if M is a manifold with boundary, then Definition 1.21 just corresponds to the
notion of a scattering metric in the sense of [35], so that the result is obvious in this case.

Suppose then that the result holds for all QAC–manifolds with fibered corners of
depth k � 1 and smaller and let .M; �/ be a QAC–manifold with fibered corners of
depth kC 1. Let H1 be a boundary hypersurface of relative depth kC 1 in M. Using
a tubular neighborhood N1 Š H1 � Œ0; �/x1

of H1 as in Lemma 1.10, we see from
Example 1.19 that in N1 , an example of a smooth QAC–metric is given by

(1.9)
dv2

1

v4
1

C �
�
1

gS1

v2
1

C h;

where h is a symmetric 2–tensor which restricts to a smooth QAC–metric on each
fiber of �1W H1 ! S1 and gS1

is a Riemannian metric on the closed manifold S1 .
Here, we think of h as being constant in x1 , that is, defined on H1 and pulled back
to the tubular neighborhood of H1 given by Lemma 1.10.

Alternatively, we can look at the restriction of h to each level set of v1 . For c > 0, the
region of the level set v1 D c contained in the tubular neighborhood N1 corresponds
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to the open set Uc D fp 2H1 j v2.p/ > c=�g in H1 under the retraction r1W N1!H1 .
In fact, we have that

H1 n @H1 D
[

0<c<�

Uc :

Thus, in terms of the level sets of v1 , and restricting to a region W of S1 where the
fiber bundle �1W H1! S1 is trivial, we see that the metric (1.9) can be assumed to
be the Cartesian product of the cone metric dv2

1
=v4

1
CgS1

=v2
1

with a QAC–metric h

on Z1 , but restricted to the regionn
.c; v; z/ 2 Œ0; �/v1

�W �Z1 j v2.z/ >
c

�

o
� Œ0; �/v1

�W �Z1;

where Z1 is a typical fiber of �1 so that ��1
1
.W/ŠW �Z1 . This is precisely the

local inductive model given in [17, Lemma 2.9]. This completes the proof.

Remark 1.25 Using directly [17, Lemma 2.9], we did not have to deal with the
notion of resolution blow-ups introduced in [17]. Since this is intuitively useful, let us
nevertheless quickly explain how resolution blow-ups arise in terms of Definition 1.21.
Let .M; �/ be a QAC–manifold with fibered corners and let D be the (disjoint) union
of all maximal boundary hypersurfaces of M. Then D naturally inherits a manifold with
fibered corners structure. As such, there is an associated smoothly stratified space Y0

with singular strata in one-to-one correspondence with the boundary hypersurfaces
of D. Let x DQHi�@M xi be the product of all boundary-defining functions of M.
Then, for � > 0 small, the level set

Y� WD fp 2M j x.p/D �g

of x corresponds to a smooth desingularization of Y0 in the sense of [17, Section 2.3].
Let �� W Y�!M be the natural inclusion and consider the metric g� WD ��� .x2gQAC/

for gQAC a choice of QAC–metric on .M; �/. Then, for � > 0, the family .Y�;g�/ is
a resolution blow-up of .Y0;g0/ for some incomplete iterated edge metric g0 on Y0 ,
the stratified space associated to D. A subtle point however is that g0 is not equal
to ��

0
x2gQAC for �0W D ! M the natural inclusion. For instance, if xmax denotes

the boundary-defining function for D, then terms of the form ���x2 dx2
max=x

4
max lead

to nonzero contributions in the limit � & 0, but these contributions are clearly not
captured by ��

0
x2gQAC , which in fact is not an incomplete iterated edge metric. See

Remark 4.6 for a related phenomenon.
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Remark 1.26 One advantage of using QAC–manifolds with fibered corners is that the
weight functions of [17, Section 2.4] admit a simple description in terms of boundary-
defining functions. If x DQHi�@M xi is the product of all of the boundary-defining
functions of M, then the radial function of [17] can be taken to be �D 1=x . Moreover,
if .M; �/ is of depth `, then for 1� j � `, the weight function wj of [17, Section 2.4]
is simply the product of all boundary-defining functions associated to boundary hyper-
surfaces of relative depth at least j . In particular, in the situation where the boundary
hypersurfaces of M are totally ordered, say H1 < � � �<H` , the weight function wj is
simply given by

wj D
Y
i�j

xi D x

vjC1
:

Using a similar approach as in the proof of Proposition 1.24, we can obtain the following
general result about QFB–metrics.

Proposition 1.27 Each QFB–metric is a complete metric of infinite volume with
bounded geometry.

Proof A QFB–metric is a particular example of a metric with Lie structure at infinity
in the sense of [3]. As such, it is complete and of infinite volume by [3, Proposition 4.1
and Corollary 4.9]. By [3, Corollary 4.3], its curvature is bounded, as well as all of
its covariant derivatives. By [3, Corollary 4.20] and Remark 1.18, for a fixed Lie
algebra of QFB–vector fields, it suffices to find one example of a QFB–metric with
positive injectivity radius to conclude that all QFB–metrics have positive injectivity
radius. Now, it is well known that closed Riemannian manifolds have a positive
injectivity radius. Thus, proceeding by induction on the depth, we can assume that
QFB–metrics on a manifold with fibered corners of depth k have a positive injectivity
radius. On a manifold with fibered corners .M; �/ of depth kC 1, let H1 be one of
the boundary hypersurfaces of relative depth k C 1. Using a tubular neighborhood
N1ŠH1�Œ0; �/x1

of H1 as in Lemma 1.10, we can consider a QFB–metric as in (1.9),
this time however with h restricting to a QFB–metric on each fiber. In particular, each
fiber has positive injectivity radius by our induction hypothesis. Clearly then, by the
discussion at the end of the proof of Proposition 1.24, the points contained in the
smaller tubular neighborhood N1 Š H1 � Œ0; �=2/x1

have positive injectivity radii
uniformly bounded from below by a positive constant. Considering similar metrics
near each boundary hypersurface of relative depth k C 1, we can then extend in an
arbitrary way to obtain a global QFB metric on .M; �/, which, thanks to our induction
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hypothesis, will have positive injectivity radius. Hence, by our earlier observation,
all QFB–metrics have positive injectivity radius. Combined with the control on the
curvature and on its derivatives mentioned previously, this shows that all QFB–metrics
have bounded geometry.

For QAC–metrics, we also have another important property, namely the Sobolev
inequality.

Lemma 1.28 (Sobolev inequality) Given a QAC–metric g on a manifold with fibered
corners M of dimension m, there exists a constant C > 0 such that

(1.10)
�Z

Mn@M
juj2m=.m�2/ dvol.g/

�.m�2/=m

� C

Z
jruj2g dvol.g/ for all u 2 C1c .M n @M /:

Proof By [17, (3.20) and (4.16)], the heat kernel of g satisfies a Gaussian bound,
which is well known to be equivalent to the existence of a constant C > 0 such that
(1.10) holds; see for instance [22].

Given an asymptotically conical metric, one can define corresponding Hölder spaces.
However, in some situations — see for instance [13; 15] — it is more convenient to work
with the weighted Hölder spaces associated to a conformally related metric, namely a
b–metric in the sense of Melrose [34]. The same phenomenon arises for QAC–metrics,
since the Hölder spaces introduced and used in [24; 17] are really those associated to a
metric conformal to a QAC–metric.

Definition 1.29 Let .M; �/ be a QAC–manifold with fibered corners and let xmax

be the product of the boundary-defining functions associated to all maximal boundary
hypersurfaces of M. A smooth quasi b–metric on M (Qb–metric for short) is a
metric gQb of the form

gQb D x2
maxgQAC

for some smooth QAC–metric gQAC .

As for a QAC–metric, the space

(1.11) VQb.M /D f� 2 C1.M ITM / j sup
Mn@M

gQb.�; �/ <1g
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of smooth vector fields on M uniformly bounded with respect to gQb is in fact a Lie
algebra. Indeed, we see from Definition 1.11 and (1.8) that this space can alternatively
be defined as the space of b–vector fields � such that for each i ,

� �jHi
is tangent to the fibers of �i if Hi is not maximal;

� �vi 2 .v2
i =xmax/C1.M /,

which is clearly closed under the Lie bracket. In particular, the Lie algebra VQb.M /

does not depend on the choice of the Qb–metric for a fixed QAC–manifold with
fibered corners and for a fixed choice of boundary-defining functions. Looking at the
corresponding universal enveloping algebra over C1.M /, one can then define the
space Diffk

Qb.M / of Qb–differential operators of order k to be the space of differential
operators generated by C1.M / and products of up to k elements of VQb.M /. In
particular, we obtain the following analog of Proposition 1.27.

Proposition 1.30 Each Qb–metric is a complete metric of infinite volume with
bounded geometry.

Proof A Qb–metric is a particular example of a metric with Lie structure at infinity
in the sense of [3], so we can proceed as in the proof of Proposition 1.27 to conclude
that it is complete of infinite volume with curvature and all its covariant derivatives
bounded. To show that it has positive injectivity radius, we can proceed by induction
on the depth as in the proof of Proposition 1.27.

There are various functional spaces that we can associate to QAC–metrics and to
Qb–metrics. We will be particularly interested in Hölder spaces. Recall that to a
given complete metric g on M n @M, a Euclidean vector bundle E ! M n @M
with a compatible choice of connection and k 2 N0 , one can associate the space
Ck

g .M n @M IE/ comprising continuous sections f W M n @M !E such that

(1.12) rjf 2 C0.M n @M IT 0
j .M n @M /˝E/ and sup

p2Mn@M
jrjf .p/jg <1

for all j 2 f0; : : : ; kg, where r denotes the covariant derivative induced by the
Levi-Civita connection of g and the connection on E , j � jg is the norm induced by
the metric g and the Euclidean structure on E , and

T 0
j .M n @M /D T �.M n @M /˝ � � �˝T �.M n @M /„ ƒ‚ …

j times

:
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The space Ck
g .M n @M IE/ is in fact a Banach space with norm given by

(1.13) kf kg;k WD
kX

jD0

sup
p2Mn@M

jrjf .p/jg:

Taking the intersection over all k , we also get the Fréchet space

C1g .M n @M IE/D
\

k2N0

Ck
g .M n @M IE/:

For ˛ 2 .0; 1� and k 2N0 , we can also consider the Hölder space Ck;˛
g .M n @M IE/

of functions f 2 Ck
g .M n @M IE/ such that

Œrkf �g;˛

WD sup
� jP .rkf . .0///�rkf . .1//j

`. /˛

ˇ̌̌
 2 C1.Œ0; 1�IM n @M /;  .0/¤  .1/

�
<1;

where P W .T 0
k
.M n@M /˝E/j.0/! .T 0

k
.M n@M /˝E/j.1/ is the parallel transport

along  and `. / is the length of  with respect to the metric g . This is also a Banach
space with norm given by

(1.14) kf kg;k;˛ WD kf kg;k C Œrkf �g;˛:

For � 2 C1.M n @M / a positive function, we can also consider the weighted version

(1.15) �Ck;˛
g .M n @M IE/

WD
�
f
ˇ̌̌ f
�
2 Ck;˛

g .M n @M IE/
�

with norm kf k
�Ck;˛

g
WD
f�


g;k;˛

:

By choosing g D gQAC to be a smooth QAC–metric, we get in particular the Banach
spaces

Ck
QAC.M n @M IE/ and Ck;˛

QAC.M n @M IE/:

Notice however that they do not correspond to the Hölder spaces of [24, Section 9]
and [17]. Indeed, [24, Section 9] and [17] consider instead weighted versions of
the Banach spaces Ck

Qb.M n @M IE/ and Ck;˛
Qb .M n @M IE/ obtained by choosing

g D gQb D x2
maxgQAC to be a smooth Qb–metric on M. The reason for this choice is

that one can obtain nicer mapping properties for elliptic QAC–operators when acting
on weighted Qb–Hölder spaces. Results stated in terms of Qb–Hölder spaces are also
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more precise, since, as one can easily check, there are continuous strict inclusions

(1.16)
Ck

Qb.M n @M IE/� Ck
QAC.M n @M IE/;

Ck;˛
Qb .M n @M IE/� Ck;˛

QAC.M n @M IE/:
As in [24, Section 9] and [17], we will mostly deal with Qb–Hölder spaces and their
weighted counterparts. Still, we will also have to deal with QAC–Hölder spaces. The
following lemma will be helpful in these cases in bringing the discussion back to
Qb–Hölder spaces.

Lemma 1.31 For 0<ı < 1, there is a continuous inclusion xımaxC
0;1
QAC.M n@M IE/�

C0;˛
Qb .M n @M IE/ for ˛ � ı .

