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Normalized entropy versus volume for pseudo-Anosovs

SADAYOSHI KOJIMA

GREG MCSHANE

Thanks to a recent result by Jean-Marc Schlenker, we establish an explicit linear
inequality between the normalized entropies of pseudo-Anosov automorphisms and
the hyperbolic volumes of their mapping tori. As corollaries, we give an improved
lower bound for values of entropies of pseudo-Anosovs on a surface with fixed
topology, and a proof of a slightly weaker version of the result by Farb, Leininger and
Margalit first, and by Agol later, on finiteness of cusped manifolds generating surface
automorphisms with small normalized entropies. Also, we present an analogous
linear inequality between the Weil–Petersson translation distance of a pseudo-Anosov
map (normalized by multiplying by the square root of the area of a surface) and the
volume of its mapping torus, which leads to a better bound.

57M27; 37E30

1 Introduction

Let ˙ D ˙g;m be an orientable surface of genus g with m punctures. We will
suppose that 3g � 3Cm � 1, so that ˙ admits a Riemannian metric of constant
curvature �1, a hyperbolic structure of finite area, which, by Gauss–Bonnet, satisfies
Area˙ D 2�j�.˙/j D 2�.2g� 2Cm/ with respect to the hyperbolic metric.

The isotopy classes of orientation-preserving automorphisms of ˙ , called mapping
classes, were classified into three families by Nielsen and Thurston [24], namely
periodic, reducible and pseudo-Anosov. Choose a representative h of a mapping
class ' , and consider its mapping torus

˙ � Œ0; 1�=.x; 1/� .h.x/; 0/:

Since the topology of the mapping torus depends only on the mapping class ' , we
denote its topological type by N' .

A celebrated theorem by Thurston [25] asserts that N' admits a hyperbolic structure if
and only if ' is pseudo-Anosov. By Mostow–Prasad rigidity, a hyperbolic structure of
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finite volume in dimension 3 is unique, and geometric invariants are in fact topological
invariants. Kin, Kojima and Takasawa [13] compared the hyperbolic volume of N' ,
denoted by vol N' , with the entropy of ' , denoted by ent' . By entropy, we mean
the infimum of the topological entropy of automorphisms isotopic to ' . In particular,
they proved that there is a constant C.g;m/ > 0 depending only on the topology of ˙
such that

ent' � C.g;m/ vol N' :

This result only asserts the existence of a constant C.g;m/ since the proof is based
on a result of Brock [5] involving several constants for which, a priori, it appears
difficult to compute sharp values. On the other hand, it is well known that the infimum
of ent'= vol N' is 0. In fact, Penner constructed examples [19] which demonstrate
that, as the complexity of surface increases, the entropy of a pseudo-Anosov can be
arbitrarily close to 0. By Jørgensen–Thurston theory [23], the infimum of volumes of
hyperbolic 3–manifolds is strictly positive, so C.g;m/ necessarily tends to 0 when
gCm!1.

Our main theorem gives an explicit value for C.g;m/.

Theorem 1.1 The inequality

(1-1) ent' � 1

3�j�.˙/j
vol N' ;

or equivalently,

(1-2) 2�j�.˙/j ent' � 2
3

vol N' ;

holds for any pseudo-Anosov ' .

The quantity appearing on the left-hand side of (1-2) is often referred to as the nor-
malized entropy. The main theorem can thus be restated informally: the normalized
entropy over the volume is bounded from below by a positive constant which does not
depend on the topology of ˙ .

The value of C.g;m/ above does not seem to be quite far from the sharp constant. For
example, choose the case that the surface is the punctured torus, so that g D 1, mD 1

and j�.˙1;1/j D 1. Then the inequality (1-1) becomes

ent'
vol N'

�
1

3�
D 0:10610 : : : :
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In this particular case, it is conjectured (see Conjecture 6.10 in [13] with supporting
evidence) that

ent'
vol N'

�
log..3C

p
5/=2/

2v3

D 0:47412 : : : ;

where v3 D 1:01494 : : : is the volume of the hyperbolic regular ideal simplex. The
conjectured constant above is known to be attained by the figure-eight knot complement,
which admits a unique ˙1;1–fibration.

The first application of Theorem 1.1 is an amelioration of the lower bound

ent' �
log 2

4.3g� 3Cm/

for the entropy of pseudo-Anosovs on a surface due to Penner [19], provided that there
is at least one puncture.

Corollary 1.2 Let ' be a pseudo-Anosov on ˙g;m with m� 1. Then

ent' �
2v3

3�j�.˙/j
D

2v3

3�.2g� 2Cm/
:

Proof It is known by Cao and Meyerhoff [7] that the smallest volume of an orientable
noncompact hyperbolic 3–manifold is attained by the figure-eight knot complement,
and it is 2v3 . Thus replacing vol N' in (1-1) by 2v3 , we obtain the estimate.

If a manifold admits a fibration over the circle, its first Betti number is necessarily
positive. It is conjectured that the smallest volume of a hyperbolic 3–manifold with
positive first Betti number is also 2v3 . If it were true, then we could drop the assumption
of m� 1 on the number of punctures in Corollary 1.2.

The second application of our main theorem is the proof of a slightly weaker form of
Farb, Leininger and Margalit’s finiteness theorem for small dilatation pseudo-Anosovs.

