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Primes and fields in stable motivic homotopy theory

JEREMIAH HELLER

KYLE M ORMSBY

Let F be a field of characteristic different from 2 . We establish surjectivity of
Balmer’s comparison map

��W Spc.SHA1
.F /c/! Spech.KMW

� .F //

from the tensor triangular spectrum of the homotopy category of compact motivic
spectra to the homogeneous Zariski spectrum of Milnor–Witt K–theory. We also
comment on the tensor triangular geometry of compact cellular motivic spectra,
producing in particular novel field spectra in this category. We conclude with a list of
questions about the structure of the tensor triangular spectrum of the stable motivic
homotopy category.

14F42; 19D45, 55P42, 18E30

1 Introduction

The chromatic approach to stable homotopy theory is a powerful organizational and
computational tool. Underlying this approach is a good understanding of the tensor
triangular geometry of the stable homotopy category, as provided by the celebrated
nilpotence and periodicity theorems of Hopkins and Smith [16]. Recent computational
work of Andrews [1] suggests a rich and vast chromatic picture in the motivic setting.
However, a good (or any) understanding of the tensor triangular geometry of the stable
motivic homotopy category is still lacking.

To set the stage for our results, recall that given a (small) tensor triangulated category K,
the set underlying Balmer’s spectrum Spc.K/ is the set of tensor triangular prime ideals;
see Balmer [5]. This simple invariant is surprisingly powerful; for example, under mild
hypotheses it completely determines the thick tensor ideals of K [5, Theorem 4.10].
Computing the spectrum of K is no easy task, but Balmer’s comparison maps [7,
Theorem 5.3, Corollary 5.6] make it possible to organize Spc.K/ fiberwise over the
classical spectra of (homogenous) prime ideals of the (graded) endomorphism ring of
the unit.
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This plays out as follows in the motivic setting over a field F whose characteristic is
not 2. The tensor triangulated categories of interest here are the homotopy category of
compact motivic P1–spectra SHA1

.F /c and the homotopy category of compact cellular
motivic P1–spectra C.F /. We write K.F / for either one of these two categories. Of
course the graded endomorphism ring (relative to A1n0) is the same in either case,
and by a theorem of Morel [27], this ring is the Milnor–Witt K–theory ring KMW

� .F /

of F . In degree zero, KMW
0

.F /D GW.F /, the Grothendieck–Witt ring of quadratic
forms. Balmer’s comparison maps thus take the form

Spc.K.F //
��

//

�
((

Spech.KMW
� .F //

��

Spec.GW.F //

Moreover, Balmer [7, Theorem 7.13] applies to show that � is surjective. Complete
knowledge of Spec.GW.F // can be extracted from classical work of Lorenz and
Leicht [24]; see also [7, Remark 10.2]. Thus � provides a very explicit lower bound
for Spc.K.F //.

Recent work of Thornton [32] shows that Spech.KMW
� .F // has precisely jXF j C 1

more elements than Spec.GW.F //, where XF denotes the set of orderings on the
field F . Thus �� could potentially detect up to jXF jC1 more primes of K.F / than �
can. Our main theorem is that �� is surjective and thus �� does yield a full .jXF jC1/–
fold improvement on the previously known lower bounds for Spc.SHA1

.F /c/. This
meets the challenge posed in [7, Remark 10.5].

Theorem 1.1 Suppose F is a field whose characteristic is not 2. Then the maps

��
W Spc.SHA1

.F /c/! Spech.KMW
� .F //;

��
W Spc.C.F //! Spech.KMW

� .F //;

are both surjective.

Remark 1.2 This theorem tells us that we have a commutative diagram as follows, in
which both vertical arrows are surjective:

Spc.SHA1

.F /c/ //

��

��

Spc.C.F //

��

��

Spech.KMW
� .F // Spech.KMW

� .F //
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Balmer has informed us of a general criterion [9, Theorem 1.3] for when a tensor
triangulated functor f W K!L between essentially small tensor triangulated categories
induces a surjection Spc.f /W Spc.L/! Spc.K/; namely, if f detects ˝–nilpotence
and K is rigid, then Spc.f / is surjective. Since this condition is clearly met by
f W C.F / � SHA1

.F /c , the top horizontal arrow in the above diagram is surjective
as well.

Our argument for Theorem 1.1 is indirect, and does not produce any explicit prime ideals
in the stable motivic homotopy categories. After establishing our main theorem we
address the question of producing explicit primes for SHA1

.F /c and C.F / by analyzing
realization functors (Section 5) and field spectra for C.F / (Section 4). Ultimately,
when F is isomorphic to a subfield of C we find infinite towers of tensor primes above
all but one positive-characteristic prime in KMW

� .F /; see Figure 4.

Both Joachimi [21, Chapter 7] and Kelly [22] have studied the tensor triangular geometry
of Spc.SHA1

.F /c/. Joachimi’s study is primarily concerned with Betti realization
functors, and should be compared with our results in Section 5. Kelly proves that �� is
surjective when F is a finite field; we adapt his argument to prove Proposition 3.1.

Outline We recall the basic background of tensor triangular geometry, stable motivic
homotopy theory, and Milnor–Witt K–theory in Section 2. In particular we recall there
Thornton’s theorem on the structure of Spech.KMW

� .F //. In Section 3 we establish our
main result, Theorem 1.1, on the surjectivity of �� . In Section 4, we find explicit field
spectra for C.F /, whose acyclics are tensor triangular primes living over particular ele-
ments of Spech.KMW

� .F //; see Theorem 4.10. In Section 5, we completely determine
the effect of �� on the injective image of Spc.SHfin/ and Spc.SH.C2/

c/ under the
maps induced by Betti realization; see Propositions 5.3 and 5.5. In Section 6, we devote
our attention to field spectra for SHA1

.F /c and elucidate the manner in which singular
and realization functors interact with tensor triangular primes. We conclude with a list
of questions in Section 7, amounting to an optimist’s sketch of how to determine the
complete structure of Spc.SHA1

.F /c/. (Caveat emptor: some of these questions are
likely quite difficult.)

Notation We use the following notation throughout:

� F is a field, always of characteristic ¤ 2.

� Sm=F is the category of smooth finite-type schemes over F .

Geometry & Topology, Volume 22 (2018)
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� SHA1

.F /, SHA1

.F /c and C.F / are, respectively, the stable motivic homotopy
category over Spec F , the full subcategory of compact motivic spectra, and the
full subcategory of compact cellular motivic spectra.

� K.F / refers to either of SHA1

.F /c or C.F /.

� KMW
� .F / is the Milnor–Witt K–theory ring of F .

� S0 is the motivic sphere spectrum over Spec F .

� Sm and Sm˛ for m 2 Z are the “simplicial” and the “geometric” m–sphere,
respectively: Sm is the m–fold suspension of S0 , and Sm˛ D .A1 n 0/^m .

� ŒX;Y �D is the set of maps between objects X , Y of a category D.

� �m.X /n , where X 2 SHA1

.F / and m, n 2Z, is the Nisnevich sheaf on Sm=F
associated with the assignment

U 7! ŒSm
^UC;S

n˛
^X �SHA1

.F /:

Note that other sources may write �m�n˛.X / or �m�n;�n.X / for this sheaf.
We have chosen our notation to match Morel’s in [26; 27].

� �m.X /n , where X 2 SHA1

.F / and m, n 2Z, is the set of sections of �m.X /n

on Spec F .

� Spec.R/ is the Zariski spectrum of prime ideals in a commutative ring R.

� Spech.R�/ is the Zariski spectrum of homogeneous prime ideals in an "–
commutative Z–graded ring R� (which means that " 2 R0 , "2 D 1, and
ab D "mnba for a 2Rm , b 2Rn ).

� Spc.C/, for C a tensor triangulated category, is Balmer’s tensor triangular
spectrum of C.

