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Phase tropical hypersurfaces

GABRIEL KERR

ILIA ZHARKOV

We prove a conjecture of Viro (Tr. Mat. Inst. Steklova 273 (2011) 271–303) that a
smooth complex hypersurface in .C�/n is homeomorphic to the corresponding phase
tropical hypersurface.

14T05; 14J33

1 Introduction

Consider a hypersurface Hf � .C�/n defined by a Laurent polynomial

f D
X
a2A

caz
a;

where A�Zn is the set of monomials. Let Q be its Newton polytope, that is, the convex
hull of A. Given a function �W A!R whose upper graph induces a triangulation of Q ,
one considers the associated phase tropical hypersurface T H� � Rn �Tn Š .C�/n.
This is a polyhedral object which surjects onto the tropical hypersurface H� � Rn.
Over the relative interior of a face of H� dual to a simplex Q0 in the triangulation, the
fiber of this surjection is the coamoeba of the hypersurfaceX

a2vertQ0
caz

a
D 0:

Our main result, Theorem 21, states that for a generic polynomial f , the complex
hypersurface Hf is homeomorphic to the phase tropical hypersurface T H� , which
was a conjecture of Viro [13].

In Section 3 we reduce the case of a general hypersurface to finite abelian coverings
of a pair of pants using Viro’s patchworking [12] and a nonunimodular version of
Mikhalkin’s pair-of-pants decomposition [9]. Thus, the core of the proof is the case
of a pair of pants. The closures P n�1 and T Pn�1 of the corresponding pairs of
pants carry induced stratifications from a certain compactification of .C�/n. The key
technical result of Section 2 is that the closed strata are balls. A homeomorphism
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3288 Gabriel Kerr and Ilia Zharkov

P n�1 � T Pn�1 then follows from an isomorphism between the two regular CW–
complexes, one for P n�1 and the other for T Pn�1.

In the final stages of writing the paper we were made aware of an announcement by
Kim and Nisse of similar results in Theorem 1.1 and Proposition 5.2 of [5].
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2 Pair of pants

The main result of this section is a homeomorphism between the complex pair of pants
and the phase tropical pair of pants; see Theorem 15. The idea is to endow both spaces
with structures of regular CW–complexes which are isomorphic.

2.1 Notation

Throughout the paper we identify C� with R � .R=2�Z/. In particular, we will
identify .C�/nC1=C� with

.RnC1=R/� ..R=2�Z/nC1=.R=2�Z//;

where both R and R=2�Z act diagonally. We denote the second factor by

Tn
WD .R=2�Z/nC1=.R=2�Z/ŠRn=2�Zn:

We will use homogeneous (additive for the last two cases) coordinates

(1)

Œz0; : : : ; zn� in .C�/nC1=C�;

Œx0; : : : ; xn� in RnC1=R;

Œ�0; : : : ; �n� in Tn:
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An element in Tn can be thought of as a configuration of marked points �0; �1; : : : ; �n
on the unit circle up to simultaneous rotation.

Let yn denote the set f0; : : : ; ng. For any subset I � yn we denote by I c its complement.
We denote by �I D Œ�0; : : : ; �n� the point in Tn with coordinates

(2) �i D

�
�; i 2 I;

0; i … I:

The points �I and �Ic coincide. The origin Œ0; : : : ; 0� is denoted by 0.

Let
� WD

˚
.y0; : : : ; yn/ 2RnC1 W yi � 0;

P
yi D 1

	
be the standard n–simplex. For a nonempty subset J � yn the face �J of � is defined
by yi D 0 for i 2 J c. We will identify RnC1=R with the interior of � via the map

(3) Œx0; : : : ; xn� 7!

�
ex0

ex0 C � � �C exn
; : : : ;

exn

ex0 C � � �C exn

�
:

Multiplying by the factor Tn leads to a compactification of .C�/nC1=C� to the space
��Tn. For any subset Y � .C�/nC1=C� we define its compactified version Y to be
the closure of Y in ��Tn via the map (3) above.

2.2 The face lattice W of the future CW–complex

We say that � D hI1; : : : ; Iki is a cyclic partition of the set ynD f0; : : : ; ng if yn is a
disjoint union of the sets I1; : : : ; Ik and the sets I1; : : : ; Ik are cyclically ordered. The
elements within each Is are not ordered. If all Is are 1–element sets then we simply
write � D hi0; : : : ; ini. Our main source of cyclic partitions of yn will be configurations
of marked points �0; �1; : : : ; �n on the oriented circle.

The set of hyperplanes �i D�j for i; j 2 yn stratifies the torus Tn with strata Tn
� labeled

by cyclic partitions � . On the other hand the simplex � has a natural stratification
by its faces �J . The product of the two stratifications induces a stratification on any
closed subset Y ���Tn. The strata Y�;J of Y are labeled by the pairs .�; J /, where
� D hI1; : : : ; Iki is a cyclic partition of yn and J � yn. The inclusion of the strata
closures Y � 0;J 0 � Y �;J gives a partial order among the pairs: .� 0; J 0/� .�; J / if � is
a refinement of � 0 (we write � 0 � � ) and J 0 � J.

To simplify notation we will often drop the index J from the subscript if J D yn. For
any nonempty subset J � yn a cyclic partition � D hI1; : : : ; Iki of yn induces a cyclic
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partition �J D hJ1; : : : ; Jri of J by intersecting each Is with J. We will drop the
empty intersections and shift the indices; in this case r will be smaller than k .

Our main focus will be on the poset W which consists of pairs .�; J / such that J
contains elements in at least two of the subsets I1; : : : ; Ik of � D hI1; : : : ; Iki. In this
case we say that � divides J and write � jJ. This, in particular, means that k � 2 and
jJ j � 2. We set the rank function to be

rk.�; J / WD kCjJ j � 4:

The poset W will be the face lattice of our regular CW–complex and rk.�; J / will be
the dimension of the .�; J /–cell.

Conjecture 1 For each element .�; J / 2W , its lower interval

W�.�;J / WD f.� 0; J 0/ 2W W .� 0; J 0/� .�; J /g

is isomorphic to the face lattice of a simple polytope.

It is clear that for any pair .� 0; J 0/� .�; J / the interval Œ.� 0; J 0/; .�; J /� is Boolean,
which means that the polytope would have to be simple. The conjecture is manifest
for nD 2: maximal faces W�� are hexagons. For nD 3 each maximal face W�� is
the 4–dimensional polytope with 20 vertices and 8 facets, dual to P 835 , one of the 37
simplicial polytopes on 8 vertices classified by Grünbaum and Sreedharan [4]. The next
problem would be to realize W�� inside a linear space, which is already interesting
for nD 2 and 3.

2.3 Complex pair of pants as a CW–complex

The .n�1/–dimensional pair of pants P n�1 is the complement of nC 1 generic
hyperplanes in CPn�1. By an appropriate choice of coordinates we can identify P n�1

with the affine hypersurface in .C�/nC1=C� given by the homogenous equation

z0C z1C � � �C zn D 0:

We define the compactified pair of pants P n�1 to be the closure of P n�1 in ��Tn

via the map (3). This is a manifold with corners, and it can be thought of as a real
oriented blow-up of CPn�1 along its intersections with the coordinate hyperplanes
in CPn.
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Figure 1: Polygons represent points in ˆhi0;:::;i4i , ˆhfi0;i1g;i2;fi3;i4gi and ˆhi0;:::;i4i;JDfi0;i1g

We can view points in P n�1 as closed oriented broken lines with n C 1 marked
segments in the plane defined up to rigid motions and scaling. The segments represent
the complex numbers z0; : : : ; zn . In the compactification P n�1 the broken lines may
have sides of zero length but with directions still recorded.

Recall that the .�; J /–stratification on ��Tn induces a stratification on any closed
subset of ��Tn, in particular on P n�1. We denote by ˆ�;J the corresponding stratum
of P n�1 and by ˆ�;J its closure in P n�1.

