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Additive invariants for knots, links
and graphs in 3–manifolds

SCOTT A TAYLOR

MAGGY TOMOVA

We define two new families of invariants for (3–manifold, graph) pairs which detect
the unknot and are additive under connected sum of pairs and (�1=2) additive under
trivalent vertex sum of pairs. The first of these families is closely related to both
bridge number and tunnel number. The second of these families is a variation and
generalization of Gabai’s width for knots in the 3–sphere. We give applications to the
tunnel number and higher-genus bridge number of connected sums of knots.

57M25, 57M27

1 Introduction

Two of the most basic questions concerning any knot invariant are: “Does it detect the
unknot?” and “Is it additive under connected sum?” Among the classical topologically
defined invariants, Seifert genus and bridge number are both well known for their “yes”
answers to both questions. Other invariants such as tunnel number and Gabai width,
although they both detect the unknot, have more complicated stories when it comes to
additivity. In this paper, we define, for almost any graph in almost any 3–manifold,
two new families of invariants which both detect the unknot in S3 and are additive
under connected sum. For graphs, they also satisfy a certain type of additivity under
trivalent vertex sum. In this introduction, we give a brief overview of the definition
of the invariants (leaving the technical details until later in the paper), state our main
results, and discuss the connection between our invariants and the classical invariants
of bridge number, tunnel number and Gabai width. This work relies on our previous
paper [36]. A thorough overview of all results we will need is provided in Section 2.

1.1 Background

Knot invariants (and 3–manifold invariants) are a fundamental tool used to distinguish
knots (respectively, 3–manifolds) and organize them into useful families. One of the
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first knot invariants to be introduced was bridge number (see Schubert [33]); it is the
minimal number of maxima in a diagram of a knot. Bridge number is a beautiful
invariant and is connected to a number of important concepts in knot theory (see, for
example, Milnor [17] and Yokota [39]). Two of bridge number’s particularly useful
properties are that it detects the unknot and that it is additive under connected sum;1

see Schubert [33] and Schultens [35]. A bridge sphere for a knot K � S3 is a sphere
transverse to K separating the maxima of K from the minima of K (where the maxima
and minima are defined using a height function hW S3!K ). A “higher genus” version
of bridge number was defined by Doll [6] and is applicable to knots in any compact,
orientable 3–manifold. Higher genus bridge number neither detects the unknot nor is
additive under connected sum.

Heegaard genus is a 3–manifold invariant which is analogous to bridge number. A
Heegaard surface for a closed, orientable 3–manifold M is a surface separating
the 3–manifold into two handlebodies. If we take the double branched cover of a
knot K � S3 , a bridge sphere for K lifts to a Heegaard surface for the resulting
3–manifold. We can define Heegaard surfaces for 3–manifolds with boundary by
considering compressionbodies in place of handlebodies (see Scharlemann [27]; this
is also explained more below). The Heegaard genus of a 3–manifold (possibly with
boundary) M , denoted by g.M /, is the smallest possible genus of a Heegaard surface
in M . A closed, orientable 3–manifold M has g.M /D0 if and only if M DS3 . Like
bridge number, Heegaard genus is additive under connected sum; see Jaco [12]. There
is a vast literature on Heegaard surfaces and their usefulness is now well established.

Tunnel number is a somewhat more recent knot invariant defined by Clark [4] in 1980.
The tunnel number t.K/ of a knot K � S3 equals the minimal number of arcs which
need to be added to the knot so that the exterior is a handlebody. While tunnel number
may at first appear unnatural, it is closely connected to Heegaard genus. Indeed, t.K/

is one less than the Heegaard genus of the exterior of K . Largely because of this
connection, tunnel number has been extensively studied. Unlike bridge number and
Heegaard genus, however, tunnel number behaves erratically under connected sum (see,
for example, Kobayashi and Rieck [13], Morimoto [20], Morimoto and Schultens [24]
and Morimoto, Sakuma and Yokota [23]). In this paper we seek to correct this by
defining a knot invariant (called “net extent”) which is intimately related to Heegaard
genus, bridge number, higher-genus bridge number and tunnel number. Unlike the latter
two invariants, however, it both detects the unknot and is additive under connected sum.

1Technically, it is the quantity that is one less than bridge number that is additive under connected sum.
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The width of a knot was originally defined by Gabai [7] as a tool to prove property R.
Various other applications of width quickly emerged; see Gordon and Luecke [8]
and Thompson [37]. Because of its utility it began to be studied it its own right, the
main question being its additivity under connected sum;2 see Blair and Tomova [1],
Rieck and Sedgwick [26] and Scharlemann and Thompson [31]. Eventually, Blair
and Tomova [2] proved that there exist families of knots for which Gabai width is not
additive. We introduce a second invariant, also called width, applicable to almost any
knot in many 3–manifolds. It is a slight variation of Gabai width when restricted to
spheres transverse to knots in S3 but is additive under connected sum. Section 6 below
considers the relationship between our width and Gabai width.

1.2 The invariants

For our purposes, a (3–manifold, graph) pair .M;T / consists of a compact orientable
3–manifold M (possibly with boundary) and a properly embedded graph T �M .

Running assumption The graph T has no vertices of valence 2 and no component
of @M is a sphere intersecting T in precisely two or fewer points.

If X is a topological space (typically a manifold or CW-complex), we let jX j denote
the number of connected components of X and write Y @ X to mean that Y is a
connected component of X . If S �M is a properly embedded surface, we write
S � .M;T / to mean that S is transverse to T . The notation .M;T / n S refers to
the (3–manifold, graph) pair resulting from removing an open regular neighborhood
of S from both M and T . We say that T is irreducible if there is no sphere in M

intersecting T exactly once. We say that .M;T / is irreducible if T is irreducible and
if every (tame) sphere in M nT bounds a 3–ball in M nT . A lens space is any compact,
connected, orientable 3–manifold M such that M ¤ S1 �S2 and g.M /D 1.

Some ideas in this paper can be traced to the work of Scharlemann and Thompson [30]
on generalized Heegaard splittings. In a Heegaard splitting, the manifold is split by a
single Heegaard surface into two handlebodies (or compressionbodies if the manifold
has boundary). In a generalized Heegaard splitting, the manifold is split via two
sets of surfaces, thin and thick, into a number of compressionbodies so that the thin
surfaces are negative boundaries of the compressionbodies and the thick surfaces are

2Technically, it is the quantity that is two less than Gabai width which was thought to possibly be
additive under connected sum. Gabai width does detect the unknot.
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positive boundaries. At first this may seem like an unnecessary complication but it
turns out that one can also obtain such a decomposition where all the thin surfaces are
incompressible in the manifold and all the thick surfaces are strongly irreducible (ie a
pair of compressing disks on opposite sides of a thick surface always intersect). This is
the fundamental idea behind our work in [36] — we give a decomposition of .M;T /

into multiple compressionbodies that intersect T in certain elementary ways. We now
make this somewhat more precise.

As described in [36], a multiple vp-bridge surface is a closed, usually not connected,
orientable surface H � .M;T / such that .M;T / n H is the union of simple-to-
understand pieces called vp-compressionbodies. These multiple vp-bridge surfaces are
generalizations of bridge surfaces for knots in 3–manifolds, Heegaard surfaces for knot
exteriors, and the surfaces arising in Scharlemann–Thompson generalized Heegaard
splittings of 3–manifolds. The abbreviation “vp” stands for “vertex-punctured” and
indicate that vertices in T are treated in a similar way to boundary components of M .
We will elaborate on these ideas in Section 2.

The components of H are partitioned into two sets: the thick surfaces and the thin
surfaces. The union of the thick surfaces is denoted by HC and the union of the thin
surfaces is denoted by H� (so H @ HC means that H is a thick surface and F @ H�

means that F is a thin surface). We will consider multiple vp-bridge surfaces H which
are reduced and oriented. Roughly speaking, H is oriented if the components of H
are given coherent transverse orientations such that there are no oriented closed loops
always intersecting H in the same direction and H is reduced if there is no “obvious”
way of simplifying it. See Section 2 for precise definitions. We let H.M;T / denote
the set of reduced, oriented multiple vp-bridge surfaces for .M;T /.

If .M;T / is a (3–manifold, graph) pair and if S � .M;T / is a surface, we define the
extent of S to be

ext.S/D jS\T j��.S/

2
:

If S is connected, this is simply g.S/�1CjS \T j=2, where g.S/ is the genus of S .
Two cases are of particular interest: if S is a minimal bridge sphere for a link T � S3 ,
then ext.S/ is one less than the bridge number b.T / of T , and if S is a minimal
genus Heegaard surface for the exterior of a knot T � S3 , then ext.S/ is the tunnel
number t.T / of T . In both cases, S will meet the requirements for being a vp-bridge
surface for .S3;T /.
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For a given H 2H.M;T /, we define the net extent netext.H/ and width w.H/ by

netext.H/D ext.HC/� ext.H�/;

w.H/D 2

� X
H @HC

ext2.H /�
X

F@H�
ext2.F /

�
:

To each multiple vp-bridge surface, we can also associate a number, the net Euler
characteristic of H , which is simply

net�.H/D��.HC/C�.H�/:

Our two families of invariants are then defined as

netextx.M;T /Dmin
H

netext.H/ and wx.M;T /Dmin
H

w.H/:

In both cases, the minimum is taken over all H 2H.M;T / having the property that
net�.H/� x �1. As noted above for a knot K � S3 , netextx.S3;K/ is related to
classical invariants: for any x ��2, the quantity netextx.S3;K/ is at most b.K/�1,
where b.K/ is the bridge number of K , and for large enough x , netextx.S3;K/ is at
most the tunnel number t.K/ of K .

The formula for width, on the other hand, is motivated by a well-known formula for the
width invariant of Gabai [7] for knots in S3 . Indeed, Gabai width for K�S3 can be de-
fined as follows. Consider multiple vp-bridge surfaces H for .S3;K/ with the property
that the components of H are concentric spheres. Then Gabai width (see Scharlemann
and Schultens [29, Lemma 6.2]) is the minimum over all such H of the quantity

1

2

� X
H @HC

jH \Kj2�
X

F@H�
jF \Kj2

�
:

Our invariant w�2 for knots in S3 can be seen as a variant of Gabai width, where we
generalize the types of surfaces H admitted into the sum and adjust the formula to take
into account the Euler characteristics of the spheres. As mentioned earlier, Gabai width
is not additive, while the width defined here is. In Section 6 we analyze this phenomenon
using the example of nonadditivity of Gabai width proven in Blair and Tomova [2].

We prove (Corollary 4.5) that, as long as x � 2g.M /� 2, where g.M / is the Hee-
gaard genus of M , both netextx.M;T / and wx.M;T / are nonnegative. Indeed,
Theorem 4.9 implies that if M does not have a lens space or solid torus summand,
if M has no nonseparating spheres, and if T is connected and nonempty, then
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netextx.M;T / D 0 implies that M D S3 and T is the unknot. A similar result
holds for width, although we need to add more hypotheses on M or x .

Finally, we make a passing comment on the role of x .

Remark 1.1 When working with bridge surfaces or Heegaard surfaces, it is often
useful to maintain some control over the Euler characteristic of the surfaces. Introducing
the parameter x allows us to do that. Observe that, by the definition, both net extent
and width are nonincreasing as x increases. That is, for all x 2 Z,

netextx.M;T /� netextxC1.M;T / and wx.M;T /� wxC1.M;T /:

It is easily seen that the values of both netextx and wx are integers or half-integers.
Thus, the sequences .netextx.M;T //x and .wx.M;T //x are eventually constant at
netext1.M;T / and w1.M;T /.

1.3 Additivity

Suppose that . �M1; �T1/ and . �M2; �T2/ are disjoint (3–manifold, graph) pairs such that
p1 2

�T1 and p2 2
�T2 are either both disjoint from the vertices of �T1 and �T2 or both

trivalent vertices of �T1 and �T2 . Let k D 2 if both are disjoint from the vertices and let
k D 3 if both are trivalent vertices. We can form a new (3–manifold, graph) pair

.M;T /D . �M1; �T1/ #k . �M2; �T2/

as follows: Remove an open regular neighborhood of p1 and p2 from . �M1; �T1/

and . �M2; �T2/ to produce spheres P1 and P2 in the boundaries of the resulting pairs
.M1;T1/ and .M2;T2/ respectively. The spheres P1 and P2 are both either twice
punctured or thrice punctured by T1 and T2 . Let .M;T / be the result of gluing the
(3–manifold, graph) pairs together by a homeomorphism P1! P2 taking T1 \P1

to T2 \P2 . We call the image of P1 (and P2 ) in .M;T / the summing sphere. If
k D 2, we say that .M;T / is the connected sum of . �M1; �T1/ and . �M2; �T2/; if k D 3,
then .M;T / is the trivalent vertex sum of . �M1; �T1/ and . �M2; �T2/. We will usually
write .M;T /D . �M1; �T1/ # . �M2; �T2/ in place of .M;T /D . �M1; �T1/ #2 . �M2; �T2/.

For our purposes, we will say that a pair .M;T / is trivial if it is .S3;T /, where T is
either an unknot or a trivial �–graph (ie a graph having exactly two vertices and exactly
three edges, each joining the two vertices which can be isotoped into a Heegaard sphere
for S3 ). If .M;T / D . �M1; �T1/ #k . �M2; �T2/, then the summing sphere is essential
in .M;T / if neither . �M1; �T1/ nor . �M2; �T2/ is trivial.
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We say that . �M1; �T1/; : : : ; . �Mn; �Tn/ is a prime decomposition of .M;T / if all of the
following hold:

� Either n D 1 and . �M1; �T1/ D .M;T / or n � 2 and .M;T / is the result
of sequentially connect summing and trivalent vertex summing the . �Mi ; �Ti/

together (in some order).