Corollary 1.3 (Farb, Leininger and Margalit [10]; Agol [1]) For any C > 0, there
are finitely many cusped hyperbolic 3–manifolds Mk such that any pseudo-Anosov '
on ˙ with j�.˙/j ent' < C can be realized as the monodromy of a fibration on a
manifold obtained from one of the Mk by an appropriate Dehn filling.

We note that Farb, Leininger and Margalit are also able to obtain that the Mk are in fact
fibered, and that the surgeries (fillings) are along suspensions of punctures of the fiber.
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Proof If j�.˙/j ent' is bounded from above by a constant C , then it certainly
bounds the volume of N' by Theorem 1.1. Recall that the thin part of N' consists
of neighborhoods of (rank-2) cusps and Margulis tubes around short geodesics, all
pairwise disjoint. Thus the boundary of the thick part, that is, the complement of the
thin part, consists of finitely many tori, and N' is obtained from the thick part by
Dehn filling these. The volume of N' bounds the volume of the thick part and, using
a covering by (finitely many) metric balls, Jørgensen and Thurston [23] have shown
that there are only finitely many possibilities for its topological type.

Finally, replacing the entropy by Weil–Petersson translation distance in the proof of
Theorem 1.1 yields an explicit value for the constant appearing in the upper bound for
volume of the mapping torus in Brock’s [5, Theorem 1.1].

Theorem 1.4 If ˙ is compact, then the inequality

k'kWP �
2

3
p

2�j�.˙/j
vol N' ;

or equivalently, p
2�j�.˙/j k'kWP �

2
3

vol N' ;

holds for any pseudo-Anosov ' , where k �kWP is the Weil–Petersson translation distance
of ' .

It was pointed out to the authors by McMullen that there is a family of pseudo-Anosov
automorphisms 'k such that k'kkWP are bounded whilst the entropy of 'k , which
is just the translation distance for the Teichmüller metric, diverges. In fact, one can
construct such examples so that the mapping tori N'k

converge to a cusped hyperbolic
3–manifold (though this limit may not be a surface bundle). This can be interpreted as
showing that the relationship between volume and Weil–Petersson distance is stronger
than that with the Teichmüller distance. Indeed, Brock has shown that there is a lower
bound for volume in terms of k'kWP , but the method that we present does not as yet
extend to prove this.

The proof of Theorem 1.1 has two main ingredients: The first is the recent results
by Krasnov and Schlenker [15] and Schlenker [21] on the renormalized volumes of
quasi-Fuchsian manifolds. The second is the work of McMullen [16] and Brock and
Bromberg [6] on geometric inflexibility to obtain convergence in Thurston’s double
limit theorem. In the next section, we review briefly the requisite results of Krasnov and
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Schlenker and obtain an intermediate inequality (Corollary 2.8) between the volume of
the convex core of a quasi-Fuchsian manifold and Teichmüller distance. In Section 3,
we prove Theorem 1.1 and Theorem 1.4. In the appendix, we present a simplified
exposition of the ideas behind geometric inflexibility and a proof of the convergence
result stated in Brock [5] which leads to a proof of the main theorem.

Acknowledgements The authors are indebted to Ian Agol, Martin Bridgemann, Jeff
Brock, Ken Bromberg, Dan Margalit, Curt McMullen, Kasra Rafi, Jean-Marc Schlenker
and Juan Souto for their valuable suggestions, comments and encouragement without
which this paper might never have been completed.

Kojima is partially supported by Grant-in-Aid for Scientific Research (A) (No.18204004),
JSPS, Japan.

2 Preliminaries

2.1 Differentials

Let R be a Riemann surface, and let T 1;0R and T 0;1R respectively denote the
holomorphic and the antiholomorphic parts of the complex cotangent bundle, a canonical
bundle over R.

A quadratic differential q on R locally expressed by q.z/ dz2 is a section of the line
bundle .T 1;0R/˝2 . A Beltrami differential � on R locally expressed by �.z/ dxz=dz

is a section of the line bundle T 0;1R˝ .T 1;0/�R. They are main players in Teich-
müller theory. A Beltrami differential � can be interpreted as a representative of an
infinitesimal deformation of the complex structure on R. Hence to each �, there
is a corresponding tangent vector to Teichmüller space T D Tg;m at R; however,
there is an infinite-dimensional subspace that represents the trivial deformation, so the
correspondence is not injective. We now describe a construction which allows one to
eliminate this ambiguity.

Let Q.R/ be the space of holomorphic quadratic differentials. By Riemann–Roch, the
dimension of Q.R/ is 3g�3Cm, that is, equal to that of T . We define the L1–norm
on Q.R/ by

kqk1 D

Z
R

jqj:

We note that, since it is finite-dimensional, all norms on Q.R/ are equivalent, and we
shall compare the L1–norm to another norm, the L1–norm, in Section 2.6.
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Given a Beltrami differential � and a quadratic differential q , the product of � and q

is a section of the line bundle T 0;1R˝T 1;0R, and there is a natural pairing defined by

.q; �/D

Z
R

�q:

Let L1.R/ be the space of uniformly bounded Beltrami differentials with respect to
the norm

k�k1 D sup
kqk1D1

j.q; �/jI

namely, L1.R/D f� W k�k1 <1g. Define K to be the subspace of L1.R/

K D f� W .q; �/D 0 for all q 2Q.R/g:

Then L1.R/=K can be identified with the tangent space TRT of the Teichmüller
space T at R, and moreover, the pairing induces an isomorphism of Q.R/� with
L1.R/=K Š TRT . Thus Q.R/ can be regarded as a cotangent space T �

R
T of T

at R, and . � ; � / induces the duality pairing

(2-1) . � ; � /W Q.R/�L1.R/=K!C:

2.2 Projective structures

A projective structure on a surface ˙ is a special type of complex structure locally
modeled on the geometry of the complex projective line .yC;PSL.2;C//, where yC D
C[ f1g is the Riemann sphere. The projective structure on ˙ is given by an atlas
such that each transition map is the restriction of some element in PSL.2;C/. Clearly
these transition maps are holomorphic, and so there is a unique complex structure
naturally associated to a given projective structure. Let X be a surface homeomorphic
to ˙ together with a projective structure, and let R be its underlying Riemann surface.
When �.˙/ < 0, there is a bijection between projective structures and holomorphic
quadratic differentials. To see this, recall that by the uniformization theorem, the
universal cover of X can be identified with the Poincaré disk D D fz 2C W jzj< 1g.
The developing map f W zX! yC can be regarded as a meromorphic function on D . Now
the Schwarzian derivative S.f / of f defines a holomorphic quadratic differential q

on R. Conversely, given a holomorphic quadratic differential q on R, the Schwarzian
differential equation

S.f /D q
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has a solution which gives rise to a developing map of some complex projective
structure on R. Thus, there is a one-to-one correspondence between the set of all
complex projective structures on R and Q.R/.

2.3 Quasi-Fuchsian manifolds

A quasi-Fuchsian group is defined to be a discrete subgroup � of PSL.2;C/ such that
its limit set L� of � on the boundary @H3 D S2

1 is either a circle or a quasicircle
(an embedded copy of the circle with Hausdorff dimension strictly greater than 1).
This definition implies many consequences. For example, the domain of discontinuity
�� D S2

1�L� consists of exactly two simply connected domains, denoted by �C
�

and ��
�

, the quotients of �˙
�

by � are the same 2–orbifold O but with opposite
orientations, and H3=� is a geometrically finite hyperbolic 3–orbifold homeomorphic
to O �R. If � is torsion free, then O becomes a surface ˙ , and in particular, �
is isomorphic to the fundamental group of ˙ . In this case, we say that the quotient
of H3 by the quasi-Fuchsian group � is a quasi-Fuchsian manifold.

The action of � on �� is holomorphic, so X D�C
�
=� and Y D��

�
=� are marked

Riemann surfaces. Thus, there is a well-defined map taking a quasi-Fuchsian manifold
H3=� to a pair of marked Riemann surfaces X , Y in the Teichmüller space T
of ˙ . In [2], Bers showed that this map has an inverse. He obtains as a corollary a
parametrization of the set of quasi-Fuchsian manifolds by T � T . In other words, for
any pair .X;Y / 2 T � T , there is a unique quasi-Fuchsian manifold QF.X;Y /. As
noted above, the limit set of a quasi-Fuchsian group is either a circle or a quasicircle,
and the quotient of its convex hull in H3 by � , denoted by C.X;Y /, is homeomorphic
to ˙ or ˙ � Œ0; 1� accordingly, called the convex core. It is known to be the smallest
convex subset homotopy equivalent to QF.X;Y /.

Since the action of a quasi-Fuchsian group � on �� is linear fractional, the Riemann
surfaces X and Y are equipped not only with complex structures but also with complex
projective structures. Thus we have associated holomorphic quadratic differentials qX

and qY . Let q denote the unique holomorphic quadratic differential on X tY such
that its restriction to X is qX and to Y is qY .

The notation may be a bit misleading since qX and qY could both vary even if one of
the complex structures of X or Y stays constant. However, as long as we are discussing
quasi-Fuchsian deformations, we regard qX as a complex projective structure of the
Riemann surface on the left and qY on the right. This convention resolves any possible
confusion of notation.
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X

QF.X;Y /

C.X;Y / Y

Figure 1: The quasi-Fuchsian manifold, the surfaces at infinity and the convex core

2.4 Renormalization of volume

Renormalization of the volume of convex cocompact hyperbolic 3–manifolds were
studied extensively by Krasnov and Schlenker in [15]. In the following sections, we
recall Krasnov and Schlenker’s results focusing on the quasi-Fuchsian case. Note that
the surface at infinity ��=� has two connected components.

Throughout the rest of this section, we assume that ˙ is compact. Let M be a quasi-
Fuchsian manifold H3=� homeomorphic to ˙ �R. Following [15], we say that a
codimension-zero smooth compact convex submanifold N �M is strongly convex if
the normal hyperbolic Gauss map from @N D @CN t @�N to the boundary at infinity
��=� is a homeomorphism. For example, a closed "–neighborhood of the convex
core of a quasi-Fuchsian manifold is strongly convex. Let S0 D @N then there is a
family of surfaces fSr gr�0 equidistant to S0 foliating the ends of M . If gr denotes
the induced metric on Sr , then define a metric at infinity associated to the family
fSr gr�0 by

g D lim
r!1

2e�2r gr :

The resulting metric g in fact belongs to the conformal class at infinity that is the
conformal structure determined by the complex structure on ��=� . It is easy to
see that if we start with a strongly convex submanifold bounded by Sr0

for some
r0 > 0, then the limiting metric is e2r0g . Namely, if we shift the parametrization of an
equidistant foliation by r0 , then the limiting metric changes only by scaling e2r0 .