Acknowledgements It is our pleasure to thank Shane Kelly and Paul Balmer for
helpful discussions and for sharing with us drafts of [22] and [9], respectively. We also
thank the referee for helpful comments and improvements to the exposition. Ormsby
was partially supported by NSF award DMS-1406327.

2 Preliminaries

In this section we recall background notions and material from tensor triangular geom-
etry and stable motivic homotopy theory used in the rest of the paper.
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2.1 Tensor triangular geometry

We begin by recalling a few definitions and facts about the spectrum of a tensor
triangulated category. We refer the reader to [7; 8] for full details.

A tensor triangulated category .K;˝; 1/ is a triangulated category K together with a
symmetric monoidal product ˝ which is bi-exact and a unit 1 2 K. For K essentially
small, Balmer associates its tensor triangular spectrum Spc.K/, which is a topological
space defined as follows.

A tensor triangular prime ideal (or simply a prime ideal) of K is a proper thick
subcategory P¨ K such that:

� P is a tensor ideal, ie if a 2 K and b 2 P, then a˝ b 2 P.

� P is prime, ie if for some a; b 2 K we have a˝ b 2 P, then a or b is in P.

The prime spectrum of K is the set of primes

Spc.K/ WD fP¨ K j P is primeg:

Given an object a 2 K, its support is

supp.a/ WD fP 2 Spc.K/ j a 62 Pg:

Write U.a/D Spc.K/ n supp.a/. Equip Spc.K/ with the topology defined by letting
the sets U.a/ for a 2K be a basis for the open sets. In particular, the support supp.a/
of an object is always closed.

The prime spectrum is contravariantly functorial in K. That is, given a tensor exact
functor �W K! L there is an induced continuous map Spc.�/W Spc.L/! Spc.K/
defined by P 7! ��1.P/.

Of central interest in this paper are the continuous maps constructed by Balmer [7,
Theorem 5.3, Corollary 5.6] which relate the spectrum of a tensor triangulated category
to the spectrum of graded and ungraded endomorphism rings. Let u 2 Pic.K/ be a
˝–invertible object and let R�K be the graded endomorphism ring of the unit: that
is, Ri

K D Œ1;u˝i �K for i 2 Z. We write RK D R0
K for ungraded ring of ordinary

endomorphisms of the unit. Write Spech.R�K/ for the Zariski spectrum of homogeneous

Geometry & Topology, Volume 22 (2018)
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prime ideals in this graded ring. We have continuous maps

Spc.K/
��

//

�
%%

Spech.R�K/

. /0

��

Spec.RK/

where �� is defined by

��.P/ WD ff 2R�K j P 2 supp.cone.f //g

and . /0 is defined by sending a homogenous prime p to the prime ideal p0D p\R0
K

of homogeneous degree zero elements. Of course, the map �� depends on the choice
of invertible element u; in general, we will omit u from our notation, but will write ��

u

when specification is necessary.

2.2 Stable motivic homotopy theory and Milnor–Witt K –theory

We fix throughout a base field F , which will always be assumed to be of characteristic
different from two. The tensor triangulated categories of interest in this paper stem
from the homotopy category SHA1

.F / of motivic spectra over F , developed in [33],
[20] and [26]. This category itself is too large for tensor triangular geometry and, as is
standard in this situation, we focus on the homotopy category SHA1

.F /c of compact
motivic spectra.1 In this case, the symmetric monoidal product is the smash product ^,
and the unit object is the sphere spectrum S0 .

There are many invertible objects in SHA1

.F /c , two of which are singled out. The first
is the ordinary circle S1 and the second is the geometric (or Tate) circle S˛ WDA1n0.
We write SmCn˛ D .S1/^m^ .S˛/^n . The homotopy category of compact cellular
spectra C.F / � SHA1

.F /c is defined to be the thick subcategory generated by the
set fSmCn˛ j n;m 2 Zg. We write K.F / for either of these categories.

Milnor–Witt K–theory KMW
� .F / plays a distinguished role in stable motivic homotopy

theory because it is isomorphic to a graded ring of endomorphisms of the unit object
in K.F / (at least when char F ¤ 2). Specifically, Morel [27] proves that

KMW
� .F /Š �0.S

0/� Š ŒS
0;S�˛ �K.F /:

1Recall that an object X in a triangulated category K is compact if
�
X;
L

I Yi

�
K Š

L
I ŒX;Yi �K for

any set I .
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Primes and fields in stable motivic homotopy theory 2193

Milnor–Witt K–theory is defined to be a quotient of the free associative Z–graded
ring on the set of symbols ŒF�� WD fŒu� j u 2 F�g in degree 1 and � in degree �1; the
quotient is by the homogeneous ideal enforcing the following relations:

� Twisted logarithm Œuv�D Œu�C Œv�C �Œu�Œv�.

� Steinberg relation Œu�Œv�D 0 for uC v D 1.

� Commutativity Œu��D �Œu�.

� Witt relation .2C Œ�1��/�D 0.

Milnor–Witt K–theory is "–commutative for "D�.1C Œ�1��/. Moreover, it is related
as follows to several important classical invariants:

� KMW
0

.F /Š GW.F /, the Grothendieck–Witt ring of quadratic forms.

� ��1KMW
� .F /ŠW .F /Œ�; ��1�, the ring of Laurent polynomials over the Witt

ring.

� KMW
� .F /=�DKM

� .F /, the Milnor K–theory of F .

As observed in [7, Corollary 10.1], the map �W Spc.K.F //! Spec.GW.F // is surjec-
tive. (This follows from a general criterion [7, Theorem 7.13] for surjectivity of � .)
Our results concern the map ��W Spc.K.F //! Spech.KMW

� .F // and rely crucially
on the following theorem of Thornton. Recall that XF is the set of orderings on F

equipped with the Harrison topology.2

Theorem 2.1 [32, Theorem 3.12] Each p 2 Spech.KMW
� .F // is of exactly one of

the following forms, where p ranges over rational primes, ˛ ranges over orderings
of F , and P˛ � F� denotes the positive cone of ˛ :

(1) .ŒF��; �/,

(2) .ŒF��; �;p/,

(3) .ŒF��; 2/,

(4) .ŒP˛ �; h/,

(5) .ŒP˛ �; �; 2/, and

(6) .ŒP˛ �; h;p/ for p ¤ 2.

Additionally, the topology on Spech.KMW
� .F // is specified by the following facts:

2A subbasis for the Harrison topology is given by the sets H.a/D f˛ 2 XF j a >˛ 0g for a 2 F� .
The Harrison space XF is a Stone space; in particular, XF is discrete if and only if jXF j<1 .
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(a) The subspace of minimal prime ideals is homeomorphic to X �
F
D XF t f1g,

where XF has the Harrison topology and 1 is an isolated point.

(b) The Hasse diagram (ie inclusion poset) of Spech.KMW
� .F // is shown in Figure 1

and the closure operator takes a subset S � Spech.KMW
� .F // to everything in

or above S in the Hasse diagram.

.ŒF��; 2; �/ .ŒF��; �; 3/ .ŒF��; �; 5/ : : :

.ŒP˛ �; �; 2/ : : : .ŒPˇ �; �; 2/ .ŒF��; �/

: : : .ŒP˛ �; h; 5/ .ŒP˛ �; h; 3/ .ŒF��; 2/ .ŒPˇ �; h; 3/ .ŒPˇ �; h; 5/ : : :

.ŒP˛ �; h/ : : : .ŒPˇ �; h/

Figure 1: The Hasse diagram of Spech.KMW
� .F // . Inclusion of tensor trian-

gular primes and closure both go upwards in the diagram. In the picture, we
suppose that ˛ , ˇ 2XF , and the central ellipses represent the rest of XF .

3 Surjectivity

Let K.F / denote either SHA1

.F /c or C.F /. In this section we prove our main
theorem, Theorem 1.1: the continuous map ��W Spc.K.F //! Spech.KMW

� .F // hits
all the primes enumerated in Theorem 2.1. We warm up by showing that this is true
when F is nonreal, ie when �1 is a sum of squares in F .