Proof Let gQAC be a choice of smooth QAC–metric and consider the conformally
related Qb–metric gQb WD x2

maxgQAC . Given  2 C1.Œ0; 1�IM n @M /, let `QAC. /

and `Qb. / denote the length of  with respect to the metrics gQAC and gQb . Then,
using the Hölder inequality with p D 1=ı and q D 1=.1� ı/, observe that

(1.17)
ˇ̌̌̌

1

xmax. .0//ı
� 1

xmax. .1//ı

ˇ̌̌̌
D ı

ˇ̌̌̌Z


dxmax

x1Cı
max

ˇ̌̌̌
D ı

ˇ̌̌̌Z


dxmax

x2ı
maxx1�ı

max

ˇ̌̌̌
� ı

ˇ̌̌̌Z


dxmax

x2
max

ˇ̌̌̌ı ˇ̌̌̌Z


dxmax

xmax

ˇ̌̌̌1�ı
� ı.K`QAC. //

ı.K`Qb. //
1�ı

D ıK`QAC. /
ı`Qb. /

1�ı

for some constant K > 0 depending on gQAC and gQb , but not on the path  .

For f 2xımaxC
0;1
QAC.M n@M IE/, consider the positive constant C WDkf=xımaxkgQAC;0;1 .

Then, for any path  2 C1.Œ0; 1�IM n @M /, we have that

(1.18) 2C minf`QAC. /; 1g
�
ˇ̌̌̌
P .f . .0///

xmax. .0//ı
� f . .1//

xmax. .1//ı

ˇ̌̌̌
D
ˇ̌̌̌
P .f . .0///

xmax. .0//ı
� f . .1//

xmax. .0//ı
C f . .1//

xmax. .0//ı
� f . .1//

xmax. .1//ı

ˇ̌̌̌
� jP .f . .0///�f . .1//j

xmax. .0//ı
�kf kgQAC;0

ˇ̌̌̌
1

xmax. .0//ı
� 1

xmax. .1//ı

ˇ̌̌̌
� jP .f . .0///�f . .1//j

xmax. .0//ı
�CKı`QAC. /

ı`Qb. /
1�ı;
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where we have used (1.17) and the inequality kf kgQAC;0 � kf=xımaxkgQAC;0;1 D C in
the last step. Thus, we infer from (1.18) that for all  2 C1.Œ0; 1�IM n @M /,

(1.19) jP .f . .0///�f . .1//j
� 2Cxmax. .0//

ı minf`QAC. /; 1gCCKıxmax. .0//
ı`QAC. /

ı`Qb. /
1�ı:

Thus, if `Qb. /� 1, then

(1.20)
jP .f . .0///�f . .1//j

`Qb. /˛
� jP .f . .0///�f . .1//j

� 2kf kgQAC;0 � 2

 f

xımax


gQAC;0;1

D 2C � 2C CCKı:

If instead `Qb. /� 1, let tmin 2 Œ0; 1� be such that

xmax. .tmin//Dminfxmax. .t// W t 2 Œ0; 1�g;
so thatˇ̌̌̌
log
�

xmax. .tmin//

xmax. .0//

�ˇ̌̌̌
�
ˇ̌̌̌Z tmin

0

dxmax

xmax
ı 
ˇ̌̌̌
�K`Qb. /�K

D) xmax. .0//

xmax. .tmin//
� e`KQb. / � eK ;

where K > 0 is the constant occurring in (1.17). Then (1.19) yields

(1.21)
jP .f . .0///�f . .1//j

`Qb. /˛

� 2Cxmax. .0//
ıminf`QAC. /;1g

`Qb. /˛
C CKıxmax. .0//

ı`QAC. /
ı`Qb. /

1�ı

`Qb. /˛

� 2Cxmax. .0//
ıminf`QAC. /;1g

.xmax. .tmin///
˛`QAC. /˛

C CKıxmax. .0//
ı`QAC. /

ı`Qb. /
1�˛

.xmax. .tmin///
ı`QAC. /ı

� 2CeK˛CCKı`Qb. /
1�˛eKı � .2CKı/CeKı;

since ˛ � ı . Hence, combining (1.20) with (1.21) and taking the supremum over 
yields

Œf �gQb;0;˛ � .2CKı/CeKı D .2CKı/eKı

 f

xımax


gQAC;0;1

;

from which the result follows.
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2 Manifolds with fibered corners coming from
Sasaki–Einstein orbifolds

Let Z be a closed orbifold of real dimension 2nC 1. A Ricci-flat Kähler cone metric
on the Cartesian product C WDRC�Z is a cone metric

gC D dr2C r2gZ ;

where gZ is some Riemannian metric on Z , together with a complex structure JC on C

such that gC is Ricci-flat and Kähler with respect to JC with Kähler form given by

!C D
p�1

2
@x@r2:

In particular, when such a metric gC and complex structure JC exist, the corresponding
canonical line bundle KC of C is flat with respect to the Chern connection induced
from gC and JC .

Notice then that the metric gZ is Sasakian and that there is a corresponding Reeb
vector field on Z given by

� D JC
@

@r
:

The orbits of the flow of this vector field induce a foliation called the Reeb foliation. In
the present paper, we will always assume that the Ricci-flat Kähler cone .C;gC ;JC /

is quasiregular in the following sense.

Definition 2.1 The Ricci-flat Kähler cone .C;gC ;JC / is quasiregular if there exists a
Kähler–Einstein Fano orbifold .D;gD/ and a holomorphic line bundle L over D with
Hermitian metric hL such that L nD is biholomorphic to .C;JC / with the properties
that on L nD :

(1) The radial function r is given by

r D k � k1=q
hL

on L nD

for some q 2N and Z D r�1.1/.

(2) The Reeb foliation corresponds to the fibers of the unit circle bundle of .L; hL/,
that is,

(2.1)

S1 // Z

�L

��

D
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(3) The map �L in (2.1) is an orbifold Riemannian submersion from .Z;gZ /

to .D;gD/.

(4) For some p 2N, the line bundle K
p
C

has a nowhere vanishing holomorphic sec-
tion �p

C
2H 0.C IKp

C
/ which is parallel with respect to the induced Chern con-

nection from KC and JC . In particular, there is a nonzero constant cp such that

(2.2) .!nC1
C

/p D cp�
p
C
^�p

C
;

where .!nC1
C

/p is the tensorial product of !nC1
C

with itself p times seen as a
section of KC ˝KC .

Furthermore, when p D 1 in item (4), we say that .C;gC ;JC / is a quasiregular
Calabi–Yau cone.

As a simple computation shows, the Kähler–Einstein constant of the metric gD is
completely determined by the previous definition, namely

Ric.gD/D 2.nC 1/gD :

Furthermore, the Kähler form of gD is such that

(2.3)
p
�1‚hL

D�2q!D ;

where ‚hL
is the curvature of .L; hL/ with respect to the Chern connection.

Remark 2.2 Let us clarify that we assume that L is locally trivial in the sense that
in a neighborhood of any point p on D, there are orbifold charts  W U !Cn=� and
 LW p�1

L
.U/! .Cn �C/=� inducing a commutative diagram

(2.4)

p�1
L
.U/
pL

��

 L
// .Cn �C/=�

pr1

��

U  
// Cn=�

where pr1 is the projection on the first factor. In particular, although we do assume
that C and Z may have orbifold singularities, not all singularities of D correspond
to singularities of Z and C. Indeed, even if Z were smooth, as a space of leaves, D

could still be singular. Also, notice that a point p 2 Z is singular if and only if all
points of ��1

L
.�L.p// are singular.
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In fact, a simple way to construct examples of quasiregular Calabi–Yau cone metrics
is to start off with a Kähler–Einstein Fano orbifold .D;gD/ and to apply the Calabi
ansatz [8; 29], which yields a Calabi–Yau cone .KD nD;gC / with the zero section
D �KD corresponding to the apex of the cone, where Z is then the total space of
the unit circle bundle of KD over D. The Kähler form !C of gC can then be written
explicitly in terms of the Kähler–Einstein metric gD as

(2.5) !C D
p�1

2
@x@j � k2=.nC1/

gD
;

where k � kgD
is the Hermitian metric on KD induced by gD seen as a function

on KD nD.

To describe the natural holomorphic volume form associated to this Calabi–Yau cone,
recall that the space of sections H 0.KD I��.KD// has a tautological element $ given
by $p D ��p for p 2KD , where � W KD !D is the canonical projection. For any
choice of local coordinates .z1; : : : ; zn/ on D, we have a local section dz1 ^ � � � ^ dzn

of KD , and hence local coordinates .z1; : : : ; zn; v/ on KD with .z1; : : : ; zn; v/ corre-
sponding to v dz1 ^ � � � ^ dzn 2KD j.z1;:::;zn/ . In these local coordinates, $ is simply
given by

$ D v dz1 ^ � � � ^ dzn:

Taking the exterior derivative of the tautological element $ yields the canonical
holomorphic volume form �C of KD , namely,

�C WD d$ D @$ 2H 0.KD IKKD
/:

The fact that the cone metric gC is Calabi–Yau amounts to the fact that

!nC1
C
D c�C ^�C

for some fixed nonzero constant c .

More generally, if pLW L!D is a qth root of KD , namely if L˝q DKD , then the
natural map

(2.6)
QW L nD!KD nD;

� 7! �˝q;

is a Zq–cover of KD nD, so that pulling back �C and !C to L nD endows L nD

with an orbifold Calabi–Yau cone structure. Conversely, given such a line bundle L,
we have that Zp , seen as the group of pth roots of unity, naturally acts by isometry
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on .L nD;Q�gC / via the natural S1–action, and the quotient, which is naturally
identified with Lp nD, naturally inherits the structure of a quasiregular Ricci-flat
Kähler cone since the Zp–action is trivial on .Q��C /

p 2H 0.L nDIKp

LnD/.

Now, suppose that .C;gC / is a quasiregular Ricci-flat Kähler cone with holomorphic
parallel section �p

C
2H 0.C IKp

C
/ as above and suppose that X is a Kähler orbifold

with a nowhere vanishing holomorphic section �p
X
2H 0.X IKp

X
/ such that for some

compact subset K �X, there is a biholomorphism

(2.7) X nKŠ .�;1/�Z � C

for some � � 0 identifying �p
X

with �p
C

. Assume further that the singular set of X

has complex codimension at least 2 and that X admits a local product Kähler crepant
resolution yX ! X in the sense of [24] such that �p

X
lifts to a nowhere vanishing

holomorphic section �p

yX 2 H 0. yX IKp

yX /. In the remainder of this section, we will
explain how the resolution yX can then be naturally compactified as a manifold with
fibered corners. However, before doing that, let us give some examples of such a
space X.

Example 2.3 We can take X DCnC1=� for some finite subgroup ��SU.nC1/. It is
not automatic that X will admit a local product Kähler crepant resolution, but for many
choices of � it will [24, Sections 6.4–6.6]. For instance, if � � SU.2/� SU.nC 1/,
there is automatically a crepant resolution by [28]. On the other hand, we can take
.C;gC /D ..CnC1=�/nf0g;gE/, where gE is the Euclidean metric on CnC1=� and
KD f0g, to obtain trivially that X n f0g is biholomorphic to C.

Example 2.4 Let .D;gD/ be a Kähler–Einstein Fano orbifold of complex dimen-
sion n and assume that D admits a local product (Kähler) crepant resolution yD. This
automatically implies that the total space K yD of the canonical line bundle of yD is a
local product (Kähler) crepant resolution of KD and that the diagram

(2.8)

K yD
ˇK
//

��

KD

��yD ˇ
// D

commutes, where the vertical maps are the canonical projections and the horizontal
maps are the blow-down maps of the local product resolutions. Thus, in this setting,
we can take X DKD and the Calabi–Yau cone C DKD nD with Kähler metric given
by (2.5).
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Remark 2.5 In the previous example, we could for instance take D DCPn=� with
� � SU.nC 1/ a finite subgroup. In this case, the Fubini–Study metric descends to
a Kähler–Einstein metric gD on D. On the other hand, D does not always admit
a local product Kähler crepant resolution, but in some cases it does, for instance in
Example A.2 in the appendix or when nD 2 and � � SU.3/ is the subgroup generated
by the diagonal matrix with diagonal entries given by e2�i=3 , e�2�i=3 and 1. We could
also take D to be a Kähler–Einstein log del Pezzo surface with canonical singularities
of degree at most 4; see [39] for examples. According to [39, page 165], D then has
only singularities of type D4 and Ak for k � 7, so automatically admits a local product
Kähler crepant resolution by proceeding as in [28]. Finally, notice that if .D1;gD1

/

and .D2;gD2
/ are two examples of Kähler–Einstein Fano orbifolds admitting local

product Kähler crepant resolutions, then after scaling the metrics, we can assume
without loss of generality that Ric.gDi

/ D gDi
for i D 1; 2, so that the Cartesian

product .D1 �D2;gD1
�gD2

/ is another example of a Kähler–Einstein Fano orbifold
admitting a local Kähler crepant resolution.