Conversely, if g is a Riemannian metric in the conformal class at infinity, then
[15, Theorem 5.8] shows that there is a unique foliation of the ends of M by equidis-
tant surfaces with compatible parametrization of leaves starting r0 � 0 such that the
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associated metric at infinity is equal to g . Notice that the parametrization may have to
start with a positive r0 . The construction of a foliation is due to Epstein [8]. Then, a
natural quantity to study in the context of strongly convex submanifolds N �M is
the W–volume defined by

(2-2) W .M;g/ WD vol Nr �
1

4

Z
Sr

Hr dar C�r�.@M /;

where the parametrization r is induced by g , Nr is a strongly convex submanifold
bounded by the associated leaf Sr , Hr is the mean curvature of Sr and dar is the
induced area form of Sr . A simple computation which can be found in [21] shows
that the W–volume depends only on the metric at infinity g , justifying the notation.

The renormalized volume of M is now defined by

Rvol.M / WD sup
g

W .M;g/;

where the supremum is taken over all metrics g in the conformal class at infinity
such that the area of each surface at infinity ��=� with respect to g is 2�j�.˙/j.
Section 7 in [15] presents an argument, based on the variational formula stated in
Corollary 6.2 in [15], that the supremum is in fact uniquely attained by the metric of
constant curvature �1.

We can now state, in a slightly modified form, that one half of Theorem 1.1 in [21] is
as follows.

Theorem 2.1 ([21, Theorem 1.1] and its revised version in [22]) Assume that ˙ is
compact. Then there exists a constant D DD.˙/ > 0 depending only on the topology
of ˙ such that the inequality

(2-3) vol C.X;Y /� Rvol QF.X;Y /CD

holds for any X;Y 2 T .

2.5 Variational formula

In [21], the metric at infinity of a quasi-Fuchsian manifold M which attains the
renormalized volume is denoted by I�. In particular, the curvature of I� is constant �1.
The notation is consistent with the standard one for the first fundamental form. There is
also an analogous notion II� of the second fundamental form on the surface at infinity
with the same parametrization with appropriate scaling factor. More precisely, there is
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a unique bundle morphism B� of the tangent space of the boundary, corresponding to
the shape operator, which is self-adjoint for I� and such that

II�D I�.B�� ; � /:

The variational formula of the renormalized volume involves II�, PI� and a Riemannian
metric of constant curvature �1 in the conformal class of the boundary. They all are
symmetric 2–tensors. In general, if we choose a local complex coordinate z D xC iy ,
then we can express a symmetric 2–tensor using the associated real coordinate .x;y/
by a.dx˝dx/Cb.dx˝dyCdy˝dx/Cc.dy˝dy/ and hence by a symmetric matrix�

a b

b c

�
:

Corollary 6.2 in [15] states the variational formula of the W–volume as follows.

Lemma 2.2 ([21, Proposition 3.10] and its revised version in [22]) Under a first-order
deformation of the hyperbolic structure on N ,

dRvolD�1
4
hII�0; PI

�
i

holds, where PI� is a variation of the metric. Here h � ; � i is the extension to symmetric
2–tensors of the Riemannian metric �2jdzj2 of constant curvature �1 defined by

hA;Bi D

Z
R

tr.G�1AG�1B/�2 dxdy;

where G is the metric tensor, and II�0 is a trace-free part of II�.

Krasnov and Schlenker found a remarkable relation between II�0 , the trace-free part
of II�, and the holomorphic quadratic differential q corresponding to the projective
structure of the boundary. To see this more precisely, recall that q has a local expression
q D q.z/ dz2 and q.z/D f .z/C ih.z/. Then

Re q D f dx˝ dx�f dy˝ dy � h.dx˝ dyC dy˝ dx/

can be expressed as a symmetric 2–tensor by a trace-free symmetric matrix�
f �h

�h �f

�
:

The identity below follows directly from explicit formulae for the holomorphic quadratic
differential q in question. Another more geometric proof can also be found in the
appendix of [15].
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Lemma 2.3 [15, Lemma 8.3] II�0 D�Re q:

Notice that q D .f C ih/ dz2 can be recovered from Re q .

Passing through the identification “between 2–tensors and holomorphic quadratic
differentials” and using the identification of Q.R/ with TRT with respect to the
metric �2jdzj2 (see for instance Lemma 7.7.5 in [12]), the variation of the metric

PI� D
�

2' �2 

�2 �2'

�
can be transformed to the Beltrami differential

(2-4) �D
' � i 

�2

dxz

dz
:

This leads us to the reinterpretation of the variational formula in Lemma 2.2 in terms
of the duality pairing . � ; � / in (2-1).

Lemma 2.4 Under a first-order deformation of the hyperbolic structure on N , we have

dRvolD�Re.q; �/D�
Z

R

Re�q:

Proof Fix a local coordinate zD xC iy and let �2jdzj2 denote the hyperbolic metric.
Then using (2-4), one obtains

hII�0; PI
�
i D

Z
R

tr.G�1II�0G�1PI�/�2 dxdy

D 4

Z
R

.f 'C h /��2 dxdy

D 4

Z
R

Re
�
' � i 

�2
.f C ih/

�
dxdy

D 4

Z
R

Re�q:

2.6 Rvol versus Teichmüller distance

We start with a quasi-Fuchsian manifold H3=� D QF.X;Y /. Fix a conformal struc-
ture X on the left boundary component, and regard a conformal structure Y on the
right as a variable. To each Y , we assign an associated complex projective structure on
X and therefore a holomorphic quadratic differential qX . This defines a map called a
Bers embedding:

BX W T !Q.X /:
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Using the hyperbolic metric in the conformal class of X , we can measure at each point
of ˙ the norm of qX . Let Q1.X / be Q.X / endowed with the L1–norm, namely

kqk1 D sup
x2X

jq.x/j

�2.x/
;

where �jdzj defines the hyperbolic metric of constant curvature �1.