Proposition 3.1 Suppose F is a nonreal field whose characteristic is not 2. Then

��
W Spc.K.F //! Spech.KMW

� .F //

is surjective.

Proof Our proof is an adaptation of Kelly’s argument for the surjectivity of �� in the
case when F is a finite field [22]. We first show that ��.U.P2//DD� D f.ŒF

��; 2/g,
where U.P2/� Spc.K.F // is the complement of supp.P2/ and D� is notation for the
basic open set of homogeneous prime ideals not containing �. Indeed, since †P2'C�,
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the cone of �, we have that the inclusion U.P2/Š Spc.K.F /=hP2i/! Spc.K.F //
factors through Spc.��1K.F //. Recall from [28, Corollary 3.11] that ��1KMW

� .F /Š

W .F /Œ�; ��1�, the ring of Laurent polynomials in a variable � over the Witt ring W .F /.
We therefore have that

. /0W Spech.��1KMW
� .F //Š Spec.W .F //Š Spec.F2/;

where the final identification holds via [24] because F has no orderings. Since the
nongraded analogue � of �� is surjective (by [7, Theorem 7.13] since ��1K.F / is
connective), we conclude that ��W Spc.��1K.F //!Spech.��1KMW

� .F // is surjective.
The image of Spech.��1KMW

� .F // in Spech.KMW
� .F // is precisely D� . We conclude

that ��.U.P2//DD� .

We now check that ��.supp.P2// is precisely the (closed) complement V�Dfp j �2 pg

of D� . We have that ��.supp.P2// � V� by definition of �� and supp. Note that
by [7, Remark 10.2], Spec ZŠ Spec GW.F / via the assignment pZ 7! dim�1pZ for
dimW GW.F /! Z the dimension homomorphism. Meanwhile,

V� D f.ŒF
��;p; �/ j p prime or 0g;

and it is elementary to observe that .ŒF��;p; �/0 D dim�1pZ. Thus we get that
. /0W V� Š Spec GW.F / Š Spec Z, and the composite �W Spc.K.F //! Spec Z is
surjective by [7, Theorem 7.13]. It follows that ��.supp.P2// � V� consists of at
least every prime in V� except possibly .ŒF��; 2; �/. Thus it remains to show that
.ŒF��; 2; �/ 2 ��.supp.P2//. For this it suffices to show that the closure of U.P2/

intersects supp.P2/ nontrivially. Indeed, by continuity, ��.U.P2/ \ supp.P2// is
contained in ��.U.P2//\V� D f.ŒF

��; 2; �/g.

Suppose for the sake of contradiction that Spc.K.F // is separated by U.P2/ and
supp.P2/. Let p denote the exponential characteristic of F and consider the functor
i W K.F /! K.F /Œ1=p� and the induced continuous map

� WD Spc.i/W Spc.K.F /Œ1=p�/! Spc.K.F //:

Now we have that

��1.supp.P2//D supp.P2Œ1=p�/; ��1.U.P2//D U.P2Œ1=p�/:

It follows that Spc.K.F /Œ1=p�/ is separated by U.P2Œ1=p�/ and supp.P2Œ1=p�/. By
[23, Corollary B.2] every smooth F –scheme is dualizable in SHA1

.F /Œ1=p� and so by
[18, Theorem 2.1.3], every object in K.F /Œ1=p� is dualizable. We may thus apply [6,
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Theorem 2.11] to conclude that the unit of K.F /Œ1=p� decomposes as a nontrivial sum of
two objects. It follows that GW.F /Œ1=p�, the endomorphism ring of the unit in K.F /,
decomposes as the product of two nontrivial rings. Since Spec.GW.F /Œ1=p�/ Š

Spec.ZŒ1=p�/ has a unique minimal element, GW.F /Œ1=p� is irreducible, and we have
reached a contradiction. We conclude that

U.P2/\ supp.P2/¤¿;

and hence ��.supp.P2//D V� . It follows that �� is surjective.

We can now prove our main theorem.

Proof of Theorem 1.1 The proof proceeds in four steps.

Step 1 We first show that it suffices to check surjectivity of �� when F is algebraically
or real closed. For an arbitrary F , let i W F ,! F˛ be a real or algebraic closure of F .
Consider the induced functor i�W K.F /!K.F˛/, which is tensor triangulated such
that i�..A1n0/F /D .A

1n0/F˛
. Hence we get a commutative square:

Spc.K.F˛//
Spc.i�/

//

��

��

Spc.K.F //

��

��

Spech.KMW
� .F˛// // Spech.KMW

� .F //

By Theorem 2.1, the sum of the bottom horizontal maps over all ˛ 2X �
F
DXF tf1g,

where F1D xF and F˛ is the real closure of F corresponding to ˛ 2XF , is surjective.
Thus if �� is surjective for all algebraically or real closed fields, we may conclude that
�� is surjective in general.

Step 2 We now check that �� is surjective when F is algebraically closed. This
follows from Proposition 3.1 because algebraically closed fields are nonreal.

Step 3 In this step, we will compute Œ�1��1KMW
� .F / for F real closed. We use this

computation in Step 4 as part of our proof that �� is surjective when F is real closed.

For the moment, take F to be any field of characteristic different from 2. Via the
twisted logarithm relation, in KMW

� .F / we have

0D Œ1�D 2Œ�1�C Œ�1�2�:

Geometry & Topology, Volume 22 (2018)
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Hence hD 2C Œ�1��D 0 in Œ�1��1KMW
� .F /. It follows that

Œ�1��1KMW
� .F /D Œ�1��1.KMW

� .F /=h/:

The ring KW
� .F / WD KMW

� .F /=h also goes by the name Witt K–theory. By [26,
Theorem 6.4.7], we have KW

� .F / ŠW .F /ŒI��1; ��, the extended Rees ring of the
Witt ring of F with respect to the fundamental ideal I . This is a graded ring in which
W .F /ŒI��1; ��nD In � f��ng, for In the nth power of the fundamental ideal in W .F /

(where In DW .F / for n� 0). The image of Œ�1� in W ŒI��1; �� is 2 � ��1 .

Now suppose that F is real closed, in which case W .F / Š Z via the signature
homomorphism and

KW
� .F /Š ZŒ�; Œ�1��=.2C Œ�1��/:

Hence
Œ�1��1KMW

� .F /Š Œ�1��1KW
� .F /Š ZŒŒ�1�; Œ�1��1�,

ie Laurent polynomials in the variable Œ�1� over Z.

Step 4 We now show that �� is surjective when F is real closed, completing our
proof. Write

Spech.KMW
� .F //D VŒ�1�[DŒ�1�;

where VŒ�1� is the subspace of primes of the form (1), (2) or (3), and DŒ�1� is its
complement. Note that VŒ�1� is the closed set of primes containing Œ�1�, and DŒ�1� is
the basic open of primes not containing Œ�1�. Base change to xF and Step 2 imply that
VŒ�1� is hit by �� . To show that DŒ�1� is hit by �� , consider the following diagram:

Spc.K.F /=hC Œ�1�i/ //

��

Spc.Œ�1��1K.F // //

��

Spc.K.F //

��

DŒ�1�
// Spech.Œ�1��1KMW

� .F // //

. /0

��

Spech.KMW
� .F //

Spec.Œ�1��1KMW
0

.F //

Here C Œ�1� is the cone of Œ�1�W S0!S˛ and K.F /=hC Œ�1�i is the Verdier quotient by
the thick subcategory hC Œ�1�i generated by C Œ�1�, whence Spc.K.F /=hC Œ�1�i/ is nat-
urally homeomorphic to U.C Œ�1�/. Thus the restriction of �� to Spc.K.F /=hC Œ�1�i/

has image inside of DŒ�1� , and this specifies the left-hand vertical map in the diagram.
Since Œ�1� is invertible in K.F /=hC Œ�1�i, the quotient functor K.F /!K.F /=hC Œ�1�i
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factors through Œ�1��1K.F /. The top row of the diagram is given by applying Spc to
this factorization. Naturality of �� produces the rest of the diagram except for the map
. /0W Spech.Œ�1��1KMW

� .F //! Spec.Œ�1��1KMW
0

.F //, which is the usual map of
intersection with the 0th graded piece.

