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Abstract

We produce examples of taut foliations of hyperbolic 3–manifolds which are
R–covered but not uniform — ie the leaf space of the universal cover is R, but
pairs of leaves are not contained in bounded neighborhoods of each other. This
answers in the negative a conjecture of Thurston in [7]. We further show that
these foliations can be chosen to be C0 close to foliations by closed surfaces.
Our construction underscores the importance of the existence of transverse
regulating vector fields and cone fields for R–covered foliations. Finally, we
discuss the effect of perturbing arbitrary R–covered foliations.
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1 R–covered foliations that are not uniform

1.1 R–covered foliations

Definition 1.1 We say a foliation F of a compact 3–manifold M is R–covered
if the pulled back foliation F̃ of the universal cover M̃ of M is topologically
the standard foliation of R3 by horizontal R2 ’s.

The first step in our construction is to produce a manifold M with an R–
covered foliation F which is not uniform. The condition that a foliation be
R–covered is a somewhat elusive one, and in particular it does not seem to be
sufficient to find a cover M̂ of M so that the leaf space of F̂ is R. This is
related to the question of when an infinite braid in R3 is trivial.

Lemma 1.1 A taut foliation F of M is R–covered iff F has no spherical or
projective plane leaves, and for every arc α between two points p, q ∈M there
is an arc α̂ homotopic to α rel. endpoints which is either contained in a leaf of
F or which is everywhere transverse to F .

Proof If F is R–covered, lift α to some α̃ in M̃ and make it transverse there.
If F is not R–covered, either M is covered by S2×S1 or the leaf space L of F̃
is a non-Hausdorff simply connected 1–manifold. This follows from a theorem
of Palmeira, which says that the foliation of R3 by the universal cover of a taut
foliation is topologically equivalent to a product of a foliation on R2 and R,
and therefore such a foliation of R3 by planes whose leaf space is R is a product
foliation (see [5]). In particular, there are distinct leaves λ, µ ∈ L which cannot
be joined by an immersed path in L. That is, the topology of L provides an
obstruction to finding such a α̂ as above.

Note that one does not have an analogue of Palmeira’s theorem for arbitrary
open 3–manifolds — that a foliation with leaf space R should be a product —
and in fact this is not true. For example, remove from R3 foliated by horizontal
R2 ’s a properly embedded bi-infinite transverse curve which does not intersect
every leaf. This is where the difficulty resides in showing that a foliation is
R–covered by investigating an intermediate cover.

Many (most?) taut foliations of 3–manifolds are not R–covered. In particular,
by a theorem of Fenley, an R–covered foliation of a hyperbolic 3–manifold has
the property that in the universal cover, every leaf limits to all of S2

∞ . However,
any compact leaf of a taut foliation which is not a fiber of a fibration over S1

lifts to a quasi-isometrically embedded plane in the universal cover, and its limit
set is a quasicircle (see [3] for a fuller discussion).
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1.2 Uniform foliations

Definition 1.2 A taut foliation F of a compact 3–manifold M is uniform if
in the pullback foliation F̃ of the universal cover M̃ , every two leaves λ, µ are
a bounded distance apart. That is, there is some ε depending on λ, µ so that
λ is contained in the ε–neighborhood of µ, and vice versa. A foliation F is
obtained from a slithering over S1 if there is a fibration φ : M̃ → S1 such that
π1(M) acts as bundle maps of this fibration, and such that the foliation of M̃
by components of the fibers of φ agrees with F̃ . We will also refer to such a
foliation, perhaps ungrammatically, as a slithering.

For additional details and definitions, see [7]. It is shown in [7] that a uniform
foliation with every leaf dense is obtained from a slithering.

It is almost tautological from the definition of a slithering over S1 that the
action of π1(M) on the leaf space L of F̃ is conjugate to a representation in
˜Homeo(S1), the universal central extension of Homeo(S1).

3–manifold topologists will be familiar with the short exact sequence

0→ Z→ ˜PSL(2,R)→ PSL(2,R)→ 0

This sits inside the short exact sequence

0→ Z→ ˜Homeo(S1)→ Homeo(S1)→ 0

Informally, ˜Homeo(S1) is the group of homeomorphisms of R which are peri-
odic with period 1.