For Œz0; : : : ; zn�, a point in a stratum ˆ�;J of P n�1, one can rearrange the variables so
that their arguments are (partially) ordered counterclockwise on the circle. The order of
the zi is defined up to permutations within the subsets Is in � D hI1; : : : ; Iki. Then
the circuit of vectors zi0 ; : : : ; zin forms a convex (possibly degenerate) polygon D in
the plane (see Figure 1). The vertices of D separate the subsets Is in � .

One can deform a polygon D representing a point in ˆ�;J by “bending” its edges
within each Is (which refines � ) and introducing small lengths for zero edges (which
increases J ). Thus, we have the following observation:

Proposition 2 A closed stratum ˆ�;J contains ˆ� 0;J 0 if and only if .� 0; J 0/� .�; J /.

Next we argue that the .�; J /–stratification defines a CW–structure on P n�1.

Lemma 3 ˆ�;J is homeomorphic to Rrk.�;J / if .�;J /2W and is empty if .�;J /…W.

Proof If .�; J / …W then the set of nonzero edges J falls in a single subset Is of
�DhI1; : : : ; Iki. But it is impossible to build a closed circuit with just one nonzero side.

Now let .�; J / 2 W be a maximal stratum, that is, � D hi0; : : : ; ini and J D yn

(remember we drop the subscript J from ˆ�;J in this case). We set zi0 D 1. That fixes
the rotational and scaling ambiguity and we can think of ˆ� as a subset in .C�/n.
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Figure 2: Linear inequalities for zirC1 defining the fiber

Denote by ˆ
.r/
� � .C�/r the image of ˆ� under the projection onto the first r

coordinates zi1 ; : : : ; zir . Notice that ˆ.1/� is the upper half-plane. For 0< r <n�1 the
fiber of the projection ˆ.rC1/� !ˆ

.r/
� over a point .zi1 ; : : : ; zir / is an open polyhedral

domain in the plane defined by 3 linear inequalities (the red region in Figure 2). Finally,
for r D n � 1 the fiber is a point: the last vector zin has to close the circuit. By
induction this shows that the ˆ� is homeomorphic to R2n�2.

For general � and J one can first replace the vectors in each part Js of the induced
cyclic partition �J D hJ1; : : : ; Jli by their sum, thus reducing the number of edges
to l . This projects ˆ�;J to a lower-dimensional maximal case, which is R2l�4 by the
previous argument. A fiber of this projection consists of possible splittings of the edge
vectors into several parallel nonzero vectors from the same Js , which gives RjJ j�l,
plus choosing the arguments �Is for the subsets Is with Is \ J D ∅, according to
their order in � , which gives another Rk�l. Thus, we conclude that the total space of
the fibration is homeomorphic to RkCjJ j�4.

Lemma 4 Each closed stratum ˆ�;J is a topological manifold with boundary.

Proof Let D be a k–gon which represents some point in a stratum ˆ� 0;J 0 in ˆ�;J .
Here � 0 D hI 01; : : : ; I

0
k0
i is a coarsening of � D hI1; : : : ; Iki and J 0 � J. We describe

a coordinate system in a neighborhood of D in ˆ�;J which maps it to a neighborhood
of a corner point in

(4) RjJ j�jJ
0j

�0 �RjJ
0j�2
�Rk�k

0

�0 �Rk
0�2:

We choose hI�; ICi, a cyclic 2–partition coarsening of � 0, and two elements j˙ 2
J 0
˙
WD I˙ \ J

0 (remember � 0 divides J 0 ). Set J˙ WD I˙ \ J. Let V˙ be the sets
of vertices of D which separate subsets of � 0 in I˙ , respectively. Together there are
k0�2 vertices in V� and VC . Let V 0 be the set of vertices of D which separate subsets
of � inside the subsets of � 0. There are k� k0 vertices in V 0.
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V 0 jC ˛ VC

DC

D�
j� ˛

V�
V 0

Figure 3: Gluing polygon from its two deformed halves

The first jJ j�2 coordinates are given by the lengths of edges in J� and JC relative the
lengths of j� and jC , respectively. Namely we set xj WD jzj j=jzj˙ j for j 2 J˙ n j˙ .
Note that xj D 0 for j 2 J n J 0 at D and they can deform only positively. The
coordinates xj give the first two factors in (4). The last two factors in (4) are formed by
the exterior angles ˛r at the vertices V˙ and V 0 of D. The angles at V 0 are zero at D
and can only deform positively to maintain convexity of nearby polygons in ˆ�;J .

Any small variation of the xi and the ˛r from the original values at D will independently
deform the two halves D˙ , which correspond to I˙ (see Figure 3). Then one uniquely
reconstructs a polygon D0 by rescaling (the values of the xi and the ˛r are not changed)
and gluing the deformed halves D0

˙
at the ends.

Remark The above argument shows that ˆ�;J is, in fact, a manifold with corners.

Proposition 5 Each closed stratum ˆ�;J is homeomorphic to a closed ball.

Proof Lemmas 3 and 4 show that ˆ�;J is a compact topological manifold with
boundary whose interior is homeomorphic to the Euclidean space. In particular its
boundary @ˆ�;J is simply connected (unless it is of dimension 1). We can remove
a topological ball from the interior and use a collar of the boundary to get an h–
cobordism between the boundary and the standard sphere which has to be trivial, at
least in dimension > 4 [6]. Gluing the ball back in we conclude that ˆ�;J has to be a
closed ball. In dimensions � 4 one can give an explicit homeomorphism of ˆ�;J with
a simple polytope (see the remark after Conjecture 1).

Combining Propositions 2 and 5 we arrive at the desired CW–decomposition of the
pair of pants (see eg [7] for details about regular CW–complexes).

Proposition 6 P n�1 D
S
.�;J /2W ˆ�;J is a regular CW–complex.
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2.4 The coamoeba and its decompositions

Consider the argument map

ArgW .C�/nC1=C�! Tn; Œz0; : : : ; zn� 7! Œarg.z0/; : : : ; arg.zn/�:

The closure of the image Arg.P n�1/ in Tn is the coamoeba Cn of the pair of pants.
The argument map extends to a continuous surjective map ArgW P n�1! Cn via the
projection from ��Tn onto the second factor.

We can think of points in Cn as allowed configurations of nC1 marked points �0; : : : ; �n
on the circle. A configuration is allowed if not all points lie on an open half-circle. Any
allowed configuration is realized by a point in P n�1 : we circumscribe a polygon D
around the circle with edges tangent at the �i . Excluding disallowed configurations
leads to a well-known description of Cn as the complement of the interior of the
zonotope (see eg [11, Proposition 2.1])

Z D

nX
iD0

Œ0; �i �;

where an interval Œ0; �i ��Tn is defined by �0D � � � y�i � � � D�n and �i ��j 2 Œ0; �� for
any j ¤ i . The facets of Z are given by hyperplanes �i��j D� . Among all boundary
points of Cn only the vertices �I for I ¤∅ or yn are in the image Arg.P n�1/.

For any subset J �yn we define the partial coamoeba CJ to be the closure of Arg.P n�1J /

in Tn, where P n�1J � .C�/nC1=C� is the hypersurface given byX
j2J

zj D 0:

An allowed configuration of points on the circle remains allowed if we add more points
to it. This shows that CI � CJ for I � J. In particular, all CJ are closed subsets of Cn.
Note that CJ is empty unless jJ j � 2.

We call a subset in Tn a polytope if it is a bijective image of a convex polytope in the
universal cover RnC1=R. We will often define a polytope by a set of inequalities in
RnC1=R which depends on a cyclic partition � along with a choice of an initial subset
in � . However, the image polytope in Cn will be independent of that choice. We give
two polytopal decompositions of Cn. The second is a refinement of the first.