� For all i , if . �Mi ; �Ti/ is trivial, then . �Mi ; �Ti/D .S
3; trivial �–graph/ and only

connected sums are performed on . �Mi ; �Ti/.

� For all i , if P � . �Mi ; �Ti/ is an essential sphere, then either P \ �Ti D ¿ or
jP \ �Ti j � 4.

Since we require that the summing be done sequentially, the graph in M dual to the
summing spheres is a tree. Under the assumptions that no sphere in M is nonseparating,
that T is a knot, and that .M;T / is nontrivial, Miyazaki [18, Theorem 4.1] has shown
that .M;T / has a unique prime factorization, up to reordering. This was extended to
the situation where T is a �–graph by Matveev and Turaev [16].

Let M be the set whose elements are irreducible (3–manifold, graph) pairs .M;T /

satisfying the running assumption and with M connected, with T nonempty, and
where every sphere in M separates. Let M2 �M be the subset where g.M /� 2 and
let Ms �M be the subset where every closed surface in M separates. We prove:

Theorem 5.7 (additivity theorem) Let .M;T / 2M be nontrivial, and let x be any
integer with x � 2g.M / � 2. Then there is a prime factorization of .M;T / into
. �M1; �T1/; : : : ; . �Mn; �Tn/ such that there exist integers x1; : : : ;xn , summing to at most
x� 2.n� 1/, with xi realizable for . �Mi ; �Ti/ and

netextx.M;T /D�p3=2C

nX
iD1

netextxi
. �Mi ; �Ti/;

where p3 is the number of thrice-punctured spheres in the decomposition. Furthermore,
if .M;T / 2Ms or if .M;T / 2M2 and x � 2, then we also have

wx.M;T /D�p3=2C

nX
iD1

wxi
. �Mi ; �Ti/:

The result for width is particularly striking. As we previously mentioned, for many
years, whether Gabai width satisfied an additivity property with respect to connected
sum of knots was an open question. However, Blair and Tomova [2] proved that width
is not additive. On the other hand, Theorem 5.7 shows that our invariant w�2 , which is
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a slightly modified version of Gabai width, is additive under connected sum, and even
more surprisingly, “higher genus” widths are also additive. For more details on the
relationship between our width and Blair and Tomova’s counterexamples, see Section 6.

1.4 Applications to classical invariants

We give several simple applications of our results to knots in 3–manifolds. For the
statement, recall that a knot K in a 3–manifold M is meridionally small or m-small if
there is no surface S � .M;K/ such that S \K ¤¿ and S is essential in .M;K/

(ie is incompressible and not @–parallel in the exterior of K ).

We give two short proofs (Theorems 7.1 and 7.2) of classical results of Schubert [33]
and Norwood [25] showing that 2–bridge knots and tunnel-number-1 knots (more
generally) are both prime. Scharlemann and Schultens [28] generalized Norwood’s
result to show that the tunnel number of the connected sum of n knots is at least n.
Morimoto [21] proved a stronger result for m-small knots: the tunnel number of the
connected sum of n m-small knots is at least the sum of the tunnel numbers of the
factors. We prove a theorem which combines the Scharlemann–Schultens and Morimoto
results. Dropping the hats off the summands for convenience, the statement is:

Theorem 7.3 For each i 2 f1; : : : ; ng let Ki be a knot in a closed, orientable 3–
manifold Mi such that every sphere in Mi separates and each .Mi ;Ki/ is prime and
irreducible. Assume that there is an integer j � n such that Ki is m-small if and only
if i � j . Then, letting .M;K/D .M1;K1/ # � � � # .Mn;Kn/, we have

.n� j /C t.K1/C � � �C t.Kj /� t.K/� .n� 1/C
X

t.Ki/:

Kobayashi and Rieck [14] studied the asymptotic properties of tunnel number of the
connected sum nK of a knot K with itself n times. As part of that project, they showed
that for “admissible” m-small knots K ,

0� lim
n!1

t.nK/�nt.K/

n�1
< 1:

Along the way, they prove the left-hand inequality holds for each term of the sequence
(not just in the limit). Our Theorem 7.3 gives another proof that for m-small knots,
0� .t.nK/� nt.K//=.n� 1/.

If K �M is a link, a surface S is a genus-g bridge surface for K if after removing a
regular neighborhood of all components of K that are disjoint from S , the surface S

is a Heegaard surface for the resulting manifold which intersects K transversally and
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divides K into arcs parallel in S . The genus-g bridge number of .M;K/ is the
smallest natural number bg.K/ such that there is a genus-g bridge surface for K .

Remark 1.2 This is not quite the definition given by Doll [6] for higher-genus bridge
number. He defines bg.K/ only when it is positive. Subsequently, opinions have
differed on how to extend the definition to allow bg.K/D 0. Some authors (as we do)
declare bg.K/D 0 if and only if K is a core loop for a genus-g Heegaard splitting
and others if and only if K is isotopic into a genus-g Heegaard surface for M .

A knot K in a 3–manifold M is small if M nK contains no closed essential surfaces.
By Culler, Gordon, Luecke and Shalen [5, Theorem 2.0.3], a small knot in S3 is
also m-small, but we will not use that fact. Observe, however, that if M contains
a nonseparating sphere, then .M;K/ is not small and m-small. We show that this
higher-genus bridge number satisfies a certain superadditivity for small knots, in the
following sense:

Theorem 1.3 Suppose that .Mi ;Ki/ are small and m-small for i 2 f1; : : : ; ng. Let
.M;K/D#n

iD1.Mi ;Ki/ and let g�g.M;K/. Then there exist gi such that
P

gi � g,
gi � g.Mi ;Ki/ and X

iD1

.gi C bgi
.K/� 1/� gC bg.K/� 1:

Restricting to two summands for convenience, we have:

Theorem 1.4 Suppose that for i D 1; 2 the pair .Mi ;Ki/ is small and m-small.
Let g1 D g.M1/ and g2 D g.M2/ and assume that t.Ki/ � gi for i 2 f1; 2g. Let
.M;K/D .M1;K1/ # .M2;K2/ and let g D g.M /. Then

bg.M;K/D bg1
.M1;K1/C bg2

.M2;K2/� 1:

Proof By Theorem 1.3, given g � g.M1 # M2/, there exist g1 and g2 such that
g1Cg2 � g and

.g1C bg1
.K1/� 1/C .g2C bg2

.K2/� 1/� gC bg.K/� 1:

Since g.M1/Cg.M2/D g , we actually have g1Cg2 D g . Thus,

.bg1
.K1/� 1/C .bg2

.K2/� 1/� bg.K/� 1:

By adapting a lemma from Doll [6, Bridge Inequality 1.2] to our definitions, we have

bg.K/�max.bg1
.K1/; 1/Cmax.bg2

.K2/; 1/� 1:
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Since t.Ki/� gi , we have

bg.K/� bg1
.K1/C bg2

.K2/� 1:

Thus,
bg.K/D bg1

.K1/C bg2
.K2/� 1:

This solves Doll’s Conjecture 1.1 for small knots K1 and K2 and gDg.M1/Cg.M2/.

Finally, we consider composite .g; b/–knots. A knot K has a .g; b/–decomposition
if there is a genus-g bridge surface intersecting K in 2b points. If b D 0, this
means that K is a core loop of a compressionbody to one side of a genus-g Heegaard
surface. The knot K is a .g; b/–knot if it has a .g; b/–decomposition and has neither
a .g� 1; bC 1/–decomposition nor a .g; b� 1/–decomposition. A .0; 2/–knot is also
called a 2–bridge knot. Morimoto [22] showed that composite .0; 3/–knots are the sum
of two 2–bridge knots and composite .1; 2/–knots are the connected sum of a 2–bridge
knot and a .1; 1/–knot. We prove a far-reaching generalization of Morimoto’s theorems:

Theorem 7.6 Suppose that K � S3 is a composite .g; b/–knot. Then the number
of prime summands is at most g C b � 1. If the number of summands is exactly
mD gC b� 1, then at least

g

2
C .b� 1/

of the summands have .1; 1/–decompositions and at least .b�1/ of those are 2–bridge
knots.

Corollary 7.7 explains how to obtain Morimoto’s theorems from this result.

2 Preliminaries

2.1 Additional notation

For a (3–manifold, graph) pair .M;T /, recall that we use M nT to denote the exterior
of T and for a surface S � .M;T /, the notation .M;T / n S to denote the result
of removing an open regular neighborhood of S from both M and T . All surfaces
appearing in this paper are tame, compact and orientable. A surface S � .M;T / is
essential if SnT is incompressible and not @–parallel in M nT and S is not a 2–sphere
disjoint from T bounding a 3–ball disjoint from T . We use .C;TC /@ .M;T / nS to
indicate that C is a component of M nS and TC D T \C .
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2.2 Generalizations of compressionbodies

We begin by generalizing the usual notion of “compressionbody” to obtain objects
we call “vp-compressionbodies”. Just as traditional compressionbodies can be cut
open along a collection of discs to obtain 3–balls and the product of a surface with
an interval, so our vp-compressionbodies can be cut open along generalizations of
compressing discs, called “sc-discs”, to obtain very simple (3–manifold, graph) pairs.
Essentially, an sc-disc is a compressing disc that is allowed to intersect the graph in a
single point. For more on why we need this generalization, see [36] .

Definition 2.1 Suppose that S � .M;T / is a surface and that D is an embedded disc
in M such that the following hold:

(i) @D � .S nT /, the interior of D is disjoint from S , and D is transverse to T .

(ii) jD\T j � 1.

(iii) There is no disc E � S such that @E D @D and E [D bounds either a 3–ball
in M disjoint from T or a 3–ball in M whose intersection with T consists
entirely of a single unknotted arc with one endpoint in E and one endpoint in D .

Then D is an sc-disc. We categorize sc-discs into compressing discs, cut discs, semicut
discs and semicompressing discs. If jD \ T j D 0 and @D does not bound a disc
in S nT , then D is a compressing disc. If jD \T j D 0 and @D does bound a disc
in S nT , then D is a semicompressing disc. If jD\T j D 1 and @D does not bound an
unpunctured disc or a once-punctured disc in S nT , then D is a cut disc. If jD\T jD 1

and @D does bound an unpunctured disc or a once-punctured disc in S nT , then D is
a semicut disc. A c-disc is a compressing disc or cut disc. The surface S � .M;T /

is c-incompressible if S does not have a c-disc; it is c-essential if it is essential and
c-incompressible. If S is separating and there is a pair of disjoint sc-discs on opposite
sides of S , then S is sc-weakly reducible, otherwise it is sc-strongly irreducible.

Remark 2.2 A Heegaard surface in a 3–manifold M is weakly reducible if it has pair
of compressing discs on opposite sides that are disjoint from each other. Casson and
Gordon [3] (see also [30; 19]) showed that weakly reducible Heegaard surfaces often
give rise to essential surfaces in the 3–manifold. In [36] (see Theorem 2.14 below),
we explain how to strengthen these results to (3–manifold, graph) pairs. Hempel [11]
reinterpreted weak reducibility in terms of the curve complex of the Heegaard surface.
For Hempel, the “distance” of a Heegaard surface is the distance in the curve complex
between the disc sets for the 3–manifolds on either side of the Heegaard surface. This
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definition can be extended to apply to any separating surface which is compressible to
both sides. We could then reinterpret our notion of sc-weakly reducible in terms of the
distance between disc sets corresponding to the sets of sc-discs on either side of the
surface. However, in what follows, we do not need this interpretation.

We can now define our generalization of traditional compressionbodies. See Figure 1
for an example.

Definition 2.3 Suppose that F is a closed, connected, orientable surface. We say
that .F � I;T / is a trivial product compressionbody if T is isotopic to the (possibly
empty) union of vertical arcs. We let @˙.F � I/D F � f˙1g. If B is a 3–ball and
if T � B is a (possibly empty) connected, properly embedded, @–parallel tree, having
at most one interior vertex, then we say that .B;T / is a trivial ball compressionbody.
We let @CB D @B and @�B D¿. A trivial compressionbody is either a trivial product
compressionbody or a trivial ball compressionbody.

A pair .C;T /, with C connected, is a vp-compressionbody if there is some component,
denoted by @CC , of @C and a collection of pairwise disjoint sc-discs D � .C;T /
for @CC such that the result of @–reducing .C;T / using D is a union of trivial
compressionbodies. The set of sc-discs D is called a complete collection of sc-discs
for .C;T /. The set @C n @CC is denoted by @�C .

An edge of T disjoint from @CC is a ghost arc. An edge of T with one endpoint
in @CC and one in @�C is a vertical arc. A component of T which is an arc having
both endpoints on @CC is a bridge arc. A component of T which is homeomorphic
to a circle and is disjoint from @C is called a core loop. A bridge disc for @CC in C

is an embedded disc in C with boundary the union of two arcs ˛ and ˇ such that
˛ � @CC joins distinct points of @CC \T and ˇ is the union of edges of T . We will
only consider bridge discs which are disjoint from the vertices of T .

