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The resolution of paracanonical curves of odd genus

GAVRIL FARKAS

MICHAEL KEMENY

We prove the Prym–Green conjecture on minimal free resolutions of paracanonical
curves of odd genus. The proof proceeds via curves lying on ruled surfaces over an
elliptic curve.

14H10

0 Introduction

The study of torsion points on Jacobians of algebraic curves has a long history in
algebraic geometry and number theory. On the one hand, torsion points of Jacobians
have been used to rigidify moduli problems for curves, while on the other hand, such a
torsion point determines an unramified cyclic cover over the curve in question, which
gives rise to a (generalized) Prym variety; see Birkenhake and Lange [5, Chapter 12]
for an introduction to this circle of ideas.

Pairs ŒC; ��, where C is a smooth curve of genus g� 2 and � 2 Pic0.C / is a nontrivial
torsion line bundle of order `� 2, form an irreducible moduli space Rg;` . One may
view this moduli space as a higher-genus analogue of the level-` modular curve X1.`/.
There is a finite cover

Rg;`!Mg

given by forgetting the `–torsion point. Following ideas going back to Mumford, Tyurin
and many others, linearizing the Abel–Prym embedding of the curve in its Prym variety
leads to the study of the properties of ŒC; �� in terms of the projective geometry of the
level-` paracanonical curve

'KC˝� W C ,! Pg�2

induced by the line bundle KC ˝ � . In practice, this amounts to a qualitative study of
the equations and the syzygies of the paracanonical curve in question. For instance, in
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4236 Gavril Farkas and Michael Kemeny

the case `D 2, there is a close relationship between the study of these syzygies and
the Prym map

Rg;2!Ag�1

to the moduli space of principally polarized abelian varieties of dimension g � 1,
which has been exploited fruitfully for some time; see for instance Beauville [3]. For
higher levels, the study of these syzygies has significant applications to the study of
the birational geometry of Rg;` ; see Chiodo, Eisenbud, Farkas and Schreyer [7].

Denoting by �C .KC˝�/ WD
L
q�0H

0.C; .KC˝�/
˝q/ the homogeneous coordinate

ring of the paracanonical curve, for integers p; q � 0, let

Kp;q.C;KC ˝ �/ WD Torp.�C .KC ˝ �/;C/pCq

be the Koszul cohomology group of pth syzygies of weight q of the paracanonical
curve, and denote by bp;q WD dim Kp;q.C;KC ˝ �/ the corresponding Betti number.

The Prym–Green conjecture formulated by Chiodo, Eisenbud, Farkas and Schreyer [7]
predicts that the minimal free resolution of the paracanonical curve corresponding to a
general level-` curve ŒC; �� 2Rg;` of genus g � 5 is natural, that is, in each diagonal
of its Betti table, at most one entry is nonzero. The naturality of the resolution amounts
to the vanishing statements bp;2 � bpC1;1 D 0 for all p . As explained in [7], for odd
genus g D 2nC 1, this is equivalent to the vanishing statements

(1) Kn�1;1.C;KC ˝ �/D 0 and Kn�3;2.C;KC ˝ �/D 0:

Since the differences bp;2 � bpC1;1 are known, naturality entirely determines the
resolution of the general level-` paracanonical curves and shows that its Betti numbers
are as small as the geometry (that is, the Hilbert function) allows. We refer the reader to
Farkas and Ludwig [11] and to [7] for background on this conjecture and its important
implications on the global geometry of Rg;` .

In particular, a positive solution to the Prym–Green conjecture for bounded genus
g < 23 has been shown to be instrumental in determining the Kodaira dimension
of Rg;` for small values of `. The Prym–Green conjecture is obviously inspired by the
classical Green’s conjecture for syzygies of canonical curves stating that the minimal
resolution of a general canonical curve C � Pg�1 is natural. The main result of this
paper is a complete solution to this conjecture in odd genus:

Theorem 0.1 The Prym–Green conjecture holds for any odd genus g and any level `.
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1 2 � � � n� 3 n� 2 n� 1 n � � � 2n� 2

b1;1 b2;1 � � � bn�3;1 bn�2;1 0 0 � � � 0

0 0 � � � 0 bn�2;2 bn�1;2 bn;2 � � � b2n�2;2

Table 1

Theorem 0.1 implies the general level-` paracanonical curve of genus g D 2nC 1� 5
has the minimal resolution given in Table 1, where

bp;1 D
p.2n� 2p� 3/

2n� 1

� 2n

pC1

�
if p � n� 2;

bp;2 D
.pC 1/.2p� 2nC 5/

2n� 1

� 2n

pC2

�
if p � n� 2:

In odd genus, we have established the conjecture before for level 2 in [9] (using
Nikulin surfaces) and for high level ` �

p
.gC 2/=2 in [10] (using Barth–Verra

surfaces). Theorem 0.1 therefore removes any restriction on the level `. Apart from
that, we feel that the rational elliptic surfaces used in this paper are substantially simpler
objects than the K3 surfaces used in [9] and [10] and should have further applications
to syzygy problems. The Prym–Green conjecture in even genus, amounting to the
single vanishing statement

(2) K 1
2
g�2;1.C;KC ˝ �/D 0

(or equivalently, K 1
2
g�3;2.C;KC ˝ �/D 0), is still mysterious. It is expected to hold

for any genus and level ` > 2. For level 2, it has been shown to fail in genus 8 by
Colombo, Farkas, Verra and Voisin [8]; a Macaulay calculation carried out by Chiodo,
Eisenbud, Farkas and Schreyer [7] indicates that the conjecture very likely fails in
genus 16 as well. This strongly suggests that for level 2 the Prym–Green conjecture
fails for general Prym canonical curves of genera having high divisibility properties
by 2 and in these cases there should be genuinely new methods of constructing syzygies.
At the moment the vanishing (2) is not even known to hold for arbitrary even genus g
in the case when � is a general line bundle in Pic0.C /.