The octahedral decomposition (the name comes from the case nD 3; see Figure 4) is
the restriction to Cn of the stratification Tn

� of Tn by the cyclic partitions of yn. For
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� D hI1; : : : ; Iki the octahedron O� WD Cn\Tn
� is given (in RnC1=R) by

(5)

�i D �i 0 DW �Is for i; i 0 2 Is;

�Is � �IsC1 � �Is C� for s D 1; : : : ; k� 1;

�Ik � �I1 C 2� � �Ik C�:

Left inequalities reflect the order of � . Right inequalities define the boundary of Cn :
they exclude disallowed configurations. Changing the initial subset from I1 to Ir in �
would amount to shifting �1; : : : ; �r�1 by 2� . Note that two distinct lifts to RnC1=R

of a point in Tn cannot both satisfy (5). In particular, this means that O� is a polytope
in Tn.

The full-dimensional octahedra correspond to maximal cyclic partitions. In general,
the dimension of O� is k � 1, where k is the number of sets in � . The vertices are
exceptions from this rule; they correspond to cyclic 2–partitions. And there are no
1–dimensional octahedra.

Remark The octahedral decomposition is not a polyhedral complex. The faces of
octahedra on the boundary of Cn, except vertices, are not octahedra themselves. In
particular, the edges always lie on the boundary.

Example 7 For n D 2 there are 2 maximal octahedra (triangles in this case). For
nD 3 there are 6 maximal octahedra. In Figure 4 (we set �0 D 0 and 0 � �i � 2� )
the red octahedron is O0213 and the blue one is O0321 (we dropped commas and
brackets from the subscripts). The triangle face common to the red and green octahedra
is O02f13g . For n� 3 a maximal octahedron has nC 1 pairs of facets (corresponding
to nC 1 pairs of inequalities (5)). The nC 1 facets in the interior of Cn are the
.n�1/–maximal octahedra. Opposite to each such octahedron lies an .n�1/–simplex,
which is on the boundary of Cn.

Let us look at the induced decompositions of partial coamoebas CJ . Let �DhI1; : : : ; Iki
and �J DhJ1; : : : ; Jri. The intersection O�;J WDCJ\O� is not an octahedron anymore,
though it is still a polytope in Tn. Namely, it is cut out by the inequalities (in RnC1=R)

(6)

�i D �i 0 DW �Is for i; i 0 2 Is;

�I1 � � � � � �Ik � �I1 C 2�;

�jsC1 � �js C� and �j1 C� � �jr ; where js 2 Js:
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Figure 4: Octahedral subdivisions: the two triangles for nD 2 and three of
the six octahedra for nD 3

Recall that we drop the empty sets Is \J from �J and shift the indexing. Thus, the
inequalities in the third line of (6), which define the boundary of the partial coamoeba,
are generally stronger than the ones in (5).

The alcove decomposition of Cn (the name comes from the affine root system yAn ) is
the restriction of the triangulation of Tn induced from the decomposition of RnC1=R

by the hyperplanes

(7) �i � �j 2 �Z for all pairs i; j 2 yn:

The octahedra and their intersections with partial coamoebas are cut out by hyperplanes
of the same form which means that all O�;J are triangulated by alcoves.

The hyperplanes (7) break Tn into nŠ � 2n maximal simplices. The .nC 1/Š of them
are incident to 0; they form the zonotope Z and are not part of the coamoeba. Thus,
each of the nŠ maximal octahedra in Cn consists of 2n�n� 1 maximal alcoves. For
example, for nD 3 each of the maximal octahedra is broken into 4 alcoves according
to the relative directions of the opposite pairs of edges in the representing polygons
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Figure 5: The four shapes of generic quadrilaterals
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(see Figure 5). The zero-dimensional octahedra are also the zero-dimensional alcoves,
and they are the vertices of the coamoeba.

To label alcoves we introduce certain combinatorial objects � which refine cyclic
partitions � . Think of � as coming from a configuration of points �0; : : : ; �n on the
circle. Identifying the opposite points of the circle gives a new configuration of points
on the quotient circle, that is, another cyclic partition z� . The purpose of � is to encode
both � and z� .

Given a cyclic partition � DhI1; : : : ; Iki we mark k distinct points on the boundary of
a disk (which we will call vertices) and label the k boundary arcs between the vertices
by the sets Is in the order given by � . We say that a nonempty collection of chords in
the disk with endpoints at the marked vertices is a net � if any two chords intersect
(possibly at the endpoints). If some of the vertices on the circle are not used by any of
the chords in � we can join the nonseparated arcs together, thus getting a coarsening
of � , which we denote by �.�/. Instead of the original � we rather let the cyclic
partition �.�/ be a part of the intrinsic information in � .

One can think of nets as the Möbius band decompositions as follows. We put the disk
in RP2 and extend chords in � to lines in RP2. The complement of the disc is the
Möbius band with boundary broken into arcs also labeled by �.�/. Any two chords
intersect inside the disk, which means that their complements, which we call intervals,
do not intersect. That is, � can be thought of a decomposition of the Möbius band by
intervals into triangles and trapezoids. Maximal decompositions with fixed � D �.�/
are triangulations (no trapezoids) and they use k intervals. Minimal decompositions
with fixed � D �.�/ consist of trapezoids (plus one triangle if k is odd). Thus, the
number l of chords in a net can be any integer between k

2
and k .

The midcircle in the Möbius band (the “horizon” in RP2 ) oriented along its boundary
defines a new cyclic partition z�.�/ D hK1; : : : ; Kli of yn, which we call the shuffle
of � . Opposite sides of trapezoids in � are combined into single subsets in z�.�/. The
number of subsets in z�.�/ equals the number of chords in � .

Example 8 Figure 6, left, is an example of a 4–chord net � with �.�/D hi0; : : : ; i4i.
The corresponding Möbius band on the right is glued by identifying left and right blue
intervals (turning one of the them upside down). We can always cut the Möbius band
along an interval in � and picture the subdivision like that. This helps to see the shuffle
order, which in this case is z�.�/D hi0; i3; fi1; i4g; i2i.

Geometry & Topology, Volume 22 (2018)
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Figure 6: Net of chords, diameters in D (sides i1 and i4 are parallel) and a
subdivision of the Möbius band

Given a net � we define the alcove A� � Tn as the image of a simplex in RnC1=R.
As before we choose an initial set in �.�/D hI1; : : : ; Iki. First, for i; i 0 2 Is we set

(8) �i D �i 0 DW �Is :

Next, if Is and Ir are opposite sides of a trapezoid in � , we set

(9) �Ir C� D �Is if r < s:

Finally, we describe the inequalities, one for each chord (or interval) in � . Let Is �Ks0
follow right after Ir � Kr 0 in the shuffle order (that is, s0 D r 0 C 1, or r 0 D l and
s0D 1). If Is also follows right after Ir in the �.�/–order (that is sD rC1, or r D k
and s D 1) we set

�Ir � �Is if 1� r < k;

�Ir � �Is C 2� if r D k and s D 1:
(10)

If Is does not follow Ir in the �.�/–order, we set

�Ir C� � �Is if r < s;

�Ir � �Is C� if r > s:
(11)

If Kr 0 or Ks0 (or both) contains more than one (ie two) subsets from �.�/ then,
given (9), any choice of a pair .Ir ; Is/� .Kr 0 ; Ks0/ gives rise to the same inequality.

Altogether, the inequalities (8), (9), (10) and (11) define an .l�1/–dimensional simplex
in RnC1=R which descends to a simplex in Tn. This is the alcove A� . Its relative
interior is defined by replacing (10) and (11) with strict inequalities. In Example 8 (see

 
 

 
 

Ir Is

Ir0 Ir00

Figure 7: A fragment of the Möbius band
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Figure 6) the alcove A� is defined by

�i4 D �i1 C�; �i0 C� � �i3 ; �i3 � �i4 ; �i1 � �i2 ; �i2 � �i0 C�:

There is another, nonminimal but more intuitive, set of inequalities which defines A�
directly in Tn. It keeps track of relative positions of all pairs of points �i and �j on
the circle, ie which half of the circle the differences �j � �i belong to. If i and j are
elements in different subsets in �.�/ then any chord in � which does not divides fi; j g
defines an order between i and j (going counterclockwise). All such chords in � give
the same order (otherwise they would not intersect). We write i !� j if i comes first
in this order. Two elements i; j 2 yn may be divided by

(1) no chords in � , that is, i and j belongs to the same Is in �.�/;

(2) all chords in � , that is, i and j lie in opposite sides of a trapezoid; or

(3) some but not all chords in � , that is, i and j belong to different cells in the
Möbius band decomposition.