@CC

@�C

Figure 1: A vp-compressionbody .C;T / . From left to right we have three
vertical arcs, one ghost arc, one bridge arc and one core loop in T . This
figure was reappropriated from [36].
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Figure 1 depicts a vp-compressionbody .C;T / containing three vertical arcs, one ghost
arc, one bridge arc and one core loop. If .C;T / is a vp-compressionbody such that T

has no interior vertices, then every component of T is either a vertical arc, ghost arc,
bridge arc or core loop. We will often reduce to this situation by drilling out vertices
of T (ie removing a regular neighborhood of them so that vertices correspond to new
spherical boundary components of the resulting 3–manifold).

Remark 2.4 As in the traditional setting, there is a way to view vp-compressionbodies
in terms of 3–dimensional handle theory. Although this perspective underlies our
approach, we do not explicitly rely on it in what follows. Classically, compressionbodies
can be constructed by starting with 3–balls and F � I for a closed surface F (let
us call these “0–handles”) and then attaching 1–handles, each of the form D2 � I ,
so that D2 � @I lies on the union boundary of the 3–balls with F � f1g. There is
a similar construction of vp-compressionbodies. Consider trivial compressionbodies
as 0–handles. There are two kinds of 1–handles. One is the (3–manifold, graph)
pair .D2 � I;¿/ (ie a traditional 3–dimensional 1–handle). The other is the pair
.D2 � I; .0; 0/� I/ (ie a traditional 1–handle together with its core). We then attach
1–handles to 0–handles by gluing D2 � @I to the positive boundary of the 0–handles.
We also insist that for the first kind of 1–handle the attaching region is disjoint from
the graph in the 0–handles and for the second kind of 1–handle, the center of each disc
in the attaching region is glued to an endpoint of the graph in the 0–handle and the
attaching region is otherwise disjoint from the graph in the 0–handles.

Equivalently, a vp-compressionbody can be constructed by starting with a trivial product
compressionbody @CC�I and then attaching certain kinds of 2–handles and 3–handles
to @CC � f0g. As with 1–handles, there are two kinds of 2–handles: one kind has
no graph in it and the other kind contains the cocore of the 2–handle. 3–handles are
equivalent to 0–handles, but with nonempty attaching region.

What follows is a key property of vp-compressionbodies that we will use on several
occasions.

Lemma 2.5 [36, Lemma 3.5] Suppose that .C;T / is a vp-compressionbody such that
no component of @�C is a 2–sphere intersecting T exactly once. The following hold:

(i) .C;T / is a trivial compressionbody if and only if there are no sc-discs for @CC .

(ii) If D is an sc-disc for @CC , then the result of reducing .C;T / using D is the
union of vp-compressionbodies. Furthermore, there is a complete collection of
sc-discs for .C;T / containing D .
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2.3 Thick and thin surfaces

Gabai width [7] for a knot K is defined using Morse functions hW S3!R which restrict
to Morse functions hjK on the knot and then considering how the maxima and minima
of hjK relate to each other. Inspired by this, Scharlemann and Thompson [30] defined
the width of a closed 3–manifold M by considering handle decompositions of M

with a single 0–handle and a single 3–handle and examining how the 1–handles and
2–handles relate to each other. For both Gabai width and the Scharlemann–Thompson
width, it is the associated thick and thin surfaces which make the theories especially
useful. Hayashi and Shimokawa [10] focused attention on the union of these surfaces
(which they call a “multiple Heegaard splitting”). Here is our version; see [36] for
more detail and motivation.

Definition 2.6 A multiple vp-bridge surface for .M;T / is a closed (possibly discon-
nected) surface H� .M;T / such that

� H is the disjoint union of H� and HC , each of which is the union of components
of H;

� .M;T / n H is the union of embedded vp-compressionbodies .Ci ;Ti/ with
H�[ @M D

S
@�Ci and HC D

S
@CCi ;

� each component of H is adjacent to two distinct vp-compressionbodies.

The components of H� are called thin surfaces and the components of HC are
called thick surfaces. If H is connected, then HDHC is called a vp-bridge surface
for .M;T /.

Observe that, for a multiple vp-bridge surface H of .M;T /, each component of HC

is a vp-bridge surface for the component of .M;T / nH� containing it.

We are usually interested in multiple vp-bridge surfaces that have certain additional
properties:

Definition 2.7 (for details, see [36, Section 3.2]) Suppose that H is a multiple vp-
bridge surface for .M;T /. Suppose that each component of H is given a transverse ori-
entation so all orientations are consistent on the boundary of each vp-compressionbody.
(That is, after also giving each component of @M \@�C a transverse orientation, each
compressionbody C is an oriented cobordism from @�C to @CC or vice versa.) A
flow line for H is a nonconstant oriented path in M always intersecting H in the
direction of the transverse orientation, transverse to and not disjoint from H . The
multiple vp-bridge surface H is oriented if there are no closed flow lines.
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Remark 2.8 The transverse orientation induces a certain kind of handle decomposition
of .M;T /, with handles as in Remark 2.4. Similarly, each thick surface H @ HC

induces a Morse function on the component M0 of M nH containing it. This Morse
function can be chosen so that it restricts to a Morse function on a subgraph of M0\T .
The subgraph is the union of all components of M0\T other than the ghost arcs on
either side of H . The Morse functions corresponding to each component of M nH
can be pieced together to give a Morse-like function from M to a certain graph, but
we do not pursue this line of inquiry here.

Just as a Heegaard surface for a 3–manifold can be stabilized and thus have higher
genus than necessary, so a multiple vp-bridge surface may have thick surfaces that are
higher genus or have more punctures than necessary. In [36], we defined a collection
of destabilizing moves for multiple vp-bridge surfaces. These generalize the traditional
notions of stabilization and @–stabilization of Heegaard splittings of 3–manifolds. The
types of destabilization for H @ HC , which are called generalized destabilizations,
are as follows (see [36] for precise definitions):

� Destabilization Compressing along a certain compressing disc for H having
boundary which is nonseparating on H .

� Meridional destabilization Compressing along a certain cut disc for H having
boundary which is nonseparating on H .

� Boundary destabilization Compressing along a certain separating compress-
ing disc for H and discarding a component of the resulting surface.

� Meridional boundary destabilization Compressing along a certain separating
cut disc for H and discarding a component of the resulting surface.

� Ghost boundary destabilization Compressing along a certain separating com-
pressing disc for H and discarding a component of the resulting surface.

� Ghost meridional boundary destabilization Compressing along a certain
separating cut disc for H and discarding a component of the resulting surface.

Meridional destabilization and meridional boundary destabilization are essentially the
same, except that a cut disc plays the role of the compressing disc. A ghost (meridional)
boundary destabilization is the same as (meridional) boundary destabilization after
removing an open regular neighborhood of a certain subgraph of T from .M;T /.

There are times when it is possible to isotope a component of HC across a bridge disc
so as to reduce the number of intersections between H and T while still producing a
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Figure 2: Unperturbing (top) and removing a removable arc (bottom)

multiple vp-bridge surface. Two are of special interest (see Figure 2). These operations
have shown up in other contexts (see, for example [10; 32]):

� Unperturbing Isotope H @ HC across a bridge disc D which shares a single
point of intersection with a bridge disc on the opposite side of H . The result of
this isotopy is that the number of intersections of H and T is reduced by two.

� Undoing a removable arc Isotope H @ HC across a bridge disc D that has a
single point of intersection with a complete set of sc-discs on the other side of H

such that the point of intersection lies on a compressing or semicompressing
disc. The result of this isotopy is that the number of intersections of H and T

is reduced by two.

Definition 2.9 Suppose that H is a multiple vp-bridge surface for .M;T / and that
some .P;TP / @ .M;T / nH is a trivial product compressionbody adjacent to H�

(rather than @M ). Then H0 DH n @P is obtained from H by a consolidation (or by
consolidating H).

H

HC

HC

H� H�
F F

DC

D�

Figure 3: Untelescoping H . The red curves are portions of T . The blue lines
on the left are sc-discs for H . Note that if a semicut or cut disc is used then a
ghost arc is created. This figure was reappropriated from [36].
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In [36, Section 4], we show that the result of performing any of the generalized
destabilizations, unperturbing or removing a removable arc is still an (oriented) mul-
tiple vp-bridge surface. We say that a multiple vp-bridge surface H is reduced if
it is impossible to perform a generalized destabilization or consolidation and if it is
impossible to unperturb it or undo a removable arc. Let H.M;T / denote all reduced,
oriented multiple vp-bridge surfaces, with two surfaces being equivalent if they are
isotopic via an isotopy transverse to T .

There are two other ways of “simplifying” a multiple vp-bridge surface. In some ways,
these play the most important role in the theory. They correspond to weak reduction of
a Heegaard splitting (see [3; 30; 10]), but using sc-discs instead of compressing discs.
For more detail and motivation, see [36].

Definition 2.10 Suppose that H is an oriented vp-bridge surface such that H @HC is
sc-weakly reducible in .M;T /nH� . Let D� and DC be disjoint sc-discs on opposite
sides of H . Let H˙ be the result of compressing H using D˙ and performing a
small isotopy to the side of H containing D˙ . Let F be the result of compressing H

using both D� and DC . Let JC D .HC nH /[ .H� [HC/ and J � D H� [ F .
Then J D JC[J � is obtained by untelescoping H . Figure 3 gives an example.

Corollary 5.9 of [36] show that untelescoping an oriented multiple vp-bridge surface
results in an oriented multiple vp-bridge surface. We need the following:

Lemma 2.11 [36, Lemma 5.7] Suppose H is an (oriented ) multiple vp-bridge sur-
face for .M;T / with .H#;T#/ and .H";T"/ the vp-compressionbodies of .M;T / nH

on either side. Suppose that D" and D# are an sc-weak reducing pair. Let H� �H#

and HC �H" be the new thick surfaces created by untelescoping H . Let F be the
union of the new thin surfaces. Then the following are equivalent for a component ˆ
of F :

(i) ˆ is adjacent only to a remnant of D" (or D# , respectively).

(ii) The disc D" (or D# , respectively) is separating and ˆ bounds a trivial product
vp-compressionbody in H" (or H# , respectively) with a component of HC

(or H� , respectively).

Suppose that H2H.M;T /. An elementary thinning sequence consists of the following
operations, in order:

(i) untelescoping a component of HC to create an oriented multiple vp-bridge
surface H1 ;
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(ii) consolidating components of H1 nH that cobound trivial product compression-
bodies in .M;T / nH1 to create H2 ;

(iii) consolidating components of HC
2
n HC and components of H� � H�

2
that

cobound trivial product compressionbodies in .M;T / nH2 to create H0 DH3 .

See [36, Figure 12] for a schematic depiction of an elementary thinning sequence. It
follows from [36, Corollary 5.9] that the result of applying an elementary thinning
sequence to H2H.M;T / is an oriented multiple vp-bridge surface having the property
that no consolidation is possible. It may, however, be possible to destabilize, unperturb
or undo a removable arc.

Definition 2.12 [36, Definition 6.15] Suppose that H 2 H.M;T / is reduced and
that T is irreducible. An extended thinning move applied to H consists of the following
steps in order:

(i) perform an elementary thinning sequence;

(ii) destabilize, unperturb and undo removable arcs until no generalized stabilizations,
perturbations or removable arcs remain;

(iii) perform as many consolidations as possible;

(iv) repeat (ii) and (iii) as much as possible.

In [36] we define a certain complexity which decreases under each consolidation,
elementary thinning sequence, destabilization, unperturbing and undoing of a removable
arc. This complexity ensures that steps (ii), (iii) and (iv) are guaranteed to terminate
and that there is no infinite sequence of extended thinning moves.

The result of applying an extended thinning move to H 2H.M;T / is also an element
of H.M;T /. For H;K 2H.M;T /, we say that H thins to K and write H! K if
there is a (possibly empty) sequence of extended thinning moves producing K from H .
If H!K implies that HDK (equivalently, no extended thinning move can be applied
to H) then we say that H is locally thin. We proved:

Theorem 2.13 [36, Theorem 6.18] Suppose that .M;T / is a (3–manifold, graph )
pair satisfying the running assumption and with T irreducible. Then ! is a partial
order on H.M;T / and for every H2H.M;T / there exists a locally thin K2H.M;T /

such that H! K .

Locally thin multiple vp-bridge surfaces have some particularly nice properties:
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Theorem 2.14 (properties of locally thin surfaces) Suppose .M;T / is a (3–manifold,
graph ) pair with T irreducible. Let K 2H.M;T / be locally thin. Then the following
hold:

(i) Each component of KC is sc-strongly irreducible in .M;T / nK� .

(ii) Every component of K� is c-essential in .M;T /.

(iii) If .M;T / is irreducible and if K contains a 2–sphere disjoint from T , then
T D¿ and M D S3 or M D B3 .

(iv) Suppose that P � .M;T / is an essential sphere such that jP \T j � 3. Then
some F @ K� is an essential sphere with jF \ T j � jP \ T j and F can be
obtained from P by a sequence of isotopies and compressions using sc-discs.

See [36, Theorem 7.6] and [36, Theorem 8.2] for proofs.

3 Net extent, width and thinning sequences

3.1 Effects of thinning

In this section we show that net extent and width do not increase under thinning of an
oriented multiple vp-bridge surface.

Lemma 3.1 Suppose H is an oriented multiple vp-bridge surface for .M;T / and K
is obtained by an elementary thinning sequence from H . Then net�.K/D net�.H/
and netext.K/D netext.H/. Furthermore, w.K/� w.H/ if

� T is irreducible, and

� either at least one of discs in the weak reducing pair has boundary which separates
HC or the union of the boundaries of the discs in the weak reducing pair is
nonseparating on HC .