To describe the natural compactification of yX, observe first that we can compactify X

into an orbifold with boundary Xsc such that the biholomorphism (2.7) extends to a
diffeomorphism

Xsc nKŠ .�;1��Z:

Here, we mean that Xsc is an orbifold with boundary in the sense that it is locally
modeled by charts of the form

R2nC2=�1 or .R2nC1=�2/� Œ0;1/;

with �1 � GL.2n C 2;R/ and �2 � GL.2n C 1;R/ finite subgroups. Notice in
particular that with this definition, the orbifold singularities are always transversal to
the boundary. Clearly, we have that @Xsc ŠZ and that the function x WD 1=r defined
near @Xsc is a natural choice of boundary-defining function.

As an orbifold, @Xsc has the structure of a smoothly stratified space with strata cor-
responding to the various types of orbifold singularities. In particular, the strata are
partially ordered by the relation

s1 � s2 () s1 � xs2:
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In fact, by Remark 2.2, each stratum xsi of @Xsc is naturally equipped with an S1–
orbibundle structure

(2.9)

S1 // xsi

�i

��

x�i

in which x�i WD �i.xsi/. The partial order on the strata of @Xsc gives us a systematic way
of blowing up the strata of @Xsc in Xsc in the sense of [1]. Namely, let fs1; : : : ; skg
be an exhaustive list of all the strata of @Xsc compatible with the partial order in the
sense that

si � sj D) i � j:

In particular, sk will be the regular stratum, so that @XscDxsk . One constructs a natural
space zXsc out of Xsc by blowing up all of the strata of @Xsc in Xsc except the regular
one; that is,

(2.10) zXsc D ŒXscI xs1;xs2; : : : ;xsk�1� with blow-down map ˇscW zXsc!Xsc:

Each of these blow-ups creates a new boundary hypersurface, so that zXsc is not an orb-
ifold with boundary, but rather an orbifold with corners, by which we mean that zXsc is
locally modeled on charts of the form R2nC2�q=��Œ0;1/q for q 2 f0; 1; : : : ; 2nC 2g
and � � GL.2nC 2� q;R/ a finite subgroup. By construction, zXsc has a boundary
hypersurface Hi for each stratum si of @Xsc . Since we blow up each xsi in Xsc

instead of in @Xsc , notice that each boundary hypersurface Hi remains an orbifold for
each i < k , whereas Hk is the manifold with fibered corners that resolves the stratified
space @Xsc , hence contains no orbifold singularities. As we are about to show, there is
a natural fiber bundle structure on each boundary hypersurface, making zXsc an orbifold
with fibered corners in the following sense.

Definition 2.6 Let M be an orbifold with corners and suppose that each of its boundary
hypersurfaces Hi is a fiber bundle �i W Hi ! Si whose base Si is a manifold with
corners (hence has no orbifold singularities) and whose fibers are all orbifolds with
fibered corners. If � denotes the collection of fiber bundle maps �i , then we say that
.M; �/ is an orbifold with fibered corners if there exists a partial order on the boundary
hypersurfaces such that the same conditions as in Definition 1.1 are satisfied, namely:

� Any subset I of boundary hypersurfaces such that
T

i2I Hi ¤ ∅ is totally
ordered.
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� If Hi < Hj , then Hi \Hj ¤ ∅, �i jHi\Hj W Hi \Hj ! Si is a surjective
submersion and Sji WD �j .Hi \ Hj / is one of the boundary hypersurfaces
of the manifold with corners Sj . Moreover, there is a surjective submersion
�ji W Sji! Si such that �ji ı�j D �i on Hi \Hj .

� The boundary hypersurfaces of Sj are given by the Sji for Hi <Hj .

Proposition 2.7 The orbifold with corners zXsc itself has a natural orbifold with fibered
corners structure.

Proof Before we perform the blow-ups for larger strata, the closure of the stratum si

lifts to a submanifold Si of ŒXscI xs1; : : : ;xsi�1�, so that the blow-up face associated to si

is just the radial compactification NSi of the normal bundle of Si (as a suborbifold of
a boundary hypersurface of ŒXscI xs1; : : : ;xsi�1�), whose fibers are orbifolds of the form
V i DCmi=�i with mi D n� dimC �i and �i � SU.ni/ a finite subgroup, that is,

(2.11)

V i
// NSi

�i

��

Si

The subsequent blow-ups of strata modify the face associated to si , but only in the
fibers of (2.11), so that ultimately Hi comes equipped with a fiber bundle structure

(2.12)

zVi
// Hi

�i

��

Si

with zVi obtained from V i by blowing up the singular strata of @V i in V i in an order
compatible with the partial order of the strata of @V i . In other words, V i is naturally
an orbifold with boundary and zVi is obtained from V i in the same way that zXsc is
obtained from Xsc .

Notice that thanks to the order in which we do the blow-ups, Si is the natural manifold
with fibered corners that resolves the closure xsi seen as a stratified space. In particular,
it has no orbifold singularities and the singularities of the face Hi are all in the fibers
of (2.12). Now, clearly, since each boundary hypersurface of zXsc is associated to a
stratum of @Xsc , the partial order of the strata of @Xsc induces a partial order on the
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boundary hypersurfaces of zXsc . Moreover, we clearly have that

Hi \Hj ¤∅ () si � sj or sj � si ;

and we see that the partial order on the boundary hypersurfaces of zXsc totally orders
any subset I of the boundary hypersurfaces with

T
i2I Hi ¤∅. Finally, if Hi <Hj ,

then it follows from the order in which we blew up the strata that �j restricts to a
surjective submersion on Hi \Hj onto the boundary hypersurface Sji of Sj , and that
the fiber bundle structure �ji W Sji! Si coming from the orbifold with fibered corners
of Sj is such that �ji ı�j D �i .

The space zXsc provides a compactification of X, but it still has orbifold singularities.
On the other hand, since we only blew up strata of @Xsc , we still have a natural
identification zXsc n @ zXsc D X, so we can still use the local product Kähler crepant
resolution of X to remove the orbifold singularities.

Theorem 2.8 The local product Kähler crepant resolution ˇX W yX ! X naturally
extends to give a resolution ˇQACW yXQAC! zXsc of the orbifold with fibered corners zXsc

by a manifold with fibered corners yXQAC , inducing the commutative diagram

yX
ˇX

��

� � // yXQAC

ˇQAC
��

X �
� // Xsc zXsc

ˇsc

oo

The space yXQAC is called the QAC–compactification of yX and we say that it is a
QAC–resolution of zXsc .

Proof If �1 D �1.s1/ is a point, then S1 D s1 D S1 and H1 D V 1 � S1 with
�1W V 1 �S1! S1 given by the projection on the right factor and V1 DCn=�1 for a
certain finite subgroup �1�SU.n/ acting freely on Cnnf0g. Here, Cn=�1 can be seen
as an orbifold chart for the corresponding stratum �1 in D. Clearly then, the crepant
resolution of X extends to one for zXsc and H1 . If yH1 denotes the induced resolution
of H1 , then yH1 D yY1 � S1, where yY1 is the radial compactification of the crepant
resolution Y1 of Cn=�1 , so that we still have a natural fiber bundle y�1W yH1 ! S1

which is just the projection yY1�S1!S1 on the right factor. If �1 is not a point but xs1

is still a singularity of relative depth one, then we can proceed in the same way, that is,
the crepant resolution of X clearly extends to give a resolution of zXsc near H1 with
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resolution yH1 of H1 obtained from (2.11) by replacing each fiber V1 by its crepant
resolution yY1 , that is,

(2.13)

yY1
// yH1

y�1

��

S1

More generally, using the fact that the resolution yX !X is a local product resolution,
we see by induction on the depth of Xsc that yHi will be the total space of a fiber bundle

(2.14)

yYi
// yHi

y�i

��

Si

with yYi the QAC–resolution of zVi . Indeed, the local product Kähler crepant resolution
of X naturally induces one on Vi , and since zVi is an orbifold with fibered corners of
smaller depth than Xsc , we can assume by induction that the theorem already holds
true for zVi .

Since at each step the local product resolution yX !X is only used fiberwise in the
fiber orbibundle �i W Hi ! Si , we see that yXQAC is naturally a manifold with fibered
corners with fiber bundle structure on the boundary hypersurface yHi given by (2.14)
and with partial order on the boundary hypersurfaces of yXQAC induced by the one on
the boundary hypersurface of zXsc .

Notice that for the face yHk associated to the regular stratum sk , we have that Sk D
Hk D yHk and that the fiber bundle y�k W yHk ! Sk is just the identity map. Since the
only maximal stratum with respect to the partial order is the regular stratum, we see
that yHk is the only maximal boundary hypersurface of yXQAC .

Using Lemma 1.16, we can also specify a natural Lie algebra of QAC–vector fields
on zXsc , that is, a natural choice of QAC–equivalence class of boundary-defining
functions. Indeed, let ˇ0 WD ˇscW zXsc!Xsc be the blow-down map and for each i � 1,
consider the partial blow-down maps

(2.15) ˇi W zXsc! ŒXscI xs1; : : : ;xsi � and ˇ0i W ŒXscI xs1; : : : ;xsi �!Xsc;

so that ˇ0 D ˇ0i ı ˇi for each i . For each i � 1, consider the lift of @Xsc to
ŒXscI xs1; : : : ;xsi �, namely

Bi WD .ˇ0i/�1.@Xsc n .xs1[ � � � [xsi//:
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Let also Wi be the boundary hypersurface of ŒXscI xs1; : : : ;xsi � coming from the blow-up
of xsi and let �0 be any choice of boundary-defining function for B0 WD @Xsc in Xsc .
More generally, proceeding recursively on i , choose a boundary-defining function
�i 2 C1.ŒXscI xs1; : : : ;xsi �/ of Bi such that �i is identically equal to the pullback
of ˇ�

i;i�1
�i�1 outside a small neighborhood Ui of Wi not intersecting the boundary

hypersurfaces of ŒXscI xs1; : : : ;xsi � disjoint from Wi , where

ˇi;i�1W ŒXscI xs1; : : : ;xsi �! ŒXscI xs1; : : : ;xsi�1�

is the blow-down map. Then, on zXsc , the functions

(2.16) xi D
ˇ�

i�1
�i�1

ˇ�i �i
for i < k and xk WD �k

are such that xi 2 C1. zXsc/ is a boundary-defining function for Hi for each i .

Lemma 2.9 On . zXsc; �/, the Lie algebra of QAC–vector fields specified by the choice
of the QAC–equivalence class of the boundary-defining functions (2.16) does not
depend on the choice of the functions �i , hence yields a natural Lie algebra of QAC–
vector fields.

Proof Suppose that for each i , �i and �0i are two different choices of boundary-
defining functions and suppose recursively that �i , respectively �0i , is identically equal
to ˇ�

i;i�1
�i�1 , respectively ˇ�

i;i�1
�0

i�1
, outside a small neighborhood Ui of Wi not

intersecting the boundary hypersurfaces of ŒXscI xs1; : : : ;xsi � disjoint from Wi . In this
case, essentially by definition of the blow-down map, we have that for j > i ,

(2.17)
ˇ�i �i

ˇ�i �0i

ˇ̌̌̌
Hj

D ��j hij for some hij 2 C1.Sj /:

On the other hand, thanks to the identification of �i with ˇ�
i;i�1

�i�1 outside Ui , we
also have that for Hj �Hi ,

(2.18)
ˇ�

i�1
�i�1

vi

ˇ̌̌̌
Hj

D ��j fij for some fij 2 C1.Sj /; where vi D
Y

Hj�Hi

xi :

Of course, there is a similar statement for �0i , so the combination of (2.17) and (2.18)
allows us to apply Lemma 1.16, from which the result follows.
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Provided that we can choose the functions �i so that their lifts ˇ�QACˇ
�
i �i to yXQAC

are smooth, we obtain corresponding boundary-defining functions on yXQAC ,

(2.19) yxi D ˇ�QACxi D
ˇ�QACˇ

�
i�1
�i�1

ˇ�QACˇ
�
i �i

for i < k; yxk WD ˇ�QACxk D ˇ�QAC�k :

Lemma 2.10 The QAC–equivalence class of the boundary-defining functions (2.19)
does not depend on the choice of the functions �i that lift to be smooth on yXQAC .

Proof Given two different choices �i and �0i , we can proceed as in the proof of
Lemma 2.9 with (2.17) and (2.18) replaced respectively by

(2.20)
ˇ�QACˇ

�
i �i

ˇ�QACˇ
�
i �
0
i

ˇ̌̌̌
yHj
D y��j hij for some hij 2 C1.Sj /

and

(2.21)
ˇ�QACˇ

�
i�1
�i�1

yvi

ˇ̌̌̌
yHj
D y��j fij for some fij 2 C1.Sj /; where yvi D

Y
yHj� yHi

yxi :

Thus, to see that yXQAC comes endowed with a natural Lie algebra of QAC–vector
fields, we need to show that the functions �i can be chosen in such a way that they lift
to be smooth on yXQAC , a discussion that we postpone until Lemma 3.4.