Let Z be the generator of the center of ˜Homeo(S1). Then Z acts on L by
translations, and by choosing an invariant metric on L for this action, the
action of every element of π1(M) on L is periodic with some period equal to
the translation length of Z . Z is known as the slithering map.

The condition that a foliation be uniform is reflected in the action of π1(M)
on L in the following way: since leaves do not converge or diverge too much at
infinity, holonomy cannot expand or contract the leaf space too much. Every
compact interval in L can be included in a larger compact interval which is
“incompressible”: no element of π1(M) takes it to a proper subset or superset
of itself. If every leaf is dense, L can be tiled with a countable collection of
these incompressible intervals laid end to end, so that the slithering map Z acts
on this tiling as a permutation.
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Note that a foliation F may come from a slithering in many different ways. For
instance, if F admits a nonsingular transverse measure then the leaf space of
F̃ inherits an invariant measure making it isometric to R. Then for any real
t > 0 there is a slithering

φt : M̃ → S1

defined by the composition
M̃ → L→ S1

where the last map is reduction mod t. Since the action of π1(M) on L pre-
serves the property of points being integral multiples of t apart, this map is a
slithering.

However generic foliations come from a slithering in essentially at most one way.
The slithering map Z commutes with the action of every element of π1(M).
So, for instance, if an element α acts on L with isolated fixed points, the map
Z must permute this fixed point set. If, further, the action of π1(M) on L
is minimal (ie every leaf of F is dense), the map Z is determined uniquely
up to taking iterates. That is, there is a minimal slithering φ : M̃ → S1 with
the property that for every other slithering φ′ : M̃ → S1 determining the same
foliation, there is a finite cover ψ : S1 → S1 so that φ = ψ ◦ φ′ .

This theory is developed in [7].

Following [7] we define some auxiliary structure that will be used to show that
certain foliations are uniform or R–covered.

Definition 1.3 Let X transverse to F be a vector field. Then X is regulating
if the lifts of the integral curves of X to M̃ intersect every leaf of F̃ .

These lifts determine a one dimensional foliation of M̃ . A leaf in this foliation
and a leaf in F̃ intersect in exactly one point, and consequently one can identify
the leaf space of the one dimensional foliation with any fixed leaf of F̃—that
is, with R2 . Such one dimensional foliations are called product covered in [2].
The main point for our purposes of this structure is the following theorem:

Theorem 1.2 Suppose F is uniform (respectively R–covered) and X is a
transverse regulating vector field with a closed trajectory α. Then the restric-
tion of F to M − α is also uniform (respectively R–covered).

Proof The universal cover M̃ of M is foliated as a product by F̃ and the
integral curves of X give this the structure of a product R2 ×R in such a way
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that π1(M) acts by elements of Homeo(R2)×Homeo(R). Let N be obtained
from M̃ by removing the lifts of α. Then N is the cover of M−α corresponding
to the subgroup of π1(M − α) normally generated by the meridian of α. One
sees from the structure of X that N is foliated as a product by infinitely
punctured disks and therefore that Ñ is R3 foliated by horizontal R2 ’s. If F
was uniform, any two leaves in N would be a finite distance apart. But leaves
in Ñ correspond bijectively with leaves in N under the covering projection
and therefore the same is true in Ñ ; that is, the restriction of F to M − α is
uniform.

Notice from the construction that if F came from a slithering, then the restric-
tion of F to M − α comes from a slithering which agrees with the restriction
of the slithering map on M̃ to the complement of the lifts of α.

1.3 Building uniform foliations from representations

Let Fng denote the surface of genus g with n punctures. Then F 1
1 is the punc-

tured torus, and π1(F 1
1 ) = Z ∗Z. Let αl, βl be standard generators for π1(F 1

1 ).