Proof The statement for net Euler characteristic is similar to that of [28, Lemma 2]; it
is easily verified by examining the definition of elementary thinning sequence. We take
on the proof that net extent does not change and that width does not increase under an
elementary thinning sequence. Observe that consolidation will never change net Euler
characteristic, net extent or width.

Let H � HC be the thick surface which is untelescoped using a weak reducing
pair fD�;DCg. Let i D jDC \ T j and j D jD� \ T j (so i; j 2 f0; 1g). Let H1

be the surface obtained by untelescoping. The surface K is obtained from H1 by
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consolidations so netext.H1/ D netext.K/ and w.H1/ D w.K/. It suffices to show
then that netext.H1/D netext.H/ and w.H1/� w.H/.

Let HC be the union of the components HC
1

resulting from compressing H using DC

(there are at most two such components). Let H� be the union of the thick surfaces
in HC

1
which result from compressing H using D# . Let F be the union of the new

thin surfaces (ie the components of H�
1
nH� ). We have

ext.HC/D ext.H /C i � 1;

ext.H�/D ext.H /C j � 1;

ext.F /D ext.H /C i C j � 2:

Consequently,
ext.HC/C ext.H�/� ext.F /D ext.H /;

and so netext.H1/ D netext.H/. Since extent is linear over components, we have
netext.H/D netext.K/.

We need to exert more care with width. Assume, therefore, the two additional hypotheses
in the statement of the lemma. The second new hypothesis guarantees that F DK�nH�

is connected (Lemma 2.11). Let H 0C , H 0� and F 0 be the components of H˙\K and
F \K respectively. Let H 00

˙
be a component of H˙ which is consolidated with a

component F 00
˙

of F .

Let xD ext.H /. Let x0
˙

and x00
˙

be the extents of H 0
˙

and H 00
˙

respectively. Let y be
the extent of F 0 . Note that the extents of the components of F which are consolidated
are exactly x00C and x00� . Then

x0C D xC i � 1�x00C;

x0� D xC j � 1�x00�;

y D xC i C j � 2�x00C�x00�:

Algebra then shows that

.x0C/
2
C .x0�/

2
�y2

D x2
� 2..j � 1/�x00�/..i � 1/�x00C/:

Thus,
1
2
.w.K/�w.H//D�2..j � 1/�x00�/..i � 1/�x00C/:

This is nonpositive, as desired, unless exactly one of ..j � 1/�x00�/ or ..i � 1/�x00C/

is positive and the other is negative. Without loss of generality, suppose

x00� < j � 1 2 f�1; 0g:
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Since T is irreducible, and since H 00� is connected, by the definition of extent, H 00� is
a sphere disjoint from T . Hence, x00� D�1 and j D 0. Thus,

1
2
.w.K/�w.H//D�2.�1C 1/..i � 1/�x00C/� 0;

as desired.

Remark 3.2 The reason for the second additional assumption for the result on width
in Lemma 3.1 is due to the fact that if (using the notation from the proof) F 0 is
disconnected, then the difference w.K/�w.H/ is given by

..x0C/
2
C .x0�/

2
�y2

1 �y2
2/�x2;

where y1 and y2 are the extents of the components of F 0 , instead of being given
by ..x0C/

2C .x0�/
2� y2/�x2 . That distinction is enough to make the proof not go

through in the case when F 0 is disconnected.

For convenience, if H is a reduced multiple vp-bridge surface for .M;T / we define
the width hypothesis to be all three of the following assumptions:

(W1) T is irreducible.

(W2) Either each component of HC has genus at most 2 or every closed surface in M

separates.

(W3) Every sphere in M separates.

Of course, we continue to employ the running assumption, without remarking on it.

Corollary 3.3 Suppose H;K 2 H.M;T / and H! K . Then net�.K/ � net�.H/
and netext.K/ � netext.H/. Additionally, if the width hypothesis holds for H , then
w.K/� w.H/.

Proof It is easily verified that consolidation, destabilization of all kinds, as well as
unperturbing and eliminating a removable arc do not increase net Euler characteristic,
net extent or width. By Lemma 3.1, therefore, a thinning sequence does not increase
net extent.

Assume, therefore, that the width hypothesis holds for H . Observe that consolidation,
elementary thinning sequences, destabilization of all kinds, as well as unperturbing
and eliminating a removable arc do not change these properties. We will show that the
width hypothesis implies that H satisfies the hypothesis in the second bullet point of
the statement of Lemma 3.1. It then follows that w.K/� w.H/.
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Suppose that D� and DC are a weak reducing pair for H @HC . If one of D� or DC

has boundary which separates H , then we are done. Assume, therefore, that both @D�
and @DC are nonseparating on H . This implies H is not a sphere. By (W2), either
g.H /� 2 or every closed surface in M separates.

Assume, first, that g.H /� 2. We already know that g.H /¤ 0. If g.H /D 1, then H

is a torus and @D� and @DC are parallel curves on H (ignoring T \H ). Thus, M

contains a nonseparating sphere, contradicting (W3). Hence g.H /D 2.

Since @D� is nonseparating on the genus-2 surface H , the surface H 0DH n@D� is a
genus-1 surface with two boundary components. If @DC is nonseparating on H 0 , then
@D�[@DC is nonseparating on H , and we are done. Thus, we may assume that @DC
separates H . Together with components of @H 0 , the curve @DC must bound either a
disc, a pair-of-pants or an annulus in H 0 . Since @DC is nonseparating on H , we can
rule out the first two possibilities. The third possibility implies that @DC is parallel
in H to @D� and so again M contains a nonseparating sphere, a contradicting (W3).
Thus, the conclusion holds if g.H /� 2.

Suppose, therefore, that no closed surface in M separates and that @D� and @DC
are both nonseparating on H , but @D� [ @DC is separating. Let F1 and F2 be
the two components of H n .@D� [ @DC/. Since D� is nonseparating in the vp-
compressionbody H# below H , there exists a properly embedded arc  � in H�

joining F1 to F2 which is disjoint from D� . Likewise, there is a properly embedded
arc in the vp-compressionbody H" above H which joins F1 and F2 and is disjoint
from DC . Since F1 and F2 are each path-connected, without loss of generality, the
endpoints of  � and  C coincide. Then  �[ C is a loop intersecting each of F1

and F2 exactly once. Thus, each of the components of the thin surface obtained by
untelescoping H using D� and DC are nonseparating, a contradiction. Thus, the
conclusion holds in this case also.

4 Minimality results

In this section we show that both net extent and width (at least under the width
hypothesis) are nonnegative and detect the unknot. The results and techniques of this
section are often applicable more generally — for instance in studying links or graphs
of small net extent.

First we confirm that the net Euler characteristic of a multiple vp-bridge surface provides
an upper bound on the negative Euler characteristic of its components. We use the fact

Geometry & Topology, Volume 22 (2018)



Additive invariants for knots, links and graphs in 3–manifolds 3257

that generalized Heegaard splittings (in the sense of Scharlemann and Thompson [30])
can be amalgamated to create a Heegaard surface, a result due to Schultens [35]. We
defer to Schultens’ paper for a precise definition of amalgamation. (See also [15].)

Lemma 4.1 Assume that H 2H.M;T /. If net�.H/D x 2Z, then every component
S @ H has ��.S/� x .

Proof As net�.H/ is computed without taking T into account, we may ignore T for
the purposes of this proof. Cap off all 2–sphere boundary components of @M with
3–balls, and consolidate parallel thick and thin surfaces in H as much as possible to
obtain a multiple vp-bridge surface J for M . Observe that net�.J /D net�.H/D x .
Since we are ignoring T , we may amalgamate J to a Heegaard surface J for M . It
is straightforward to verify that ��.J /D x . Each component of J is the component
of a surface J 0 obtained by a sequence of compressions of J . Thus, ��.J 0/ � x .
Hence, any component S of H that is not consolidated away in the creation of J
has ��.S/ � x . Now reconstruct H from J by inserting in parallel thick and
thin surfaces. Suppose that F1 and H1 are the first pair of parallel thick and thin
surfaces inserted into M n J (ie the last pair consolidated from H). Let H be the
component of JC which is adjacent to F1 in M n .J [H1[F1/. By the definition
of vp-compressionbody, ��.H /���.F1/, since there is a vp-compressionbody such
that H D @CC and F1 � @�C . Consequently, ��.H1/ D ��.F1/ � ��.H / � x .
Proceeding inductively, we show that reinserting all pairs of parallel thin and thick
surfaces we see that every component S of H has ��.S/� x .

4.1 Compressionbodies

In this subsection, we determine various inequalities for vp-compressionbodies. In
future sections we will assemble these to study net extent and width.

For a vp-compressionbody .C;TC / with TC a 1–manifold, define

ı.C;TC /D ext.@CC /� ext.@�C /:

Note that ı.B3;¿/ D �1 and if .C;TC / is any other trivial compressionbody or
.S1 �D2;¿/ or .S1 �D2; core loop/ then ı.C;TC /D 0.

Lemma 4.2 Suppose that .C;TC / is a vp-compressionbody other than .B3;¿/ or
.S1 �D2;¿/. Assume TC is a 1–manifold not intersecting any spherical component
of @�C exactly once. Then ı.C;TC / � 0 and if ı.C;TC / D 0 then there is no
compressing or semicompressing disc for @CC in .C;TC /.
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Proof Suppose that .C;TC / is other than .B3;¿/ or .S1 �D2;¿/. Let � be a
complete set (possibly empty) of pairwise nonparallel sc-discs for .C;TC / such that
reducing .C;TC / along � results in the union .P;TP / of trivial product compres-
sionbodies. Let a be the number of compressing and semicompressing discs in �
and let b be the number of .B3;¿/ components of .P;TP /. Since .C;TC / is not
.B3;¿/ or .S1 �D2;¿/, each .B3;¿/ component of .P;TP / is adjacent to at least
three remnants of compressing or semicompressing discs. Hence, 2a� 3b .

Observe that
ext.@CC /D ext.@CP /C aD a� b � a=3:

Also we have ext.@�C /D ext.@�P /, so

ı.C;TC /� a=3� 0:

Furthermore, if equality holds, then a D 0 and � does not contain a compressing
or semicompressing disc. Since this is true for every complete collection �, the
surface @CC does not admit a compressing or semicompressing disc in .C;TC /

(Lemma 2.5).

The next definition will be useful for analyzing vp-compressionbodies.

Definition 4.3 Suppose that .C;TC / is a vp-compressionbody. The ghost arc graph
for .C;TC / is the graph G whose vertices are the components of @�C and whose
edges are the ghost edges of TC .

Corollary 4.4 Suppose that .C;TC / is a vp-compressionbody. Assume TC is a
1–manifold not intersecting any spherical component of @�C exactly once and that
ı.C;TC /D 0. Then .C;TC / is one of the following:

(i) .B3; arc/,

(ii) .S1 �D2;¿/,
(iii) .S1 �D2; core loop/, or

(iv) a compressionbody such that every component of TC is a vertical arc or ghost
arc and g.@CC /D g.@�C /C n� .j@�C j � 1/, where n is the number of ghost
arcs in TC .

Furthermore, when .C;TC / is of type (iv), the ghost arc graph is connected.

Proof Assume that .C;TC / is not .B3; arc/, .S1�D2;¿/ or .S1�D2; core loop/.
Since ı.C;TC /D 0, we have that .C;TC /¤ .B

3;¿/. We may apply Lemma 4.2. A
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bridge arc in TC would imply the existence of a compressing or semicompressing disc
for @CC . Similarly, if TC contained a closed loop, we would also have a compressing
or semicompressing disc as .C;TC /¤ .S

1 �D2; core loop/. Thus, TC is the union
of vertical arcs and ghost arcs.

If TC is the (possibly empty) union of vertical arcs, the assumption that ı.C;TC /D 0

and .C;TC /¤ .S
1�D2;¿/ implies that .C;TC / is a trivial product compressionbody

and the lemma follows. If @�C is disconnected, there must be ghost arcs joining the
components as otherwise @CC would have a compressing or semicompressing disc
as @CC can be obtained from @�C by attaching 1–handles together with their cores.
Thus j@�C j � 1 ghost arcs are needed to guarantee that @CC has no compressing or
semicompressing disc and each ghost arc beyond j@�C j�1 increases g.@CC / by 1.

Observe that by Corollary 4.4, if .C;TC / is a vp-compressionbody of type (iv), with
g.@CC / D g.@�C /, then the ghost arc graph is a (possibly empty) tree. If TC is
nonempty and irreducible, and if the components of @�C are spheres, then each leaf
of the ghost arc graph must be incident to a vertical arc component of TC .

We will piece the previous observations together with the following equations. Observe
that if H is oriented, then since each component of H is adjacent to precisely two
components of .M;T / nH ,

(1) 2 netext.H/� ext.@M /�
X

v

.nv � 2/=2D
X

.C;TC /

ı.C;TC /;

where the sum on the left is over all vertices v in T and nv is the valence of the
vertex v and the sum on the right is over all components .C;TC / of .M;T / nH after
drilling out the vertices of T .