3 The Ricci-flat Kähler cone metric seen as a QAC–metric

Continuing with the setup of the previous section, we will show in this section how
an orbifold Ricci-flat Kähler cone metric can be seen as a QAC–metric on zXsc in a
neighborhood of @ zXsc . Let p 2C be a singular point. Then, by Remark 2.2, C DLnD,
where L is an orbifold holomorphic line bundle over a Kähler–Einstein Fano orbifold D,
and we can find orbifold charts as in (2.4). However, since p and the points of the
entire fiber of L containing p are singular, we know by averaging that the holomorphic
line bundle pr1W Cn �C! Cn in (2.4) has a �–invariant holomorphic section that
does not vanish near 0 2 Cn. Thus, this means that without loss of generality, we
can assume that there is a finite subgroup �1 � SU.n/ acting linearly on Cn together
with orbifold charts  W U ! Cn=�1 and  LW p�1

L
.U/! Cn=�1 �C inducing the
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commutative diagram

(3.1)

p�1
L
.U/
pL

��

 L
// Cn=�1 �C

pr1

��

U  
// Cn=�1

and such that  L.p/ D .0; 1/. Let z D .z1; : : : ; zn/ be the coordinates on Cn n �1

and v the coordinate on L. Then the Kähler form of the Ricci-flat Kähler cone
metric gC takes the form

(3.2) !C D
p�1

2
@x@jvj2=qf .z;xz/

for some positive smooth function f and some positive q 2 Q. Let W1 � Cn be
the subspace of points fixed by each element of �1 and suppose without loss of
generality that it corresponds to the subspace z1 D � � � D zm1

D 0, so that we have the
decomposition Cn=�1 DCm1=�1 �W1 with W1 DCn�m1. In terms of the orbifold
chart (3.1),  �1.W1/ corresponds to the singular stratum in which pL.p/ lies.

Lemma 3.1 The differential of f is such that .@f=@zi/jW1
D .@f=@xz i/jW1

D 0 for
i 2 f1; : : : ;m1g.

Proof The function f is invariant under the action of �1 . In particular, df jW1
is

invariant under the action of �1 , which, by definition of W1 , holds if and only if the
statement of the lemma holds.

To distinguish between the factors Cm1=�1 and W1 , let us set ui D zi for i � m1

and �j
1
D zj for j >m1 . Then, by the previous lemma, the Taylor expansion of f

at W1 is of the form

(3.3) f .u; xu; �1; x�1/D f0.�1; x�1/CHess.f /W1
.u; xu/CO.juj3/;

where Hess.f /W1
is the Hessian of f restricted to W1 and only applied to the normal

bundle of W1 .

Instead of the coordinates .z; v/, one can then consider the holomorphic coordinates
.�; �/ related to .z; v/ by

(3.4) v D �q
1
; zi D �i

1

�1

for i �m1; �
j
1
D zj for j >m1:

Away from �1 D 0, this is a valid change of coordinates for � < arg �i
1
< � C 2�=q

for all i for some fixed choice of � .
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In these new coordinates, the Kähler form of the Ricci-flat Kähler cone metric takes
the form

(3.5) !C D
p�1

2
@x@
�
j�1j2f

�
�1

�1

;
x�1
x�1

; �1; x�1

��
D
p�1

2

�
@x@j�1j2fE

�
�1

�1

;
x�1
x�1

; �1; x�1

�
C @x@P

�
;

where fE.u; xu; �1; x�1/ WD f0.�1; x�1/CHess.f /W1
.u; xu/ and

(3.6) P D j�1j2f
�
�1

�1

;
x�1
x�1

; �1; x�1

�
� j�1j2f0.�1; x�1/�Hess.f /W1

.�1; x�1/

DO
� j�j3
j�1j

�
as j�1j !1 and

j�j
j�1j
C j�1j � C:

3.1 The Ricci-flat Kähler cone metric seen as a QAC–metric when zXsc is
of depth one

We now suppose that zXsc is an orbifold with fibered corners of depth one. In this case,
if p lies in a singularity of relative depth 1, then the action of �1 on Cm1 n f0g is
free. Let H1 denote the boundary hypersurface of zXsc corresponding to p and Hmax

the boundary hypersurface corresponding to the maximal stratum. In terms of the
coordinates (3.4), notice that xmax D 1=

p
1Cj�1j2 is a boundary-defining function

for Hmax and x1D
p

1Cj�1j2=j�1j is a boundary-defining function for H1 . Moreover,
�1

1
; : : : ; �

m1

1
are holomorphic coordinates in the interior of the fibers of �1 WH1! S1 ,

and arg�1 , �1 , x�1 are coordinates on the interior of S1 .

With this interpretation, we can replace (3.6) with the more precise estimate

(3.7) P 2 x�2
maxx1C1. zXsc/ D) @x@P 2 x1C1. zXscI �T � zXsc ^ �T � zXsc/:

In particular, we deduce that !E WD
p�1

2
@x@j�1j2fE.�1=�1; x�1=x�1; �1; x�1/ is also a

Kähler form near H1 .

Proposition 3.2 The Kähler metric gE associated to the Kähler form !E is a QAC–
metric with respect to the Lie algebra of QAC–vector fields induced by the choice
of x1 and xmax .

Proof Notice first that in terms of the boundary-defining functions x1 and xmax ,

(3.8) d�1; dx�1; �1 d�1; x�1 dx�1; d�1; dx�1
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is a local basis of QAC–forms. Now, the Kähler form !E is of the form

(3.9) !E D
p�1

2

 
fEd�1 ^ dx�1C

m1X
iD1

m1X
jD1

@2f

@ui@xuj

ˇ̌̌̌
W1

d�i
1 ^ dx�j

1

Cj�1j2
nX

iDm1C1

nX
jDm1C1

@2f0

@�i
1
@x�j

1

d�i
1 ^ dx�j

1

C
m1X
iD1

�
�1

@f0

@�i
1

d�i
1 ^ dx�1Cx�1

@f0

@x�i
1

d�1 ^ dx�i
1

�
C �

!
;

where � is
m1X
iD1

nX
jDm1C1

.aij d�i
1^x�1 dx�j

1
Cbij�1 d�

j
1
^dx�i

1/C
nX

iDm1

nX
jDm1C1

cij j�1j2 d�i
1^dx�j

1
;

with
aij ; bij ; cij 2 x1C1. zXsc/

and with the convention that d�
m1

1
WD d log�1 . By Example 1.19 and the local basis of

QAC–forms (3.8), we therefore see that the metric gE is a QAC–metric with respect
to the boundary-defining functions x1 and xmax .

In particular, we see from (3.9) that .Hess.f /W1
/ij D .@2f=.@ui@xuj //jW1

is positive
definite. In fact,

g�1
WD Hess.f /W1

is a family of Euclidean metrics on the interior of the fibers of the fiber bundle
�1W H1! S1 , that is, a Euclidean metric for the vector bundle �1W H1 n @H1! S1 .

Corollary 3.3 The metric gC is a QAC–metric which has the same restriction as gE

on H1 , namely

(3.10) fE d�1˝ dx�1C
m1X
iD1

m1X
jD1

@2f

@ui@xuj

ˇ̌̌̌
W1

d�i
1˝ dx�j

1

Cj�1j2
nX

iDm1C1

nX
jDm1C1

@2f0

@�i
1
@x�j

1

d�i
1˝ dx�j

1

C
m1X
iD1

�
�1

@f0

@�i
1

d�i
1˝ dx�1Cx�1

@f0

@x�i
1

d�1˝ dx�i
1

�
:

Proof This is a direct consequence of (3.7) and Proposition 3.2.
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3.2 The Ricci-flat Kähler cone metric seen as a QAC–metric when zXsc is
of arbitrary depth

More generally, if zXsc is of arbitrary depth, then given a singular point p , we can
still use the coordinates (3.4), but with the difference that this time the action of �1

on Cm1 nf0g is not necessarily free. However, to see that this model agrees with models
at boundary hypersurfaces of lower relative depth in zXsc , we will need to introduce
more refined coordinates.

Let us first describe these more refined coordinate systems. Suppose that the action
of �1 on Cm1 n f0g is not free. Let p2 2 .Cm1=�1/ n f0g be given and let `2 be the
corresponding complex line passing through p2 and the origin. If p2 is not singular,
then it suffices to use the coordinates (3.4) to describe the behavior at infinity of the
metric gC in the direction of `2 . In this case, the discussion is essentially as before. If
instead p2 is singular, then the coordinates (3.4) are no longer appropriate to describe
the metric gC at infinity in the direction of `2 . Near p2 2 Cm1=�1 , where it is
understood that we are using the coordinates �i

1
D �1zi, we can introduce an orbifold

chart of the form

'2W Cm2=�2 �C �C�2�1! U2 �Cm1=�1; where �2 Dm1�m2;

with p2D'2.0; 1; 0/ and with �2�SU.m2/ a finite subgroup such that Fix.�2/Df0g,
where

Fix.�2/D fq 2Cm2 j  � q D q for all  2 �2g:
In particular, notice that �2 can be identified with a subgroup of �1 , namely, with the
stabilizer of a lift zp2 of p2 to Cm1 under the action of �1 . We denote by .�2; �2; z2/

the complex linear coordinates on each factor of Cm2 �C�C�2�1. However, in terms
of QAC–geometry, the coordinates that will actually be useful are instead given by

�2; �2; �2 WD
z2

�2

:

If the action of �2 on Cm2nf0g is free, then these coordinates combined with �1 and �1

in (3.4) will be what we need. If the action is not free, then these coordinates will still
suffice away from the singularities of .Cm2=�2/ n f0g, but for p3 2 .Cm2=�2/ n f0g
a singular point, the coordinates must be refined again in the direction of the complex
line `3 passing through p3 and the origin. Even once these coordinates have been
introduced, we may still have to repeat this step finitely many times before we have an
adequate description of gC in all directions at infinity. More precisely, if ` is the relative
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depth of the point p , then we might have to apply this procedure up to `� 1 times to
the coordinates (3.4) depending on the direction at infinity in which we wish to look.

Thus, in general, we will have a finite sequence of subgroups

�` � �`�1 � � � � � �2 � �1;

with �i � SU.mi/ acting linearly on Cmi in such a way that Fix.�i/ D f0g, and
orbifold charts

'i W Cmi=�i �C �C�i�1! Ui �Cmi�1=�i�1:

For such a chart .�i ; �i ; zi/ 2Cmi=�i � C �C�i�1, we consider instead the projec-
tivized coordinates

�i ; �i ; �i WD zi

�i
;

with the recursive relation �i�1 D 'i.�i ; �i ; �i�i/. Combining these yields the holo-
morphic coordinates

(3.11) .�`; �`; �`; �`�1; �`�1; : : : ; �1; �1/

2Cm`=�` � .C �C�`�1/� � � � � .C �C�1�1/:

Suppressing the reference to the map 'i of the orbifold chart to lighten notation, we
relate these new coordinates to the coordinates .�1; �1; �1/ by

�1 D .�`; �`; �`�`; �`�1; �`�1�`�1; : : : ; �2; �2�2/; �1 D �1; �1 D �1:

This should be compared with the real coordinate system of (1.1) with 1=j�i j playing
the role of vi ; arg.�i/; �i playing the role of yi ; and �`=j�`j playing the role of y`C1 ,
since the function 1=j�`j can be used as a boundary-defining function x`C1 of the
maximal boundary hypersurface H`C1 WD Hmax . Notice that this labeling of the
boundary hypersurfaces is compatible with the partial order given by the orbifold with
fibered corners structure in that

Hi <Hj D) i < j:

We can thus pick

x` D
v`

x`C1

D j�`jj�`j
and xi D vi

viC1

D j�iC1j
j�i j

for i < `;

as boundary-defining functions for the other boundary hypersurfaces H`; : : : ;H1

involved in this coordinate system.
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Moreover, the coordinate system (3.11) induces the coordinates�
�`; �`; �`; : : : ; �iC1; �iC1; arg�i ; �i ;

�i�1

j�i j ; �i�1; : : : ;
�1

j�i j ; �1

�
on Hi , and in terms of these coordinates the projection �i W Hi! Si is given by

�i

�
�`; �`; �`; : : : ; �iC1; �iC1; arg�i ; �i ;

�i�1

j�i j
; �i�1; : : : ;

�1

j�i j
; �1

�
D
�

arg�i ; �i ;
�i�1

j�i j ; �i�1; : : : ;
�1

j�i j ; �1

�
2 Si :

Notice moreover that in the coordinates (3.11), the crepant resolution ˇX W yX !X is
a local product in the sense that it is described entirely in terms of the coordinates �` ,
so that the other coordinates of (3.11) naturally lift to holomorphic coordinates on the
crepant resolution yX. This allows us to complete the discussion of Section 2 about the
existence of a natural Lie algebra of QAC–vector fields on yXQAC .

Lemma 3.4 The functions �i introduced in (2.16) can be chosen in such a way that
they lift to be smooth on yXQAC . In particular, by Lemma 2.10, the boundary-defining
functions (2.19) induce a well-defined Lie algebra of QAC–vector fields on yXQAC .

Proof Using a suitable partition of unity on yXQAC , the problem becomes local on zXsc ,
so we can work with the coordinate chart (3.11). But in this chart, the choice of �i is
equivalent to the choice of vi , so we can set

�i D vi D 1

j�i j ;

which clearly lifts to be smooth on yXQAC .