The following theorem with respect to the hyperbolic metric of constant curvature �1,
due to Nehari, can be found in a standard textbook of the Teichmüller theory such as
[11, Theorem 1, page 134].

Theorem 2.5 [18] The image of BX in Q1.X / is contained in the ball of radius 3
2

.

Now consider the L1–norm on Q.X /, and denote by Q1.X / the vector space Q.X /

endowed with the L1–norm.

Corollary 2.6 The image of BX in Q1.X / is contained in the ball of radius 3�j�.˙/j.

Proof The inequality

kqk1 D

Z
X

jqj D

Z
X

jqj

�2
�2
� kqk1

Z
X

�2
D 2�j�.˙/jkqk1

immediately implies the conclusion.

The proof of the following comparison result is the same as that of Theorem 1.2 in [21]
by Schlenker with a different norm.

Proposition 2.7 Suppose ˙ is compact. The inequality

(2-5) Rvol QF.X;Y /� 3�j�.˙/j dT.X;Y /

holds for any quasi-Fuchsian manifold QF.X;Y /, where dT is the Teichmüller distance
on T .

Proof Let Y W Œ0; d �! T be the unit speed Teichmüller geodesic joining X and Y ,
so that, in particular, Y .0/DX , Y .d/D Y and d D dT.X;Y /. Then consider a one-
parameter family of quasi-Fuchsian manifolds fQF.X;Y .t//g0�t�d . By Lemma 2.4,
the variation under the first-order deformation at time t is given by

dRvolD Re
�
.qX .t/; PX /C .qY .t/.t/; PY .t//

�
;
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where PX , PY .t/ are tangent vectors of the deformation of complex structures on the
two ideal boundary components. Since PX D 0, integrating the variation of Rvol along
the path Y .t/ .t 2 Œ0; d �/, yields an expression for the renormalized volume

Rvol QF.X;Y /D Re
Z d

tD0

.qY .t/.t/; PY .t// dt:

On the other hand,

j.qY .t/.t/; PY .t//j D

ˇ̌̌̌Z
R

qY .t/.t/ PY .t/

ˇ̌̌̌
D

Z
R

jqY .t/.t/ PY .t/j

� kqY .t/.t/k1 k PY .t/k1;

where k�k1 is the supremum norm on L1.Y .t// which is the dual to the L1–norm on
Q.Y .t// and hence an infinitesimal form of the Teichmüller metric. By Corollary 2.6,
for all t 2 Œ0; d � one has

kqY .t/.t/k1 � 3�j�.˙/j;

and by definition, k PY .t/k1 D 1, so the inequality now follows.

Replacing (2-5) in the inequality in Theorem 2.1, one has:

Corollary 2.8 With the notation above,

vol C.X;Y /� 3�j�.˙/j dT.X;Y /CD:(2-6)

3 Proofs

We first deal with the case that ˙ is compact. Let ' be a pseudo-Anosov automorphism
on ˙ and choose a marked Riemann surface X 2 T on the Teichmüller geodesic invari-
ant by ' . Remember that ' acts naturally on T by precomposing '�1 to the marking of
X 2 T , and consider a family of quasi-Fuchsian manifolds fQF.'�nX; 'nX / W n 2Zg.
These manifolds are quite close to the infinite cyclic covering space of N' if n is
sufficiently large. Applying Corollary 2.8 and dividing by 2n, we obtain the estimate

(3-1) 1

2n
vol C.'�nX; 'nX /�

1

2n

�
3�j�.˙/j dT.'

�nX; 'nX /CD
�
:

We consider the limit as n!1, beginning with the right-hand side.
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By a result of Bers in [3] (compare [14]), we know that

(3-2) lim
n!1

1

2n
dT.'

�nX; 'nX /D k'kT D ent';

where k'kT is the Teichmüller translation distance of ' defined by

k'kT D inf
R2T

dT.R; 'R/:

Since the constant D in (3-1) does not depend on n, the limit of the right-hand side is
just a multiple of the entropy.

We now consider the left-hand side of (3-1). Brock [5] states that geometric inflexibility
should yield a proof that the limit as n!1 exists and is equal to vol N' . However,
at the time of writing, it appears that there is no written proof of this fact. So for
completeness, we give its proof in the appendix, and we proceed with the argument
assuming this fact.

Proof of Theorem 1.1 for a compact surface ˙ The inequality in Theorem 1.1
follows immediately from (3-1), (3-2) and the asymptotic behavior of the left-hand
side of (3-1), for which we give a proof in the appendix; see Theorem A.2.

We now deal with the case that ˙ has m punctures, where m� 1. Ian Agol suggested
the argument below reducing the proof to the compact case.

Lemma 3.1 Suppose m�2; then there is a finite cover of ˙ of sufficiently high degree
such that the number of punctures is exactly m.

Proof We construct the required family of coverings as follows. Choose an increasing
sequence of distinct primes fpig such that each pi is coprime to m� 1. Then, there
is a homomorphism �i W �1.˙/! Z=piZ such that every element represented by a
simple loop around a puncture is mapped to the same nontrivial element in Z=piZ.
The family of coverings associated to fKer �ig has the property in the statement.