By semicontinuity and the irreducibility of Rg;` , it suffices to establish the vanishing (1)
for one particular example of a paracanonical curve of odd genus. In our previous
partial results on the Prym–Green conjecture, we constructed suitable examples ŒC; ��
in terms of curves lying on various kinds of lattice-polarized K3 surfaces, namely
the Nikulin and Barth–Verra surfaces. In each case, the challenge lies in realizing
the `–torsion bundle � as the restriction of a line bundle on the surface, so that the
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geometry of the surface can be used to prove the vanishing of the corresponding Koszul
cohomology groups, while making sure that the curve C in question remains general,
for instance, from the point of view of Brill–Noether theory. In contrast, in this paper
we use the elliptic ruled surfaces recently introduced by Farkas and Tarasca [13] (closely
related to the very interesting earlier work of Treibich [18]), in order to provide explicit
examples of pointed Brill–Noether general curves defined over Q. These surfaces
also arise when one degenerates a projectively embedded K3 surface to a surface with
isolated, elliptic singularities. They have been studied in detail by Arbarello, Bruno
and Sernesi in their important work [2] on the classification of curves lying on K3
surfaces in terms of their Wahl map.

Whereas our previous results required a different K3 surface for each torsion order `
for which the construction worked, in the current paper we deal with all orders ` using
a single surface. This is possible because on the elliptic ruled surface in question, a
general genus-g curve admits a canonical degeneration within its linear system to a
singular curve consisting of a curve of genus g� 1 and an elliptic tail. This leads to
an inductive structure involving curves of every genus and makes possible inductive
arguments, while working on the same surface all along.

We introduce the elliptic ruled surface central to this paper. For an elliptic curve E , set

�W X WD P .OE ˚ �/!E;

where � 2 Pic0.E/ is neither trivial nor torsion. We fix an origin a 2E and let b 2E
be such that � D OE .a � b/. Furthermore, choose a point r 2 E n fbg such that
� WD OE .b� r/ is torsion of order precisely `. The scroll X ! E has two sections
J0 and J1 corresponding respectively to the quotients OE˚��� and OE˚��OE .
We have

J1 Š J0��
��; NJ0=X ŠOJ0

.���/; NJ1=X ŠOJ1
.���_/;

where we freely mix notation for divisors and line bundles. For any point x 2E we
denote by fx the fiber ��1.x/. We let

C 2 jgJ0Cfr j

be a general element; this is a smooth curve of genus g . We further set

L WDOX ..g� 2/J0Cfa/:

Using that KXD�J0�J1 , the adjunction formula shows that the restriction LC is a
level-` paracanonical bundle on C , that is, ŒC; ��2Rg;` , where � WD��C .�/ŠLC˝K

_
C ,
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with �C W C!E being the restriction of � to the curve C . In this paper we verify the
Prym–Green conjecture for this particular paracanonical curve of genus gD2nC1.

Denoting by zX the blow-up of X at the two basepoints of jLj and by zL 2 Pic. zX/ the
proper transform of L, one begins by showing that the first vanishing required in the
Prym–Green conjecture, Kn�1;1.C;KC ˝ �/D 0, is a consequence of the vanishing
of Kn�1;1. zX; zL/ and that of the mixed Koszul cohomology group Kn�2;2. zX;�C; zL/
(see Section 1 for details). By the Lefschetz hyperplane principle in Koszul cohomology,
the vanishing of Kn�1;1. zX; zL/ is a consequence of Green’s conjecture for a general
curve D in the linear system jLj on X . Since D has been proven by Farkas and
Tarasca [13] to be Brill–Noether general, Green’s conjecture holds for D . We then
show (see (8)) that a sufficient condition for the second vanishing appearing in (1) is that

Kn�2;2.D;OD.�C/;KD/D 0 and Kn�1;2.D;OD.�C/;KD/D 0:

Via results from Farkas, Mustat,ǎ and Popa [12] coupled with the usual description of
Koszul cohomology in terms of kernel bundles, we prove that these vanishings are both
consequences of the following transversality statement between difference varieties
in the Jacobian Pic2.D/:

(3) OD.C /�KD �D2 ªDn�Dn�2;

where, as usual, Dm denotes the mth symmetric product of D (see Lemma 1.7). This
last statement is proved inductively, using the canonical degeneration of D inside its
linear system to a curve of lower genus with elliptic tails. It is precisely this feature
of the elliptic surface X , of containing Brill–Noether general curves of every genus
(something which is not shared by a K3 surface), which makes the proof possible. To
sum up this part of the proof, we point that by using the geometry of X , we reduce the
first half of the Prym–Green conjecture, that is, the statement Kn�1;1.C;KC ˝ �/D 0
on the curve C of genus g , to the geometric condition (3) on the curve D of genus g�2.

The second vanishing required by the Prym–Green conjecture, Kn�3;2.C;KC˝�/D0,
falls in the range covered by the secant conjecture of Green and Lazarsfeld [16]. This
feature appears only in odd genus; for even genus the Prym–Green conjecture is beyond
the range in which the secant conjecture applies (see Section 2 for details). For a
curve C of genus g D 2nC 1 and maximal Clifford index Cliff.C /D n, the secant
conjecture predicts that for a nonspecial line bundle L 2 Pic2g�2.C /, one has the
equivalence

Kn�3;2.C;L/D 0 () L�KC … Cn�1�Cn�1:

Geometry & Topology, Volume 22 (2018)



4240 Gavril Farkas and Michael Kemeny

Despite significant progress, the secant conjecture is not known for arbitrary L, but
in [9, Theorem 1.7], we provided a sufficient condition for the vanishing to hold.
Precisely, whenever

(4) � CC2 ª CnC1�Cn�1;

we have Kn�3;2.C;KC ˝ �/D 0. Thus the second half of the Prym–Green conjecture
has been reduced to a transversality statement of difference varieties very similar
to (3), but this time on the same curve C . Using the already mentioned elliptic tail
degeneration inside the linear system jC j on X , we establish inductively in Section 2
that (4) holds for a general curve C �X in its linear system. This completes the proof
of the Prym–Green conjecture.

Acknowledgements Farkas is supported by DFG Priority Program 1489 Algorithmi-
sche und experimentelle Methoden in Algebra, Geometrie und Zahlentheorie. Kemeny
is supported by NSF grant DMS-1701245 Syzygies, moduli spaces, and Brill–Noether
theory.

1 Elliptic surfaces and paracanonical curves

We fix a level `� 2 and recall that pairs ŒC; ��, where C is a smooth curve of genus g
and � 2 Pic0.C / is an `–torsion point, form an irreducible moduli space Rg;` . We
refer the reader to [7] for a detailed description of the Deligne–Mumford compactifica-
tion Rg;` of Rg;` .