Now, to describe the metric gC near Hi in the coordinates (3.11), we can, as in
Lemma 3.1, use the local invariance of f under the action of �i to deduce that,
at Wi D Fix.�i/, the function f has a Taylor expansion of the form

(3.12) f

�
�

�1

;
x�
x�1

; �1; x�1

�
D fSi

�
�i

�1

;
x�i

x�1

;
�i�i

�1

;
x�ix�i

x�1

; : : : ;
�2

�1

;
x�2

x�1

;
�2�2

�1

;
x�2x�2

x�1

; �1

�
CHess.f /Wi

�
ui

�1

;
xui

x�1

�
CO

�ˇ̌̌̌
ui

�1

ˇ̌̌̌3�
;
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with ui D .�`; �`; �`�`; : : : ; �iC1; �iC1�iC1/. In particular,

(3.13) j�1j2f
�
�

�1

;
x�
x�1

; �1; x�1

�
D fEi

CO
� jui j3
j�1j

�
;

with

(3.14) fEi
D j�1j2fSi

�
�i

�1

;
x�i

x�1

;
�i�i

�1

;
x�ix�i

x�1

; : : : ;
�2

�1

;
x�2

x�1

;
�2�2

�1

;
x�2x�2

x�1

; �1; x�1

�
CHess.f /Wi

.ui ; xui/:

Since jui=�1j DO.wi/ with wi D
Q

j�i xi , we see that

(3.15) !Ei
�!C 2 wiC1. zXscIƒ2.�T zXsc//;

where

(3.16) !Ei
WD
p�1

2
@x@j�1j2fEi

D !�i
C��i !Si

C �i ;

with �i 2 wiC1. zXscIƒ2.�T zXsc// and

(3.17) !�i
WD
p�1

2
@x@Hess.f /Wi

.ui ; xui/;

(3.18) !Si

WD
p�1

2
@x@
�
j�1j2fSi

�
�i

�1

;
x�i

x�1

;
�i�i

�1

;
x�ix�i

x�1

; : : : ;
�2

�1

;
x�2

x�1

;
�2�2

�1

;
x�2x�2

x�1

;�1;x�1

��
:

In particular, since !C is a Kähler form, this implies that near Hi , !Ei
is the Kähler

form of a Kähler metric gEi
and that !�i

is a Kähler form in each fiber of �i W Hi!Si

of a corresponding family of Kähler metrics g�i
which are in fact Euclidean. This also

implies that

(3.19) !C jHi
D !Ei

jHi
:

Moreover, since wj=wi 2 C1. zXsc/ for i < j , we also have that in this case

!Ei
�!Ej D !Ei

�!C � .!Ej �!C / 2 wiC1. zXscIƒ2.�T zXsc//;

which implies that

!Ei
jHi\Hj D !Ej jHi\Hj :

Lemma 3.5 The metrics gEi
and the Ricci-flat Kähler cone metric gC are QAC–

metrics on zXsc .
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Proof In terms of the holomorphic coordinates (3.11), a local basis of the complexifi-
cation of �T � zXsc (cf (1.6)) is given by

d�1; dx�1; �1 d�1; x�1 dx�1; : : : ; d�`; dx�`; �` d�`; x�` dx�`; d�`; dx�`:
Thus, we see from (3.15) and the local description (3.16) that gEi

and gC are QAC–
metrics.

Recall that the interior of the fibers of �i W Hi! Si are modeled on Cmi=�i for some
finite subgroup �i � SU.mi/, while the fibers of y�i W yHi!Si are modeled on a Kähler
crepant resolution Yi of Cmi=�i . This suggests the following definition.

Definition 3.6 A Kähler QAC–metric g 2 C1Qb.
yX I y�T � yXQAC˝ y�T � yXQAC/ on yX with

Kähler form ! is said to be asymptotic with rate ı to the Ricci-flat Kähler cone
metric gC if:

(1) g�gC 2 yxımaxC1Qb.
yX I y�T � yXQAC˝ y�T � yXQAC/ near yHmax ;

(2) ! � .!i C y��i !Si
/ 2 yxımaxyxi C1Qb.

yX I y�T � yXQAC˝ y�T � yXQAC/ near yHi , with !Si

as in (3.18) and with !i a closed .1; 1/–form on yHi which restricts on each
fiber of y�i W yHi ! Si to the Kähler form of a Kähler QAC–metric asymptotic
to g�i

with rate ı . Moreover, as a family of .1; 1/–forms parametrized by Si ,
!i is smooth up to @Si .

Remark 3.7 This definition is not circular. Since the fibers of y�i W yHi ! Si are of
depth lower than those of yXQAC , we can assume, proceeding by induction on the depth
of yXQAC , that the notion of a Kähler QAC–metric asymptotic to g�i

with rate ı has
already been defined.

4 Existence of Kähler QAC–metrics asymptotic to
the Ricci-flat Kähler cone metric

Before discussing examples of Kähler QAC–metrics, we need to provide examples of
orbifolds equipped with asymptotically conical Kähler metrics. Let gC be a Ricci-flat
Kähler cone metric defined on C DLnD as in Section 2, where L is some holomorphic
line bundle over a Kähler–Einstein Fano orbifold. For N > 0, set

DN D f` 2L j k`khL
�N g:

Suppose that X is a complex orbifold such that for some compact set K � X,
X nK is biholomorphic to L nDN for some N > 0.
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Lemma 4.1 Suppose that ! is a compactly supported closed .1; 1/–form on X which
is positive on K . Then there exists a Kähler form z! on X such that .X nK0; z!/ is
isometric and biholomorphic to .L nDN 0 ; !C / for some compact set K0 � X and
some N 0 > 0.

Proof By continuity, ! is positive in a small neighborhood U of K . Using the
identification X nKŠL nDN , we will work on L nDN , so that ! will be positive
on U \ .L nDN /. Now, let � 2 C1.R/ be a nondecreasing convex function such that

�.t/D
�

t if t � 2;
3
2

if t � 1;

and set �ı;a.t/D �..t�a/=ı/ for ı > 0 and a2R, so that �ı;a is also a nondecreasing
convex function. On L nDN , one computes that

(4.1)
p�1

2
@x@�ı;a.k � k2=qhL

/

D
p�1

2
�00ı;a.k � k2=qhL

/@k � k2=q
hL
^x@k � k2=q

hL
C
p�1

2
�0ı;a.k � k2=qhL

/@x@k � k2=q
hL

�
p�1

2
�0ı;a.k � k2=qhL

/@x@k � k2=q
hL
� 0;

so that this .1; 1/–form is nonnegative. Moreover, in the region where k � k2=q
hL
� 2ıCa,

it is equal to p�1
2
@x@k � k2=q

hL
D !C ;

the Kähler form of the Ricci-flat Kähler cone metric gC , whereas it vanishes in the
region where k � k2=q

hL
� ıC a. In particular, choosing ı > 0 sufficiently small and

aDN 2=q , we have that

� D
p�1

2
@x@�ı;a.k � k2=qhL

/

is a nonnegative closed .1; 1/–form which vanishes on DN , is strictly positive on
Ln.U\.LnDN //, and is equal to !C outside a compact set. Hence, it suffices to take

z! D �C �!

with � > 0 sufficiently small.

We are in particular interested in the case X DL. Notice then that gC is not smooth
in the orbifold sense since it has a singularity along D, so we cannot simply take gC

itself to obtain the conclusion of Lemma 4.1.
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Proposition 4.2 On L, there exists a Kähler metric smooth in the orbifold sense which
is equal to gC outside a compact set.

Proof Let pLW L! D denote the bundle projection, let ' 2 H 0.LIp�
L

L/ denote
the tautological section and equip p�

L
L with the Hermitian metric

hpL
WD e

k'k2
hL p�LhL:

The curvature of .p�
L

L; hpL
/ is then given by

p
�1‚hpL

D�
p
�1@x@k'k2hL

� 2qp�L!D ;

where we use formula (2.3) for the curvature of L. Clearly, the restriction of the
.1; 1/–form

p�1@x@k'k2
hL

is positive on each fiber of pLW L!D. Moreover, p�
L
!D

is positive in the directions transverse to the fibers of pLW L ! D. Because the
nonvertical part of

p�1@x@k'k2
hL

is O.k'khL
/, we see that �p�1‚hpL

is positive
in DN for N > 0 sufficiently small. Replacing hpL

with yhpL
such that yhpL

D hpL

on DN and hpL
.'; '/� 1 outside a compact set, we see that

! WD �
p
�1‚yhpL

is a compactly supported closed .1; 1/–form which is positive on DN . It then suffices
to apply the previous lemma with ! to obtain the desired Kähler form.

Suppose now that X is a complex orbifold and g is a complete Kähler metric on X

with Kähler form ! such that there is a biholomorphism X n K Š L n DN for
some N > 0 and some compact set K � X inducing at the same time an isometry
between g and gC . Let zXsc be the corresponding orbifold with fibered corners given
by (2.10) and let H1; : : : ;Hk be an exhaustive list of the boundary hypersurfaces
of zXsc compatible with the partial order in the sense that Hi <Hj D) i < j . The goal
of this section is to construct examples of Kähler QAC–metrics on the QAC–resolution
yXQAC of zXsc . Our strategy will consist of gluing local models of Kähler metrics to

the Kähler metric g at places where the singularities of zXsc are resolved by a local
product Kähler crepant resolution. To do this in a systematic way, we introduce a
natural space yX on which this gluing can be performed. This is in fact where most of
the effort will be put, for once this space is defined, the gluing construction becomes
very simple; see the proof of Theorem 4.8.

To introduce this space yX, we need to work with the orbifold with fibered corners zXsc .
As an orbifold, zXsc is automatically a stratified space. Let †kC1; : : : ; †` be an
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exhaustive list of its strata compatible with the inclusion in the sense that

†i �†j D) i < j:

In particular, †` is the regular stratum. Consider then the orbifold with corners

(4.2) zXsc � Œ0; 1/
and set

(4.3) X D Œ zXsc � Œ0; 1/I†kC1 � f0g; : : : ; †`�1 � f0g�:
Clearly, X is an orbifold with corners. Some of the boundary hypersurfaces come from
the lift of old hypersurfaces Hi � Œ0; 1/ to X, namely

Hi D ˇ�1. VHi � .0; 1// for i 2 f1; : : : ; kg;
where ˇW X ! zXsc � Œ0; 1/ is the blow-down map. As is clear from the definition, Hi

is also naturally equipped with a fiber bundle structure

(4.4)

Vi
// Hi

'i

��

Si

for i 2 f1; : : : ; kg;

where Vi is obtained from zVi � Œ0; 1/ in the same way that X was obtained from
zXsc � Œ0; 1/, namely by blowing up the strata of zVi � f0g in zVi � Œ0; 1/ in order of

decreasing relative depth.

The other boundary hypersurfaces of X arise from the blow-up of †i�f0g in zXsc�Œ0; 1/,
as well as the lift of the hypersurface zXsc � f0g. Thus, for each i 2 fk C 1; : : : ; `g,
X has a boundary hypersurface Hi associated to the stratum †i . As in the proof
of Proposition 2.7, this boundary hypersurface Hi is naturally equipped with a fiber
bundle structure

(4.5)

zVi
// Hi

'i

��

z†i

for i 2 fkC 1; : : : ; `g;

where z†i is the manifold with fibered corners that resolved the stratified space †i

and zVi is obtained from V i D CnC1�dimC †i=�i by blowing up the singular strata
of @V i in V i in an order compatible with the partial order of the strata of @V i ,
where �i�GL.nC 1� dimC †i ;C/ is some finite subgroup. In particular, the base z†i
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is smooth as a manifold with fibered corners and only the fibers zVi remain with orbifold
singularities; cf the fiber bundle (2.12). Notice also that in the case that i D `, we have
that z†` DH` and 'i is just the identity map.

Lemma 4.3 The orbifold with corners X is in fact an orbifold with fibered cor-
ners .X ; '/, where ' D .'1; : : : ; '`/ is the collection of fiber bundle maps given by
(4.4) and (4.5).

Proof It suffices to observe that for the partial order on the boundary hypersurfaces
given by

(4.6) Hi <Hj () i < j and Hi \Hj ¤∅;

all the compatibility conditions of Definition 1.1 are satisfied for the collection of
bundle maps ' D .'1; : : : ; '`/.