Then we can choose a representation ρ of π1(F 1
1 ) → ˜Homeo(S1) by sending

αl to translation through length t and βl to some monotone element perhaps
with a periodic collection of fixed points, each distance 1 apart. Let Ml be the
trivial circle bundle Ml = F 1

1 × S1 over the punctured torus, and pick a flat
Homeo(S1) connection on this bundle whose holonomy realizes the representa-
tion ρ. Note that after fixing a trivialization of the product, the representation
is well-defined in ˜Homeo(S1) and not just Homeo(S1). The distribution de-
termined by this connection is integrable, by flatness, and integrates to give a
foliation Fl .

Geometrically, there is a foliation of F̃ 1
1 ×S1 by leaves F̃ 1

1 ×point. π1(F 1
1 ) acts

on this space by
(x, θ)→ (α(x), ρ(α)(θ))

which preserves the foliation. This foliation therefore descends to a foliation on

Ml = F̃ 1
1 × S1/π1(M)

transverse to the S1 fibers.

This foliation of Ml comes from an obvious slithering φ : F̃ 1
1 × R → S1 which

is just projection onto the second factor followed by the covering map R→ S1

corresponding to the circles in Ml . The action of π1(Ml) on the leaf space is
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exactly given by the representation ρ in ˜Homeo(S1) thought of as sitting in
Homeo(R).

Then the curve αl × 0 sits in Ml transverse to Fl , and there is also a foliation
on Ml − αl which we also denote by Fl .

It is easy to see that for irrational choice of t the foliation Fl has every leaf
dense.

Furthermore we have the following lemma:

Lemma 1.3 The foliation Fl of Ml − αl comes from a slithering. Further-
more, this slithering can be taken to be the restriction of φ : M̃l → S1 to the
complement of the lifts of αl in M̃l . Moreover, by choosing ρ(βl) suitably
generic, this slithering is minimal as defined above.

Proof By theorem 1.2 it suffices to show there is a regulating vector field
of Ml which agrees with α′l when restricted to α. Since Ml is topologically
just F 1

1 × S1 it has a projection map to F 1
1 . Let H be the torus foliated by

circles that is the preimage of the curve α on F 1
1 under this projection. Then

Ml − N(H) has an obvious codimension 2 foliation by S1 fibers. We extend
this foliation over N(H), which can be parameterized as S1 × S1 × [−1, 1], by
foliating each S1 × S1 × ∗ with parallel lines which rotate continuously from
vertical (parallel to the ∗ × S1 direction in Ml ) on the boundary to horizontal
(parallel to α) on H , always staying transverse to Fl . It is obvious that this
is a foliation by regulating curves, and we denote its associated unit tangent
vector field by Xl .

If we choose ρ(βl) to be generic and close to the identity with isolated fixed
points, the slithering defined in the statement of the theorem is minimal.

On another punctured torus with basis for π1 given by αr, βr we pick another
representation σ in ˜Homeo(S1) so that σ(αr) is translation through s, where
again s is irrational and incommensurable with t, and σ(βr) is some random
element which commutes with Z but not with αr . Then we can form Mr =
F 1

1 ×S1 foliated as above, and remove αr from Mr to produce another foliated
manifold with a slithering.

Let M be obtained by gluing Ml−αl and Mr−αr along the torus boundaries
of neighborhoods of αl and αr respectively. Denote this torus in the sequel by
S ⊂ M . Each piece Ml − αl , Mr − αr admits a regulating vector field Xl,Xr

as constructed in lemma 1.3. We perform this gluing in such a way that the
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foliations of the boundary tori by meridional circles agree. If we like, we can
perform the gluing so that the restriction of the slithering maps for the left and
the right foliations commute, when restricted to their action on the leaf space
of the universal cover of S .

Then
π1(M) = π1(Ml − αl) ∗Z⊕Z π1(Mr − αr)

acts on R by the amalgamated action of each piece on the leaf space of its
respective universal cover, each canonically identified with the leaf space of the
foliation of S̃ .

Topologically, M is a graph manifold obtained from four copies of F 3
0 ×S1 . To

see this, observe that Ml − N(H) (with notation as above) is exactly (F 1
1 −

N(α))× S1 which is F 3
0 × S1 . Also, observe that N(H) = S1× S1× [−1, 1] in

many different ways, including a way in which α is S1 × ∗ × 0. It follows that
N(H) − α is topologically also F 3

0 × S1 . However, these foliations by circles
cannot be made to agree on the boundary tori of different pieces, and M is not
a Seifert fibered space.