Normally we prefer multiplicative notation for line bundles, but occasionally, in order
to simplify calculations, we switch to additive notation and identify divisors and line
bundles. If V is a vector space and S WD SymV , for a graded S–module M of
finite type, we denote by Kp;q.M; V / the Koszul cohomology group of pth syzygies
of weight q of M . If X is a projective variety, L is a line bundle and F is a
sheaf on X , we set as usual Kp;q.X;F ; L/ WD Kp;q.�X .F ; L/;H 0.X;L//, where
�X .F ; L/ WD

L
q2ZH

0.X;F˝L˝q/ is viewed as a graded SymH 0.X;L/–module.
For background questions on Koszul cohomology, we refer the reader to the book [1].

Assume now that g WD 2nC 1 is odd and let us consider the decomposable elliptic
ruled surface �W X ! E defined in the introduction. Retaining all the notation, our
first aim is to establish the vanishing of the linear syzygy group Kn�1;1.C;KC ˝ �/.
Before proceeding, we confirm that � WD ��C .�/ is nontrivial of order precisely `, so
that ŒC; �� is indeed a point of Rg;` .

Geometry & Topology, Volume 22 (2018)



The resolution of paracanonical curves of odd genus 4241

Lemma 1.1 For any 1�m� `� 1, the line bundle �˝m 2 Pic0.C / is not effective.

Proof Since the order of � is precisely `, we have

H 0.X; ��.�˝m//ŠH 0.E; �˝m/D 0 for 1�m� `� 1:

So it suffices to show H 1.X; ��.�˝m/.�C//D 0. By Serre duality, this is equivalent
to H 1.X; ��.rC��m�/..g�2/J0//D 0. Applying the Leray spectral sequence this
amounts to

H 1
�
E;OE .aC .mC 1/r � .mC 1/b/˝Symg�2.OE ˚ �/

�
D 0;

which is clear for degree reasons.

Any linear system which is a sum of a positive multiple of J0 and a fiber of � has
two basepoints; see [13, Lemma 2]. In particular, the linear system jLj on X has two
basepoints p 2 J1 and q.g�2/ 2 J0 . Here

fpg WD fa �J1 and fq.g�2/g WD fs.g�2/ �J0;

where the point s.g�2/ 2E is determined by the condition �˝.g�2/ŠOE .s.g�2/�a/.

Let � W zX!X be the blow-up of X at these two basepoints, with exceptional divisors
E1 respectively E2 over p respectively q.g�2/ . We denote by zL WD ��L�E1�E2
the proper transform of L. Note that K zX D � zJ0 � zJ1 , where zJ0 D J0 �E2 and
zJ1 D J1 � E1 are the proper transforms of J0 and J1 . We now observe that the

basepoints of the two linear systems jLj and jC j on X are disjoint.

Lemma 1.2 Let x0 2 J0 and x1 2 J1 be the two basepoints of jC j. Then we have
x0; x1 … fp; q

.g�2/g.

Proof First, since r ¤ a , we obtain J1\fa¤ J1\fr , therefore p¤ x1 . Next, recall
that fq.g�2/gDJ0\fs.g�2/ , where OE .s.g�2/�a/D �˝.g�2/ and fx0gDJ0\ft.g/ ,
where the point t .g/ 2E is determined by the equation OE .t .g/� r/D �˝g . We need
to show �˝.g�2/.a/¤ �˝g.r/. Else, since OE .a� r/D �˝ � , it would imply � D �,
which is impossible, for � is a torsion class, whereas � is not.

Since the curve C does not pass through the points p and q.g�2/ which are blown-up,
we shall abuse notation by writing C for ��.C /. We set S WD SymH 0. zX; zL/ and
consider the short exact sequence of graded S–modules

0!
M
q2Z

H 0. zX; q zL�C/!
M
q2Z

H 0. zX; q zL/!M ! 0;
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where the first map is defined by multiplication with the section defining C and the
module M is defined by this exact sequence. By the corresponding long exact sequence
in Koszul cohomology [15, Corollary 1.d.4], that is,

� � � !Kp;1. zX; zL/!Kp;1.M;H
0. zX; zL//!Kp�1;2. zX;�C; zL/! � � � ;

the vanishing of the Koszul cohomology group Kp;1.M;H 0. zX; zL// follows from
Kp;1. zX; zL/ D 0 and Kp�1;2. zX;�C; zL/ D 0. The reason we are interested in the
Koszul cohomology of M becomes apparent in the following lemma:

Lemma 1.3 The equalityKp;1.M;H 0. zX; zL//ŠKp;1.C;KC˝�/ holds for any p�0.

Proof The restriction map induces an isomorphism H 0. zX; zL/ Š H 0.C;KC ˝ �/.
First, the restriction map is injective, since zL�C D ��.�2J0C fa � fr/�E1�E2
is not effective (as it has negative intersection with the nef class ��.fr/). Next,
h0. zX; zL/D h0.X;L/D g� 1 by a direct computation using the projection formula;
see also [13, Lemma 2]. As h0.C;KC ˝ �/D g�1, the restriction to C � zX induces
the claimed isomorphism.

Let Mq denote the qth graded piece of M . We have an isomorphism M0ŠH
0. zX;O zX /

and have already seen that H 0. zX; zL�C/D 0, so M1ŠH
0. zX; zL/ŠH 0.C;KC˝�/.

So we have the commutative diagramVpC1
H 0. zL/˝M0

//

��

VpC1
H 0.KC C �/

��Vp
H 0. zL/˝M1

//

ı1

��

Vp
H 0.KC C �/˝H

0.KC C �/

ı 01
��Vp�1

H 0. zL/˝M2
//
Vp�1

H 0.KC C �/˝H
0.2KC C 2�/

where the two topmost horizontal maps are isomorphisms and the bottommost horizontal
map is injective. Thus the middle cohomology of the left-hand column is isomorphic to
that of the right, so that we have the equality Kp;1.M;H 0. zX; zL//ŠKp;1.C;KC˝�/,
for any p � 0.

1.1 The vanishing of the Koszul cohomology group Kn�1;1.C;KC ˝�/

We can summarize the discussion so far. In order to establish the first vanishing required
by the Prym–Green conjecture for the pair ŒC; ��, that is, Kn�1;1.C;KC ˝ �/D 0, it
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suffices to prove that

Kn�1;1. zX; zL/D 0;(5)

Kn�2;2. zX;�C; zL/D 0:(6)

Vanishing (5) is a consequence of Green’s conjecture on syzygies of canonical curves.