As for zXsc , there are natural choices of boundary-defining functions for the boundary
hypersurfaces of X. Indeed, for Hi with i � k , we simply take

ri WD ˇ� pr�1 xi ;

where pr1W zXsc� Œ0; 1/! zXsc is the projection on the first factor and xi 2 C1. zXsc/ is
a boundary-defining function for Hi as specified in Section 2. For i > k , we proceed
as follows. Consider the partial blow-down map

ˇi W X ! Œ zXsc � Œ0; 1/I†kC1 � f0g; : : : ; †i � f0g�
and denote by Bi the boundary hypersurface of Œ zXsc � Œ0; 1/I†kC1; : : : ; †i � given by
the lift of zXsc � f0g, with the convention that Bk WD zXsc � f0g in zXsc � Œ0; 1/. Let
also Wi denote the boundary hypersurface of Œ zXsc � Œ0; 1/I†kC1 � f0g; : : : ; †i � f0g�
corresponding to the blow-up of †i � f0g. Set

(4.7) �k WD pr2 2 C1. zXsc � Œ0; 1//;
where pr2W zXsc � Œ0; 1/! Œ0; 1/ is the projection on the second factor. Starting with
i D k C 1, recursively choose a boundary-defining function �i for Bi such that,
outside a small neighborhood Ui of Wi disjoint from the boundary hypersurfaces not
intersecting Wi , the function �i is identified with the lift of �i�1 . Then, for i > k , we
can take for Hi the boundary-defining function

(4.8) ri WD
�
.ˇ�

i�1
�i�1/=.ˇ

�
i �i/ if k < i < `;

�i if i D `;
with the convention that ˇk WD ˇ .
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Lemma 4.4 The QAC–equivalence class of the boundary-defining functions r1; : : : ; r`

does not depend on the choice of the functions �i for i > k . Hence the canonical
choice (4.7) yields a natural Lie algebra of QAC–vector fields VQAC.X / on X.

Proof One proceeds as in the proof of Lemma 2.9. The details are left to the reader.

Using the function " WD ˇ��k D ˇ� pr2 2 C1.X /, we consider the Lie subalgebra
of VQAC.X /

(4.9) VQAC;".X / WD f� 2 VQAC.X / j �"� 0g;
which corresponds to the Lie algebra of QAC–vector fields tangent to the level sets
of ". As for VQAC.X /, there exists a natural vector bundle E! X and a natural map
�"W E! TX such that there is a canonical identification

VQAC;".X /D .�"/�C1.X I E/:
In fact, E is naturally a vector subbundle of 'TX, which induces a natural map

(4.10) 'T �X ! E�:

This means in particular that a smooth QAC–metric naturally restricts to define an
element of C1.X I E�˝ E�/.

We are interested in the pullback g" WD ˇ� pr�
1

g to X of the smooth Kähler QAC–
metric g on zXsc .

Lemma 4.5 The pullback g" WD ��"ˇ� pr�
1

g is such that g"="
2 2 C1.X I E�˝ E�/.

Proof It suffices to check that given a section s 2 C1. zXscI �T � zXsc/, its pullback
s" WD ��"ˇ� pr�

1
s is such that

s"

"
2 C1.X I E�/:

This can be seen by using the local basis of sections (1.6) of �T � zXsc on zXsc . Indeed,
let us denote by

yvi WD ˇ� pr�1 vi ; yyni

i D ˇ� pr�1 y
ni

i ; yzq D ˇ� pr�1 zq

the pullbacks of the functions appearing in (1.6). Now, the function yvi should be
compared with its analog on X, namely

wi D
Y

Hj�Hi

rj D yvi ti with ti D
Y

Hj�Hi ;j>k

rj :
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By the choice of the functions �i above, notice that we can assume that ti D ". In this
case, we compute that

(4.11)
dwi

w2
i

D dyvi

"yv2
i

C d"

yvi"2
D) ��"

�
dyvi

"yv2
i

�
D ��"

�
dwi

w2
i

�
2 C1.X I E�/:

Similarly,

"�1��"ˇ�
dy

ni

i

vi
D ��"

d yyni

i

wi
2 C1.X I E�/

and

"�1��"ˇ� dzq D ��"
dyzq

"
2 C1.X I E�/:

Thus, this local computation shows that "�1s" 2 C1.X I E�/, as desired.

Remark 4.6 Because of the term d"=.yvi"
2/ in (4.11), "�2g is not an element of

C1.X I 'T �X ˝ 'T �X /;

namely, it is singular as a section of 'T �X ˝ 'T �X near ˇ�1.@ zXsc � f0g/� X.

To give a description of the restriction of "�2g" to Hi for i > k , we need first to give
a description of the restriction of E to Hi . First, observe that the orbifold with fibered
corners structure of X naturally induces an orbifold with fibered corners structure
on Hi by considering the fiber bundle 'j W Hj \Hi! z†ji on Hj \Hi for Hj >Hi ,
'j W Hj \Hi ! z†j on Hj \Hi with j > k and Hj < Hi , and 'j W Hj \Hi ! Sj

on Hj \Hi with j � k and Hj <Hi .

Restricting the boundary-defining functions of X to Hi , we also obtain a Lie algebra
of QFB–vector fields and a corresponding QFB–tangent bundle that we will denote
by 'THi . Clearly, there is a natural map EjHi

! 'THi and its kernel

NiE WD ker.EjHi
! 'THi/

is a vector bundle on Hi . On the other hand, Im.EjHi
! 'THi/ is also a vector

bundle, namely the vertical tangent bundle 'T .Hi=z†i/ which, on each fiber '�1
i .p/

of (4.5), restricts to define the QFB–tangent bundle of that fiber. Consequently, there
is a natural short exact sequence of vector bundles

(4.12) 0!NiE! EjHi
! 'T .Hi=z†i/! 0:
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Since there is a natural inclusion 'T .Hi=z†i/� EjHi
, this short exact sequence splits

and yields a natural decomposition

(4.13) EjHi
DNiE ˚ 'T .Hi=z†i/:

The vertical tangent bundle 'T .Hi=z†i/ also naturally fits into another natural short
exact sequence, namely

(4.14) 0! 'T .Hi=z†i/! 'THi! '�i .'T z†i/! 0;

where 'T z†i is the QFB–tangent bundle of z†i . Notice that this tangent bundle is well
defined thanks to the fact that the boundary-defining functions of X are compatible
with the collection of fiber bundle maps ' ; see the discussion just below Definition 1.9.
In particular, this yields the natural identification

'�i .'T z†i/D 'THi =
'T .Hi=z†i/:

On the other hand, multiplication by the boundary-defining function ri induces the
identification

'THi =
'T .Hi=z†i/ŠNiEjHi

;

so that there is a canonical identification

(4.15) NiEjHi
Š '�i .'T z†i/:

Summing up, we have a canonical decomposition

(4.16) EjHi
D '�i .'T z†i/˚ 'T .Hi=z†i/:

Now, proceeding as in Section 3 but replacing j�1j with ", we can show that in terms
of this decomposition, the restriction of "�2g" to Hi takes the form

(4.17)
g"

"2

ˇ̌̌̌
Hi

D g'i
C'�i gz†i

;

where gz†i
2 C1.z†i IN � z†i ˝N � z†i/ and where g'i

is on each fiber zVi of (4.5) a
QAC–metric induced by a corresponding Euclidean metric on V i . In terms of the
form !" D ˇ� pr�

1
! , we have a corresponding decomposition

(4.18)
!"

"2

ˇ̌̌̌
Hi

D !'i
C'�i !z†i

;

where !'i
and !z†i

are closed .1; 1/–forms.

We can finally introduce the space of deformations that will allow us to obtain Kähler
QAC–metrics on yXQAC .
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Lemma 4.7 The local product Kähler crepant resolution yXQAC of zXsc extends to give
a resolution of X by a manifold with fibered corners yX.

Proof The proof is similar to the proof of Theorem 2.8 and is left as an exercise.

On the resolution yX, the boundary hypersurface Hi is replaced by a boundary hyper-
surface yHi that is a resolution of Hi . Moreover, the fiber bundles (4.4) and (4.5) are
replaced by

(4.19)

Yi
// yHi

y'i

��

Si

for i 2 f1; : : : ; kg;

where Yi is a local product crepant resolution of Vi , and

(4.20)

Yi
// yHi

y'i
��

z†i

for i 2 fkC 1; : : : ; `g;

with Yi a local product crepant resolution of zVi . Notice also that the function " on X
naturally extends to a smooth function on yX, which we also denote by ". Similarly, as
in Lemma 3.4, the boundary-defining functions ri defined in (4.8) can be chosen to lift
to smooth boundary-defining functions on yX, yielding a natural Lie algebra VQAC. yX /
of QAC–vector fields. Hence, we can introduce a Lie subalgebra of VQAC. yX /, namely,

(4.21) VQAC;". yX / WD f� 2 VQAC. yX / j �"� 0g;
and a corresponding vector bundle yE! yX with a map �W yE!T yX inducing a canonical
identification

��C1. yX I yE/D VQAC;". yX /:
As the next theorem shows, the deformation space allows us to formulate a criterion
for the existence of Kähler QAC–metrics on yXQAC .

Theorem 4.8 Suppose that for each i 2 fkC 1; : : : ; `g, we can find a smooth closed
.1; 1/–form !y'i

on yHi that restricts on each fiber of y'i W yHi! z†i to the Kähler form
of a QAC–metric asymptotic to !'i

with rate ı > 0 in the sense of Definition 3.6.
(Notice that this is trivial for i D ` since the fibers of y'i D 'i are points.) Suppose
moreover that the forms

!i WD !y'i
C y'�i !z†i
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on yHi are compatible in the sense that !i j yHi\ yHj D !j j yHi\ yHj for every i and j in
fkC 1; : : : ; `g. Then yXQAC admits a smooth Kähler QAC–metric asymptotic to gC

with rate ı .

Proof Thanks to the compatibility condition, we can find y! 2 C1. yX I yE�^ yE�/ such
that y! is a closed .1; 1/–form on each level set of the function " whose restriction
to Hi is !i for each i 2 fk C 1; : : : ; `g. By continuity, this means that for c > 0

sufficiently small, the restriction of y! to the level set f" D cg Š yXQAC is positive
definite as a section of yE�^ yE�. Since yEjf"Dcg Š y�T yXQAC , we see that y!jf"Dcg is the
desired Kähler form.

Corollary 4.9 If the compact Kähler–Einstein Fano orbifold .D;gD/ has only iso-
lated singularities of complex codimension at least two with each locally admitting
a Kähler crepant resolution, then D admits a Kähler crepant resolution yD and the
QAC–compactification yXQAC of K yD admits a Kähler QAC–metric equal to gC in a
neighborhood of the maximal boundary hypersurface of yXQAC , in particular, asymptotic
to gC with rate ı for any ı > 0.

Proof By Proposition 4.2, KD admits a smooth Kähler metric g which is equal
to gC outside a compact set, so we have a corresponding metric g" D ��"ˇ� pr�

1
g

on X to which we can hope to apply Theorem 4.8. Now, since the singularities of D

are isolated, the fiber bundles y'i W yHi ! z†i are trivial and z†i Š C . Thus, using
Lemma 4.1, we can construct for each i the forms !y'i

in the statement of Theorem 4.8
which are equal to !'i

in a neighborhood of yHi \ yH` , where yH` is the maximal
boundary hypersurface of yX. The result then follows by applying Theorem 4.8. Notice
in particular that without loss of generality, the deformation y!jf"Dcg can be chosen to
be equal to !C in a neighborhood of the maximal hypersurface of yXQAC . Moreover,
by restricting to the zero section of K yD , we also obtain a Kähler metric on yD, as
claimed.

Corollary 4.10 If the compact Kähler–Einstein Fano orbifold .D;gD/ is of the form

.D;gD/D .D1 � � � � �Dq;g1 � � � � �gq/;

with each Di an orbifold as in the previous corollary, then the QAC–compactification
yXQAC of K yD admits a Kähler QAC–metric equal to gC in a neighborhood of the

maximal boundary hypersurface of yXQAC , in particular, asymptotic to gC with rate ı
for any ı > 0.

Geometry & Topology, Volume 23 (2019)



86 Ronan J Conlon, Anda Degeratu and Frédéric Rochon

Proof Again, we can use Proposition 4.2 to construct a smooth Kähler metric g on the
orbifold KD equal to gC outside a compact set, so we have a corresponding metric g"

on X to which we can hope to apply Theorem 4.8. We still also know that the fiber
bundles y'i W yHi ! z†i are all trivial. For those for which the fibers are manifolds with
boundary, we can proceed as before using Lemma 4.1 to construct the form !y'i

. For
the other fiber bundles, the fibers are QAC–resolutions of spaces of the form

Cn1=�1 � � � � �Cnr=�r ;

with �j � SU.nj / a finite subgroup acting freely on Cnj n f0g, hence we can apply
Lemma 4.1 on the crepant resolution of each factor to obtain the form !y'i

. It suffices
to make consistent choices to ensure that the compatibility conditions of Theorem 4.8
are satisfied. Hence the result follows by applying Theorem 4.8. Again, we can do this
in such a way that the resulting Kähler form is equal to !C in a neighborhood of the
maximal boundary hypersurface of yXQAC .