By Step 3 the map . /0 is a homeomorphism. Additionally, the vertical composite is
the comparison map � , which is surjective by connectivity of the category Œ�1��1K.F /

and [7, Theorem 7.13]. We conclude that the middle upper vertical �� is surjective.
Furthermore, the bottom row in our diagram is a homeomorphism followed by an
embedding so that the composite is the inclusion of DŒ�1� in Spech.KMW

� .F //. It
follows that the image of the right-hand vertical �� contains all of DŒ�1� . We conclude
that �� is surjective, as desired.

4 Explicit primes

The methods of the previous section show that �� is surjective without explicitly iden-
tifying any tensor triangular primes living over elements of Spech.KMW

� .F //. In this
section, we construct elements of Spc.C.F // living over elements of Spech.KMW

� .F //.
We focus on Spc.C.F // because we are able to construct a rich class of fields for C.F /.
Using a different approach in Section 6, we construct fields for Spc.SHA1

.F /c/.

Before constructing field spectra, we will need some preliminary facts about fields in
tensor triangulated categories, Milnor–Witt K–theory, Morel’s homotopy t –structure,
and the Dugger–Isaksen cellularization functor. We gather these facts in the next
four subsections. Readers familiar with this content should focus on Definition 4.1,
Proposition 4.2, Definition 4.4, and Proposition 4.5, acquaint themselves with our
notation, and then move on to Section 4.5.

4.1 Fields in tensor triangulated categories

Let .C;˝; 1/ be a tensor triangulated category. Recall that a ring in C is an object R

equipped with a unit �W 1 ! R and multiplication �W R ˝ R ! R making R a
monoid in C.3 An R–module in C is an object M equipped with an action map
˛W R˝M !M satisfying the standard axioms. Let Pic.C/ denote the Picard group
of ˝–invertible objects in C. We call an R–module free if it is module-isomorphic to
a coproduct of modules of the form P ˝R where each P is in Pic.C/.

3The monoid and ring nomenclature are somewhat at odds. Of course, a monoid in Z–modules is a
ring, and this is the inspiration for the terminology.
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Definition 4.1 A ring K 2 C is called a skew field if every K–module in C is free.

We will abuse terminology and call a skew field K a field, even when K is not
commutative. Field objects are important in tensor triangular geometry because they
are a rich source of prime ideals.

Proposition 4.2 Suppose that K 2 C is a field. Let D be a tensor triangulated
subcategory of C. Then

kerD.K/ WD fX 2 D jK˝X Š 0g

is a tensor triangular prime in D.

Proof It is easy to check that kerD K is a tensor triangular ideal, so all that remains to
show is primality. Suppose that X ˝Y 2 kerD K for some X , Y in D. Since K˝X

is a K–module and K is a field, we have

K˝X Š
M
i2I

Pi ˝K;

where Pi 2 Pic.C/ for i 2 I . Thus

0ŠK˝X ˝Y Š
M
i2I

Pi ˝K˝Y:

Since each Pi is ˝–invertible, this is only possible if ID¿ (in which case X 2kerD K )
or K˝Y Š 0 (in which case Y 2 kerD K ). Thus kerD K 2 Spc.D/, as desired.

Remark 4.3 We are considering P˝R to be a free R–module for any P 2Pic.C/. In
specific cases, one might wish to restrict this notion. For example in the motivic setting,
where the structure of Pic.SHA1

.F // is complicated and not completely determined
(see [3; 19]), it could be reasonable to only allow smashing with SmCn˛ rather than
arbitrary invertible spectra. (Indeed, the fields we produce are of this form.) However,
it will not make a difference in our work below and so we work with the general notion.

4.2 The residue fields of Milnor–Witt K–theory

In order to produce fields for C.F /, we will need to understand the residue fields of
Milnor–Witt K–theory, as defined below.
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Definition 4.4 For p a homogeneous prime ideal of KMW
� .F /, we define the residue

field of KMW
� .F / at p,

L.p/ WD GrFrac.KMW
� .F /=p/;

to be the graded field of fractions of the Z–graded integral domain KMW
� .F /=p; this

is formed by inverting all nonzero homogeneous classes in KMW
� .F /=p.

By elementary computation and Theorem 2.1, we arrive at the following list of residue
fields for KMW

� .F /.

Proposition 4.5 The residue fields of KMW
� .F / take the following forms (with the

obvious KMW
� .F /–module structure):

(1) L.ŒF��; �/ŠQ,

(2) L.ŒF��; �;p/Š Fp ,

(3) L.ŒF��; 2/Š F2Œ�
˙1�,

(4) L.ŒP˛ �; h/ŠQŒ�˙1�,

(5) L.ŒP˛ �; �; 2/Š F2ŒŒ�1�˙1�, and

(6) L.ŒP˛ �; h;p/Š Fp Œ�
˙1� for p ¤ 2.

4.3 The homotopy t–structure

Morel [26] has introduced a t –structure on SHA1

.F / defined in the following way.
Let SHA1

�0.F / denote the full subcategory of connective motivic spectra, those X such
that �m.X /n D 0 for m < 0 and n 2 Z. Similarly, let SHA1

�0.F / consist of all X

such that �m.X /n D 0 for m > 0 and n 2 Z. By [26, Theorem 5.2.3], the triple
.SHA1

.F /;SHA1

�0.F /;SHA1

�0.F // is a nondegenerate t –structure, called the homotopy
t –structure.

In the usual fashion, we can define SHA1

�m.F / and SHA1

�m.F / for m 2 Z, and the
adjoints to inclusion ��mW SHA1

.F /! SHA1

�m.F / and ��mW SHA1

.F /! SHA1

�m.F /.
For X 2 SHA1

.F / we define

HmX WD ��m��mX;
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and call H0X the heart of X. Morel identifies the heart SHA1

�0.F /\SHA1

�0.F / of the
homotopy t –structure with the so-called category of homotopy modules4 but we will
not use this result here.

The next lemma follows from [14, Section 2.3]. We include a proof for completeness.

Lemma 4.6 Let E be a motivic ring spectrum. Then H0E is a motivic ring spectrum
as well.

Proof The multiplication on H0E arises as a composite

H0E ^H0E!H0.H0E ^H0E/!H0E:

We begin by constructing the second map. First observe that H0.H0E ^H0E/ '

H0.��0E ^ ��0E/. Then H0.H0E ^H0E/!H0E arises by applying H0 to the
natural map ��0E ^ ��0E! ��0E .

To construct H0E ^H0E!H0.H0E ^H0E/, simply observe that whenever A is
connective, there is a natural map A!H0A (which is just the natural map A! ��0A).

It is formal to check that the above map H0E ^H0E!H0E and the unit

S0
!H0S0

!H0E

make H0E a monoid in SHA1

.F /, as desired.

4.4 Cellularization

Write i W SHA1

.F /cell � SHA1

.F / for the homotopy category of motivic cell spectra,
ie the localizing subcategory generated by SmCn˛ , for m; n 2 Z. Recall from [12,
Proposition 7.3] that, on the level of homotopy categories, there is a functor

CellW SHA1

.F /! SHA1

.F /cell

which is right adjoint to the inclusion. As is standard, we will abuse notation and write
again Cell.X / for i Cell.X /. In particular, we have a natural map Cell.X /!X . Note
also that Cell is a lax symmetric monoidal functor, as it is right adjoint to a symmetric
monoidal functor. We immediately conclude the following.