Proposition 1.4 We have Kn�1;1. zX; zL/D 0.

Proof Let D 2 j zLj be a general element. Thus D is a smooth curve of genus 2n� 1.
We have an isomorphism Kn�1;1. zX; zL/ŠKn�1;1.D;KD/, as K zX jD ŠOD and by
applying [1, Theorem 2.20] (note that one only needs that the restriction H 0. zX; zL/!

H 0.D;KD/ is surjective, and not H 1. zX;O zX /D 0, for this result). As D is a smooth
curve of genus 2n�1, the vanishing in question is a consequence of Green’s conjecture,
which is known to hold for curves of maximal gonality; see [19; 17]. Hence it suffices
to show that D has maximum gonality nC1. But D is the strict transform of a smooth
curve in jLj and is a Brill–Noether general curve by [13, Remark 2]; in particular, it
has maximal gonality.

We now turn to the vanishing of the second Koszul group Kn�2;2. zX;�C; zL/. The
following argument is inspired by [15, Theorem 3.b.7].

Proposition 1.5 Let D 2 j zLj be general and let p � 0. Assume

Km;2.D;OD.�C/;KD/D 0 for m 2 fp; pC 1g:
Then

Kp;2. zX;�C; zL/D 0:

Proof Set as before S WD SymH 0. zX; zL/ and consider the exact sequence of graded
S–modules

0!
M
q2Z

H 0. zX; .q� 1/ zL�C/!
M
q2Z

H 0. zX; q zL�C/! B! 0;

serving as a definition for B , and where the first map is given by multiplication by
a general section s 2 H 0. zX; zL/. We now argue along the lines of [9, Lemma 2.2].
Taking the long exact sequence in Koszul cohomology and using that multiplication by
a section s 2H 0. zX; zL/ induces the zero map on Koszul cohomology, we get

Kp;q.B;H
0. zX; zL//ŠKp;q. zX;�C; zL/˚Kp�1;q. zX;�C; zL/;

for all p; q 2 Z.
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Let D D Z.s/ be the divisor defined by s 2 H 0. zX; zL/, and consider the graded
S–module

N WD
M
q2Z

H 0.D; qKD �CD/:

We have the inclusion B � N of graded S–modules. We claim B1 D N1 D 0. By
intersecting with the nef class fr , we see H 0. zX; zL � C/ D 0, implying B1 D 0.
As deg.KD �CD/ D �4, we have N1 D 0. Upon taking Koszul cohomology, this
immediately gives the inclusion

Kp;2.B;H
0. zX; zL//�Kp;2.N;H

0. zX; zL//:

In particular, Kp;2. zX;�C; zL/�KpC1;2.B;H 0. zX; zL//�KpC1;2.N;H
0. zX; zL//.

To finish the proof, it will suffice to show

(7) Kp;2.N;H
0. zX; zL//ŠKp;2.D;OD.�C/;KD/˚Kp�1;2.D;OD.�C/;KD/:

Since zL � zJ0 D 0 and zL � zJ1 D 0, it follows that OD.K zX / Š OD . We now closely
follow the proof of [9, Lemma 2.2]. The section s induces a splitting H 0. zX; zL/Š

Cfsg˚H 0.D;KD/, giving rise, for every p , to isomorphismsVp
H 0. zX; zL/Š

Vp�1
H 0.D;KD/˚

Vp
H 0.D;KD/:

The desired isomorphism (7) follows from a calculation which is identical to the one
carried out in the second part of the proof of [9, Lemma 2.2]. There one works with a K3
surface, but the only thing needed for the argument to work is that OD.K zX /ŠOD .

To establish that Kn�1;1.C;KC ˝ �/D 0, it thus suffices to show

Kn�2;2.D;OD.�C/;KD/D 0 and Kn�1;2.D;OD.�C/;KD/D 0:(8)

Via a well-known description of Koszul cohomology using kernel bundles (see [1,
Proposition 2.5]), taking into account that H 0.D;KD�CD/D 0, these two statements
are equivalent to

(9)
H 0

�
D;

Vn�2
MKD

˝ .2KD �CD/
�
D 0;

H 0
�
D;

Vn�1
MKD

˝ .2KD �CD/
�
D 0;

where we recall that MKD
is the kernel bundle, defined by the short exact sequence

0!MKD
!H 0.D;KD/˝OD!KD! 0:

Both statements (9) will be reduced to general position statements with respect to
divisorial difference varieties of the various curves on X .
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1.2 Containment between difference varieties on curves

If C is a smooth curve of genus g , we denote by Ca�Cb�Pica�b.C / the image of the
difference map vW Ca�Cb! Pica�b.C /. We occasionally make use of the realization
given in [12] of the divisorial difference varieties as nonabelian theta divisors associated
to exterior powers of the kernel bundle of KC . Precisely, for i D 0; : : : ; b.g� 1/=2c,
one has the following equality of divisors on Picg�2i�1.C /:

(10) Cg�i�1�Ci D
˚
� 2 Picg�2i�1.C / WH 0

�
C;
Vi
MKC

˝KC ˝ �
_
�
¤ 0

	
:

We now make an observation concerning a containment relation between difference
varieties.

Lemma 1.6 Let C be a smooth curve, let a � 2, b � 0, c > 0 be integers, and let
A 2 PicaCb�c.C /. Assume A�Ca � Cb �Cc . Then A�Ca�2 � CbC1�Cc�1 .

Proof Let B be an arbitrary effective divisor of degree a� 2, and let y0 2 C be a
fixed point. Since A�Ca � Cb �Cc , we have a well-defined morphism

f W C ! Cb �Cc � Picb�c.C /; x 7! A� .BC xCy/:

We further have the difference map vW Cb �Cc! Picb�c.C / given by v.F1; F2/ WD
OC .F1�F2/, where F1 and F2 are effective divisors of degrees b and c respectively,
as well as the projection p2W Cb �Cc! Cc .