We set
�i D �j in case (1);

�i � �j D � mod 2� in case (2);

�j � �i 2 Œ0; �� mod 2� in case (3) with i !� j:

(12)

Lemma 9 The alcove A� is defined by (12).

Proof In the lift to RnC1=R associated with the initial subset I1 in �.�/ the first
two equations in (12) are the same as (8) and (9). The inequalities (10) and (11) form a
subset of the third line in (12) for pairs i and j next to each other in the shuffle order.

In the opposite direction, let us deduce, say, �Ir � �Is for Ir !� Is and r < s . The
other inequalities in (12) are similar. Choose a chord which does not divide Ir and Is
and cut the Möbius band along it. Then the Möbius band unfolds into a strip with Ir
and Is on one side. By induction, we may assume that Ir and Is are neighbors in the
�.�/–order, that is, s D rC1, but there may be several subsets Ir 0 ; : : : ; Ir 00 “shuffled”
in-between in the shuffle order; see Figure 7.

There are several cases for the order among the subscripts r , r 0 and r 00. We consider
eg the case r 00 < r < s D r C 1 < r 0, the others being similar. Then (10) and (11) will
read

� C �Ir � �Ir0 � � � � � �Ik � �I1 C 2� � � � � � �Ir00 C 2�;

�Ir00 C� � �Is ;
(13)

which imply �Ir � �Is .
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All nets, or equivalently all subdivisions of the Möbius band, form a poset under
refinements. We set rk � WD l � 1, where l is the number of chords in � . This is the
dimension of the alcove A� . Clearly, � � � 0 D) �.�/� �.� 0/. For any J � yn we say
a chord in � divides J if J does not lie on one side of it. We say � divides J (and
write � jJ ) if all of its chords do. In Example 8 (see Figure 6) the net � divides only
J D fi1; i4g among all two-element subsets, but it divides any J � yn with jJ j � 3.

Proposition 10 A� �O�;J if and only if �.�/� � and � divides J.

Proof The “if” part follows directly from Lemma 9. Indeed, the inequalities (6),
which define O�;J , are special cases of (12) for i and j belonging to neighboring
subsets in �.�/.

For the converse, to a polygon D representing a point in O�;J we associate a net �
with �.�/ � � and � jJ as follows. Given a line through a vertex v of D we say
that D lies strictly on one side of the line if both adjacent edge vectors from v lie in
the same open half-plane. Two vertices are connected by a diameter if D lies strictly
between two parallel lines through these two vertices. Any polygon D has at least one
diameter, a geometric one, and clearly any two diameters intersect. That is, the set of
diameters forms a net � on a disk with boundary arcs labeled by the sides of D (see
Figure 6). Moreover any diameter must have nonzero edges on both sides of it, that is,
� divides J.

A set of diameters in a polygon D recovers all pairwise relations among the directions �i
of its sides. It is easy to see that these relations are given by (12) for the corresponding
net � . Thus, the point in O�;J represented by D falls into the alcove A� in Cn.

2.5 Phase tropical pair of pants as a CW–complex

Consider
F.x/Dmaxfx0; x1; : : : ; xng;

a convex PL function on RnC1. Its corner locus is invariant under the diagonal trans-
lation by R, hence it descends to an .n�1/–dimensional polyhedral fan in RnC1=R,
which is known as the tropical hyperplane Pn�1. The cones PI in Pn�1 are indexed
by subsets I � yn of size jI j � 2: the cone PI is defined by

xi D xj � xk for all i; j 2 I and k … I:

The vertex Pyn of Pn�1 is at the origin in RnC1=R.
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The closure Pn�1 of Pn�1 in � is a polyhedral complex: the map (3) takes each cone
PI to a linear subspace in the interior of � and the linearity extends to the closure.
Also note that the face �I 0 of the simplex � intersects the closure of PI only if the
subset I 0 contains I, which gives additional labeling to the boundary faces of Pn�1

by subsets I 0 � I. Each face PI;I 0 of Pn�1 is a polytope of dimension jI 0j � jI j.

The phase tropical pair of pants T Pn�1 � .C�/nC1=C� D .RnC1=R/�Tn is the
union

T Pn�1 WD
[
I�yn

.PI � CI /:

The compactified version T Pn�1 is the closure of T Pn�1 in ��Tn. The .�; J /–
stratification on ��Tn induces a stratification of T Pn�1. We denote by ‰�;J the
corresponding closed stratum of T Pn�1.

Proposition 10 says that each O�;I is triangulated into alcoves A� with �.�/ � �
and � j I. This makes ‰�;J into a polyhedral complex in ��Tn,

‰�;J D
[

.I;I 0;�/

PI;I 0 �A� ;

where the triples .I; I 0; �/ satisfy I � I 0 � J, �.�/ � � and � j I. The face order
between legitimate triples is .I; I 0; �/� . QI ; QI 0; z�/ if I � QI, I 0 � QI 0 and � � z� .

Proposition 11 The decomposition of T Pn�1 into ‰�;J is a regular CW–complex.

To prove the proposition we will show (Lemmas 12 and 13) that each ‰�;J is a
collapsible PL manifold with boundary of dimension rk.�; J /. We begin with the
collapsibility. Recall the collapsing operation on a polyhedral complex X. Let F be a
face of X and let G be a facet of F, such that G is not a subface of any other face
in X. Then we can remove both F and G and call this an elementary collapse. We say
that a polyhedral complex is collapsible if it can be reduced to a vertex by a sequence
of elementary collapses.

Lemma 12 ‰�;J is a collapsible polyhedral complex of pure dimension rk.�; J /.

Proof The maximal faces .I; I 0; �/ in ‰�;J are of two types:

Type I � is a maximal net with �.�/D � and I has three elements (a maximal �
cannot divide a set of two elements).
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Type II � contains a single trapezoid (and k � 2 triangles) and jI j D 2; its two
elements belong to the opposite sides of the trapezoid.

In both cases, I 0 D J and

dim.PI;J �AI.�//D jJ j � jI jC .#fchords in �g� 1/D jJ jC k� 4D rk.�; J /:

Any face .I; I 0; �/ is a subface of .I; J; �/. Adding chords to � and/or removing
elements from I, one can see that any face is a subface of a maximal face. That is, the
complex is indeed of pure dimension rk.�; J /.

To collapse ‰�;J we look at its face lattice. For a given pair .I; �/ the interval between
.I; I; �/ and .I; J; �/ consists of all subsets I 0 between I and J. In particular, it is
Boolean, hence possesses a matching unless I DJ. Note that if � is maximal, elements
in the interval Œ.I; I; �/; .I; J; �/� are not subfaces of anything outside the interval.
Then we can remove the entire interval. The same can be said about intervals with
jI j D 2. Proceeding by alternating induction on the number of chords in � and number
of elements in I, we remove all faces of ‰�;J except those with I D J.

Thus, it remains to collapse the fiber over the vertex PJ;J . This fiber is the polytope
O�;J triangulated into alcoves, which is clearly collapsible.

Lemma 13 ‰�;J is a topological manifold with boundary.

Before proving Lemma 13 we discuss a certain general property of convex cones.
Let V be an n–dimensional vector space over R and write V � for its dual. Let R� V
and R_ � V � be a dual pair of convex cones. That is,

RD fv 2 V W �.v/� 0; � 2R_g;(14)

and vice versa. We assume both R and R_ have nonempty interiors. For any v 2R
we define the supporting tangent cone TvR to be the set of vectors in V lying in
supporting hyperplanes to R at v .