Lemma 4.7 Let E be a motivic ring spectrum. Then Cell.E/ is a motivic ring
spectrum as well.

4These are KMW
� .F /–modules M � equipped with contraction isomorphisms .M nC1/�1 ŠM n ,

where . /�1 is Morel’s contraction construction [26, Definition 4.3.10].
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4.5 Field spectra and explicit primes in Spc.C.F //

We now build some cellular field spectra and realize some explicit tensor triangular
primes in C.F /. We write

Hcell
0 .E/ WD Cell.H0.E//:

Lemma 4.8 Fix p 2 Spech.KMW
� .F // and suppose there exists a (homotopy associa-

tive) ring spectrum E such that �0.E/�ŠL.p/ as KMW
� .F /–modules. Then Hcell

0
.E/

is a field in SHA1

.F /cell and ��.kerC.F /.H
cell
0
.E///D p.

Proof First, note that Lemmas 4.6 and 4.7 imply that Hcell
0
.E/ is a cellular ring

spectrum.

Let M be a Hcell
0
.E/–module and note that ��.M /� is an L.p/–module. Since

L.p/ is a graded field, we may choose a homogeneous basis for ��.M /� as a free
��.Hcell

0
.E//�–module. This basis induces a mapW

�2ƒ

†�Hcell
0 .E/!M;

where each � is in Z˚Zf˛g, which induces an isomorphism on homotopy groups.
This map is thus a weak equivalence since homotopy groups detect weak equivalences
between cellular motivic spectra. Hence M is free, as desired, so Hcell

0
.E/ is a cellular

motivic field spectrum.

By Proposition 4.2, kerC.F /.H
cell
0

E/ is in Spc.C.F //. Moreover,

��.kerC.F /.H
cell
0 E//

D ff 2KMW
� .F / j cone.f / 62 kerC.F /.H

cell
0 .E//g

D ff 2KMW
� .F / jHcell

0 .E/^ cone.f / 6' � g

D ff 2KMW
� .F / jHcell

0 .E/
f
�! S�˛^Hcell

0 .E/ is not a weak equivalenceg

D ff 2KMW
� .F / jL.p/

�f
�!L.p/ is not an isomorphismg

D p:

Proposition 4.9 If p 2 Spech.KMW
� .F // is one of types (3)–(6) in Theorem 2.1, then

there exists a motivic ring spectrum E 2 SHA1

.F / such that �0.E/� ŠL.p/.

Proof First suppose pD .ŒF��; 2/ is of type (3), so L.p/ŠF2Œ�
˙1�. Fix an embedding

i W F ,! xF of F into an algebraic closure xF . The functor i�W SHA1

.F /! SHA1

. xF /
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has a right adjoint, i� , which is lax-symmetric monoidal. In particular, i� preserves
motivic ring spectra. Let KT xF denote Witt K–theory [17] over xF . Then we may take
E D i�KT xF . Indeed, we may compute

�0.E/� Š ŒS
0;S�˛ ^ i�KT xF �SHA1

.F /

Š ŒS��˛; i�KT xF �SHA1
.F /

Š ŒS��˛;KT xF �SHA1
. xF /

ŠW . xF /Œ�˙1�

Š F2Œ�
˙1�;

since the Witt ring of an algebraically closed field is always isomorphic to F2 via the
rank homomorphism.

Now suppose that F is formally real with ordering ˛ . (This is necessary for primes of
types (4)–(6) to exist.) Fix an embedding j W F ,! F˛ . Suppose that p is of type (4),
so that L.p/ Š QŒ�˙1�. Then we may take E D j�KTF˛

˝Q, and a computation
similar to that above gives

�0.E/� ŠQŒ�˙1�;

since W .F˛/Š Z.

Suppose that p is of type (6), so L.p/Š Fp Œ�
˙1�. Then we may take ED j�KTF˛

=p ,
and we again get the desired isomorphism

�0.E/� Š Fp Œ�
˙1�:

Now suppose pD .ŒP˛ �; �; 2/ is of type (5), so that L.p/Š F2ŒŒ�1�˙1�. Let .HF2/F˛

denote the mod-2 motivic cohomology spectrum over F˛ . Let Œ�1��1.HF2/F˛
denote

the colimit of iterated multiplication by Œ�1� on .HF2/F˛
. Then we may take E D

j�Œ�1��1.HF2/F˛
. Indeed, we compute

�0.E/� Š
�
S0;S�˛ ^ j�Œ�1��1.HF2/F˛

�
SHA1

.F /

Š
�
S��˛; j�Œ�1��1.HF2/F˛

�
SHA1

.F /

Š
�
S��˛; Œ�1��1.HF2/F˛

�
SHA1

.F˛/

Š Œ�1��1KM
� .F˛/

Š F2ŒŒ�1�˙1�:

The penultimate isomorphism utilizes the Milnor conjecture [34], while the final
isomorphism is an invocation of [25, Example 1.6].
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Combining Lemma 4.8 and Proposition 4.9, we arrive at the following list of explicit
primes in C.F / and their images in Spech.KMW

� .F //.

Theorem 4.10 Fix an embedding i W F ,! xF of F into its algebraic closure. If
˛ 2 XF ¤ ¿, fix an embedding j D j˛W F ,! F˛ of F into its real closure with
respect to ˛ . Let

E3D i�KT xF ; E4D j�KTF˛
˝Q; E5D j�Œ�1��1.HF2/F˛

; E6D j�KTF˛
=p:

Writing
Pi D kerC.F /.H

cell
0 .Ei//;

we have

��.P3/D .ŒF
��; 2/; ��.P4/D .ŒP˛ �; h/;

��.P5/D .ŒP˛ �; �; 2/; ��.P6/D .ŒP˛ �; h;p/:

Remark 4.11 In Proposition 5.3 we will determine explicit tensor triangular primes
living over primes in KMW

� .F / of types (1) and (2). These are realized as acyclics for
field spectra in Remark 6.4.

5 Betti realization and tensor triangular primes

In this section, we study the role of Betti realization functors in determining tensor
triangular primes in SHA1

.F /c . We consider both the complex Betti realization functor

ReB;i W SHA1

.F /c! SHfin

associated with a complex embedding i W F ,! C and, for each ˛ 2 XF , the C2 –
equivariant Betti realization functor

ReC2

B;j
W SHA1

.F /c! SH.C2/
c

associated with an order-preserving embedding j W F ,!R. See [15, Section 4.4] for a
review of these constructions. We will frequently leave the embedding into C or R

implicit and call these functors ReB and ReC2
B , respectively.

In order to study Spc.ReB/ and Spc.ReC2
B /, we will need to know the structure of the

spaces Spc.SHfin/ and Spc.SH.C2/
c/, respectively. We recall these spaces in the next

two subsections, following Balmer [7] and Balmer and Sanders [10], respectively. In
the final subsection, we present our results on Spc.ReB/ and Spc.ReC2

B /.
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5.1 Tensor triangular primes in SHfin

Building on [16], Balmer determines the structure of Spc.SHfin/ in [7, Section 9]. We
briefly recall the result here.

Let p be a rational prime and let n be a positive integer. Let K.p; n � 1/ denote
.n�1/th Morava K–theory at the prime p , with the convention that K.p; 0/DHQ,
the rational Eilenberg–MacLane spectrum. Let Cp;n denote the kernel of K.p; n�1/–
homology.5 In particular, Cp;1 D Cq;1 for all p , q , and we denote this set by C0;1 .
Let Cp;1 denote the set of p–locally trivial spectra.

Theorem 5.1 [7, Corollary 9.5] Every element of Spc.SHfin/ is of the form Cp;n for
some rational prime p and n a positive integer or1. The only duplication occurs when
nD 1, in which case Cp;1 D C0;1 , the set of finite-torsion spectra. The Hasse diagram
for Spc.SHfin/ takes the form shown in Figure 2, and the closure of S � Spc.SHfin/

consists of all the elements in or above S in the Hasse diagram.