Suppose first that dimp2.v
�1.Im.f ///�1. As the divisor y0CCc�1�Cc is ample —

see [14, Lemma 2.7] —p2.v
�1.Im.f /// must meet y0CCc�1 . This means that there

exists a point x 2C such that A� .BCxCy/�F1�F2 , with F1 2Cb and F2 2Cc
being effective divisors such that F2Dy0CF 02 , where F 02 2Cc�1 is effective. But then

A�B DOC .F1C x�F 02/ 2 CbC1�Cc�1:

Assume now p2.v
�1.Im.f /// � Cc is finite. Then one can find a divisor F2 2 Cc ,

such that for every x 2 C , there is a divisor Fx 2 Cb with A�B � x�y D Fx �F2 .
Picking x 2 supp.F2/, we write F2 D x C F 02 , where F 02 2 Cc�1 . Then A�B D
OC .FxCy0�F 02/ 2 CbC1�Cc�1 .

We may now restate the vanishing conditions (8) in terms of difference varieties. From
now on we revert to the elliptic surface �W X !E and recall that C 2 jgJ0Cfr j.
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Lemma 1.7 Set gD2nC1 with n�2 and choose a general curve D2j.g�2/J0Cfaj.
Suppose

CD �KD �D2 ªDn�Dn�2:

Then Kn�1;1.C;KC ˝ �/D 0, for a general level-` curve ŒC; �� 2Rg;` .

Proof By assumption, there exist points x; y 2D such that CD �KD � x�y is not
in Dn�Dn�2 . It follows from (10) that this is equivalent to

H 0
�
D;

Vn�2
MKD

˝ .2KD �CDC xCy/
�
D 0;

implying

H 0
�
D;

Vn�2
MKD

˝ .2KD �CD/
�
D 0:

This is equivalent to

Kn�2;2.D;OD.�C/;KD/D 0:

Next, by Lemma 1.6, our assumption implies CD �KD �D4 ªDn�1�Dn�1 . Thus
H 0

�
D;

Vn�1
MKD

˝ .2KD � CD C T /
�
D 0, for some effective divisor T 2 D4 ,

and therefore H 0
�
D;

Vn�1
MKD

˝ .2KD �CD/
�
D 0 as well, amounting to

Kn�1;2.D;OD.�C/;KD/D 0:

Any smooth divisor D 2 jLj carries two distinguished points, namely p and q.g�2/ .
We will prove that if D 2 jLj is general, then

(11) CD �KD �p� q
.g�2/

…Dn�Dn�2:

Let us first introduce some notation. For an integer m� 1, we define the line bundle

Lm WDOX .mJ0Cfa/ 2 Pic.X/:

A general element D 2 jLmj is a smooth curve of genus m, having two distinguished
points p 2 J1 and q.m/ 2 J0 , which as already explained, are the basepoints of jLmj.
Recall that for each j D 0; : : : ; m� 1, we introduced the divisorial difference variety

Dj �Dm�1�j � Pic2jC1�m.D/:

This difference variety is empty for j <0 or j >m�1. We shall prove (11) inductively
by contradiction, using the fact that in any family of curves on the surface X , there is
a canonical degeneration to a curve with an elliptic tail.
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1.3 The induction step

Assume that for a general curve D 2 jLg�2�j j one has, for some 0� i � j ,

CD �KD �p� .2i C 1/q
.g�2�j /

2Dn�i �Dn�2�jCi :

Then for a general curve Z 2 jLg�3�j j one has, for some 0� i 0 � j C 1,

(12) CZ �KZ �p� .2i
0
C1/q.g�3�j / 2Zn�i 0 �Zn�3�jCi 0 :

Notice that the assumption Dn�i �Dn�2�jCi ¤∅ for a curve D 2 jLg�2�j j implies

0� n� i � g� 3� j:(13)

Let D 2 jLg�2�j j be general. In order to prove the induction step, we degenerate D
within its linear system to the curve of compact type

Y WD J0CZ;

for a general Z 2 jLg�3�j j. Notice that J0 �Z D q.g�3�j / DW q and the marked
point p lies on Z n fqg. On Y , in the spirit of limit linear series, we choose the twist
of bidegree .0; 2g� 2j � 6/ of its dualizing sheaf, that is, the line bundle

zK 2 Pic.Y /

characterized by zK˝OJ0
ŠOJ0

and zK˝OZŠKZ.2q/. We establish a few technical
statements to be used later in the proofs.

Lemma 1.8 Assume the bounds (13). Then, for any 0� i � j � g� 4, we have:

(i) h0.Y; zK/D h0.D;KD/D g� 2� j .

(ii) H 0
�
Y;OY .C �J1� .2i C 1/J0/˝ zK_

�
D 0.

(iii) h0
�
Y;OY .C �J1� .2i C 1/J0/

�
D h0

�
D;CD.�p� .2i C 1/q

.g�2�j //
�
.

(iv) h0
�
Y;OY .C�J1�.2iC1/J0/˝ zK

�
Dh0

�
D;CD˝KD.�p�.2iC1/q

.g�2�j //
�
.

Proof (i) Because zK is a limit of canonical bundles on smooth curves, we have
h0.Y; zK/ � g� 2� j D h0.D;KD/. So it suffices to show h0.Y; zK/ � h0.D;KD/.
Twisting by zK the short exact sequence

0!OJ0
.�q/!OY !OZ! 0(14)

and taking cohomology, we get h0.Y; zK/� h0.Z;KZ.2q//D g� 2� j , as required.
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(ii) Set Ad WD OY .C � J1 � .2i C 1/J0/˝ zK˝d 2 Pic.Y /. One needs to show
H 0.Y; A�1/ D 0. Via the projection �W X ! E we identify the section J0 with
the elliptic curve E . We have OJ0

.A�1/Š �
˝.g�2i�1/.r/. Furthermore OJ0

.q/Š

�˝.g�3�j /.a/, hence

OJ0
.A�1.�q//Š �

˝.j�2iC2/.r � a/:

We have H 0.E; �˝.j�2iC2/.r � a// D H 0.E; �_ ˝ �˝.j�2iC1// D 0, for � is `–
torsion, whereas � is not a torsion bundle. From the short exact sequence (14) twisted
by A�1 , in order to conclude it suffices to show that the restricted line bundle

OZ.A�1/ŠOZ..g� 2i � 3/J0�J1Cfr/˝K_Z
ŠOZ..j C 1� 2i/J0Cfr �fa/

is not effective. We will first show H 0.X; .jC1�2i/J0Cfr�fa/D0. If jC1�2i <0,
this is immediate since then ..j C 1� 2i/J0Cfr �fa/ �fr < 0 and the curve fr is
nef. If j C 1� 2i � 0, we use the isomorphism