5 Solving the complex Monge–Ampère equation

Let X be a Kähler orbifold as in Section 2 and let � be the complex codimension of
the singular set of Xsc . In other words,

(5.1) �D min
Hi<Hmax

mi ;

with mi the complex dimension of the fibers of the fiber bundle y�i W yHi! Si . Notice
that by the hypotheses of Section 2, we are assuming in particular that

(5.2) 2� �� n:

Now let !0 be the Kähler form of a Kähler QAC–metric g0 on yXQAC asymptotic to
the Ricci-flat Kähler cone metric gC with rate � > 0 for some � > 0. Notice that the
examples of Kähler QAC–metrics of Corollary 4.10 are in fact asymptotic to gC with
a rate of ˛ as large as we want, but their Ricci potentials do not necessarily decay
near @ yXQAC n yHmax . In fact, knowing that g0 is asymptotic to gC at rate � implies
that its Ricci potential

(5.3) r0 WD log
�

.!nC1
0

/p

cp�
p

yX ^�
p

yX

�
is in x�maxC1Qb.

yX /, where �p

yX is the lift of �p
X

to the local product Kähler crepant res-
olution yX of X. Hence, the Ricci potential decays near Hmax , but not necessarily near
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the other boundary hypersurfaces of yXQAC . However, by Definition 3.6, we see that r0

has well-defined restrictions at the other boundary hypersurfaces in the following sense.

Definition 5.1 For yHi < yHmax , let C1Qb.
yHi=Si/ be the space of smooth functions on

yHi n
� [
yHj> yHi

yHj \ yHi

�
which restrict on each fiber ��1

i .s/ of y�i W yHi n
�S
yHj>Hi

yHj \ yHi

�!Si to a function
in C1Qb.

y��1
i .s//. A function f 2 x˛maxC1Qb.

yX / is said to restrict to @ yXQAC if for each
yHi < yHmax, there is an fi 2 x˛maxC1Qb.

yHi=Si/ such that

f �fi 2 x˛maxxiC1Qb.
yX /:

We denote by x˛maxC1Qb;r .
yX / the space of functions in x˛maxC1Qb.

yX / that restrict to @ yXQAC .

To obtain a Ricci-flat QAC–metric on yXQAC , we then need to solve the complex
Monge–Ampère equation

(5.4) log
�
.!0C

p�1@x@u/nC1

!nC1
0

�
D�r0:

In fact, this is a particular case of the more general complex Monge–Ampère equation

(5.5) log
�
.!0C

p�1@x@u/nC1

!nC1
0

�
D f; f 2 x˛maxC1Qb;r .

yX /:

Since it does not require any further work, we will solve (5.5) with f 2 x˛maxC1Qb;r .
yX /

not necessarily equal to �r0 .

To begin, we make the simplifying assumptions that

(5.6) 4� ˛ � 2�

and that the restriction of f to @ yXQAC is zero, so that in fact f 2 x˛maxxsingC1Qb.
yX /,

where
xsing D

Y
Hi<Hmax

xi D x

xmax

is the product of all of the boundary-defining functions except the one of the maximal
boundary hypersurface. As we shall soon see, it is always possible to reduce the
problem to this simpler setting. Now, to solve (5.5) for f 2 x˛maxxsingC1Qb.

yX /, our
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strategy is to modify the metric so that (5.5) is replaced with a complex Monge–Ampère
equation with a new f decaying faster at infinity. In order to do this, we follow the
strategy of [13, Lemma 2.12] using the following Fredholm theory result.

Theorem 5.2 [17] For all s 2N0 and  2 .0; 1/, the Laplacian � of a QAC–metric
on yXQAC induces an isomorphism

(5.7) �W x�ıx�singC
sC2;
Qb . yX /! x2�ıx��2

sing Cs;
Qb .
yX /

provided that �2n<ı<0 and 2�2�<� <0, where we recall that yX D yXQACn@ yXQAC .

Proof Recall that in terms of the notation of [17], xD ��1 and xsingDw1 is the func-
tion defined in Remark 1.26. Thus, by [17, Theorem 7.6], we know that the map (5.7)
is Fredholm. Since @ yXQAC is connected, we can deduce from [17, Theorem 6.10] and
the proof of [17, Theorem 7.6] that the map (5.7) is in fact an isomorphism.

Lemma 5.3 If f 2 x˛maxxsingC1Qb.
yX /, with ˛ as in (5.6), then there exists v 2

x˛�2
max xsingC1Qb.

yX / such that z!0D!0C
p�1@x@v is the Kähler form of a QAC–metric zg0

asymptotic to the Ricci-flat Kähler cone metric gC with rate ˛ and

zf WD f � log
� z!nC1

0

!nC1
0

�
2 x2˛

maxx3
singC1Qb.

yX /� x˛C1
max x3

singC1Qb.
yX /:

Proof We follow the strategy of [13, Lemma 2.12] using Theorem 5.2. As the reader
will see, the inequality (5.2) will be used in an essential way in the proof. Since

f 2 xsingx˛maxC1Qb.
yX /D x˛x1�˛

sing C1Qb.
yX /;

we see, by taking � D 3�˛ and ı D 2�˛ � �2 in Theorem 5.2, that there exists a
unique u 2 x�ıx�singC1Qb.

yX / such that

�g0
uD 2f;

where �g0
Dg

ij
0
rirj is the Laplacian associated to g0 . Since ı <0 and ��ıD1>0,

u is decaying at infinity, hence !0C
p�1@x@u is still positive definite outside a compact

set. Moreover, we can truncate u to obtain a new function v1 equal to u outside a
compact set such that !1 WD !0C

p�1@x@v1 is positive definite everywhere. Now, one
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computes that

(5.8) .!0C
p
�1@x@v1/

nC1

D �1C 1
2
�g0

v1

�
!nC1

0
C .nC1/!

2!.nC1�2/!
!nC1�2

0
.
p
�1@x@v1/

2

C � � �C .
p
�1@x@v1/

nC1

D .1Cf /!nC1
0
Cx4�2ıx2��4

sing C1Qb.
yX Iƒ2nC2.

y�T � yXQAC//;

which implies that

f1 WDf �log
�
!nC1

1

!nC1
0

�
2x4�2ıx2��4

sing C1Qb.
yX /Dx2˛x2�2˛

sing C1Qb.
yX /�x˛x2�˛

sing C1Qb.
yX /:

In particular, we see that f1 decays faster than f at infinity. Repeating the above
argument with !1 and f1 in place of !0 and f , this time using the isomorphism (5.7)
with g1 instead of g0 and with ı D 2�˛ as before, but with � D 7

2
�˛ , we can find

v2 2 x�ıx�singC1Qb.
yX / such that !2 WD !1C

p�1@x@v2 is positive definite, with

f2 WD f � log
�
!nC1

2

!nC1
0

�
D f1� log

�
!nC1

2

!nC1
1

�
2 x4�2ıx2��4

sing C1Qb.
yX /D x2˛x3�2˛

sing C1Qb.
yX /D x2˛

maxx3
singC1Qb.

yX /:
Thus, it suffices again to take v D v1C v2 to obtain the result.

For the Kähler metric z!0 and the function zf , we can now appeal to the result of
Tian and Yau [42] or its parabolic version [10] to solve the complex Monge–Ampère
equation.

Theorem 5.4 For the Kähler form z!0 and the function zf given by Lemma 5.3, the
complex Monge–Ampère equation

(5.9) log
�
.z!0C

p�1@x@u/nC1

z!nC1
0

�
D� zf

has a unique solution u in x˛�1
max x2

singC1Qb.
yX /.

Proof This is very similar to what has been done for asymptotically conical metrics
in [24; 21]. We will therefore go over the argument putting emphasis on the new
features. The idea is to apply the continuity method to

(5.10) log
�
.z!0C

p�1@x@ut /
nC1

z!nC1
0

�
D t zf
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for t 2 Œ0; 1�. That is, we will show that the set

S D fs 2 Œ0; 1� j there is a solution us 2 x˛�1
max x3

singC1Qb.
yX / of (5.10) for t D sg

is in fact all of Œ0; 1� by showing that it is nonempty, open and closed. Clearly, u0 D 0

is a solution of (5.9) for t D 0, so that S is nonempty. The openness of S follows
from Theorem 5.2.

For closedness, suppose that Œ0; �/�S for some 0<� � 1. We need to show that (5.10)
has a solution for t D � . For this, we need to derive a priori estimates for solutions
of (5.10). We do this as follows. First of all, thanks to the Sobolev inequality (1.10), we
can apply a Moser iteration to obtain an a priori C0–bound on a solution ut of (5.10).
Yau’s method then provides a uniform bound on

p�1@x@ut . By the Evans–Krylov
theorem, this yields an a priori C2;–bound on solutions, where the Hölder norm is
defined in term of zg0 . If ftig is a strictly increasing sequence with ti% � and futi

g
is a corresponding sequence of solutions of (5.10) for t D t1; t2; : : : , then using the
Arzelà –Ascoli theorem, one can extract a subsequence that converges in C2

QAC.
yX / to

some function u. Clearly then, u is solution of (5.10) for t D � . Bootstrapping, we
thus see that u 2 C1QAC.

yX /.

To see that u is in fact in x˛�1
max x3

singC1Qb.
yX /, we need to work slightly harder. First,

using Moser iteration with weights as in [24, Section 8.6.2] and the fact that zf 2
x˛C1

max x3
singC1Qb.

yX / � x3C1Qb.
yX /, we obtain an a priori bound in x�C0. yX / for some

0< � < 3� 2D 1 for the solutions uti
. The argument in [24, Section 8.6.2] is, strictly

speaking, written for ALE–metrics, but as subsequently explained in [24, Section 9.6.2],
because we have the Sobolev inequality (1.10), the argument also works for the
QAC–metric zg0 and only involves minor notational changes. This a priori bound
thus implies that u 2 x�C0. yX /\ C1QAC.

yX /.

To improve the statement about the regularity of u, we now work directly with (5.10)
for t D � . Notice first that the equation can be rewritten as

� zf D
Z 1

0

@

@t
log
�
.z!0C t

p�1@x@u/nC1

z!nC1
0

�
dt D

Z 1

0

�
.nC 1/z!n

u;t ^
p�1@x@u

z!nC1
u;t

�
dt;

where z!u;t D z!0C t
p�1@x@u. In other words, the complex Monge–Ampère equation

can be rewritten as

(5.11) �uuD � zf ;
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where

�uv D
Z 1

0

�
.nC 1/z!n

u;t ^
p�1@x@v

z!nC1
u;t

�
dt D 1

2

Z 1

0

.�z!u;t
v/ dt;

with �z!u;t
the Laplacian associated to the Kähler form z!u;t .

Since a QAC–metric has bounded geometry by Proposition 1.27 or [17, Remark 2.20],
applying the Schauder estimate to (5.11), we find that in fact u 2 x�C1QAC.

yX /. Since,
by Lemma 1.31, x�C1

QAC.
yX /� C0;

Qb .
yX / for  �� , we see in particular that k@x@ukg0

2
C0;

Qb .
yX /. Rewriting (5.11) in terms of an elliptic Qb–operator, that is,

(5.12) .x�2
max�u/uD x�2

max�
zf ;

we can, thanks to Proposition 1.30, apply the Schauder estimate once again and
bootstrap to see that u 2 x�C1Qb.

yX /. Finally, using the inclusion x˛�1
max x2

singC1Qb.
yX /�

x�x��singC1Qb.
yX /, we can apply the isomorphism (5.7) with .ı; �/ equal to .��;��/ and

.1� ˛; 3� ˛/ to conclude that u 2 x˛�1
max x2

singC1Qb.
yX /. This shows that the set S is

closed and completes the proof of existence.

For uniqueness, we can proceed as in [4, Proposition 7.13], but using the isomor-
phism (5.7) instead of the maximum principle.

This means that for f 2 x˛maxxsingC1Qb.
yX /, we can solve the original equation (5.5).

Corollary 5.5 For f 2x˛maxxsingC1Qb.
yX /, the complex Monge–Ampère equation (5.5)

has a unique solution u 2 x˛�2
max xsingC1Qb.

yX /.

Proof Applying Lemma 5.3, this amounts to solving the complex Monge–Ampère
equation (5.9), so existence follows from Theorem 5.4. On the other hand, uniqueness
follows again by proceeding as in [4, Proposition 7.13], but using the isomorphism (5.7)
instead of the maximum principle.

The decay of the Ricci potential at infinity, and more generally of the function f ,
is a strong assumption. Still, since it is satisfied by the examples of the previous
section in the case that yXQAC is a manifold with boundary, we will be able to relax this
assumption by proceeding by induction on the depth of yXQAC and using the existence
result of Corollary 5.5.

Proposition 5.6 Given f 2 x
ˇ
maxC1Qb;r .

yX / with ˇ � 4 and ˇ ¤ 2�, there exists a
function u 2 x˛�2

max C1Qb;r .
yX / with ˛ Dminf2�; ˇg such that
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(1) ! WD !0C
p�1

2
@x@u is the Kähler form of a Kähler QAC–metric zg asymptotic

to gC with rate ˛ ;

(2) f � log.!nC1=!nC1
0

/ 2 x˛maxxsingC1Qb.
yX /.