C2;1 C3;1 C5;1 C7;1 : : :

:::
:::

:::
:::

C2;4 C3;4 C5;4 C7;4 : : :

C2;3 C3;3 C5;3 C7;3 : : :

C2;2 C3;2 C5;2 C7;2 : : :

C0;1

Figure 2: The Hasse diagram for Spc.SHfin/ . Inclusion of tensor triangular
primes is downwards, and closure is upwards in the diagram.

5Balmer sets Cp;n equal to the kernel of K.p; n� 1/^ . /.p/ . Since K.p; n� 1/ is already p–local
and p–localization is smashing, we have ker K.p; n� 1/D ker K.p; n� 1/^ . /.p/ .
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5.2 Tensor triangular primes in SH.C2/c

In [10], Balmer and Sanders completely determine the tensor triangular spectrum
Spc.SH.G/c/ for G a finite group of square-free order. Here we recall their results,
specializing to the group G D C2 .

Let p be a rational prime or 0, let n be a positive integer or 1, let H be a subgroup
of C2 , and let ˆH W SH.C2/! SH denote the geometric fixed points functor for H .
Define

P.H;p; n/D .ˆH /�1.Cp;n/:

Theorem 5.2 [10, Theorem 8.12 and Diagram (1.3)] Every element of Spc.SH.C2/
c/

is of the form P.H;p; n/ for precisely one H , p and n. The Hasse diagram for
Spc.SH.C2/

c/ takes the form shown in Figure 3 and the closure of S � Spc.SH.C2/
c/

consists of all the elements in or above S in the Hasse diagram.

: : : P.C2; 5;1/ P.C2; 3;1/ P.C2; 2;1/ P.e; 2;1/ P.e; 3;1/ P.e; 5;1/ : : :

:::
:::

:::
:::

:::
:::

: : : P.C2; 5; 4/ P.C2; 3; 4/ P.C2; 2; 4/ P.e; 2; 4/ P.e; 3; 4/ P.e; 5; 4/ : : :

: : : P.C2; 5; 3/ P.C2; 3; 3/ P.C2; 2; 3/ P.e; 2; 3/ P.e; 3; 3/ P.e; 5; 3/ : : :

: : : P.C2; 5; 2/ P.C2; 3; 2/ P.C2; 2; 2/ P.e; 2; 2/ P.e; 3; 2/ P.e; 5; 2/ : : :

P.C2; 0; 1/ P.e; 0; 1/

Figure 3: The Hasse diagram for Spc.SH.C2/
c/ . Inclusion of tensor triangu-

lar primes is downwards, and closure is upwards in the diagram.
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5.3 The maps Spc.ReB/ and Spc.ReC2

B
/

Proposition 5.3 Suppose that F embeds into C with associated Betti realization
functor ReB . Then the composite map ��ıSpc.ReB/W Spc.SHfin/!Spech.KMW

� .F //

takes the values
C0;1 7! .ŒF��; �/,

Cp;n 7! .ŒF��;p; �/;

for all p and n� 2. In particular, the image of �� ıSpc.ReB/ is

V� n f.ŒP˛ �; 2; �/ j ˛ 2XF g,

the collection of primes of type (1) or (2).

Proof Let ��.S0/ denote the cohomotopy groups of the sphere, so that �n.S0/D

ŒS0;Sn�Š ��n.S
0/. Betti realization induces a commutative diagram

Spc.SHfin/
Spc.ReB/

//

��

S1

��

Spc.SHA1

.F /c/

��
S˛

��

Spech.��.S0// // Spech.KMW
� .F //

wherein the bottom horizontal arrow takes �>0.S0/ to .ŒF��; �/ and .p; �>0.S0//

to .ŒF��;p; �/. The rest of the computation is easy.

For completeness, we include the following slight enhancement of [7, Proposition 10.4].

Corollary 5.4 When F D C , the map Spc.ReB/ is monic with image contained
in supp.P2/.

Proof Let c�W SHfin
! SHA1

.F /c be the functor induced by the constant presheaf
functor. The map Spc.ReB/ is monic because ReB ı c�D id. Since XF D¿, the image
of the map �� ıSpc.ReB/ is exactly V� , and .��/�1.V�/D supp.C�/D supp.P2/.

We now turn to the study of Spc.ReC2
B / when F has a real embedding.

Proposition 5.5 Suppose F has an embedding into R compatible with ˛ 2XF , and
let ReC2

B;˛
denote the corresponding C2 –equivariant Betti realization functor. Then
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the composite map �� ı Spc.ReC2

B;˛
/W Spc.SH.C2/

c/ ! Spech.KMW
� .F // takes the

following values:

P.e; 0; 1/ 7! .ŒF��; �/,

P.C2; 0; 1/ 7! .ŒP˛ �; h/,

P.e;p; n/ 7! .ŒF��;p; �/ for all p and n� 2,

P.C2;p; n/ 7! .ŒP˛ �;p; h/ for p ¤ 2 and n� 2,

P.C2; 2; n/ 7! .ŒP˛ �; 2; �/ for n� 2.

Remark 5.6 If F admits an embedding into R then for each ˛ 2 XF there is an
embedding compatible with the ordering ˛ . The proposition implies that the union of
the images of all of the resulting �� ıSpc.ReC2

B;˛
/ is

Spech.KMW
� .F // n f.ŒF��; 2/g.

Proof Let gD ��ıSpc.ReC2

B;˛
/. It is easy to check that g.P.e; 0; 1//D .ŒF��; �/ and

g.C2; 0; 1/D .ŒP˛ �; h/. Since g is continuous, we know that g.P.e; 0; 1//� .ŒF��; �/,
where . / denotes the closure operator. Observing the form of Spc.SH.C2/

c/ in
Figure 3 and of Spech.KMW

� .F // in Figure 1, we see that g.P.e;p; n//D .ŒF��;p; �/

for all p and n� 2.

We now check that g.P.C2; 2; n//D .ŒP˛ �; 2; �/ for n � 2. Since g.P.C2; 0; 1//D

.ŒP˛ �; h/, it follows from the closure continuity condition that g.P.C2; 2; n// is either

.ŒF��; 2; �/ or .ŒP˛ �; 2; �/. Observe, though, that ˆC2 ReC2
B;˛ C Œ�1� ' �. (Simply

apply ˆC2 ReC2
B;˛ to the defining cofiber sequence for C Œ�1�.) Thus

Œ�1� 62 ��.Spc.ReC2
B;˛/.P.C2; 2; n///

D ff 2KMW
� .F / j .ˆC2 ReC2

B;˛ Cf /.2/ ^K.2; n�1/ 6' �g:

Also g.P.C2; 2; n// ¤ .ŒP˛ �; h/ since, for example, ˆC2.C�/^K.2; n�1/ 6' � so
� 2 g.P.C2; 2; n//. We conclude that g.P.C2; 2; n//D .ŒP˛ �; 2; �/.

A similar argument shows that g.C2;p; n/D .ŒP˛ �;p; h/ for p odd and n� 2.

Remark 5.7 By Theorem 1.1 and the fact that C�'†P2 , we know that .ŒF��; 2/
belongs to ��.supp.P2//. This and Proposition 5.5 imply that Spc.ReC2

B / does not
hit all of supp.P2/, indicating that the tensor triangular spectrum Spc.SHA1

.R/c/

is richer than Spc.SH.C2/
c/. Compare with Corollary 5.4. The moral seems to
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be that significant new ideas are necessary to unravel the structure of supp.P2/ �

Spc.SHA1

.F /c/.