H 0.X; .j C1�2i/J0Cfr �fa/ŠH
0.E;OE .r �a/˝SymjC1�2i .OE ˚�//D 0:

In order to conclude, it is enough to show H 1.X; .j C 1� 2i/J0Cfr �fa �Z/D 0.
By Serre duality, this is equivalent to

H 1.X;KX CZCfa �fr � .j C 1� 2i/J0/D 0:

We compute

KX CZCfa �fr � .j C 1� 2i/J0 D .g� 6C 2i � 2j /J0C�
��C 2fa �fr ;

where g� 6C 2i � 2j � �1 by (13). If g� 6C 2i � 2j � 0, then

H 1.X; .g� 6C 2i � 2j /J0C�
��C 2fa �fr/

DH 1.E;OE .2a� r C �/˝Symg�6C2i�2j .OE ˚ �//;

which vanishes for degree reasons. Finally, if g� 6C 2i � 2j D�1, an application of
the Leray spectral sequence implies H 1.X;�J0C�

��C 2fa�fr/D 0 as well. This
completes the proof of (ii).

(iii) By Riemann–Roch and semicontinuity, it suffices to show H 1.Y; A0/D 0, that is,

H 1
�
Y;OY ..g� 2i � 1/J0�J1Cfr/

�
D 0:

If so, then the bundle OX .C � J1 � .2i C 1/J0/ has the same number of sections,
when restricted to a general element D 2 jLg�2�j j or to its codimension 1 degen-
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eration Y in its linear system. By (13), we have g� 2i � 1� 0. First, starting from
H 1.X;�J1C fr/D 0, which is an easy consequence of the Leray spectral sequence,
one shows inductively that H 1.X;mJ0 � J1C fr/ D 0 for all m � 0, in particular
also H 1.X; .g� 2i � 1/J0�J1Cfr/D 0.

To conclude, it is enough to show H 2.X; .g�2i �1/J0�J1Cfr �Y /D 0. By Serre
duality,

H 2.X; .g� 2i � 1/J0�J1Cfr �Y /ŠH
0.X; .2i � 2� j /J0Cfa �fr/

_:

If 2i � 2� j < 0, then the class .2i � 2� j /J0Cfa �fr is not effective on X as it
has negative intersection with fr . If 2i � 2� j � 0 then this class is not effective by
projecting to E .

(iv) It suffices to show H 1.Y; A1/D 0. We use the exact sequence on Y

0!OZ.�q/!OY !OJ0
! 0:

As degOJ1
.A1/ D 1, it is enough to show H 1.Z;OZ.A1/.�q// D 0. By direct

computation,

degOZ.A1.�q//D degKZ C 2n� 2i Cg� 3� j:

From (13), n� i � 0, whereas j � g � 4 by assumption, so g � 3� j > 0 and the
required vanishing follows for degree reasons.

We now have all the pieces needed to prove the induction step. The transversality
statement (3) that the first half of the Prym–Green conjecture has been reduced to
is proved inductively, by being part of a system of conditions involving difference
varieties of curves of every genus on the surface X .

Proposition 1.9 Fix 0� j �g�3 and assume that for a general curve D 2 jLg�2�j j,

CD �KD �p� .2i C 1/q
.g�2�j /

2Dn�i �Dn�2�iCj for some 0� i � j:

Then for a general curve Z 2 jLg�3�j j, the following holds:

CZ �KZ �p� .2i
0
C 1/q.g�3�j / 2Zn�i 0 �Zn�3�jCi 0 for some 0� i 0 � j C 1:

Proof Using the determinantal realization of divisorial varieties (10) coming from [12],
the assumption may be rewritten as

H 0
�
D;

Vn�2�jCi
M_KD

˝K_D˝OD.C �p� .2i C 1/q.g�2�j //
�
¤ 0;
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or, equivalently,

H 0
�
D;

Vn�i
MKD

˝OD.C �J1� .2i C 1/J0/
�
¤ 0:

By Lemma 1.8(ii), H 0
�
D;OD.C �J1� .2i C 1/J0/˝K_D

�
D 0, so this amounts to

Kn�i;0
�
D;OD.C �J1� .2i C 1/J0/;KD

�
¤ 0:

We now let D degenerate inside its linear system to the curve Y D J0CZ , where
Z 2 jLg�3�j j and J0 �ZD q.g�3�j /DW q . This implies, by semicontinuity for Koszul
cohomology [6], together with Lemma 1.8, that

Kn�i;0
�
Y;OY .C �J1� .2i C 1/J0/; zK

�
¤ 0;

where zK is the twist of the dualizing sheaf of Y introduced just before Lemma 1.8 .
This is the same as saying that the mapVn�i

H 0.Y; zK/˝H 0.Y; A0/!
Vn�i�1

H 0.Y; zK/˝H 0.Y; A1/

is not injective, where Ad WDOY .C �J1� .2i C 1/J0/˝ zK˝d are the line bundles
we defined earlier. As seen in the proof of Lemma 1.8(i), restriction induces an
isomorphism

H 0.Y; zK/ŠH 0.Z;KZ.2q//:

Using the identification between J0 and E , we have seen in the proof of Lemma 1.8(ii)
that OJ0

.Ad /.�q/Š �
˝.j�2iC2/.r �a/ is a nontrivial line bundle of degree 0 on E ,

therefore H i .J0;OJ0
Ad .�q// D 0 for i D 0; 1. Thus, restriction to Z induces an

isomorphism

H 0.Y; Ad /ŠH
0.Z;OZ.Ad //:

This also gives that the mapVn�i
H 0.Z;KZ.2q//˝H

0.Z;OZ.A0//

!
Vn�i�1

H 0.Z;KZ.2q//˝H
0.Z;OZ.A1//;

fails to be injective. As one has

H 0.Z;OZ.A1//�H 0.Z;OZ.A1C 2q// and H 0.Z;OZ.A�1� 2q//D 0;

we obtain Kn�i;0.Z;OZ.A0/;KZ.2q//¤ 0, which can be rewritten as

(15) H 0
�
Z;
Vn�i

MKZ.2q/˝OZ.A0/
�
¤ 0:
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We compute that the slope � satisfies �
�Vn�i