We define the total supporting tangent space of R to be the union

TR WD
[
v2R

.fvg �TvR/D
[

�2R_nf0g

..ker�\R/� ker�/� V �V:(15)

The first presentation shows that TR is a fibration over R supported on its boundary @R .
An example of a two-dimensional polyhedral cone R is illustrated in Figure 8.
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Tv1R

Tv2R Tv3R
v1

v2
v3

Figure 8: Two-dimensional cone and fibers of the total supporting tangent
space of its boundary

We fix a vector zv in the interior of R and a vector z� in the interior of R_ such that
z�.zv/D 1. Then in the second presentation of TR in (15) it is enough to take the union
over f� 2R_ W �.zv/D 1g.

Denote by W the quotient space V=.Rzv/, and we write � W V !W for the projection.
Consider the map �W TR!W given by �.v; u/D �.u/.

Lemma 14 The total supporting tangent space TR is homeomorphic to R2n�2.
Moreover, the map �W TR!W is a trivial fiber bundle with fiber homeomorphic to
W ŠRn�1.

Proof We will show that the map  W TR!W �W given by

 .v; u/D .�.v/Cz�.u/ ��.u/; �.u//(16)

is a homeomorphism. The geometric meaning of the map  is to “stretch out” the
fibers ��1.w/ into Rn�1 ; see Figure 9. Then �W TR!W is the composition of  
with the projection onto the second factor and, hence, is a topologically trivial fiber
bundle with fiber homeomorphic to W .

The map  is clearly continuous. Surjectivity follows from the intermediate value
theorem applied to each fiber ��1.w/ for a given w 2W .

Injectivity Let  .v1; u1/D  .v2; u2/. Then according to (16) we must have

v1� v2Cz�.u1�u2/ �u1 D 0 mod zv;

v1� v2Cz�.u1�u2/ �u2 D 0 mod zv:
(17)

Say v1; u1 2 ker�1 and v2; u2 2 ker�2 for some �1;2 2R_ with �1;2.zv/D 1. Note
that �1.v2/� 0 and �2.v1/� 0. Applying �1 and �2 to the respective equations (17),
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Figure 9: On the left is the boundary of @R , and on the right is an example
of the fiber ��1.w/ for some w 2W , which is homeomorphic to R2.

we get
v1� v2Cz�.u1�u2/ �u1 D��1.v2/ � zv;

v1� v2Cz�.u1�u2/ �u2 D �2.v1/ � zv:

Subtracting one equation from another we get

(18) z�.u1�u2/ � .u1�u2/D�.�1.v2/C�2.v1// � zv:

Finally, applying z� we arrive at z�.u1�u2/2�0, which, combined with �.u1/D�.u2/,
gives u1D u2 . That implies that �.v1/D �.v2/, and since both v1; v2 2 @R, we have
v1 D v2 .

Continuity of the inverse Fix a Euclidean metric on ker z�ŠW and extend it to a
Euclidean metric on V . Then notice that the linear functionals �2R_ with �.zv/D1 are
uniformly bounded, and so are the ratios juj=j�.u/j and jvj=j�.v/j for all .v; u/2TR.
Suppose j .v1; u1/� .v2; u2/j< � . Then, following the injectivity arguments above,
we deduce that jv1� v2j< C� and ju1�u2j< C� for some universal constant C.

Remark The lemma is a consequence of the convexity property of R. It holds for R
replaced by the upper graph of any convex function f W W !R.

For the proof of Lemma 13 we will apply the above lemma to the following convex
cone. Let �0 D hI�; ICi be a cyclic 2–partition of yn together with a choice of the
initial subset. Define a convex polyhedral cone R�RnC1=R by the set of inequalities

(19) xi� � xiC ; i� 2 I�; iC 2 IC:

Its boundary @R is a polyhedral fan, whose cones RI are labeled by subsets I � yn
which are divided by �0 , ie both I�\ I and IC\ I are nonempty. That is, the face
lattice of @R is dual to the face lattice of the product of simplices �I� ��IC . The
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cone RI is defined by

(20)
xi D xi 0 for i; i 0 2 I;

xi� � xiC for i˙ 2 I˙:

We identify the tangent space of RnC1=R at any point with RnC1=R and consider the
total supporting tangent space

TR� .RnC1=R/� .RnC1=R/:

Let Œu0; : : : ; un� be the homogeneous coordinates in the second (tangent) factor which
are parallel to Œx0; : : : ; xn�. Following the notation introduced just before Lemma 14,
we let zv 2RnC1=R be the vector with coordinates

(21)
�
ui� D 0; i� 2 I�;

uiC D 1; iC 2 IC;

and denote by W the quotient .RnC1=R/=.Rzv/. Let �W TR!W be the projection
onto W in the tangent factor.

Now let

� D hI1; : : : ; Ir„ ƒ‚ …
I�

; IrC1; : : : ; Ik„ ƒ‚ …
IC

i;

be a refinement of �0 . The set of inequalities

(22)
ui D ui 0 DW uIs for i; i 0 2 Is;

uI1 � � � � � uIr ; uIrC1 � � � � � uIk ;

defines a cone C�0;� in W D .RnC1=R/=.Rzv/. Then, by Lemma 14, ��1.C�0;� / is
homeomorphic to W �C�0;� , which is a manifold with boundary.

Next we describe the fibers of the projection of ��1.C�0;� /� @R� .RnC1=R/ onto
the first factor. Let x be a point in the relative interior of a face RI of @R. A vector
u 2RnC1=R is in the supporting tangent cone TxR if and only if it is in the kernel of
some nonzero linear functional � 2R_ with �.x/D 0. But R_\ .ker x/ is positively
spanned by the vectors eiC � ei� for i˙ 2 I˙ \ I, where feig is the dual basis to
the coordinates Œx0; : : : ; xn�. It means that there are two pairs i�1;2 2 I� \ I and
iC1;2 2 IC\ I such that

(23) ui�1 �ui
C

1
� 0 and ui�2 �ui

C

2
� 0:
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Consider the partition of I induced by � ,

�I DhI
�
min; : : : ; I

�
max„ ƒ‚ …

I�\I

; ICmin; : : : ; I
C
max„ ƒ‚ …

IC\I

i:(24)

Then, given the inequalities (22) for the cone C�0;� , the existence of pairs i�1;2 2 I�\I
and iC1;2 2 IC\ I satisfying (23) becomes equivalent to

(25) ui�max
� u

i
C
min

and u
i
C
max
� ui�min

; where i˙min;max 2 I
˙
min;max:

Thus, the fiber of ��1.C�0;� / over the relative interior of a face RI is cut out by the
set of inequalities

(26)

ui D ui 0 DW uIs for i; i 0 2 Is;

uI1 � � � � � uIr ; uIrC1 � � � � � uIk ;

ui�max
� u

i
C
min

and u
i
C
max
� ui�min

; where i˙min;max 2 I
˙
min;max:

Finally, we remark that up to an isomorphism the space ��1.C�0;� / does not depend
on the choice of the initial subset in �0 . Had we chosen IC instead of I� , the cone R
would have changed to its opposite. The fibers over the corresponding cones in @R
would remain the same.

Let us return to T Pn�1. First, recall the notion of the local fan in a polyhedral complex.
If v is a vertex in a face F of a polyhedral complex X �Rn, then the local cone †vF
of F at v is the set of vectors

(27) fw 2 TvR
n
W vC �w 2 F for some � > 0g

in the tangent space TvRn ŠRn. The local fan †vX of X at v is the union of local
cones over all faces F of X containing v .

Proof of Lemma 13 We will show that the local fan †v‰�;J at any vertex v of
‰�;J is homeomorphic to the .kCjJ j�4/–dimensional half-space. First, we consider
a maximal case: J D yn and v is a vertex of ‰� which lies over the vertex of Pn�1.
That is, vDPxn�fag, where aD �I� D �IC (see Section 2.1), is a vertex of O� . The
corresponding cyclic 2–partition

�a D hI�; ICi D hI1[ � � � [ Ir ; IrC1[ � � � [ Iki

is a coarsening of � .