Corollary 5.8 When F �R, the map Spc.ReC2
B / is monic with image contained in

.��/�1
�
Spech.KMW

� .F //nf.ŒF��; 2/g
�
¨ Spc.SHA1

.F /c/:

Proof Denote the functor of [15, Theorem 4.6] by c�
F Œi�=F

. The map Spc.ReC2
B / is

monic since ReC2
B ıc

�
F Œi�=F

D id. The restriction on the image of Spc.ReC2
B / follows

immediately from Proposition 5.5.

Remark 5.9 This answers a question posed in [21, Remark 7.2.11]. In particular,
Spc.ReC2

B / is never surjective.

We conclude this section by providing a sketch of known structures in Spc.SHA1

.F /c/

when F is a subfield of R with precisely one ordering. (For example, F could be
R itself.) See Figure 4 below. These structures include the images of the injective
maps Spc.ReB/ and Spc.ReC2

B / along with a mysterious (but nonempty) subspace
.��/�1.ŒF��; 2/. We have also drawn the map �� with target Spech.KMW

� .F // so that
known parts of fibers are aligned vertically over their images. Note that we have drawn
Spech.KMW

� .F // in a fashion slightly different from that in Figure 1 so as to highlight
similarities with Spc.SH.C2/

c/.

The interested reader can easily elaborate upon Figure 4 in the case where F is a
subfield of R with more than one ordering. The result would be an “XF fan” over
primes in KMW

� .F / of types (4)–(6). To see what is known for F a nonreal subfield
of C , simply delete everything of these types.

Remark 5.10 Since the first version of this paper was written, work of Bachmann [4]
appeared, which makes it possible to completely specify U.cone.Œ�1�//, the portion
of the spectrum Spc.SHA1

.F /c/ living over primes in KMW
� .F / of types (4)–(6).

Bachmann proves that SHA1

.F /ŒŒ�1��1� is equivalent to SH.XF /, the homotopy
category of sheaves of spectra on XF . It follows that U.cone.Œ�1�// is homeomorphic
to Spc.SH.XF //. Thus U.cone.Œ�1�// is the product of XF with the topological space
specified by the towers on the left-hand side of Figure 4.
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: : : .ŒP˛; h; 5/ .ŒP˛; h; 3/ .ŒP˛; h; 2/ .ŒF
��; 2/

.ŒP˛; h/ .ŒF��; �/

.ŒF��; 2; �/ .ŒF��; 3; �/ .ŒF��; 5; �/ : : :

Figure 4: Known structures in Spc.SHA1
.F /c/ for F a subfield of R with

one ordering ˛ , arranged fiberwise over Spech.KMW
� .F // with respect to �� .

6 Field spectra for SHA1

.F /c

In Section 4, we constructed fields in the homotopy category of cellular spectra. Acyclics
for these fields gave explicit tensor triangular primes in C.F /. In this section we
further explore motivic fields. We begin by showing that fields from the topological
stable homotopy category can be imported into SHA1

.F /, when F admits a complex
embedding.

If F is a subfield of C then we have an adjoint pair ReBW SHA1

.F /� SH WSB , where
ReB extends the functor sending a smooth complex variety X to the space X.C/. Simi-
larly, if F is a subfield of R, we have an adjoint pair ReC2

B W SHA1

.F /� SH.C2/ WS
C2

B
.
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In order to treat both of these cases simultaneously, we write

ReW SHA1

.F /� SH.G/ WS

for either of these pairs, where G is either feg or C2 .

Lemma 6.1 The functor SW SH.G/! SHA1

.F / commutes with all coproducts.

Proof For any X in Sm=F and any n 2 Z, we have that †n
T

XC is dualizable by
[30, Theorem 4.9], and since Re is symmetric monoidal, Re.†n

T
XC/ is dualizable

(see eg [13, Proposition 3.10]), hence compact. Using adjunction, it is straightforward
to verify thath

†n
T XC;

W̨
S.E˛/

i
SHA1

.F /
Š

h
†n

T XC;S
�W̨

E˛

�i
SHA1

.F /
;

which implies that the map
W
˛ S.E˛/! S

�W
˛ E˛

�
is an equivalence.

Lemma 6.2 The canonical map

S.K/^X
'
�! S.K ^Re.X //

is an equivalence for any K in SH.G/ and any X in SHA1

.F /.

Proof The map of the lemma is the composite of maps

S.K/^X ! S.K/^S Re.X /! S.K ^Re.X //:

Consider the full subcategory A� SHA1

.F / whose objects satisfy the condition that
S.K/^X 'S.K^Re.X //. The category A is triangulated and by the previous lemma
it is closed under arbitrary coproducts, ie it is a localizing subcategory. It therefore
suffices to show that A contains every compact spectrum X .

Since F has characteristic zero, every smooth quasiprojective F –scheme is dualiz-
able by [30, Theorem 4.9]. By [18, Theorem 2.1.3], this implies that SHA1

.F /c is
equal to the category of dualizable objects. Since Re is strong symmetric monoidal,
Re.DX /'D.Re X / and F.Y;S.K//' SF.Re.Y /;K/; see eg [13, Proposition 3.10
and Equation (3.4)]. We thus have equivalences

S.K/^X ' F.DX;S.K//

' SF.Re.DX /;K/

' SF.D.Re X /;K/

' S.K ^Re X /:
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The image of Spc.Re/W Spc.SH.G/c/! Spc.SHA1

.F /c/ is characterized as follows.

Theorem 6.3 Let K be a field in SH.G/. Then S.K/ is a field in SHA1

.F /. More-
over, letting ker K 2 Spc.SH.G/fin/ be the prime ideal of K–acyclics, we have

Spc.Re/.ker K/D ker.S.K//:

Proof The functor S is lax monoidal as it is right adjoint to a monoidal functor. In
particular, if K is a ring in SH.G/, then S.K/ is a ring in SHA1

.F /.

Let c� denote the functor from [15, Theorem 4.6]. We first observe that if X is an
S.K/–module then Re.X / is a K–module. To see this, first note that the adjoint of
the canonical isomorphism Re c�.K/ŠK is a ring map c�.K/! S.K/. Therefore
X is a c�.K/–module and hence Re.X / is a K–module. Since K is a field, we have
that Re.X /D

W
˛ K . It follows from Lemma 6.1 that S Re.X /'

W
˛ S.K/ and so

S Re.X / is a free S.K/–module.

Now consider the following comparison of retracts:

X //

��

S.K/^X //

'

��

X

��

S Re.X / // S.K ^Re.X // // S Re.X /

By Lemma 6.2 the middle arrow is an equivalence and therefore so is the outer arrow
and so X is a free S.K/–module as well. This establishes the first statement.

To establish the second statement, we need to see that S.K/^X ' � if and only if
K ^Re X ' �. This follows from Lemma 6.2 and the observation that if S.Z/' �
then Z ' � (since �n.Z/D ŒS

n;S.Z/�SHA1
.C/ ).

Remark 6.4 In particular, Theorem 6.3 and Proposition 5.3 imply that ker.SB.HQ//

and ker.SB.K.p; n�1/// are in Spc.SHA1

.F //, mapping to .ŒF��; �/ and .ŒF��;p; �/,
respectively, under �� .

Similarly, one can show that

ker.SC2
B .EC2C ^K.p; n� 1/// and ker.SC2

B . zEC2 ^K.p; n� 1//

belong to Spc.SHA1

.F //, with images under �� specified by Proposition 5.5.

Lastly we note the following restriction on fields in SHA1

.F /.
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Proposition 6.5 Let F be a subfield of C . If E is a field in SHA1

.F / then ReB.E/

is either a sum of suspensions of Morava K–theories or it is contractible. Moreover in
the first case, idE ^ �' �.

Proof Since ReB.E/^X ' ReB.E ^ c�X / and E is a field, ReB.E/^X is free
over ReB.E/ for any X in SH. Thus if ReB.E/ is not contractible, it is a sum of
suspensions of Morava K–theories by [16, Proposition 1.9].