MKZ.2q/˝OZ.A0/
�
Dg.Z/�1, where

�.MKZ.2q//D�2. By Serre duality, condition (15) can then be rewritten as

H 0
�
Z;
Vn�i

M_KZ.2q/
˝KZ ˝OZ.�A0/

�
¤ 0:

We now use that Beauville [4, Proposition 2] has described the theta divisors of vector
bundles of the form

Vn�i
MKZ.2q/ as above. Using [4], from (15) it follows that either

OZ.A0/�KZ 2Zn�i �Zn�3Ci�j ;
or else

OZ.A0/�KZ � 2q 2Zn�i�1�Zn�2Ci�j :

Taking into account that OZ.A0/DOZ.C �p� .2i C 1/q/, the desired conclusion
now follows. As a final remark, we note that, whilst in [4] it is assumed that Z is
nonhyperelliptic (which, using the Brill–Noether genericity of Z , happens whenever
g� 3� j � 3), the above statement is a triviality for g� 3� j D 1, whereas in the
remaining case g�3�j D 2 it follows directly from the argument in [4, Proposition 2].
Indeed, in this case we have a short exact sequence

0!
Vn�i�1

M_KZ
.2q/!

Vn�i
M_KZ.2q/

!
Vn�i

M_KZ
! 0:

The claim now follows immediately from [12, Section 3]. This completes the proof.

By Proposition 1.9 and induction, we now reduce the proof of (8) to a single statement
on elliptic curves on the ruled surface X :

Theorem 1.10 Set g D 2nC 1 and `� 2. Then for a general element ŒC; �� 2Rg;` ,
one has Kn�1;1.C;KC ˝ �/D 0.

Proof We apply Lemma 1.7 and the sufficient condition (11). By the inductive step
described above, reasoning by contradiction, it suffices to show that if D 2 jL1j is
general, then

CD �KD �p� .2i C 1/q
.1/
…Dn�i �Dn�i

for each 1 � i � g � 3. Assume this is not the case. The bounds (13) force n D i
and the difference variety on the right consists of fODg. One needs to prove that
OD.C �p� .2nC 1/q.1//ŠOD.fr �J1/ is not effective. As H 0.X; fr �J1/D 0

and D 2 jJ0Cfaj, it suffices to prove

H 1.X; fr �J1�J0�fa/DH
1.X; fr �faCKX /D 0;
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or equivalently by Serre duality, that H 1.X; fa � fr/D 0. This follows immediately
from the Leray spectral sequence.

2 The Green–Lazarsfeld secant conjecture for paracanonical
curves

We recall the statement of the Green–Lazarsfeld secant conjecture [16]. Let p be a
positive integer, C a smooth curve of genus g and L a nonspecial line bundle of degree

(16) d � 2gCpC 1�Cliff.C /:

The secant conjecture predicts that if L is .pC1/–very ample then Kp;2.C;L/D 0
(the converse implication is easy, so one has an equivalence). The secant conjecture
has been proved in many cases in [9], in particular for a general curve C and a general
line bundle L. In the extremal case d D 2gCpC 1�Cliff.C /, Theorem 1.7 in [9]
says that whenever

L�KC CCd�g�2p�3 ª Cd�g�p�1�C2g�dCp

(the left-hand side being a divisorial difference variety), Kp;2.C;L/D 0. Theorem 1.7
in [9] requires C to be Brill–Noether–Petri general, but the proof given there shows
that for curves of odd genus the only requirement is that C have maximum gonality
.gC 3/=2.

In the case at hand, we choose a general curve on the decomposable elliptic surface X

C 2 jgJ0Cfr j

of genus g D 2nC 1 and Clifford index Cliff.C /D n. We apply the above result to
LC DKC ˝ � , with � DOC .�/. In order to conclude that Kn�3;2.C;KC ˝ �/D 0,
it suffices to show

� CC2 ª CnC1�Cn�1:

We have two natural points on C , namely those cut out by intersection with J0 and J1 ,
and for those points it suffices to show

(17) ���˝OC .J0CJ1/ … CnC1�Cn�1:

We first establish a technical result similar to Lemma 1.8 and because of this analogy
we use similar notations. For 0� i � g�1, let Y 2 j.g� i/J0Cfr j be the union of J0
and a general curve Z 2 j.g�i�1/J0Cfr j. We set x0 WDZ �J0D ftg�i�1 �J0 , where
t .g�i�1/ 2 E satisfies OE .t .g�i�1/ � r/ D �˝.g�i�1/ . We denote by zK 2 Pic.Y /
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the twist at the node of the dualizing sheaf of Y such that OJ0
. zK/ Š OJ0

and
OZ. zK/ Š KZ.2x0/. We recall that Z has a second distinguished point, namely
x1 DZ �J1 .

Lemma 2.1 Let Y 2 j.g�i/J0Cfr j for 0� i �g�1 be as above and assume j is an
integer satisfying 0�j �n�1 and 0� i�j �nC1. For a general D2j.g�i/J0Cfr j,
we have:

(i) h0.Y; zK/D h0.D;KD/.

(ii) H 0
�
Y;OY .���_� .2j C 1� i/J0�J1/

�
D 0.

(iii) h0
�
Y; zK˝m˝���_.�.2j C 1� i/J0�J1/

�
D h0

�
D;K˝mD ˝���_.�.2j C 1� i/J0�J1/

�
for m 2 f1; 2g.

Proof (i) This is similar to Lemma 1.8(i) and we skip the details.

(ii) Set k D �.2j C 1� i/. If k � 0, the statement is clear for degree reasons, so
assume k � 1. Then

H 0.X; ���_˝OX .kJ0�J1//ŠH 0.E; .�˝ �_/˝Symk�1.OE ˚ �//D 0;

so it suffices to show that H 1.X; ���_˝OX .kJ0�J1�Y //D 0. By Riemann–Roch,
this is equivalent to

H 1
�
X; ���˝OX ..g� k� i � 1/J0Cfr/

�
D 0:

Using the given bounds, we have that g � k � i � 1 � �1. It suffices to show
H 1.X; ��� ˝ OX .mJ0 C fr// D 0, for m � �1. This follows along the lines of
the proof of Lemma 1.8.