Proof Let yH1; : : : ; yH`C1 be an exhaustive list of the boundary hypersurfaces of yXQAC

compatible with the partial order in the sense that

yHi < yHj D) i < j:

To construct ! , we will recursively construct the restrictions uj yHi
proceeding in order

of increasing relative depth, that is, in decreasing order with respect to the index i .
More precisely, for each i 2 f1; : : : ; `C 1g, we will show that there exists a function
ui 2 x˛�2

max C1Qb;r .
yX / such that ! Cp�1@x@ui is the Kähler form of a QAC–metric

asymptotic to gC with rate ˛ and with

(5.13) f � log
�
.!0C

p�1@x@ui/
nC1

!nC1

�
2 x˛max

� Y
i�j<`C1

xj

�
C1Qb.

yX /:

For the maximal boundary hypersurface yH`C1 , we simply take u`C1 D 0. Suppose
now that for some i , we can find uiC1 2 x˛�2

max C1Qb;r .
yXQAC n @ yXQAC/ such that ! WD

!0C
p�1@x@uiC1 is the Kähler form of a QAC–metric asymptotic to gC with rate ˛

such that

f � log
�
.!Cp�1@x@uiC1/

nC1

!nC1

�
2 x˛max

� Y
i<j<`C1

xj

�
C1Qb.

yX /:

In terms of fi WD f j yHi
and the restrictions of !0 and ! to yHi respectively given by

(5.14)
!0j yHi

D
p�1

2
fEi

d�1 ^ dx�1C!0;i C��i !Si
;

!j yHi
D
p�1

2
fEi

d�1 ^ dx�1C!i C��i !Si
;

this means that

zfi WD fi � log
�
!

mi

i

!
mi

0;i

�
2 x˛max

� Y
i<j<`C1

xj

�
C1Qb.
y��1

i .s//

in each fiber y��1
i .s/ of y�i W yHi! Si , where mi is the complex dimension of the

fibers of y�i . Moreover, !i is a closed .1; 1/–form which restricts on each fiber
of y�i W yHi! Si to the Kähler form of a Kähler QAC–metric asymptotic to the Eu-
clidean metric gy�i

with rate ˛ . We then need to distinguish two cases.
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Case 1: The relative depth of yHi is strictly bigger than 1 In this case, we apply
Corollary 5.5 to each fiber yYi of y�i W yHi! Si to obtain a unique function

vi 2
� Y

i<j�`
xj

�
x˛�2

max C1Qb.
yYi/

such that

(5.15) log
�
.!i C

p�1@x@vi/
ni

!
ni

i

�
D zfi :

On yHi , this yields a function that we will also denote by vi . Notice that for all t 2 Œ0; 1�,
(5.16) !i C t

p
�1@x@.vi/D .1� t/!i C t.!i C

p
�1@x@vi/

is a convex sum of two Kähler forms, hence is itself a Kähler form. We can use this
to extend vi to a function v 2 �Qi<j�` xj

�
x˛�2

max C1Qb.
yX / such that z!Cp�1@x@v is

the Kähler form of a QAC–metric. To see this, let ci W yHi � Œ0; �/! yXQAC be a collar
neighborhood of yHi in yXQAC as in Lemma 1.10, so that xi ı ci W yH1 � Œ0; �/! Œ0; �/

is the projection on the second factor. If  2 C1.R/ is a cut-off function that takes
values in Œ0; 1� with  .t/� 1 for t < 1 and  .t/� 0 for t > 2, then, given the local
descriptions (5.14) and (1.6), it suffices to take

v D .ci/�. .N xi/vi/

for N > 0 a constant chosen sufficiently large so that the .1; 1/–form z!Cp�1@x@v
remains positive definite. Indeed, set �iD

Q
i<j�`C1 xj . Then, using local coordinates

as in (1.2), one computes that

dxi 2 xi�iC1Qb.
yX I y�T � yXQAC/ and @x@xi 2 xi�iC1Qb.

yX Iƒ2.
y�T � yXQAC//:

On the other hand,
p
�1@x@. .N xi/vi/D

p
�1 .N xi/@x@vi CQ;

with

QD
p
�1vi

�
N 2 00.N xi/@xi ^x@xi CN 0.N xi/@x@xi

�
C
p
�1N 0.N xi/

�
@vi ^x@xi C @xi ^x@vi

�
:

Since xi � 2N�1 on the support of  .N xi/, for � > 0 to be taken small, we see that
in the region �i < � ,

k
p
�1@x@. .N xi/vi/kg0

� C�
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for a constant C independent of N � 1. Taking � small enough, we can thus ensure
that !Cp�1@x@v > 0 in the region �i < � whatever the choice of N � 1. Keeping
� > 0 fixed, we now adjust the choice of N � 1 to ensure that !Cp�1@x@v is also
positive definite in the region �i � � . In this region, one easily computes that

dxi 2 x2
i C1Qb.

yX I y�T � yXQAC/ and @x@xi 2 x2
i C1Qb.

yX Iƒ2.
y�T � yXQAC//:

Hence, since again xi � 2N�1 on the support of  .N xi/, we see that

kQkg � C�

N
in the region �i � �

for some constant C� > 0 depending on � . Thus, Q can be taken as small as we
want by taking N sufficiently large. On the other hand, by construction, the termp�1 .N xi/@x@vi is not expected to be small in the region �i � � , but by the convexity
property (5.16), we can still ensure that

!C
p
�1 .N xi/@x@vi > 0 in the region �i � �

provided that N � 1 is taken large enough. Summing up, we can therefore ensure
that !Cp�1@x@v > 0 provided that N � 1 is large enough, as claimed. Notice then
that by (5.15), it suffices to take ui D uiC1C v 2 x˛maxC1Qb;r .

yX / to obtain the desired
function for which !Cp�1@x@ui is the Kähler form of a QAC–metric asymptotic
to gC with rate ˛ and

f � log
�
.!Cp�1@x@ui/

nC1

!nC1

�
2 x˛max

� Y
i�j<`C1

xj

�
C1Qb.

yX /;

thereby completing the inductive step.

Case 2: The relative depth of yHi is equal to 1 In this case, the fibers of y�i W yHi!Si

are necessarily manifolds with boundary and the corresponding fiberwise Kähler metrics
are ALE. Instead of applying Corollary 5.5, we then apply standard results about ALE–
metrics to find vi in (5.15); see [24, Section 8.5] and also [13, Theorem 2.1]. In
particular, when ˇ > 2�, it is in this step that ˇ is replaced by ˛ D 2�. We then
proceed as in Case 1 to extend vi to a function on yX and obtain ui .

This leads to the main result of this section.

Theorem 5.7 Let g0 be a Kähler QAC–metric on yXQAC asymptotic to the Ricci-flat
Kähler cone metric gC with rate � > 0. Let !0 be its Kähler form. Given f 2
x
ˇ
maxC1Qb;r .

yX / with ˇ � 4 such that ˇ ¤ 2�, there exists a unique u 2 x˛�2
max C1Qb;r .

yX /
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with ˛ Dminf2�; ˇg solving the complex Monge–Ampère equation

log
�
.!0C

p�1@x@u/nC1

!nC1
0

�
D f:

Proof The existence is obtained by combining Proposition 5.6 and Corollary 5.5.
Uniqueness can be seen by proceeding as in [4, Proposition 7.13], but using the
isomorphism (5.7) instead of the maximum principle.

Taking f to be the Ricci potential of g0 gives the following result.

Corollary 5.8 Let g0 with Kähler form !0 be a QAC–metric on yXQAC asymptotic
to the Ricci-flat Kähler cone metric gC with rate � � 4 such that � ¤ 2�. Then
there exists a unique u 2 x˛�2

max C1Qb;r .
yX / with ˛ D minf2�; �g solving the complex

Monge–Ampère equation

log
�
.!0C

p�1@x@u/nC1

!nC1
0

�
D�r0;

where r0 is the Ricci potential defined in (5.3). In particular, !0C
p�1@x@u is the

Kähler form of a Ricci-flat Kähler QAC–metric.

Remark 5.9 If we can take pD 1 in the definition of X and yX near (2.7), then �1
yX

is a nowhere vanishing parallel holomorphic volume form on yX and the Ricci-flat
Kähler QAC–metric of Corollary 5.8 is in fact Calabi–Yau.

Appendix More examples of Kähler–Einstein orbifolds
admitting a crepant resolution

by Ronan J Conlon, Frédéric Rochon and Lars Sektnan

It is possible to slightly widen the situations where we can apply Theorem 4.8, yielding
in turn more examples to which Theorem 5.7 can be applied. In this appendix, we
will be interested in the case where .D;gD/ is a Kähler–Einstein Fano orbifold with
nonisolated singularities of depth 1 having a nontrivial normal bundle, a situation not
covered by Corollary 4.10. In fact, we will be very specific and only consider orbifold
singularities that are locally modeled on

(A.1) Cn�mi � .Cmi=Zmi
/;
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with the generator e2�
p�1=mi of Zmi

acting on Cmi via complex multiplication. For
singularities of this kind, it is well known that �i W KCPmi�1!Cmi=Zmi

is a crepant
resolution.

Theorem A.1 Let .D;gD/ be a compact Kähler–Einstein Fano orbifold with at most
depth-one singularities. Assume that the isolated singularities can be resolved by a Käh-
ler crepant resolution and that the nonisolated singularities are locally of the form (A.1).
Then D admits a Kähler crepant resolution yD and the QAC–compactification yXQAC

of K yD admits a Calabi–Yau QAC–metric asymptotic to gC with rate 2�, where � is
the complex codimension of the singular set of D.

Proof The idea is to first construct a Kähler QAC–metric on yXQAC by applying
Theorem 4.8. By Proposition 4.2, KD admits a smooth Kähler metric g which is
equal to gC outside a compact set, so we have a corresponding metric g"D ��"ˇ� pr�

1
g

on X to which we can hope to apply Theorem 4.8. In order to do that, we need to also
provide a smooth closed .1; 1/–form !y'i

on yHi as in the statement of Theorem 4.8.
For a boundary hypersurface yHi associated to an isolated singularity of D, we can
proceed exactly as in the proof of Corollary 4.9 to construct the form !y'i

. For a
singular stratum of D locally modeled on Cn�mi � .Cmi=Zmi

/ as in (A.1), the
corresponding crepant resolution is locally of the form Cn�mi �KCPmi�1 , so that the
corresponding fiber bundle y'i W yHi ! z†i is a KCPmi�1–bundle, where KCPmi�1 is
the radial compactification (or equivalently in this case the QAC–compactification)
of KCPmi�1 with respect to the corresponding Calabi–Yau cone metric. In fact, z†i

itself is a fiber bundle over the corresponding singular stratum of D. For convenience,
we will denote this singular stratum by �i and the corresponding fiber bundle by

�i W z†i! �i ; where dimC �i D n�mi :

Now, what is important for us is that y'i W yHi ! z†i is in fact the pullback of a
KCPmi�1–bundle over �i ,

xhi! �i ;

for hi! �i a KCPmi�1–bundle with hi D xhi n @xhi .

Alternatively, we can regard hi as a complex line bundle Li over a CPmi�1–bundle
Pi ! �i . By the proof of Proposition 4.2, we can therefore find a smooth closed
.1; 1/–form !i on the total space of hi which has compact support and is positive
definite in a neighborhood of Pi in hi . Pulling back this form to yHi , one can then
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apply Lemma 4.1 fiberwise to y'i W yHi ! z†i to obtain the closed .1; 1/–form required
in Theorem 4.8. This theorem thus yields a Kähler QAC–metric on yXQAC asymptotic
to gC with rate ˛ for any ˛ > 0. Restricting this metric to yD�K yD shows in particular
that yD is a Kähler crepant resolution of D. Finally, applying Theorem 5.7, we obtain
the desired Calabi–Yau QAC–metric.

Example A.2 In the previous theorem, one can take D D CP2m�1=Zm , with the
generator e2�

p�1=m of Zm acting on CP2m�1 by

e2�
p�1=m � Œz0 W � � � W z2m�1�D Œe2�

p�1=mz0 W � � � W e2�
p�1=mzm�1 W zm W � � � W z2m�1�:

The fixed points of this action are given by the disjoint union of

�1 WD fŒz0 W � � � W z2m�1� 2CP2m�1 j z0 D � � � D zm�1 D 0g
and

�2 WD fŒz0 W � � � W z2m�1� 2CP2m�1 j zm D � � � D z2m�1 D 0g;
so that D has two disjoint singular strata �1 and �2 which are each locally modeled
on Cm�1 � .Cm=Zm/. Since Zm acts isometrically on CP2m�1 with respect to the
Fubini–Study metric, the orbifold D is naturally a Kähler–Einstein Fano orbifold.

More generally, proceeding as in Corollary 4.10, we can extend Theorem A.1 to apply
to a Kähler–Einstein Fano orbifold .D;gD/ of the form

.D;gD/D .D1 � � � � �Dq;g1 � � � �gq/;

where each .Di ;gi/ a Kähler–Einstein Fano orbifold as in the statement of Theorem A.1.
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