The local fan †v‰� maps to the tropical hyperplane Pn�1. The fiber over the relative
interior of a cone PI is nonempty if and only if a 2O�;I , that is, if both sets I \ I˙
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are nonempty. Thus, the collection of faces PI with nonempty fibers forms a subfan
P.a/ of Pn�1 whose face lattice is dual to the face lattice of �I���IC . In particular,
the fan P.a/ is isomorphic to the boundary fan @R of the polyhedral cone R defined
in (19).

Next we describe the fiber over the relative interior of PI . It is the relative cone of the
polytope O�;I at its vertex a . Let ui be the homogeneous coordinates on the tangent
space TvTn DRnC1=R which are parallel to the coordinates �i on Tn, and let

�I D hI
�
min; : : : ; I

�
max„ ƒ‚ …

I\I�

; ICmin; : : : ; I
C
max„ ƒ‚ …

I\I�

i

be the cyclic partition of I induced by � . Then the subset of the defining inequali-
ties (6) for the polytope O�;I at a is identical to (26). Thus, †v‰� is homeomorphic
to ��1.C�0;� /, which by Lemma 14 is homeomorphic to the .nCk�3/–dimensional
half-space.

Now we allow J to be a proper subset of yn, but still consider a vertex v of ‰�;J
which lies over the vertex of the corresponding lower-dimensional tropical hyperplane
P jJ j�2 ��J . That is, v D PJ;J � fag, where a is a vertex of O�;J . Locally near v
the space .T Pn�1/ \ .�J � Tn/ is the product T P jJ j�2 � T ynnJ. Moreover, by
choosing the splitting RnC1=RDRJ =R�RynnJ so that the vector zv (see (21)) lies
in RJ =R the product structure can be made compatible with the projection by zv .
Then the projection �W ��1.C�a;� /! W is again a trivial fiber bundle with fibers
homeomorphic to .RJ =R/=.Rzv/, as in the maximal case for a lower-dimensional pair
of pants.

Finally, for a noncentral vertex v D PI;I � fag of ‰�;J , where I ¨ J, the local fan
†v‰�;J is just the product †v‰�;I �RJnI

�0 .

Remark Although the polyhedral fans @R and P.v/ are isomorphic, they are really
different fans in RnC1=R. The former bounds a convex cone; the latter generally does
not.

For any vertex a of the coamoeba Cn one can identify the local fan of T Pn�1 at
vDPxn�fag with the total supporting tangent space TR of the cone R associated with
the corresponding 2–partition �a D hI�; ICi, which is homeomorphic to a .2n�2/–
ball. That directly proves a conjecture of Viro [13, Section 5.10] that T Pn�1 is a
topological manifold.
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Proof of Proposition 11 Lemmas 12 and 13 show that each ‰�;J is a collapsible
PL manifold with boundary of dimension rk.�; J /. Then a version of the regular
neighborhood theorem (see eg [2, Theorem 1.6]) implies that ‰�;J is homeomorphic
to the closed ball of dimension rk.�; J /.

Theorem 15 T Pn�1 is homeomorphic to P n�1 and T Pn�1 is homeomorphic
to P n�1.

Proof Two isomorphic regular CW–complexes are homeomorphic (see eg [1]). A
homeomorphism between T Pn�1 and P n�1 can be chosen to respect the stratification.
In particular, it restricts to a homeomorphism between T Pn�1 and P n�1.

Remark It may be desirable to extend the result to a homeomorphism of pairs

.P n�1; .C�/nC1=C/� .T Pn�1; .C�/nC1=C/:

Indeed, the respective complements are the higher-dimensional pairs of pants themselves.
The problem, however, is that even the local homeomorphism †vT Pn�1 � R2n�2

given by (16) is fairly complicated and it does not seem to have an obvious extension
to a tubular neighborhood.

3 Phase tropical varieties of hypersurfaces in .C�/n

3.1 Phase tropical varieties

In this section, we will give the necessary background to state Theorem 21, our main
result. We begin with some preliminary definitions which may be found in [3].

Let N ŠZn, M DHom.N;Z/ and, for any abelian group K, write MK for M ˝Z K

and similarly for N. Let A be a finite subset of M and Q its convex hull in MR . We
call .Q;A/ a marked polytope. Another marked polytope .Q0; A0/ will be called a
face of .Q;A/ if Q0 is a face of Q and A0 D A\Q0 . If A is affinely independent,
we say it is a marked simplex. A subdivision S D f.Q
 ; A
 / W 
 2 �g of .Q;A/ is a
collection of marked polytopes satisfying

(1) for any 
 2 � , every face of .Q
 ; A
 / is in S ,

(2) for any 
; z
 2 � , the intersection .Q
 \Qz
 ; A
 \Az
 / is in S and is a face of
both .Q
 ; A
 / and .Qz
 ; Az
 /,

(3) the union
S

2� Q
 equals Q .
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The poset � is the face lattice of the subdivision. Note that it is not necessarily the
case that

S

2� A
 D A.

We will be particularly interested in subdivisions that are coherent. The basic ingredient
in this construction is a function �W A!R. From �, we define a polyhedron in MR�R

as the convex hull

Q� WD Convf.˛; r/ 2 A�R W r � �.˛/g:(28)

Let xAF be the set of vertices over A of any compact face F of Q� , and take AF and
F to be their projections onto MR . Define the subdivision

S� D f.F;AF / W F a compact face of Q�g:

When each .F;AF / is a marked simplex, we say that � induces a coherent triangulation
of .Q;A/ (see [3, Chapter 7]).

Consider the piecewise linear function F�W NR!R (or tropical polynomial) defined
by

F�.x/Dmaxf˛.x/� �.˛/ W ˛ 2 Ag:(29)

The tropical hypersurface H� �NR is the corner locus of F� ; see eg [8] for details.
Note that H� is a polyhedral complex. For any k 2 Z, let S�k� be the set of faces
.Q
 ; A
 / for which dimQ
 � k . There is an order-reversing bijection

(30) S�1� ˆ�! ffaces of H�g;

where ˆ.Q
 ; A
 / D fx 2 NR W ˛.x/ � �.˛/ D F�.x/ for all ˛ 2 A
g. For any
.Q
 ; A
 / 2 S�1� , write H�;
 for the relative interior of ˆ.Q
 ; A
 /, so that

H� D
[

2�

H�;
 :(31)

Example 16 Consider an example of A D f.0; 0/; .1; 0/; .0; 1/; .2; 3/g, with Q its
convex hull. Take �W A! R equal to 0 except at .2; 3/, where it equals 1. That
gives the coherent triangulation and tropical hypersurface illustrated in Figure 10. The
correspondence ˆ is indicated by the coloring of the simplices in the triangulation and
the faces of the tropical hypersurface.

Turning to complex polynomials, given a Laurent polynomial f D
P
m2M cmz

m ,
where M is a finite set in M and cm ¤ 0 for all m 2M, we say that .Conv.M/;M/
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Figure 10: A triangulation and tropical hypersurface induced by �

is the marked Newton polytope of f . For any A �M we consider the truncated
polynomial

fA D
X
a2A

caz
a:(32)

Given a Laurent polynomial f , its zero locus Hf lives in the complex torus NC� .
In the notation from Section 2.4 we have the argument map ArgW NC� !NT to the
real n–torus NT . For any polynomial f , we define its coamoeba Cf �NT to be the
closure of the image of Hf under the argument map.

Example 17 As will be shown in the next subsection, the coamoeba of a simplex is
a finite cover of the product of the coamoeba of a pair of pants and a torus. Take f
to be a generic polynomial with marked Newton polytope .Q;A/ from Example 16.
Figure 11 illustrates the coamoebas, in the cover NR of NT , of f truncated to the
three indicated simplices.