Similar considerations show that (using the same notation)

(2) w.H/�
X

F@@M

ext2.F /�
X

v

.nv � 2/2=4D
X

.C;TC /

ext2.@CC /�
X

F@@�C

ext2.F /:

Corollary 4.5 (nonnegativity) Suppose that .M;T / is irreducible and satisfies the
running assumption. Let H 2H.M;T /. Assume that no component of .M;T / nH
is .B3;¿/. Then

netext.H/� 1
2
.ext.@M /��.T /CjT \ @M j=2/� 0

and
w.H/� netext.H/:
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Proof By (1), we have

2 netext.H/D ext.@M /C
X

v

.nv � 2/=2C
X

.C;TC /

ı.C;TC /:

Notice that ı.S1�D2;¿/D 0 and recall that no component of .M;T /nH is .B3;¿/.
Since T is irreducible, by Lemma 4.2, ı.C;TC / � 0 for all .C;TC / @ .M;T / nH .
Suppose that T has V interior vertices and E edges and nD T \ @M . We have

2E D nC
X

v

nv:

Thus, recalling that ��.T /DE � .V C n/,

2 netext.H/� ext.@M /CE � n=2�V

D ext.@M /��.T /C n=2:

To see that this is nonnegative, rewrite the previous equation as

ext.@M /CE � n=2�V D
��.@M /

2
C

n

2
CE �

n

2
�V

D
��.@M /

2
CE �V:

Let .M̊ ; T̊ / be the result of drilling out the interior vertices of M . This does not
change the number of edges of the graph, but converts the interior vertices into spherical
boundary components. Thus,

(3) ��.@M /

2
CE �V D

��.@M̊ /Cj@M̊\T̊ j

2
:

By the running assumption, each spherical component of @M̊ intersects T̊ at least
three times. Thus,

ext.@M /��.T /C n=2� 0:

Furthermore, using (3) and the running assumption, we have equality only if T has no
internal vertices (ie is empty or is a link) and every component of @M is a torus.

We now consider width. Recall that for each F @ H , we have ext.F /� 0 since T is
irreducible and since no component of H is a sphere disjoint from T . Thus, for any
component .C;TC / of .M;T / nH , we have

ext2.@CC /�
X

F@@�C

ext2.F /� ext2.@CC /� ext2.@�C /

D .ext.@CC /C ext.@CC //ı.C;TC /:

If .ext.@CC /C ext.@CC //D 0, then ext.F /D 0 for each component F of @C . This
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implies that ı.C;TC /D 0. Thus,

ext2.@CC /�
X

F@@�C

ext2.F /� ı.C;TC /:

By (2) and by (1), we have

w.H/D
X

F@@M

ext2.F /C
X

v

.nv � 2/2=4C
X

.C;TC /

�
ext2.@CC /�

X
F@@�C

ext2.F /
�

�

X
F@@M

ext.F /C
X

v

.nv � 2/=4C
X

.C;TC /

ı.C;TC /

�
1

2

�
ext.@M /C

X
v

.nv � 2/=2C
X

.C;TC /

ı.C;TC /

�
D netext.H/:

Hence, as desired,
w.H/� netext.H/:

Remark 4.6 Observe from the proof of Corollary 4.5 that if we have netext.H/ D
.ext.@M /��.T /Cn=2/=2 and if .C;TC / is obtained from a component of .M;T /nH
by drilling out vertices, then ı.C;TC /D0. We will make use of this in the next corollary.
Furthermore, it follows from the proof that if netext.H/D 0, then T is either empty
or a link and @M is the (possibly empty) union of tori.

Corollary 4.7 Assume that .M;T / is irreducible and satisfies the running assumption,
with T a 1–manifold, and is other than .S3;¿/. Suppose that H2H.M;T / is locally
thin with either netext.H/ or w.H/=2 equal to

1
2
.ext.@M /��.T /CjT \ @M j=2/:

Then for every component .C;TC / of .M;T /nH we have ı.C;TC /D 0. In particular,
each .C;TC / is one of the following:

(i) .B3; arc/,

(ii) .S1 �D2;¿/,
(iii) .S1 �D2; core loop/,

(iv) a compressionbody such that every component of TC is a vertical arc or ghost
arc and g.@CC /D g.@�C /C n� .j@�C j � 1/, where n is the number of ghost
arcs in TC .

Furthermore, when .C;TC / is of type (iv), the ghost arc graph is connected.
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Proof Observe that .M;T / is not .B3;¿/ since it satisfies the running assumption.
By Theorem 2.14, since .M;T / is irreducible and is not .S3;¿/ or .B3;¿/, no
component of .M;T /nH is a .B3;¿/. We thus satisfy the hypothesis of Corollary 4.5.
If we have equality for w.H/=2, then by that corollary we also have equality for net
extent. By Remark 4.6, ı.C;TC /D0 for each .C;TC /@ .M;T /nH . By Corollary 4.4,
the result follows.

We minimize net extent and width to show that they are nonnegative half-integer valued
invariants of (3–manifold, graph) pairs satisfying the running assumption.

Corollary 4.8 Suppose that .M;T / is an irreducible (3–manifold, graph ) pair satis-
fying the running assumption, other than .S3;¿/. Let x � 2g.M /� 2. Then

netextx.M;T /�
ext.@M /��.T /

2
Cj@M \T j=4� 0:

Furthermore, if every sphere in M separates and if either x � 2 or every closed surface
in M separates, then

wx.M;T /� netextx.M;T /:

Proof Let H be a minimal genus Heegaard surface for M , so that ��.H / D

2g.M /�2. Isotope H to be disjoint from the vertices of T . Drill out the vertices of T

to obtain .M̊ ; T̊ / and observe that H is still a Heegaard surface for M̊ . It is a standard
result (cf [9, Lemma 2.1]) that T̊ can be isotoped to intersect the compressionbodies
on either side of H in bridge arcs and vertical arcs. Filling the vertices of T back
in, the surface H is a multiple vp-bridge surface for .M;T /. Performing generalized
destabilizations, unperturbations, consolidations and undoing removable edges shows
that H.M;T /¤¿ and that there is an element with net Euler characteristic at most
2g.M /� 2. (In fact, net�.H/D 2g.M /� 2.) Let H 2H.M;T /. By Theorem 2.13,
there exists K 2H.M;T / such that H! K and K is locally thin. By Corollary 3.3,
net�.K/ � net�.H/. By Theorem 2.14, no component of H is a 2–sphere disjoint
from T . Thus, no component of .M;T / nH is .B3;¿/. By Corollary 4.5, we have

netext.H/� 1
2
.ext.@M /��.T /C n=2/� 0:

Hence,

netextx.M;T /� 1
2
.ext.@M /��.T /C n=2/� 0 for all x � 2g.M /� 2:

If every sphere in M separates and if either x � 2 or every closed surface in M

separates then the width hypothesis holds for H . Thus, it holds also for K . The result
then follows as before.
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4.2 Detecting the unknot

In this subsection we show that net extent and width detect the unknot. For our purposes,
a Hopf link in a lens space or S3 is the union of the cores of the solid tori on either
side of a genus-1 Heegaard surface.

Theorem 4.9 (detecting the unknot) Suppose .M;T / is an irreducible (3–manifold,
graph ) pair satisfying the running assumption such that M is connected, every sphere
in M separates, and T ¤¿. Also, assume that .M;T / does not have a (lens space,
core loop), (lens space, Hopf link ), (S3 , Hopf link ) or (S1 �D2; core loop) connect
summand.

If netextx.M;T /D 0 for some x � 2g.M /� 2, then .M;T /D .S3; unknot). Fur-
thermore, if x � 2 or if every closed surface in M separates, then the same result holds
if wx.M;T /D 0.

Proof We will show that the theorem holds for all x with 2g.M / � 2 � x <1.
By definition, it will then also hold when x D 1. By Corollary 4.8, if x � 2 or
if M contains no nonseparating closed surface, then wx.M;T / � netextx.M;T /.
Consequently, we may assume that netextx.M;T /D 0 for some x � 2g.M /� 2.

Let H 2 H.M;T / be such that net�.H/ � x and netext.H/ D netextx.M;T /. By
Theorem 2.13 and Corollary 3.3, we may also assume that H is locally thin. In
particular, by Theorem 2.14, no component of H is a sphere disjoint from T and no
component of .M;T /nH is a trivial product compressionbody adjacent to a component
of H� . Furthermore, by Remark 4.6, T is a link and @M is the (possibly empty)
union of tori.

By Remark 4.6, for all components .C;TC / of .M;T / nH we have ı.C;TC /D 0.
By Corollary 4.4, if .C;TC / is a component of .M;T / nH , then .C;TC / is one of
the following:

(i) .B3; arc/,

(ii) (solid torus, ¿),

(iii) (solid torus, core loop),

(iv) a vp-compressionbody such that every component of TC is a vertical arc or ghost
arc and there is no (semi)compressing disc for @CC in the complement of T .

We proceed by first treating the special case of T disjoint from H .

Special case T is disjoint from H .
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Proof of the special case Then H is a multiple vp-bridge surface for the exterior
of T . Amalgamate H to a Heegaard surface H for the exterior of T . It is easily
verified that

��.H /D net�.H/D 2 netext.H/D 0:

Thus, H is a torus is a torus disjoint from T . Since every sphere in M separates,
M ¤ S1 �S2 . Thus, .M;T / is one of the following:

� .S3; unknot/,
� .S3;Hopf link/,
� .solid torus; core loop/,
� .lens space; core loop/,
� .lens space;Hopf link/.

Claim 1 @M D¿.

Proof of Claim 1 Suppose that @M ¤ ¿ and let .C;TC / @ .M;T / nH be a vp-
compressionbody adjacent to a component of @M . Since T \ @M D¿ and there is
no compressing disc for @CC in .C;TC /, the vp-compressionbody .C;TC / must be
a product compressionbody with TC D¿.

Let .D;TD/ be the vp-compressionbody, distinct from .C;TC /, with @CDD @CC . If
@�DD¿, then .D;TD/ is either .S1�D2;¿/ or .S1�D2; core loop/. In the former
case, T D ¿, a contradiction. In the latter case, .M;T / is (solid torus, core loop),
contradicting our assumption that .M;T / has no (solid torus, core loop) summands.
Thus, @�D ¤¿.

Suppose that @�D contains a torus. By Corollary 4.7, @�D is equal to that torus
and TD D ¿. Since T ¤ ¿, we have that @�D � H� . Hence, .D;TD/ is a trivial
product compressionbody adjacent to H� . This contradicts the local thinness of H .
Consequently, @�D is the nonempty union of spheres.

Let � be the ghost arc graph. Since every component of @�D intersects T at least
twice and since @CD\T D¿, the ghost arc graph is a cycle. This implies that .M;T /

has a (solid torus, core loop) summand, a contradiction. We conclude that @M D¿.

Claim 2 No vp-compressionbody .C;TC / @ .M;T / nH is a (solid torus, ¿) or
(solid torus, core loop).

Proof of Claim 2 This is similar to the proof of Claim 1. Suppose some .C;TC /

is (solid torus, ¿) or (solid torus, core loop). Let .D;TD/ ¤ .C;TC / be the other
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vp-compressionbody adjacent to @CC . If .D;TD/ is (solid torus, ¿) or (solid torus,
core loop) then HD @CD D @CC and we are in the special case. Thus, @�D ¤ ¿.
As in that case, @�D is the nonempty union of spheres, TD ¤¿, and .D;TD/ is a
vp-compressionbody of type (iv).

There is a cut-disc E for @CD in .D;TD/. Since .C;TC / is either a (solid torus, ¿) or
a (solid torus, core loop) there is also a compressing disc or cut disc E0 for @CDD@CC

in .C;TC /. Isotope E and E0 to minimize the number of intersections between their
boundaries. If their boundaries are disjoint, then M contains a nonseparating sphere, a
contradiction. If their boundaries intersect exactly once, then E0 must be a cut disc, as
otherwise H would be meridionally stabilized.

Let P be the sphere which results from compressing @CC D @CD using the cut disc E .
Observe that jP \T j D 2 and P bounds a submanifold W of M containing the torus
@CC D @CD , which is a genus-1 Heegaard surface for W .

If j@E \ @E0j D 1, then W is a 3–ball. Otherwise, W is a punctured lens space. The
Heegaard surface @CC D @CD in W is disjoint from T . Indeed, after capping off
P � @W with a .B3; arc/, we obtain either .S3;Hopf link/ or (lens space, Hopf link)
or (lens space, core loop). This contradicts our initial assumption on .M;T /. Conse-
quently, no component of .M;T /nH is (solid torus, ¿) or (solid torus, core loop).

We can now conclude the proof of Theorem 4.9.

By Claims 1 and 2, each component of .M;T / nH is either a trivial ball compres-
sionbody or a vp-compressionbody of type (iv). Recall that all spheres in M separate.
If H� contains a sphere, choose such a sphere P @H� so that P bounds a submanifold
W �M such that there are no spherical components of H� in the interior of W .
Since M is closed, @W D P . If H� does not contain any spheres, let W DM .

Consider a vp-compressionbody .C;TC /@ .W;T \W /nH . We claim that .C;TC / is
not a trivial ball compressionbody. If it is, let .D;TD/ be the other vp-compressionbody
such that @CD D @CC . Observe that D �W , since C is a 3–ball contained in W

and disjoint from P .

If .D;TD/ is a trivial ball compressionbody, then .M;T / D .C;TC /[ .D;TD/ D

.S3; unknot/, so suppose it is of type (iv). In particular, @�D ¤ ¿. Since @CD is
a sphere, each component of @�D is a sphere. Consider the ghost arc graph � . By
Corollary 4.4, � is a tree with the number of edges equal to j@�Dj � 1. If there
are no edges (ie j@�Dj D 1), then .D;TD/ would be a product, a contradiction.
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Hence, j@�Dj � 2. But this contradicts our choice of P to be innermost. Thus,
.C;TC / is a vp-compressionbody of type (iv). In particular, @�C ¤¿.