Proof of Theorem 1.1 for noncompact ˙ Suppose m� 2. By the preceding lemma,
there is a family of coverings żi !˙ of increasing degree di such that the number
of punctures of each cover is the constant m. For each i , there exists ki such that the
action of 'ki leaves �1. żi/ invariant in �1.˙/, and so 'ki lifts to an automorphism z'i

of żi . The mapping torus Nz'i
of z'i is a kidi–sheeted cover of N' .
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Then by Thurston’s orbifold Dehn filling theorem [23], N' can be Dehn filled on its
cusps along punctures of ˙ as a hyperbolic orbifold Ni singular along core curves
with cone angle 2�=di if di is large enough. It induces the filling Nx'i

on the cusps
of N'i

upstairs, where x'i is a pseudo-Anosov, extending 'i on the compact surface ẋi

obtained by filling punctures of ˙i . The construction guarantees that we have the
following relation between the entropies of the automorphisms:

ent x'i D ent'ki D ki ent':

Applying the estimate for compact surfaces obtained above, we have

2�.di j�.˙/jCm/ ent x'i �
2
3

vol Nx'i
:

Now, dividing both sides by kidi and letting i !1, the limit of the left-hand side is
2�j�.'/j ent' , while since .vol Nx'i

/=.kidi/D vol Ni , the limit of the right-hand side
is 2

3
vol N' , and Ni geometrically converges to N' again by Thurston’s hyperbolic

Dehn filling theorem.

It remains to prove Theorem 1.4, so consider the L2 inner product on Q.R/Š T �
R
T

defined by

hq; q0i D

Z
R

xqq0

�2
;

and recall that the Weil–Petersson metric dWP on the Teichmüller space T is a Rie-
mannian part of the dual Hermitian metric to the above cometric on the cotangent space.
Then, Weil–Peterson translation distance is defined by

k'kWP D inf
R2T

dWP.R; 'R/:

Proof of Theorem 1.4 If we start the proof of Theorem 1.1 for compact surfaces with
Theorem 1.2 in [21], which asserts

Rvol QF.X;Y /�
3
p

2�j�.˙/j

2
dWP.X;Y /;

instead of Proposition 2.7, and applies

kqk22 D

Z
R

jqj2

�2
� kqk1kqk1 � 2�j�.˙/jkqk21;

where k � k2 is the L2–norm induced by h � ; � i, we obtain the desired estimate.
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Remark 3.2 If we prove Theorem 1.4 first, then Theorem 1.1 for the compact case
follows immediately by the Cauchy–Schwarz inequality:

kqk21 D

�Z
R

jqj

�2

D

�Z
R

� �
jqj

�

�2

�

Z
R

�2
�

Z
R

xqq

�2
D 2�j�.˙/jkqk22:

Appendix

We now consider the left-hand side of (3-1). Brock [5] states that geometric inflexibility
should yield a proof that the limit as n!1 is

vol C.'�nX; 'nX /D 2n vol N' CO.1/:

We prove this using Minsky’s work on bilipschitz models to simplify certain points.

It is useful to think of the convex hull Cn of QnDQF.'�nX; 'nX / as being “modeled”
on another 3–manifold Mn as follows. The boundary @Cn consists of a pair of surfaces
@˙Cn , each homeomorphic to ˙ . By the work of Epstein, Marden and Markovic [9]
and Bridgeman [4], these surfaces (equipped with their path metrics) are 5–bilipschitz
to '˙nX , respectively (equipped with their Poincaré metrics and the markings '�n ).
Thus the boundary components of the convex core are modeled on the surfaces at
infinity in that they have roughly the same geometry. Ideally one would like to extend
this equivalence allowing us to think of the convex hull Cn as being modeled on a
3–manifold, which we denote by Mn , that is none other than the portion of the universal
curve above the axis of ' between the points '�nX and 'nX . In fact, by a theorem
of Minsky [17] and additional work of Rafi [20], the convex core Cn is uniformly
bilipschitz to Mn equipped with a metric which we now describe. We parametrize the
Teichmüller geodesic g between '�nX and 'nX by arc length and identify its source
with Œ�n ent'; n ent'�. For t 2 Œ�n ent'; n ent'� the metric on ˙ � ftg is the metric
assigned by g.t/. The distance between ˙ � ftg and ˙ � fsg is js � t j. There are
three important consequences of the existence of Minsky’s model Mn :

(1) Bounded geometry Recall a hyperbolic 3–manifold has bounded geometry if
the injectivity radius is bounded below by a positive constant. All the manifolds
that we consider have uniformly bounded geometry. That is, the injectivity
radius of the sequence Qn is bounded from below by a constant �0 > 0. Under
this hypothesis, a version of the Morse lemma says that a closed curve  of
length l. / is contained in an R–regular neighborhood of the closed geodesic
in its homotopy class, where RD l. /=2C cosh�1.l. /=.2�0//.
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(2) Bounded lengths Let � be a (short, simple) closed curve on X , and we
denote the geodesic representative of 'k.�/ in Cn by 'k. /. Then the lengths
of the geodesics 'k. / for �n� k � n are uniformly bounded.