Figure 11: Coamoebas associated to simplices
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Figure 12: The phase tropical hypersurface

Definition 18 Let f 2 CŒM � and .Q;A/ be its marked Newton polytope. Given a
coherent triangulation S� D f.Q
 ; A
 / W 
 2 �g induced by �W A! R, the phase
tropical hypersurface of f defined by � is

T H�;f WD
[

2�

H�;
 � CfA
 �NR �NT DNC� :

Example 19 Combining Examples 16 and 17 we obtain a partial picture of a phase
tropical hypersurface T H�;f , illustrated in Figure 12. Here we have not illustrated the
coamoebas over the noncompact faces of the tropical hypersurface.

We will also consider a compactified version of the phase tropical hypersurface. For this,
we identify NR �NT with NC� via the exponential map and consider the algebraic
moment map �W NC� !MR defined as

�.z/D
1P

a2A jz
aj

X
a2A

jzaja:
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It is clear that � is independent of the NT factor and, for any � 2NT , we denote the
restriction of � to NR � f�g by �RW NR!MR . It is also easy to observe that the
image of � is the relative interior of Q . If we wish to reference the marked polytope
in the notation, we write �A for � and �AR for �R .

Definition 20 Let Q be an n–dimensional polytope. The compactified phase tropical
hypersurface T H�;f is the closure

.�R � Id/.T H�;f /�Q�NT

of the phase tropical hypersurface in Q�NT .

Of course, we may also compactify the complex hypersurface Hf �NC� by taking
its closure under the image of the moment map. When the Newton polytope of f is
n–dimensional, we call

Hf D �.Hf /�Q�NT(33)

the compactification of Hf .

The boundaries of Hf and T H�;f both have stratifications indexed by the face lattice
of Q . It will be helpful later on to describe these boundary strata intrinsically. Suppose
.Q;A/ is a marked polytope in M, not necessarily full-dimensional, f is a polynomial
whose marked Newton polytope contains .Q;A/ and � is any function on A. Let

N.A/ WD fx 2N W a.x/D a0.x/ for all a; a0 2 Ag

be the sublattice orthogonal to the affine span of A, and NK.A/DN.A/˝Z K. Then
it is easy to see that the tropical hypersurface H� �NR is invariant under translations
by NR.A/. Define the space

T H�;f;A D
�
.xCNR.A/;�/ 2

NR

NR.A/
�NT W .x;�/ 2 T H�;fA

�
:(34)

We may compactify T H�;f;A by using the moment map �A associated to A. More
explicitly, let �RW NR=NR.A/!NR be any section of the quotient map. Then define

z�ARW
NR

NR.A/
!Q(35)

to be the composition �ARı�R . As �AR is invariant with respect to translations by N.A/,
it is clear that z�AR is independent of the choice of �. Note that the image of z�AR is the

Geometry & Topology, Volume 22 (2018)



Phase tropical hypersurfaces 3313

relative interior of Q . For the compactification of T H�;f;A we take

T H�;f;A D .z�AR � Id/.T H�;f;A/:(36)

One may relate T H�;f;A to the lower-dimensional phase tropical hypersurface as-
sociated to f . To do this, let M.A/ be the saturation of the affine lattice spanned
by A, . zQ; zA/ the image of A in M.A/ and z�W zA!R the function equal to �; then
T H�;f;A is homeomorphic to T Hz�;f �NT .A/. To define a homeomorphism, one
can use a lift �RW NR=NR.A/!NR to equate the argument factor of T H�;f;A with
NT=NT .A/�NT .A/.

If .Q0; A0/ is a face of .Q;A/ where the marked Newton polytope of f contains
.Q;A/, then there is a natural inclusion

iA0;AW T H�;f;A0 ! T H�;f;A(37)

whose image is the inverse image of Q0 in Q�NT under the moment map. To define
this map, it suffices to consider the noncompact strata. But there is already a map
.z�A

0

R � Id/W T H�;f;A0!Q0�NT �Q�NT and this maps bijectively onto T H�;f;A
over the relative interior of Q0 .

Thus we obtain a stratification of the compactified phase tropical hypersurface

T H�;f D
[

.Q0;A0/ a face of .Q;A/

T H�;f;A0(38)

whose strata are in bijective correspondence with the positive-dimensional faces of Q .

Turning to the geometry of complex hypersurfaces, we note that their tropical compact-
ifications also carry a stratification by the boundary faces of Q . Here, assume f is a
Laurent polynomial with marked Newton polytope containing the face .Q;A/. We
denote by Hf;A the quotient of the hypersurface HfA in NC� DNR�NT by NR.A/

(note that fA is homogeneous with respect to this action, so that the quotient is well
defined). The space Hf;A is not compact, but again we may compactify by taking its
closure under the restricted moment map

Hf;A D .z�
A
R � Id/.Hf;A/:(39)

As in the phase tropical setting, for a face .Q0; A0/ of .Q;A/, and marked Newton
polytope of f containing .Q;A/, there are natural maps

(40) jA0;AW Hf;A0 !Hf;A
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defined analogously to those in (37). The associated stratification is then

Hf D
[

.Q0;A0/ a face of .Q;A/

Hf;A0 :(41)

Even for smooth hypersurfaces Hf , the tropical compactification may contain un-
wanted singularities on the boundary strata. To prevent such singularities, we call a
Laurent polynomial f nondegenerate if 0 is a regular value of fA0 for every face
.Q0; A0/ of .Q;A/.

Theorem 21 Given a nondegenerate polynomial f with marked Newton polytope
.Q;A/ and �W A!R defining a coherent triangulation, there are homeomorphisms
 and x for which the diagram

(42)

Hf T H�;f

Hf T H�;f

 

x 

commutes.

3.2 Simple hypersurfaces

Often when considering pair-of-pants decompositions induced by a coherent trian-
gulation S D f.Q
 ; A
 / W 
 2 �g of a marked polytope .Q;A/ (eg as in [9]), the
simplices .Q
 ; A
 / are required to have volume 1

nŠ
(or normalized volume 1). Such

triangulations are referred to as maximal or unimodular. In practice, unimodular
triangulations are comparatively rare and there will usually be several simplices in
any given triangulation with larger volume. Indeed, there are many cases of marked
polytopes without a single unimodular triangulation. For a simplex of volume greater
than 1

nŠ
, the associated phase tropical hypersurface is no longer a pair of pants, but rather

a finite cover of the pair of pants, called a simple hypersurface in [10]. Following loc.
cit., we take a moment to consider this cover and that of the associated hypersurface Hf .

First, let us establish some notation. Let .Q;B/ be a marked simplex in M Š Zn for
which B affinely spans MR and

f D
X
b2B

cbz
b
2CŒM �
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with cb ¤ 0 for every b 2 B . Fix an ordering of B D fb0; : : : ; bng, write ci for cbi
and identify any subset I � yn with its corresponding subset fbi W i 2 I g �B . Consider
the map �B W NC� ! .C�/nC1=C� � Pn defined by

�B.z/ WD Œc0z
b0 ; : : : ; cnz

bn �:(43)

One notes that �B extends via the inverse of the moment map to x�B W Q�NT!��Tn,
where � is the standard simplex.

Write „B �M for the sublattice which is the Z–span of fbi � bj W bi ; bj 2 Bg. Then
there are containments N �„_B �NR and we write ƒB for the image of „_B in the
quotient NT DNR=N. Then, using notation from Section 2.4, we have the following
basic result:

Lemma 22 The maps �B and x�B are quotient maps by ƒB . Furthermore, for any
subset I � f0; : : : ; ng with jI j � 2, the restriction of �B to HfI is a covering map to
the complex pair of pants P n�1I .

Proof To verify the statement that �B is the quotient map, first observe that

�B.z/D Œc0z
b0 ; : : : ; cnz

bn �D Œc0; c1z
b1�b0 ; : : : ; cnz

bn�b0 �:

This implies that �B factors through the homomorphism NC�! .C�/n given by z 7!
.zb1�b0 ; : : : ; zbn�b0/, which has kernel ƒB . The extension to x�B follows immediately
since ƒB �NT acts only on the NT factor.

The fact that �B and x�B restrict to give covering maps from the hypersurface HfI to
the pair of pants follows from the definition of P n�1I � .C�/nC1=C��Pn as the zero
locus of

P
i2I zi D 0. In particular, fI D ��B

�P
i2I zi

�
, so that �B restricts to HfI

to give a well-defined and an onto map.