Assume the E is not contractible. Then the E–algebra SB ReB.E/ is also not con-
tractible. Since it is also free, P ^E is a retract of SB ReB.E/ for some invertible
motivic spectrum P .

Now, via the equivalence of Lemma 6.2, we have a commutative diagram of maps:

SB ReB.E/
id^�

//

S.id^�top/ ((

SB ReB.E/^S�˛

'
��

SB.ReB.E/^S�1/

Since �top acts by zero on Morava K–theory, it follows that idSB ReB.E/ ^ �' � and
hence idP^E ^ �' � and since P is invertible, idE ^ �' �.

Remark 6.6 If F is real closed, then XF D� and [4] imply SHA1

.F /ŒŒ�1��1�' SH,
the classical Spanier–Whitehead category. Let EM.W Œ�˙1�˝Q/ denote the Eilenberg–
MacLane object associated with the homotopy module given by the rationalization of the
Witt sheaf, and note that this object lives in SHA1

.F /ŒŒ�1��1� since .2C Œ�1��/�D 0.
Under Bachmann’s equivalence, this object is sent to the rational Eilenberg–MacLane
spectrum HQ, which is a field in SH. Since every EM.W Œ�˙1�˝Q/–module is
Œ�1�–periodic, we may conclude that EM.W Œ�˙1�˝Q/ is a motivic field spectrum.
Similarly, EM.W Œ�˙1�=p/ is a motivic field spectrum for all odd primes p . Of course,
the complex Betti realizations of such spectra are trivial, but Bachmann’s functor is
a real Betti realization, ie the composition of C2 –equivariant Betti realization with
geometric fixed points.

7 Questions

This section contains a list of questions and commentary thereon. It is the authors’
hope that interested readers will take up these problems and advance our collective
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understanding of the tensor triangular geometry of stable motivic homotopy theory. In
order to speak simultaneously about both compact cellular and all compact spectra, as
before, we will write K.F / to refer to either of C.F / and SHA1

.F /c .

Question 7.1 Is Spc.K.F // rigid in the sense that Spc.i�/ is a homeomorphism
whenever i W F ,! F 0 is an extension of algebraically closed or real closed fields?

This question is motivated by the observations that the ring GW.F / and the space
Spech.KMW

� .F // are rigid amongst these types of extensions. Additionally, the p–
complete cellular categories are rigid for algebraically closed fields. Let us write
C.F /^p � SHA1

.F / for the thick subcategory generated by .Sm˛/^p for m 2 Z. Here
E^p WD LS0=p.E/ is the Bousfield localization with respect to the mod-p Moore
spectrum.

Proposition 7.2 Let i W F ,! F 0 be an extension of algebraically closed fields and p

a prime different from char.F /. Then Spc.C.F /^p /! Spc.C.F 0/^p / is a homeomor-
phism.

Proof By [31, Theorem 1.1], i�W SHA1

.F /^p ! SHA1

.F 0/^p is full and faithful. On
cellular categories it is also essentially surjective and so C.F /^p ! C.F 0/^p is an
equivalence of categories.

Write C.F /Q � SHA1

.F / for the thick subcategory generated by .Sm˛/Q for m 2

Z, and SHA1

.F /cQ for the thick subcategory generated by .XC/Q , where X is a
smooth F –scheme. Work of Cisinski and Déglise [11, Corollary 16.2.14] implies
that when F is nonreal, SHA1

.F /cQ is equivalent to the triangulated category of
rational geometric motives DMgm.F /Q , and similarly that C.F /Q is equivalent to the
triangulated category of rational mixed Tate motives, DMT.F /Q . Write K.F /Q for
either of C.F /Q or SHA1

.F /cQ .

Question 7.3 Is Spc.K.F /Q/D � when F is algebraically closed?

Remark 7.4 Peter’s study [29] of the tensor triangular geometry of DMT.F /Q for
F an algebraic extension of Q implies that Spc.C.Q/Q/D �, so if Question 7.1 has
an affirmative answer, then Spc.C.F /Q/ D � for all algebraically closed fields of
characteristic 0. Also note that, over a finite field, assuming the Beilinson–Parshin
conjecture and that rational and numerical equivalence on algebraic cycles agree,
Kelly [22] has shown that Spc.SHA1

.Fq/
c
Q/D �.
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Remark 7.5 Question 7.3 is hard: as remarked to us by Shane Kelly, it implies the
conservativity conjecture, which states that Betti realization DMgm.C/Q ! D.Q/,
on the category of rationalized geometric motives, is a conservative functor (see [2,
Conjecture 2.1]), or equivalently, ReW SHA1

.C/cQ ! SHfin
Q is conservative. Indeed,

if Spc.SHA1

.C/cQ/D �, then by the classification of thick ideals [5, Theorem 4.10]
there is a unique proper thick ideal in SHA1

.C/cQ . In particular, the proper thick ideals
fX 2 SHA1

.C/cQ j Re.X /' �g and f0g are equal.

In the other direction, we have the following proposition. Recall that a topological
space is local if it has a unique closed point.

Proposition 7.6 If the conservativity conjecture holds, then Spc.K.C/Q/ is local.

Proof The tensor triangulated category K.C/Q is rigid in the sense that every object is
dualizable. By [7, Proposition 4.2] these spaces are local if and only if X^Y '� implies
X '� or Y '�. If X^Y '�, then Re.X^Y /'Re.X /^Re.Y /'�. But since these
are rational spectra, it follows that either Re.X /'� or Re.Y /'�. Since SHA1

.C/cQ is
equivalent to DMgm.C/Q (see [11, Corollary 16.2.14]), the Conservativity Conjecture
implies that either X ' � or Y ' �.

Remark 7.7 More generally, Balmer has shown in [9, Theorem 1.2] that if f W K!L

is a tensor triangulated functor between essentially small, tensor triangulated cat-
egories, where K is rigid, then f is conservative if and only if the induced map
Spc.f /W Spc.L/ ! Spc.K/ is surjective on closed points. This is consistent with
Remark 7.5 and Proposition 7.6 because Spc.SHfin

Q /D �.

Remark 7.8 When F is perfect of finite 2–étale cohomological dimension, Bachmann
has shown in [3, Theorem 15] that the functor M W SHA1

.F /c! DMgm.F / is conser-
vative. By [9, Theorem 1.2], we see that this is equivalent to Spc.M / being surjective
on closed points. Note, though, that Spc.M / is not surjective, as its image does not
intersect .��/�1.ŒF��; 2/. Further study of Spc.DMgm.F // and its relationship with
Spc.SHA1

.F /c/ would be quite interesting.

The following question speculates on the fashion in which Spc.K.F // might be recon-
structed from the tensor triangular spectra of the stable motivic homotopy categories of
the real and algebraic closures of F .
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Question 7.9 Let XF denote the set of orderings on F , and let X �
F
D XF t f1g.

For ˛ 2XF let F˛ denote the real closure of F with respect to ˛ ; let F1D xF denote
the algebraic closure of F . For ˛ 2X �

F
let i˛W F ,!F˛ be a chosen embedding. Each

of these induces a map Spc.i�˛ /W Spc.K.F˛//! Spc.K.F //. Is the mapa
˛2X �

F

Spc.K.F˛//! Spc.K.F //

given by the sum of these maps surjective? Can we explicitly describe Spc.K.F // as
a quotient of

`
˛2X �

F
Spc.K.F˛//?

Note that the analogue of the surjectivity question on Spech.KMW
� .F // is true by Thorn-

ton’s theorem. If we could produce the quotient description and answer Question 7.1
in the affirmative, this would give a robust description of Spc.K.F //.

Question 7.10 What is the structure of Spc.K.C//? Of Spc.K.R//?

While simply stated, the authors believe that this may be the hardest of the questions.
(See Remark 5.7.) Were one to successfully tackle this problem and affirmatively
answer Questions 7.1 and 7.9, one would completely describe Spc.K.F //, at least for
characteristic 0 fields.
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