(3) Roughly linear spacing If �n� i; j � n, then the distance between geodesics
'i. / and 'j . / in Cn is roughly ji � j j. More precisely, there are constants
E > 1 and F > 0 such that

(A-1) 1

E
ji�j j ent'�F � d.'i. /; 'j . //�Eji�j j ent'CF:

To see this, we identify the curve 'k.�/ with the obvious curve in the fiber
†�fk ent'g to obtain a family of curves in the model manifold Mn , all of which
have the same length, say L. The distance between 'i.�/ and 'j .�/ in the
metric on the model is exactly ji�j j ent' . Push forward using the E–bilipschitz
homeomorphism that Minsky constructs (hence the factors E˙1 ) to obtain a pair
of curves homotopic to the geodesics 'i. / and 'j . /, respectively. Observe
that the lengths of these curves are bounded by EL, so they are at bounded
distance from the closed geodesics by the Morse lemma (hence the terms ˙F ).

An important notion, due to McMullen, is that of depth in the convex core which, for a set
of points, is defined to be the minimum distance to the boundary of the convex core. The
inequality (A-1) can be used to prove an estimate for the depth of the geodesic 'k. /:

Lemma A.1 With the notation above, there exists F1 > 0, which does not depend
on n, such that for �n� k � n,

(A-2) 1

E
.n� jkj/ ent' �F1 � d.@Cn; '

k. //�E.n� jkj/ ent'CF1:

Brock and Bromberg [6] give a proof of an analogous inequality without the hypothesis
of bounded geometry. As we will use (A-2) in an essential way in the proof of
Theorem A.2, we give a short proof.

Proof The inequality follows from (A-1) provided the distances d.@CCn; '
�n. //

and d.@�Cn; '
n. // are uniformly bounded.

The geodesic '�n. / in Qn represents the curve '�n.�/ on the surface at infinity
'n.X /. The length of '�n.�/ on 'n.X / is equal to the length of � on X and
so is less than L. By Epstein–Marden–Markovic and Bridgeman, the nearest point
retraction to @CCn is 5–bilipschitz, and applying this to � , we obtain �� � @CCn of
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length at most 5L. Now, since the injectivity radius is bounded below by �0 , the Morse
lemma tells us that there is a some constant R > 0 independent of n such that ��
stays within an R–regular neighborhood of the closed geodesic in its homotopy class,
namely '�n. /, so

d.@CCn; '
�n. //� d.��; '

�n. //�R:

To prove the lower bound, one chooses a piecewise geodesic path joining '�n. / to
'�k. / and passing via @CCn . The length of this path gives the upper bound

d.'�n. /; '�k. //� d.@CCn; '
�n. //C diam @CCnC d.@CCn; '

�k. //CL;

so we have

d.@CCn; '
�k. //� d.'�n. /; '�k. //�R� diam @CCn�L

�

�
1

E
jn� kj ent' �F

�
�R� 5 diam X �L;

using (A-1) and the fact that X and @CCn are 5–bilipschitz. Thus the distance from
'�k. / to @CCn is roughly jn� kj. Replacing '�n. / by 'n. / and applying the
same reasoning, one obtains an analogous lower bound for the distance from '�k. /

to @�Cn in terms of jnC kj. Combining the two bounds yields the required lower
bound for the depth of 'k. / in terms of min .jn� kj; jnC kj/D n� jkj.

The upper bound is proved in the same way.

We will now apply this to prove:

Theorem A.2 (see Brock [5]) If ˙ is compact, then

(A-3) jvol C.'�nX; 'nX /� 2n vol N' j

is uniformly bounded.

Our strategy is, following McMullen and Brock–Bromberg, to decompose the convex
core into a deep part and a shallow part. We first show that the shallow part is
“negligible”. Then, by geometric inflexibility, we see that the deep part is “almost
isometric” to a large chunk of the infinite cyclic cover zN' , which we can explicitly
describe. Consequently, the volume of the deep part grows like 2n vol N' .

Proof The work of Minsky and Rafi on bounded geometry (see above) for the convex
core guarantees a universal lower bound for injectivity radii of QnDQF.'�nX; 'nX /

(ie one which does not depend on n). This will simplify the argument below.
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Let d > 0, and define the d–deep part of Qn to be

Dn.d/ WD fx 2 Cn W d.x; @Cn/� dg:

Note that this is a proper subset of the convex core Cn �Qn . Moreover, it follows
from (A-2) that, for fixed d and n sufficiently large, Dn.d/ is nonempty and that its
width grows linearly in n (by width we mean the minimum distance between connected
components of Qn nDn.d/). Finally, we define the shallow part of Cn to be the
complement of the deep part, that is, Cn�Dn.d/.

Let X 2T be a point on the axis of ' . A slight modification of the proof of Theorem 8.3
of Brock and Bromberg [6] yields: given d sufficiently large, there are constants
N;K1;K2> 0 such that for all n>N.d/, there is a diffeomorphism gnW Dn.d/! zN'

with bilipschitz distortion at a point x 2Dn.d/ less than

(A-4) 1C exp.�K1d.@Cn;x/CK2/;

and where the constants K1;K2 depend on �0 , that is, the lower bound on the injectivity
radii of the Qn , and �.˙/. We have given a simplified statement of a more general
result they obtain because we are working in a geometrically bounded context. In
order to show that (A-3) is uniformly bounded, we must obtain a description of
En WD gn.Dn.d// and, in particular, estimate the number of translates of a well-chosen
fundamental domain that are contained in En . We begin by estimating how many
copies of a given (short, simple) closed curve are contained in En . To facilitate the
exposition, we will define

�.H / WD exp.�K1d.@Cn;H /CK2/;

where H is a subset of Cn .