We now turn our attention to the phase tropical hypersurface of a marked simplex
.Q;B/ with the function �W B!R and a polynomial f . We first make an observation
that the tropical hypersurface H� depends on � only up to a translation in NR . In
particular, since � is defined on a simplex, it is the restriction of an affine function
n�Cc on MR to B , where n� 2NR and c is a constant. In this instance, one observes
that H� D H0C n� . The coamoeba CfI is independent of the function � and only
depends on I and the arguments of the coefficients fci W i 2 I g of f . Thus, there is an
elementary homeomorphism T H�;f Š T H0;f given by translating by n� in the NR

factor of NR�NT . Consequently, the topology of the phase tropical hypersurface of a
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simplex is independent of the function �. For convenience, we choose �f W B!R to
be the function �f .bi /D�log jci j.

Lemma 23 The restriction of x�B to T H�f ;f is a covering map onto T Pn�1.

Proof View the map �B as a map from NR�NT to .C�/nC1=C��Pn. Consider the
linear map �W RnC1!MR defined by �.ei /D bi and let c D

P
i log jci jei 2RnC1.

It is then clear that the diagram

(44)

NR �NT .C�/nC1=C�

NR RnC1=R

�B

�_C c

�1 Log

commutes, where �1 is projection to the first factor. Furthermore, the composition
of the affine map �_C cW NR!RnC1 with every dual basis vector e_i W R

nC1!R

yields the map bi ��f .bi /. Thus, the tropical polynomial for the standard pair of pants
pulls back to F�f and �_C c maps the tropical hypersurface Hf to the tropical pair
of pants Pn�1.

For I � f0; : : : ; ng with jI j � 2, denote by QI the convex hull of the corresponding
set in B . Then, over the face ˆ.QI ; I / of the tropical hypersurface, in the phase
tropical hypersurface T Hf;�f , lies the coamoeba CfI . Utilizing Lemma 22 and a
commutative diagram analogous to (44) with argument maps, we have that CfI maps
to the coamoeba CI . This implies the result.

Combining Lemmas 22 and 23, we obtain an extension of Theorem 15 to the simple
hypersurface case.

Theorem 24 Given a marked simplex .Q;B/ which affinely spans MR and any
�W B!R, there is a homeomorphism x W Hf ! T H�;f .

Proof It suffices to prove this theorem in the noncompact case. We write �W P n�1!
T Pn�1 for the homeomorphism in Theorem 15. Note that both inclusions P n�1 ,!
.C�/nC1=C� and T Pn�1 ,! .C�/nC1=C� induce isomorphisms on first homology
(and on the fundamental group when n > 2). This follows by looking at the coamoeba
(see eg [11]) for the complex and phase tropical pair of pants and its covering in RnC1,
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which is simply connected for n � 3 and is the universal abelian cover for n D 2.
Moreover, it is evident from the construction of � that the diagram

(45)

H1.P
n�1IZ/ H1.T Pn�1IZ/

H1..C�/nC1=C�IZ/Š Zn

H.�/

Š Š

commutes.

By Lemmas 22 and 23, Hf and T H�;f are covers of P n�1 and T Pn�1 obtained
by pulling back the subspaces along the cover �B W NC� ! .C�/nC1=C�. This cover
corresponds to a sublattice of H1..C�/nC1=C�IZ/Š �1..C�/nC1=C�/. The com-
mutativity of (45), pulled back along the Hurewicz homomorphism, then implies that
�1.�/ takes the normal subgroup associated to �B jHf to that of �B jT H�;f implying
the result.

The arguments given in Lemmas 22 and 23 easily extend to the strata Hf;B 0 and
T H�;f;B 0 . We record the stratified version of Theorem 24 as a corollary.

Corollary 25 Given a marked simplex .Q;B/ contained in the marked Newton
polytope of f , �W B!R and any subsimplex .Q0; B 0/, there are homeomorphisms
x B 0 and x B for which

(46)

Hf;B 0 T H�;f;B 0

Hf;B T H�;f;B

x B0

x B

jB0;B iB0;B

commutes.

3.3 Proof of Theorem 21

Having extended Theorem 15 to simple hypersurfaces and their stratified compact-
ifications, we now apply the results of Milkalkin [9] based on Viro’s patchworking
method [12] to obtain Theorem 21 for general hypersurfaces.

Proof of Theorem 21 One first observes that, since f is assumed to be nondegen-
erate, Hf is diffeomorphic to Hg for any other nondegenerate polynomial g with
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marked Newton polytope .Q;A/. To see this, one can compactify NC� to the toric
variety YQ and resolve all singularities of the toric boundary to obtain XQ with a
normal crossing divisor D. Then Laurent polynomials with Newton polytope Q may
be identified with a dense open subset of sections of the line bundle O.1/ determined
by Q . Moreover, the condition of nondegeneracy implies that the zero locus Zf , which
is an analytic compactification of Hf , transversely intersects the divisor D. Taking a
family �W Œ0; 1�! �.XQ;O.1// of such nondegenerate sections, one may consider the
incidence variety YDf.t; z/ W z 2Z�.t/g along with the function � W Y! Œ0; 1� induced
by projection. Let D D f.t; z/ 2 Y W z 2 Dg. By the openness of the transversality
condition, � and �jD are trivial families and equipping Y with a connection for
which D is horizontal and taking parallel transport gives a diffeomorphism of the pair
.Z�.0/; Z�.0/\D/ with .Z�.1/; Z�.1/\D/. Excising the respective subspaces then
produces the diffeomorphism.

Next we note that, for t 2 R>0 small, the polynomial ft D
P
a2A cat

�.a/za is
nondegenerate, regardless of the coefficients cC WD .ca/ 2CA (see [3]). In particular,
an alternative definition of a nondegenerate polynomial f is that the principal A–
determinant EA.f / is nonzero. By [3, Theorem 10.1.4], EA is a polynomial in the
coefficients .ca/ whose Newton polytope is the secondary polytope †.A/. It can be
shown that the Log of the coefficients cCt

� of ft lie in the interior of the cone dual to
the triangulation defined by � for sufficiently small t . This implies that, for such ft ,
the point Log.cC/ lies outside the amoeba of EA implying EA.cC/¤ 0.

To complete the proof we apply the reconstruction result [9, Theorem 4], adapted to the
nonunimodular case. In this modified form, it asserts that for � inducing the coherent
triangulation S D f.Q
 ; A
 / W 
 2 �g, there is homeomorphism between Hf and the
topological direct limit (ie the colimit in the category of topological spaces). Thus, we
obtain

Hf � lim
��!

Hf;A
 :(47)

Here we mean that one may consider the face lattice � of S given by inclusions as a
category and Hf;� as a functor from � to topological spaces. Then the limit of this
functor is achieved by gluing simple hypersurfaces along common boundary strata.

Using the dual subdivision of NR to that given by the tropical hypersurface, one obtains
a decomposition H� D

S

2� Y
 . We then have that T H�;f D

S

2� T Y
 , where

T Y
 is the part of the phase tropical hypersurface lying over Y
 . Each T Y
 can be
identified with a partially contracted T H�;f;A
 which is clearly homeomorphic to the
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original T H�;f;A
 . These identifications are compatible with inclusion maps iA
 ;Az
 ,
when .Q
 ; A
 / if a face .Qz
 ; Az
 /. In particular, we have that

T H�;f � lim
��!

T H�;f;A
 :(48)

Here again we regard this as a limit of the functor from the poset category � to
topological spaces taking 
 to T H�;f;A
 and inclusions of faces .Q
 ; A
 / of .Qz
 ; Az
 /
to iA
 ;Az
 .

By Corollary 25, we have a natural isomorphism of functors from Hf;� to T H�;f;� ,
implying their limits are homeomorphic. Equations (47) and (48) then give that
Hf � T H�;f . Removing the boundary strata on both sides of the equation gives the
open case.
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