Without loss of generality, we may assume that the transverse orientation on P points
into W . Consider a thick surface H @ HC \W . Let .C1;T1/ @ .M;T / nH be
the vp-compressionbody such that the transverse orientation on H points into C1 .
This implies that P 6� @�C1 . Since @�C1 ¤¿ and @�C1 6� @M , there is another vp-
compressionbody .C2;T2/, distinct from .C1;T1/, such that @�C1\@�C2¤¿. Thus,
there is a flow line from H D @CC1 to the thick surface @CC2 . Repeatedly applying
this same argument, we can construct a flow line beginning at P and intersecting HC

n times, for any n 2N . Since HC has only finitely many components, we conclude
that there is a closed flow line, contradicting the fact that H is oriented.

Figure 4: An oriented multiple vp-bridge surface H for .S1�S2;T / , where T

is the closure of a 2–stranded braid. All the vertical lines are spheres, with each
of the blue lines representing a nonseparating sphere. The black lines are thick
surfaces and the blue lines are thin surfaces. Each vp-compressionbody is either
a trivial ball compressionbody or is a twice-punctured 3–ball containing a single
vertical arc and a single ghost arc. The orientation on H isn’t shown.

Remark 4.10 The minimal bridge sphere for the unknot is a vp-bridge surface for
the unknot, showing that netext�2.S

3; unknot/ D 0. Similarly, if M has a genus-1
Heegaard splitting (ie is S3 , S1 � S2 , a lens space, T 2 � I or a solid torus) and
if L is a one- or two-component link which is the union of cores for the solid tori
in the Heegaard splitting, then netext0.M;L/ D 0. However, as we will see, net
extent and width are additive under connected sum and so taking the connected sum
with (lens space, core loop) or (solid torus, core loop) will not change net extent
or width. Thus, if .M;T / is any irreducible 3–manifold pair satisfying the running
assumption and with the property that every sphere in M separates and T ¤¿, and
if netextx.M;T /D 0 for x � 0, then .M;T / is either .S3; unknot/, (S3 , Hopf link),
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(lens space, Hopf link), (lens space, core loop), (solid torus, core loop) or a connected
sum with each summand being one of those pairs.

The hypothesis that all spheres separate cannot be dropped. To see this, let M DS1�S2

and consider the closure of a 2–stranded braid T in M . We can construct an oriented
multiple vp-bridge surface H for .M;T / as in Figure 4. This oriented multiple
vp-bridge surface has netext.H/D 0.

5 Additivity of net extent and width

In this section we prove that net extent and width satisfy an additivity property with
respect to connected sum and trivalent vertex sum. In fact, apart from some hypotheses
on M and T , the only properties of net extent and width that we use are that they are
order preserving with respect to extended thinning sequences and that they depend on
Euler characteristic and the number of intersections with T . For convenience, therefore,
and with a view to the fact that there are other invariants which have similar properties
we prove our additivity theorem in a rather abstract setting. Theorem 5.4 shows that
superadditivity holds; Theorem 5.5 shows that subadditivity holds; and Theorem 5.7
puts those together to show the additivity result for net extent and width.

We begin by relating the thin levels of a locally thin multiple vp-bridge surfaces to a
prime decomposition.

Proposition 5.1 Assume that .M;T / is nontrivial and that T is irreducible. Suppose
that H 2H.M;T / is locally thin. Then there exists a subset P �H� such that P is
the union of decomposing spheres giving a prime decomposition of .M;T /.

Proof If .M;T / is prime, then it is its own prime decomposition and setting P D¿,
we are done. Assume that .M;T / contains at least one essential twice- or thrice-
punctured sphere.

Let Q be the union of all the twice- and thrice-punctured spheres in H� . Let .Mi ;Ti/

be a component of .M;T / n Q. Let . �Mi ; �Ti/ be the result of capping off twice-
punctured spheres (corresponding to copies of components of Q) in @Mi with a
trivial .B3; arc/ and capping off thrice-punctured spheres (corresponding to copies of
components of Q) of F in @Mi with a 3–ball containing a boundary parallel tree with
a single internal vertex.

We claim that . �Mi ; �Ti/ contains no essential twice- or thrice-punctured sphere. Suppose,
to the contrary, that such a sphere F exists. Since each component of Q is essential
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in .M;T /, the surface F is also essential in .Mi ;Ti/. It is easy to see that the
intersection Hi of H with the interior of Mi is still a locally thin, linear, multiple
vp-bridge surface for .Mi ;Ti/. Thus, by Theorem 2.14, there exists an essential twice-
or thrice-punctured sphere P @H�i . However, H�i �H� does not contain any essential
twice- or thrice-punctured spheres by the definition of Q and Hi .

Suppose that .Mi ;Ti/ has the property that . �Mi ; �Ti/ is .S3; unknot/. Since each
component of Q is essential in .M;T /, we know that @Mi has multiple compo-
nents, each a sphere intersecting T twice. Let P be one such component, and let
.Mj ;Tj / be the component of .M;T / nQ adjacent to P and not equal to .Mi ;Ti/.
Let .M 0;T 0/ D .Mi ;Ti/ [ .Mj ;Tj / and let . �M 0; �T 0/ be the result of capping off
components of @M 0 corresponding to components of Q nP . Then . �M 0; �T 0/ is the
connected sum of . �Mj ; �Tj / with .S3; unknot/. It is thus homeomorphic to . �Mj ; �Tj /

and so does not contain an essential twice- or thrice-punctured sphere. Continuing
on in this vein, we may remove some number of components from Q to obtain P 0

such that if . �M 0; �T 0/ is obtained by capping off components of @M 0 corresponding to
components of P 0 , where .M 0;T 0/@ .M;T / nP 0 , then . �M 0; �T 0/ neither contains an
essential twice- or thrice-punctured sphere nor is .S3; unknot/.

Suppose now that .Mi ;Ti/ has the property that . �Mi ; �Ti/ is .S3; �Ti/ with �Ti a
trivial �–graph and with some component P of @Mi a thrice-punctured sphere. Let
.Mj ;Tj / @ .M;T / nP 0 be on the other side of P from .Mi ;Ti/. Let .M 0;T 0/ D

.Mi ;Ti/[ .Mj ;Tj / and let . �M 0; �T 0/ be the result of capping off components of @M 0

corresponding to components of P 0 nP . Then . �M 0; �T 0/ is the trivalent vertex sum
of . �Mj ; �Tj / with .S3;G/, where G is a trivial �–graph. It is thus homeomorphic
to . �Mj ; �Tj / and so does not contain an essential twice- or thrice-punctured sphere.
Continuing on in this vein, we can remove some number of components from P 0 to
arrive at P , the union of some components of P 0 , which give a prime decomposition
of .M;T /.

Let M be a nonempty set whose elements are irreducible (3–manifold, graph) pairs
.M;T / satisfying the running assumption with M connected such that every sphere
in M separates. Suppose M has the property that if .M;T / 2M and M is equal
to .M1;T1/ # .M2;T2/ or .M1;T1/ #3 .M2;T2/ then both .M1;T1/ and .M2;T2/

are also elements of M. Let S denote the set of closed surfaces S � .M;T / for
some .M;T / 2M and let S0 � S be the subset of connected surfaces. Let X D

.Z � Z/ \ .Œ�2;1/ � Œ0;1// and let r W S0 ! R be any function which factors
through the function S0!X defined by S 7! .��.S/; jT \S j/. (That is, r depends
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only on ��.S/ and jS \ T j.) Extend r to a function r W S ! R linearly, that is,
if S1;S2 2 S0 are disjoint then r.S1[S2/D r.S1/C r.S2/.

Example 5.2 If S � S and k 2N , then the function r.S/D
P

i extk.Si/, where the
sum is over all the components Si of S is such a function.

For .M;T / 2M, recall that H.M;T / is the set of reduced, linear, multiple vp-bridge
surfaces for .M;T /. Let HD

S
.M;T /2M H.M;T /. Define net r W H!R by

net r.H/D r.HC/� r.H�/:

If x � 2g.M /� 2 and .M;T / 2M, we say that x is realizable for .M;T /. If x is
realizable for .M;T /, let net rx.M;T /DminH net r.H/, where the minimum is over
all H 2H.M;T / such that net�.H/ � x . We say that r is order-preserving on H

if whenever H;K 2 H and H! K , then net r.H/ � net r.K/. Let r2 be the value
of r on a sphere twice punctured by T and r3 be the value of r on a sphere thrice
punctured by T .

Example 5.3 Choose M to be the set of all irreducible .M;T / satisfying the running
assumption with M connected and every sphere separating. Let r W S0!R be given by
r.S/D ext.S/. Then net r D netext and net rx.M;T /D netext.M;T /. In this case,
r2 D 0 and r3 D

1
2

. Likewise, if we also insist that either g.M /� 2 or M contains
no closed nonseparating surface and define r W S0!R to be r.S/D 2 ext2.S/, then
net r D w and net rx.M;T /D wx.M;T /. In this case also, r2 D 0 and r3 D

1
2

.

Return to the general situation, where M is any nonempty set whose elements are
irreducible (3–manifold, graph) pairs .M;T / satisfying the running assumption and
where M is connected, and every sphere in M separates. Assume also that M is
closed under taking factors of connected sum and trivalent vertex sum.

Theorem 5.4 (superadditivity) Suppose that .M;T / 2M is nontrivial and that x

is realizable for .M;T / and that r is order-preserving on H . Then there is a prime
factorization of .M;T / into . �M1; �T1/; : : : ; . �Mn; �Tn/ such that there exist integers
x1; : : : ;xn summing to at most x� 2.n� 1/, with xi realizable for . �Mi ; �Ti/ and

net rx.M;T /� �p2r2�p3r3C

nX
iD1

net rxi
. �Mi ; �Ti/;

where p2 is the number of connected sums and p3 is the number of trivalent vertex
sums in the decomposition.
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Proof Let .M;T / 2 M. Since x is realizable, there exists H 2 H.M;T / such
that net�.H/ � x and net rx.M;T /D net r.H/. Let K 2H.M;T / be locally thin,
with H ! K . By Theorem 2.13, such a K exists. Since r is order-preserving,
net r.K/� net r.H/. By Corollary 3.3,

net�.K/� net�.H/� x:

Thus, by our choice of H , net r.K/D net r.H/.

By Proposition 5.1, there is a subset P � K� which is the union of components
such that P are the summing spheres giving a prime decomposition of .M;T /. Split
.M;T / open along P to obtain components .M1;T1/; : : : ; .Mn;Tn/ @ .M;T / nP .
Let . �Mi ; �Ti/ be the result of capping off the components of P in @Mi with trivial
ball compressionbodies, so that . �M1; �T1/; : : : ; . �Mn; �Tn/ give a prime decomposition
of .M;T /. Let p2 be the number of twice-punctured spheres in P . Let p3 be
the number of thrice-punctured spheres in P . Observe that p2 C p3 D n� 1. Let
xi D net�.Ki/. Note that xi is realizable for . �Mi ; �Ti/. Furthermore,X

xi D net�.K/� 2.n� 1/� x� 2.n� 1/;

since spheres have Euler characteristic equal to 2. Consequently, we have xi summing
to at most x � 2.n � 1/ and a prime decomposition . �Mi ; �Ti/ of .M;T / such that
net rxi

. �Mi ; �Ti/� net r.Ki/. Notice that

net rx.M;T /� net r.K/D
X

H @HC
r.H /�

X
F@H�nP

r.S/�p2r2�p3r3:

Splitting up the sums according to which .Mi ;Ti/ contains the surface shows that

net rx.M;T /�

nX
iD1

net r.Ki/�p2r2�p3r3 �

nX
iD1

net rxi
. �Mi ; �Ti/�p2r2�p3r3:

Theorem 5.5 (subadditivity) Suppose that .M;T / 2M is nontrivial and that net r

does not increase under consolidation, generalized destabilization, unperturbing or
undoing a removable arc. Suppose that .M;T / is the connected sum and trivalent
vertex sum of nontrivial pairs . �M1; �T1/; : : : ; . �Mn; �Tn/, that x is realizable for .M;T /

and that there are integers x1; : : : ;xn such that each xi is realizable for . �Mi ; �Ti/ and
x1C � � �Cxn � x� 2.n� 1/. Then

net rx.M;T /�

nX
iD1

net rxi
. �Mi ; �Ti/�p2r2�p3r3:
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Proof Recall that, by the definition of M, each . �Mi ; �Ti/2M. For each i 2f1; : : : ; ng,
let pi � Ti be the union of points where . �Mi ; �Ti/ is summed to one of the other
(3–manifold, graph) pairs. For each i , we have jpi j � 1. The graph in M dual to
the summing spheres is a finite tree. All finite trees have one more vertex than edge.
Hence, we have

Pn
iD1 jpi j D 2.n� 1/. For each i , let Hi 2H. �Mi ; �Ti/ be such that

net�.Hi/� xi and net r.Hi/D net rxi
.Hi/.

By general position, we may assume that Hi\piD¿. Notice that we can create another
oriented multiple vp-bridge surface H0i for . �Mi ; �Ti/ by reversing all the transverse
orientations. We call this turning Hi upside down. Turning Hi upside down does not
change net r.Hi/ or net�.Hi/.