Choose a homotopy class � of a simple closed curve on X , and denote the geodesic
representative of 'k.�/ in Cn by 'k. /. In particular, there is a collection of 2nC1

closed geodesics in Cn :

�n WD f'
k. / W �n� k � ng:

By Minsky [17], the lengths of the geodesics in �n are uniformly bounded (ie not
depending on n) from above by some L> 0.

Consider the subset of geodesics belonging to �n that are not contained in the deep
part Dn.d/, or equivalently, the values of k such that d.@Cn; '

k. // < d . By (A-2),
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Cn WD C.'�nX; 'nX /

'0. 0/

Dn.d/

@CCn

zN'

gn .1C�/–bilipschitz

 0

En WD gn.Dn.d//

@�Cn

Figure 2: The map from the deep part to the infinite cyclic cover, which
is shown tessellated by '–translates of a fundamental domain (depicted as
parallelograms), each containing a closed geodesic 'k. 0/ .

one has the inequality

(A-5) 1

E
.n� jkj/ ent' �F1 � d.@Cn; '

k. // < d

for F1 > 0 and E > 1 which do not depend on n. One can explicitly compute A1 > 0

depending on the depth d , ' and X (but not on n) such that the number of values
of k which satisfy this inequality, hence the number of curves in �n not contained in
Dn.d/, is less than A1 .

Thus the deep part Dn.d/ contains at least 2nC 1 �A1 members of �n , and the
image En contains the same number of gn.'

k. //. Our objective is to “promote” each
of these latter curves to a fundamental domain for the action of ' by translation on zN'

contained in En . The curve gn. / is homotopic to a closed geodesic  0 � zN' . Since
the length of  0 is bounded below (N' is compact) and the length of gn. / uniformly
bounded above, by the Morse lemma stated in point (1) above, the curve gn. / is
contained in an R–neighborhood of  0 . It follows that there exists A2 �A1 such that
if n� jkj>A2 , then 'k. / and g�1

n .'k. 0// are contained in Dn.d/.

Now define

(A-6) � WD fx W d.x;  0/� d.x; '˙1. 0//g � zN' :
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Clearly, the interior of � is a fundamental domain for the action of ' on zN' , and the
diameter of � is bounded since N' is compact. Moreover,

d.@Cn; '
k. //� d.@Cn;g

�1
n .'k.�/\En//

C diam g�1
n .'k.�/\En/C d.g�1

n .'k. 0//; 'k. //:

So if g�1
n .'k. //�Dn.d/, then

d.@Cn;g
�1
n .'k.�/\En//

� d.@Cn; '
k. //� .1C �/ diam�� d.g�1

n .'k. 0//; 'k. //

� d.@Cn; '
k. //� .1C �/.diam�CR/;

where � D �.Dn.d//. Consequently, there exists A3 �A2 such that if n� jkj �A3 ,
then g�1

n .'k.�//�Dn.d/, that is,

(A-7)
[

jkj�n�A3

g�1
n .'k.�//�Dn.d/:

From the above estimate, one also obtains an explicit “linear” lower bound for the
depth by using the information contained in Minsky’s model, g�1

n .'k.�/\En/:

(A-8) d.@Cn;g
�1
n .'k.�/\En//�

1

E
.n� jkj/ ent' �F1:

The inclusion (A-7) yields a lower bound for the volume as follows:

vol Dn.d/�
X

jkj�n�A3

vol g�1
n .'k.�//

�

X
jkj�n�A3

.1C �.g�1
n .'k.�////�3 vol'k.�/

�

X
jkj�n�A3

.1� 4�.g�1
n .'k.�//// vol'k.�/

� 2.n�A3/ vol�� 4.vol�/
X

jkj�n�A3

�.g�1
n .'k.�///:

The first term is the sum of 2n vol� plus a quantity which does not depend on n, and
by (A-8), the second is bounded above by the sum of a geometric series.

In order to bound the volume from above, we cover the convex core by two sets. Define

Vn WD

[
jkj�n�A3

g�1
n .'k.x�// and Sn WD g�1

n .'�nCA3.�//[g�1
n .'n�A3.�//;
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so that one obtains the convex core as the union Vn [ .Sn [ .Cn n Vn//. Observe
that � separates N' , so Sn separates Cn , and the complement of consists of three
components: one containing @CCn , another containing @�Cn and the remaining
component containing g�1.'k/ for k < jnj � A3 . Clearly, the depth of a point
contained in the components that contain the boundary @Cn is bounded from above by
the maximum depth of a point in Sn . Let us give an explicit upper bound using (A-2).
For x 2 g�1.'k.�//, one has

d.@�Cn;x/� d.@�Cn; '
k. //C d.'k. /;x/

�E.n� jkj/ ent'CF1CRC .1C �/ diam�:

Setting k DA3 in the expression on the right, one obtains the required uniform bound
(it is easy to see that g�1.'k.�// satisfies the same upper bound). It follows that the
complement in the convex core of Vn is contained in a T –regular neighborhood of the
boundary @Cn ; that is,

Cn DNT .@Cn/[Vn:

From this, we obtain the upper bound for volume

vol Cn � vol NT .@Cn/C vol Vn:

The diameter of each component of NT .@Cn/ is uniformly bounded (by TC5 diam X ),
so the first term is uniformly bounded in n, and by a similar calculation to the above
for the lower bound, the second term is seen to be bounded from above by 2n vol�
plus a constant.
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