(iii) By Riemann–Roch and semicontinuity, it suffices to show that for mD 1; 2, one
has

H 1
�
Y; zK˝m˝OY .���_� .2j C 1� i/J0�J1/

�
D 0:

Consider the exact sequence

(18) 0!OZ.�x0/!OY !OJ0
! 0:

Then OJ0

�
zK˝m˝���_.�.2j C 1� i/J0�J1/

�
Š �_˝�˝.i�2j�1/ ¤ 0 2 Pic0.E/.

So it suffices to show

H 1
�
Z;KZ ˝�

��_.�.2j � i/x0� x1/
�
D 0;

H 1
�
Z;K˝2Z ˝�

��_.�.2j � i � 2/x0� x1/
�
D 0:
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The second vanishing is automatic for degree reasons (using the bounds on i and j ),
so we just need to establish the first one. By Serre duality, this is equivalent to

H 0
�
Z; ��.�˝ �_/˝OZ..2j � i C 1/x0/

�
D 0:

This is obvious if 2j � i C 1 < 0, so assume 2j � i C 1 � 0. Using once more the
Leray spectral sequence, it follows H 0

�
X; ��.�˝ �_/˝OX ..2j � i C 1/J0/

�
D 0,

so it suffices to prove

H 1
�
X; ��.�˝ �_/˝OX ..2j � i C 1/J0�Z/

�
D 0:

Using Serre duality and the bound g� 2j � 4� �1, this goes through as in the proof
of Lemma 2.1(i).

The following proposition provides the induction step, to be proved in order to establish
the second half of the Prym–Green conjecture:

Proposition 2.2 Let 0� i � g�2. Suppose for a general curve D 2 j.g� i/J0Cfr j
there exists an integer 0� j � i such that

OD.���C .2j � i C 1/J0CJ1/ 2DnC1�iCj �Dn�1�j :

Then for a general curve Z 2 j.g� i �1/J0Cfr j, there exists 0� j 0 � iC1 such that

OZ.���C .2j 0� i/J0CJ1/ 2Zn�iCj 0 �Zn�1�j 0 :

Proof By assumption, j � n�1 and i�j � nC1. Applying again the determinantal
description of divisorial difference varieties from [12, Section 3] and with Serre duality,
the hypothesis turns into

H 0
�
D;

Vn�1�j
MKD

˝OD.���_� .2j � i C 1/J0�J1/
�
¤ 0:

By Lemma 2.1 and semicontinuity, H 0
�
D;OD.���_� .2j C1� i/J0�J1/

�
D 0, so

the above is equivalent to

Kn�1�j;1
�
D;OD.���_� .2j � i C 1/J0�J1/;KD

�
¤ 0:

By Lemma 2.1 and semicontinuity for Koszul cohomology, we then also have

Kn�1�j;1
�
Y;OY .���_� .2j � i C 1/J0�J1/; zK

�
¤ 0;

where recall that Y DZ[J0 , with Z �J0Dx0 . Consider again the exact sequence (18),
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and since H 0.J0;OJ0
.mJ0C �

��_// D 0 for any m, the inclusion map yields iso-
morphisms

H 0
�
Z;K˝mZ ˝OY .���_C .2m� 2j C i � 2/x0� x1/

�
ŠH 0

�
Y; zK˝m˝OY .���_� .2j � i C 1/J0�J1/

�
that are valid for all positive integers m. Recall the isomorphism H 0.Y; zK/ Š

H 0.Z;KZ.2x0// given by restriction. We define the graded SymH 0.Z;KZ.2x0//–
module

A WD
M
q2Z

H 0
�
Z;OZ. zK˝qC���_� .2j � i C 1/x0� x1/

�
;

as well as the graded SymH 0.Y; zK/–module

B WD
M
q2Z

H 0
�
Y; zK˝q˝OY .���_� .2j � i C 1/J0�J1/

�
:

We then have the following commutative diagram, where the vertical arrows are
isomorphisms induced by tensoring the exact sequence (18):Vn�1�j

H 0.Z;KZ.2x0//˝A1 //

��

Vn�2�j
H 0.Z;KZ.2x0//˝A2

��Vn�1�j
H 0.Y; zK/˝B1 //

Vn�2�j
H 0.Y; zK/˝B2

Thus it follows Kn�1�j;1
�
Z;OZ.���_ C .i � 2j � 2/x0 � x1/;KZ.2x0/

�
¤ 0, or,

equivalently,

H 0
�
Z;
Vn�1�j

MKZ.2x0/˝KZ ˝OZ.���_C .i � 2j � 2/x0� x1
�
¤ 0:

We now compute the slope �:

�
�Vn�1�j

MKZ
.2x0/˝KZ ˝OZ.���_C .i � 2j � 2/x0� x1/

�
D 0:

Applying once more the description given in [4, Proposition 2] for the theta divisors of
the exterior powers of the vector bundle MKZ.2x0/ , we obtain that either

OZ.���C .2j � i/x0C x1/ 2Zn�iCj �Zn�1�j ;
or

OZ.���C .2j C 2� i/x0C x1/ 2ZnC1�iCj �Zn�2�j ;

which establishes the claim.
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We now complete the proof of the Prym–Green conjecture for odd genus.

Theorem 2.3 Set g D 2nC 1 and ` � 2. Then for a general element ŒC; �� 2Rg;`
one has Kn�3;2.C;KC ˝ �/D 0.

Proof Using the inductive argument from Lemma 2.1, it suffices to prove the base case
of the induction, that is, show that if D 2 jJ0Cfr j is general and 0� j � g�1, then

OD.���C .2j �gC 2/J0CJ1/ …Dn�1�j �Dn�1�j ;

for any 0� j � g� 1. Suppose this is not the case, which forces j D n� 1 and then

OD.��.�˝ �_//ŠOD.��� �J0CJ1/ŠOD:

Since H 0.X; ��.�˝�_//D 0, this implies H 1
�
X; ��.�˝�_˝OX .�J0�fr//

�
¤ 0.

Observe H 2.X; ��.� ˝ �_/ ˝ OX .�J0 � fr// D 0 by Serre duality. Taking the
cohomology exact sequence associated to

0!��.�˝�_/˝OX .�J0�fr/!��.�˝�_/˝OX .�fr/!OJ0
.��.�˝�_/�fr/!0

and using the Leray spectral sequence, we immediately get

H 1.X; ��.�˝ �_/˝OX .�J0�fr//D 0;

which is a contradiction.
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