Let .Mi ;Ti/ be the result of removing a small open regular neighborhood of pi

from . �Mi ; �Ti/. Let Pi be the union of the components of @Mi corresponding to the
points pi . Each component of Pi is a twice- or thrice-punctured sphere. We may view
each .Mi ;Ti/ as embedded in .M;T / with Pi �M the union of separating essential
twice- and thrice-punctured spheres.

Let HD
S

i Hi [Pi . Clearly H is a vp-bridge surface. We will show that, perhaps
after turning some of the Hi upside down, we can define a transverse orientation so
that H is an oriented multiple vp-bridge surface for .M;T /.

By the definitions of connected sum and trivalent vertex sum, the graph G in M dual
to the summing spheres is a tree. Each vertex of G is some .Mi ;Ti/ and we associate
the midpoint of each edge of G with some component P of some Pi . Let .M1;T1/

be the root of G and put a partial order � on the vertices of G so that .M1;T1/ is
the least element of the partial order and if a vertex c separates vertices a and b then
a< c < b . Orient the edges of G so that if vertices v and w are the endpoints of an
edge pointing from v to w then v < w .

Let Gi be the graph in .Mi ;Ti/ dual to Hi . The transverse orientation on Hi induces
an orientation on the edges of Gi . Suppose that P � Pi is a component. For each
i 2 f1; : : : ; ng, replace the vertex .Mi ;Ti/ in G with the graph Gi ; we obtain the
graph G00 dual to H . See Figure 5. Since G was a tree, after turning Hi upside
down, if necessary, G00 becomes an oriented graph, inducing transverse orientations on
the components of Pi for each i and H becomes a multiple vp-bridge surface with
coherent transverse orientations. Since G is a tree and each Hi is an oriented multiple
vp-bridge surface, there is no closed flow line in M . Thus, H is an oriented multiple
vp-bridge surface for .M;T /.
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G1

G

Figure 5: The first step of turning H into an oriented vp-bridge surface. We
insert the graph G1 into the tree G at the root, ensuring that the orientations
of the edges are consistent, yielding the result on the far right. The green
circles, lines and dots indicate the points p1 and the spheres P1 .

We now do the necessary calculations to obtain our bound.

Observe that xDnet�.H/D
Pn

iD1 net�.Hi/�2.n�1/. Furthermore, since r depends
only on negative Euler characteristic and the number of intersections with T ,

net r.H/D
nX

iD1

net r.Hi/�p2r2�p3r3

D

nX
iD1

net r. �Mi ; �Ti/�p2r2�p3r3:

By assumption, consolidation, generalized destabilization, unperturbing and undoing
a removable arc do not increase net r . Thus, we may perform these operations on H
as necessary to ensure it is reduced. Then net rx.M;T / � net r.H/, and the result
follows.

Corollary 5.6 (additivity) Assume that r is order-preserving and that x is realizable
for some nontrivial .M;T / 2M. Then there is a prime factorization of .M;T / into
. �M1; �T1/; : : : ; . �Mn; �Tn/ such that there exist integers x1; : : : ;xn , summing to at most
x� 2.n� 1/, with xi realizable for . �Mi ; �Ti/ and

net rx.M;T /D�p2r2�p3r3C

nX
iD1

net rxi
. �Mi ; �Ti/;

where p2 is the number of twice-punctured spheres and p3 is the number of thrice-
punctured spheres in the decomposition.
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Proof The corollary follows immediately from the superadditivity and subadditivity
theorems (Theorems 5.4 and 5.5).

It is now easy to verify that net extent and width are additive. Let M be the set of
irreducible (3–manifold, graph) pairs .M;T / satisfying the running assumption such
that T ¤¿ and every S2 �M separates. Let M2 �M be the subset with elements
.M;T / such that g.M /� 2. Let Ms �M be the subset with elements .M;T / where
every closed surface in M separates.

Theorem 5.7 (net extent and width are additive) Let .M;T / 2M be nontrivial, let
g be the Heegaard genus of M , and let x be any integer with x � 2g� 2. Then there
is a prime factorization of .M;T / into . �M1; �T1/; : : : ; . �Mn; �Tn/ such that there exist
integers x1; : : : ;xn , summing to at most x� 2.n� 1/, with xi realizable for . �Mi ; �Ti/

and

netextx.M;T /D�p3=2C

nX
iD1

netextxi
. �Mi ; �Ti/;

where p3 is the number of thrice-punctured spheres in the decomposition. Furthermore,
if .M;T / 2Ms or if .M;T / 2M2 and x � 2, then we also have

wx.M;T /D�p3=2C

nX
iD1

wxi
. �Mi ; �Ti/:

Proof As in Examples 5.2 and 5.3, r D ext and net r D netext satisfy the requirement
that for S 2 S0 , the value r.S/ depends only on the Euler characteristic and number
of punctures of S . By Corollary 3.3, extent is order-preserving. By Corollary 5.6, we
have the result for net extent. If .M;T / 2Ms or if .M;T / 2M0 and x � 2, then a
similar argument shows that wx is additive.

6 Comparison with Gabai thin position

The width for knots in S3 defined by Gabai [7] and our definition of w�2 applied
to pairs .S3;K/ are very similar. Both definitions have thick surfaces HC and thin
surfaces H� that are spheres and have a height function. Both widths can be calculated
via similar formulae. Gabai’s width is given [29, Lemma 6.2] by the formula

1

2

� X
H @HC

jH \Kj2�
X

F@H�
jF \Kj2

�
;
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and our width is given by

2

� X
H @HC

.jH\Kj�2/2

4
�

X
F@H�

.jF\Kj�2/2

4

�

D
1

2

� X
H @HC

.jH \Kj � 2/2�
X

F@H�
.jF \Kj � 2/2

�
:

Finally, both definitions of width are related to a definition of thin position. Indeed, we
can say that H is in Gabai thin position if H minimizes Gabai’s width for a knot K .
Similarly, with our definitions there is always a H which is both locally thin and
minimizes w�2 .

And yet Gabai thin position is not necessarily additive under connected sum [2] but our
width is (Theorem 5.7). The essential difference between the two definitions of width is
that in Gabai thin position all the components of HDHC[H� are concentric, while
in our definition the components of H need not be concentric.

K K # trefoil

Figure 6: The rectangles represent particular braids, which are irrelevant for
our purposes. Thick and thin surfaces are represented with thick and thin
lines respectively.

We now briefly examine Blair and Tomova’s counterexample to width additivity for
Gabai thin position in light of our definition. Figure 6 shows a knot K (in fact a
family of knots) and the connected sum K # trefoil. Note that the projections of K

and K # trefoil depicted in the figure have the same Gabai width while the trefoil has a
Gabai width of 8. The crux of showing that this is indeed a counterexample to additivity
of Gabai width is to show that the embedding of K depicted in Figure 6 is actually in
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Gabai thin position. The thin and thick surfaces in the figure are a vp-multiple bridge
surface H . As w�2 is additive, it must be the case that H is not a minimum width
multiple vp bridge surface for K . Note that

w.H/D 2.42
C 42

C 42
� 12
� 12/D 92:

Another projection K0 of the knot K is depicted on both the left and right of Figure 7.
That K and K0 are isotopic was noted by Scharlemann and Thompson in [31]. To
show that the multiple bridge surface H on the left of Figure 7 is not locally thin,
we point out (again on the left of Figure 7) a weak reducing pair of discs for each
thick surface. Applying two elementary thinning sequences using the indicated discs
produces (after an isotopy) the multiple vp bridge surface H0 depicted on the right of
Figure 7. Using our formula for width

w.H0/D 2.22
C 42

C 42
C 22

� 12
� 12
� 12/D 74:

This demonstrates that H is indeed not a minimum width multiple vp bridge surface
for K , although it does minimize Gabai width (for particular choices of braids).

H H0

Figure 7: Thick and thin surfaces are represented with thick and thin lines respectively.

7 On some classical invariants

As an easy example of how net extent can be used to study classical invariants, we
reprove classical theorems of Schubert [33] and Norwood [25]. The Schubert theorem
is also a consequence of the fact that the double branched cover over a 2–bridge knot is
a lens space. We include a proof, however, as an example of how to use our techniques.
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Theorem 7.1 (Schubert) If K � S3 is a knot which is 2–bridge with respect to a
sphere, then K is prime.

Proof Suppose that K is a composite 2–bridge knot. Since K is 2–bridge,

ext�2.S
3;K/� 1:

Since extent is always integral for knots in S3 , by Theorem 4.9, ext�2.S
3;K/D 1.

Since K is composite, by Theorem 5.7, it has a prime factorization K DK1 # � � � # Kn

such that

1D netext�2.S
3;K/D netext�2.S

3;K1/C � � �C netext�2.S
3;Kn/:

Since each Ki is nontrivial, by Theorem 4.9 it follows that

1� n:

Thus, nD 1 and so K is prime.

Recall that, after assigning a transverse orientation, a Heegaard surface for the exterior
of a knot K in a 3–manifold M is a oriented multiple vp-bridge surface for .M;K/.
Thus, netext1.M;K/� t.K/.

Theorem 7.2 (Norwood) If K � S3 has t.K/D 1, then K is prime.

Proof Let K be a knot with t.K/D 1. Since the unknot has tunnel number 0, the
knot K is not the unknot. By Theorem 5.7, K has a prime factorization

K DK1 # � � � # Kn

such that
1� netextx.K/D netextx.K1/C � � �C netextx.Kn/:

Since each Ki is nontrivial, by Theorem 4.9 it follows that

1� n:

Thus, nD 1 and so K is prime.

Scharlemann and Schultens [28] generalized Norwood’s theorem to show that if a knot
K � S3 has at least n prime factors, then K has tunnel number at least n. (Another
proof has been given by Weidmann [38].) Morimoto [21] showed that the tunnel
number of meridionally small knots does not go down under connected sum. Here is a
common generalization of both the Scharlemann–Schultens and Morimoto results.
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Theorem 7.3 For each i 2 f1; : : : ; ng let Ki be a knot in a closed, orientable 3–
manifold Mi such that every sphere in Mi separates and each .Mi ;Ki/ is prime and
irreducible. Assume that there is an integer j � n such that Ki is m-small if and only
if i � j . Then, letting .M;K/D .M1;K1/ # � � � # .Mn;Kn/, we have

.n� j /C t.K1/C � � �C t.Kj /� t.K/� .n� 1/C
X

t.Ki/:

Proof Recall that Heegaard genus is additive under connected sum of 3–manifolds.
Consequently, we may assume that the exterior of Ki in Mi (for each i) is irre-
ducible. Since every sphere in every Mi separates, each pair .Mi ;Ki/ is irreducible.
Furthermore, by [18, Theorem 4.1], the prime factorization

.M1;K1/ # � � � # .Mn;Kn/

is unique up to reordering.

Let t be the tunnel number of K and let H be a minimal genus Heegaard surface for
the exterior of K . Let x D1. The surface H is also a vp-bridge surface for .S3;K/

and so

(4) netextx.M;K/� ext.H /D t.K/:

By Theorem 5.7 and our assumption on the uniqueness of prime factorization, there
exist .M1;K1/; : : : ; .Mn;Kn/ such that there are integers x1; : : : ;xn such that all of
the following hold:

(i) xi is realizable for .Mi ;Ki/ for all i .

(ii) x1C � � �Cxn � x� 2.n� 1/.

(iii) netext�2.M;K/D
nP

iD1

netextxi
.Mi ;Ki/:

Suppose .Mi ;Ki/ is meridionally small and let Hi be a multiple vp-bridge surface
for .Mi ;Ki/ such that net�.Hi/ � xi and netext.Hi/D netextxi

.Mi ;Ki/. If there
were a component of H� which intersected Ki , by Theorem 2.14, we would contradict
local thinness. Thus, K \H�i D ¿ and there is at most one component H � HCi
which intersects H . By performing jH \Ki j=2 meridional stabilizations on H , we
may create a surface H 0 such that H0i D .Hi nH /[H 0 is a multiple vp-bridge surface
for .Mi ;Ki/ disjoint from Ki . Observe that netext.H0i/D netext.Hi/. Since H0i is
disjoint from Ki we may amalgamate [34] H0i to a Heegaard surface Ji for the exterior
of Ki . It is easy to verify that

(5) t.Ki/� ��.Ji/=2D ext.Ji/D netext.H0i/D netextxi
.Mi ;Ki/:
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Observe that if .Mi ;Ki/ is (lens space, core loop), then t.Ki/D 0D netextxi
.Mi ;Ki/.

By Theorem 4.9, we have netextxi
.Mi ;Ki/>0 whenever .Mi ;Ki/ is not .S3; unknot/

or (lens space, core loop). Combining (4), (iii) and inequality (5) we obtain

t.K/� t.K1/C � � �C t.Kj /Cm:

Finally, a standard construction shows that t.K/ � t.K1/C � � � C t.Kn/C .n� 1/,
completing the proof.

For our final application, we show that higher-genus bridge number, together with the
genus, is superadditive under connected sum of knots that are small and m-small. A
more detailed analysis would likely produce an even stronger result.

Theorem 7.4 Suppose that . �Mi ; �Ki/ are small and m-small for i 2 f1; : : : ; ng. Let
.M;K/D #n

iD1.
�Mi ; �Ki/ and let g� g.M /. Then there exists gi such that

P
gi � g ,

g. �Mi/� gi and X
iD1

.gi C bgi
.K/� 1/� gC bg.K/� 1:

In the following we again implicitly use the uniqueness of prime factorization.

Proof Let S be a genus-g bridge surface for .M;K/ realizing bg.K/. We may
perform a sequence of generalized destabilizations, undoing of removable edges and
unperturbations to arrive at a reduced vp-bridge surface H for .M;K/ with g.H /�g .
Let H 2 H.M;K/ be a locally thin multiple vp-bridge surface for .M;K/ such
that H ! H . Recall that net�.H/ � net�.H /. Let Q be the union of twice- and
thrice-punctured spheres in H� . By Proposition 5.1 some subset of Q is the union of
summing spheres giving a prime decomposition of .M;K/. Let .M 0;T 0/D .M;T /nQ
and let . �M ; �T / be the result of capping off the components of @M corresponding
to Q. Then . �M ; �T / is the union of summands . �Mi ; �Ki/ for i 2 f1; : : : ; ng and the
union of .S3; unknot/ pairs.

Suppose F @ H� nQ is contained in the interior of some .Mi ;Ki/. By Theorem 2.14,
F is essential in .M;K/. If F is not essential in . �Mi ; �Ki/ then it must be @–parallel in�Mi n�.�Ki/. However, since �Ki is a knot, this implies that F is a sphere intersecting K

twice. By the definition of Q, this implies F @ Q, a contradiction since F is in the
interior of Mi . Thus, F is essential in . �Mi ; �Ki/. Since . �Mi ; �Ki/ is small and m-small,
the surface F cannot exist, and so H� is disjoint from the interior of each .Mi ;Ki/.
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We conclude, therefore, that each . �Mi ; �Ki/ contains exactly one component Hi of HC ,
and Hi is a vp-bridge surface for �Mi . Let gi Dg.Hi/. Observe that g1C� � �Cgn�g .
Since netext1 is nonnegative for each component of . �M ; �K/, we have

nX
iD1

gi CjHi \Ki j=2� 1D

nX
iD1

ext.Hi/� netext.H/� ext.S/D gC bg.K/� 1:

Thus, as desired, X
iD1

.gi C bgi
.K/� 1/� gC bg.K/� 1:

Finally, we give a new proof of other theorems of Morimoto concerning composite
knots which are either .0; 3/–knots or .1; 2/–knots. Recall that a knot K in a closed
3–manifold M has a .g; b/–decomposition if there is a genus-g bridge surface for K in-
tersecting K in 2b–points. The knot K is a .g; b/–knot if it has a .g; b/–decomposition
and has neither a .g � 1; bC 1/–decomposition nor a .g; b � 1/–decomposition. In
particular, a .g; 0/–knot K is a core loop for a handlebody on one side of a genus-g
Heegaard splitting of M . If g D 0, we simply say that a .g; b/–knot K is b–bridge.
We start with a result which may be useful in other contexts.

Theorem 7.5 Suppose that K is a knot in a closed 3–manifold M such that .M;K/

is irreducible and every closed surface in M separates. Also assume that .M;K/

does not have a (lens space, core loop) connect summand. If netext0.M;K/ D 1,
then M is S3 or a lens space and K has a .1; 1/–decomposition. Furthermore, if
netext�2.M;K/D 1, then K is a 2–bridge knot.

Proof Assume, first, that netext0.M;K/ D 1. (If netext�2.M;K/ D 0, this will
automatically be the case since K is nontrivial and netextx is decreasing in x .) By
Theorems 5.7 and 4.9, .M;K/ is prime. Let H 2 H.M;K/ be locally thin with
netext.H/D netext0.M;K/D 1 and net�.H/� 0. By Lemma 4.1, every component
of H is a sphere or a torus.

Recall that for any .C;TC /@ .M;T / nH we have

ı.C;TC /D ext.@CC /� ext.@�C /:

By Lemma 4.2 and Theorem 2.14, each ı.C;TC / � 0. A component of M nH� is
called a chunk. Each chunk W of M contains exactly two vp-compressionbodies
of .M;T / nH . Let ı.W /D ı.C;TC /C ı.D;TD/, where .C;TC / and .D;TD/ are
the vp-compressionbodies contained in W .
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By (1), we have

2D 2 netext.H/D
X

.C;TC /

ı.C;TC /D
X
W

ı.W /:

The first sum is over all vp-compressionbodies .C;TC /@ .M;T /nH and the last sum
is over all chunks W of M . Thus, for every chunk W , we have ı.W /� 2.

Claim Either M D S3 and K is a 2–bridge knot or there exists at most one vp-
compressionbody .C;TC /@ .M;T / nH such that C is a 3–ball. In that case, if W is
the chunk containing C , then ı.W /D 2 and the compressionbody adjacent to C is
not a product compressionbody (even when we ignore K ).

Proof of the claim Suppose that .C;TC / @ .M;T / nH is a vp-compressionbody
with C a 3–ball. Recall that by Theorem 2.14, TC ¤¿. Let .D;TD/¤ .C;TC / be
the vp-compressionbody on the other side of @CC . Let W DD[C . We will show
that ı.W /D 2. This implies that there is at most one such W . In which case, either
D is a 3–ball and K is 2–bridge, or C is the only 3–ball.

Let bC D jTC j and observe that each component of TC is a bridge arc. Let bD ,
gD and vD be the number of bridge arcs, ghost arcs and vertical arcs respectively
in TD . Since every sphere in M separates and since K is a knot, vD must be even.
Since @CD is a sphere, each component of @�D is also a sphere. Let � be the ghost
arc graph for .D;TD/. Since @CD is a sphere, � is the union of a forest with isolated
vertices. Each component of @�D must intersect K at least four times since .M;K/

is prime and every sphere separates M . Hence, each isolated vertex of � intersects at
least four vertical arcs and each leaf of � intersects at least three vertical arcs. Let i be
the number of isolated vertices and ` be the number of leaves of � . We have, therefore,
vD � 4i C 3`. Observe, also that j@�Dj �gD D �.�/D j�j.

Since the TD \ @CD D TC \ @CC , we have bC D bD C vD=2. Thus,

2� ı.W /D .�1C bC /C .�1C bD �gD Cp/� �2Cj�jC 2bD C .4i C 3`/=2:

If j�j D 0, then .D;TD/ must be a 3–ball, and bD � 2. Since K is not the unknot,
we conclude that M D S3 and K is a 2–bridge knot. If j�j � 1, then we have

2� ı.W /� �1C 2bD C .4i C 3`/=2:

Recall that either i � 1 or `� 2. Thus, bD D 0. If ` < 2, then � is a single isolated
vertex and .D;TD/ is a trivial product compressionbody, a contradiction. Thus, `� 2
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and so 2 � ı.W / � 2, implying ı.W /D 2, as desired. This concludes the proof of
the claim.

Henceforth, assume that .M;K/ is not .S3; 2–bridge knot/. Let z 2 f0; 1g be the
number of 3–balls in M nH . If .A;TA/ @ .M;T / nH has the property that A is a
product compressionbody or a solid torus, then ı.A;TA/ is equal to the number of
bridge arcs in TA (since there cannot be ghost arcs). If A is a trivial product, then
ı.A;TA/ � 1 since .A;TA/ cannot be a trivial product compressionbody (H being
locally thin). Thus, if z D 1 there are no product compressionbodies in M nH .

Recall that net�.H/D��.HC/C�.H�/� 0. Every component of H is adjacent to
precisely two compressionbodies, and so

0D 2 � 0� 2 net�.H/D
X

C @MnH

.��.@CC /C�.@�C //:

The only case in which ��.@CC /C�.@CC / < 0 is when C is a 3–ball. Consequently,

2� 2z �
X

C @MnH

.��.@CC /C�.@�C //;

where the sum is over all compressionbodies C @ M nH which are not 3–balls. Since
Euler characteristic of a closed, orientable surface is always even, there is at most one
compressionbody which is neither a product nor a solid torus nor a 3–ball. If z D 0,
then every compressionbody must be a product or solid torus.

Suppose z D 0. Thus, if W is an outermost chunk (ie a chunk with j@W j � 1), one of
the compressionbodies of W nH is a solid torus and the other is a product or a solid torus.
If both are solid tori, then M is S3 or a lens space, and since netext.H/D 1, K has a
.1; 1/–decomposition. If one is a product, it must contain at least one bridge arc as we
have previously noted. In that case, the solid torus also contains at least one bridge arc.
We see, therefore, that ı.W /� 2. Thus, ı.W /D 2. Since @W ¤¿, there are at least
two outermost chunks, W and W 0 . We have 2� ı.W /C ı.W 0/� 4, a contradiction.

Suppose, therefore, that z D 1. We will show that we again encounter a contradiction.
Let W be the outermost chunk containing the 3–ball .C;TC /. Let .D;TD/ be
the other vp-compressionbody in W . We know that ı.W / D 2. Since @W ¤ ¿,
there is another outermost chunk W 0 . Let .A;TA/ and .B;TB/ be the two vp-
compressionbodies whose union is W 0 , with @�AD¿. Since ı.W /D2, we must have
ı.A;TA/D ı.B;TB/D 0. By Corollary 4.4, .A;TA/ must be (solid torus, core loop)
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or (solid torus, ¿). The former case can’t happen since K\W ¤¿. Both B and D

have nonempty negative boundary. Thus, at most one of B or D is not a product
compressionbody, which means that at least one of them is. From the claim, we know
that D is not a product compressionbody. But B cannot be a product either, since
ı.B;TB/D 0. (If it were, then .B;TB/ would be a trivial product compressionbody,
contradicting thinness.) Thus, this case cannot occur, either.

Finally, if we know that netext�2.M;K/ D 1, then we follow the same proof, but
we may start with a locally thin H such that net�.H/D�2 and netext.H/D 1. All
components of such an H must be spheres, which significantly simplifies the proof.

For the statement of the next theorem, recall that each 2–bridge knot in S3 has a
.1; 1/–decomposition.

Theorem 7.6 Suppose that K � S3 is a composite .g; b/–knot. Then the number
of prime summands is at most g C b � 1. If the number of summands is exactly
mD gC b� 1, then at least

g

2
C .b� 1/

of the summands have .1; 1/–decompositions and at least b� 1 of those are 2–bridge
knots.

Proof Suppose that K is b–bridge with respect to a genus-g Heegaard surface H

in S3 . Let x D 2g� 2 be the Euler characteristic. By tubing along all the bridges to
one side of the bridge surface (ie meridional stabilization) we obtain a Heegaard surface
for the exterior of K having genus gCb . Thus, t.K/� gCb�1. By Theorem 7.3 (or
the earlier Scharlemann–Schultens version) K can have at most gC b� 1 summands.
Suppose it has exactly this number of summands. Let mD gC b� 1.

The bridge surface H for K is also a multiple vp-bridge surface for K satisfying
netext.H /D gC b� 1. Thus, netextx.S3;K/� gC b� 1. We apply Theorems 5.7
and 4.9 and the uniqueness of prime decomposition. These theorems produce integers
x1; : : : ;xm , each at least �2, such that

(6) x1C � � �Cxm � 2g� 2� 2.m� 1/D�2.b� 1/

and

gC b� 1� netextx.S3;K/D

mX
iD1

netextxi
.S3;Ki/�mD gC b� 1:

Since each Ki is nontrivial, netextxi
.S3;Ki/D 1 for every i .
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Since the xi correspond to Euler characteristics of closed surfaces, they are all even.
Let n� , n0 and nC be the number of i such that xi is �2, 0 or positive, respectively.
Then inequality (6) produces

�2n�C 2nC � �2.b� 1/:

Hence,

(7) nC � n�� .b� 1/:

Additionally, since there are mD gC b� 1 summands, we have

n�C n0C nC D gC b� 1:

This can be rewritten as

(8) .n�� .b� 1//C n0C nC D g:

Inequality (7) tells us that n� � .b� 1/. Combining (7) and (8) produces

g � .n�� .b� 1//C n0C .n�� .b� 1//

� 2.n�� .b� 1//C 2n0:

Thus,

(9)
g

2
� .n�� .b� 1//C n0:

Suppose, first, that b � 1. Partition the set fKi W xi � 0g into a set A of .b � 1/

knots Ki having xi D �2 and a set B of the remaining knots Ki with xi D �2

and the knots with xi D 0. By Theorem 7.5, each knot in A is a 2–bridge knot and
each knot in B has a .1; 1/–decomposition. The result follows from the fact that
jA[Bj D jAjC jBj � .b� 1/Cg=2.

Now suppose that b D 0. It is then trivially true that at least b � 1 summands Ki

have xi D �2. Let A D ¿ and let B be the set of all Ki with xi 2 f�2; 0g. By
inequality (9), we have

g

2
C b� 1� jBj;

and the result follows as before.

Applying the theorem with mD 2 produces the aforementioned results of Morimoto:

Corollary 7.7 [22, Theorems 3 and 4] Suppose that K � S3 is a composite knot
which is either 3–bridge with respect to a sphere or 2–bridge with respect to a Heegaard
torus for S3 . Then, in the former case, K is the connected sum of two 2–bridge knots
and in the latter case it is a connected sum of a 2–bridge knot and a .1; 1/–knot.
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Proof We apply Theorem 7.6 with .g; b/ either .0; 3/ or .1; 2/. The quantity gCb�1

equals 2, so K has at most two prime factors. At least g=2C .b� 1/ of those factors
have .1; 1/–decompositions and .b�1/ of those are 2–bridge. If gD 0, then b�1D 2

and the result follows. If gD 1, then g=2C.b�1/D 3
2

. Since there are two summands,
both must have .1; 1/–decompositions and at least one must be a 2–bridge knot. If
both were 2–bridge knots, then K would be a .0; 3/–knot by Schubert’s theorem.
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