Let F denote the induced foliation of M . Is F R–covered? To establish that
it is indeed R–covered, it will suffice to show that each piece is uniform and
admits a regulating transverse vector field Xl,Xr which agree on the gluing
torus to make a global regulating vector field X .

Lemma 1.4 F is an R–covered foliation of M .

Proof Let M̂ foliated by F̂ be the cover of M obtained by taking copies of the
universal covers of Ml and Mr , drilling out countably many copies of the lifts
of αl and αr , then gluing along the boundary components. Then the regulating
vector fields Xl,Xr lift to M̂ to give a global trivialization of this manifold as
a product of an infinite genus Riemann surface with R. This implies that the
universal cover of M̂ is the standard R3 foliated by R2 ’s, and we see therefore
that F is R–covered.

Since every leaf of F is dense in M , if F were uniform it would come from
a slithering by [7]. However, we have seen that the action of π1(M) on the
leaf space of the universal cover is the amalgamation of the actions of π1(Ml −
αl) and π1(Mr − αr) along their gluing Z ⊕ Z. It follows that there is no
single translation µ ∈ Homeo(R) (ie an element without fixed points) which
commutes with both βl and βr for sufficiently generic choice of σ(βr) and ρ(βl),
since the periods of the left and right slithering maps are incommensurable.
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More explicitly, let us fix a lift S̃ of the torus S to M̃ which divides a piece of
M̃ which is a lift of Ml − αl from a piece which is a lift of Mr − αr . Let us
identify the leaf space L with the leaf space of S̃ . Let α ∈ π1(M) corresponding
to the longitude of S preserve S̃ and act on L as a translation. Fix a metric
on L such that α acts as translation through a unit length. Let Zl and Zr be
the translations in Homeo(L) corresponding to the slithering map of Ml − αl
and Mr − αr thought of as acting on the leaf space of S̃ . Then Zl acts as
translation through length 1

s and Zr acts as translation through length 1
t . By

minimality, the only translations in Homeo(L) that commute with ρ(βl) are
multiples of Zl , whereas the only translations that commute with σ(βr) are
multiples of Zr . It follows that no translation commutes with both elements,
and F does not come from a slithering.

We have therefore proved the following theorem:

Theorem 1.5 F as above is R–covered but not uniform.

2 Lorentz cone fields

The following definition is from [7]:

Definition 2.1 On any manifold M , a (Lorentz) cone field C transverse to
a codimension one foliation F is the field of timelike vectors (ie with positive
norm) for a (continuously varying) form on TM of signature (n − 1, 1) such
that TFp are spacelike. A cone field is regulating if every complete curve X
with X ′ ∈ C is regulating for an R–covered F .

Regulating cone fields are discussed in [7], and shown to exist for all uniform
foliations. We show that the example constructed in the previous section admits
a regulating cone field.

Each piece Ml − αl , Mr − αr admits a regulating cone field Cl, Cr which
is degenerate along the boundary torus, coming from the restriction of the
regulating cone fields on Ml,Mr which are tangent to αl and αr . Let C
denote the cone field on M which agrees with Cl and Cr away from a collar
of the separating torus, and which near this separating torus is sufficiently thin
so that every curve which crosses this collar must wind a distance at least T ,
as measured in periods of the longitude, transverse to the foliation.

Theorem 2.1 C as defined above is a regulating cone field for F .
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Proof We will do our calculations in M̂ , using the fact that M̂ admits a
regulating vector field coming from Xl,Xr which preserves each uniform piece.
Observe that M̂ has a decomposition into a countable collection of covering
spaces of Ml − αl , Mr − αr which we denote Li, Ri for some particular choice
of indices i. Also label the separating cylinders, all of them lifts of the gluing
torus in M , as Ai for some index i. Let di denote the metric on L, the leaf
space of F̂ , given by the transverse measure on F|S scaled so that the curves
αl = αr have period 1 and so that the left and right slithering maps act by
translations of this measure, as measured in the cylinder Ai . Then we claim
the following lemma:

Lemma 2.2 If Ai and Aj are separated by n cylinders Ak then for any two
leaves λ, µ ∈ L,

|di(λ, µ)− dj(λ, µ)| ≤ (n+ 1) max(
1
s
,

1
t
)

Proof The proof follows immediately by induction once we show the result for
n = 0. If Ai and Aj bound a single Li or Ri , then the fact that the pieces Li
and Ri slither over S1 implies that di(λ, µ) and dj(λ, µ) differ by at most one
period of the slithering, which in terms of the measure on the boundary torus,
is either 1

s or 1
t depending on whether we are in an Li or an Ri .

Let r = max(1
s ,

1
t ).

Now we will show that any curve γ supported by C makes definite progress
relative to any given di , and therefore relative to all of them. In particular, it
is regulating. After re-ordering indices, any such infinite curve in M̂ , starting
on some leaf λ ∈ L1 , can be broken up into segments γ1, γ2, . . . where each
γi is contained in Li or Ri (according to sign). It is clear that if there are
only finitely many γi (ie γ crosses only finitely many separating annuli) then
eventually γ can be seen to be regulating, since it is supported by some lift of
Cr or Cl . So we suppose there are infinitely many γi . Let Yi be the union of
the first i segments of γ . Let Zi be the shadow of Yi on λ; that is, the curve
on λ obtained by projecting M̂ to λ along the integral curves of X . Let Y ′i
be the integral curve of X interpolating between the endpoint of Zi and the
endpoint of Yi . Then di(Yj) = di(Y ′j ) for all i, j since the curves Yj and Y ′j
have endpoints on the same pair of leaves.

We can estimate d1(Y ′1) ≥ T by hypothesis on C . It follows that d2(Y ′1) ≥ T−r .
But then d2(Y ′2) ≥ 2T − r and so d3(Y ′2) ≥ 2T − 2r . Continuing in this way
and by induction, we get dn(Y ′n) ≥ nT − nr . But then

d1(Yn) = d1(Y ′n) ≥ nT − 2nr
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and one can see that by choosing T � 2r the curve γ makes arbitrary progress
relative to some fixed di , and therefore is regulating.

An instructive analogy is given by the comparison between imperial and metric
weights and measures: suppose I have a small object which I can measure to
the nearest inch or to the nearest centimeter. Then I get estimates which vary
greatly compared to the length of the object. If the object is much bigger, the
estimates are comparatively better. My regulating curve above makes definite
progress, even though its progress is translated into inches, then centimeters,
then inches, then centimeters . . . rounding down every time.

2.1 A hyperbolic example

Theorem 2.3 Suppose M ,F is any compact oriented 3–manifold with a co-
orientable R–covered foliation, and suppose that F admits a transverse regu-
lating Lorentz cone field C . Let γ be any simple closed curve supported by C .
If Mn(γ) is obtained by taking an n–fold branched cover over γ , and Fn(γ)
denotes the pullback foliation, then Fn(γ) is R–covered. Moreover, Fn(γ) is
uniform iff F is.

Proof The point of having a regulating cone field C is that for any γ supported
as above, there is a regulating vector field X of M so that X|γ = γ′ . This
follows immediately from obstruction theory, once one notices that sections of
C are contractible; eg use a partition of unity.

Now in M̃ , the universal cover of M , γ lifts to a collection of bi-infinite regu-
lating curves, and M̃n(γ) is the universal orbifold cover of M̃ where we declare
that there are order n cone angles along the lifts of γ . Let F̃n(γ) be the pull-
back foliation in that universal orbifold cover and let λ, µ be two leaves there.
They can be joined by some arc α in the complement of the lifts of the cone
locus, which projects to an arc π(α) in M̃ . By homotoping π(α) rel. endpoints
along integral curves of X , we can make it transverse to F̃ without crossing any
lift of γ . Then this perturbed π(α) lifts to a perturbed α in M̃n(γ) transverse
to F̃n(γ), thereby demonstrating that Fn(γ) is R–covered, as required.

If F was not uniform, there would be a pair of leaves in F̃ which diverge at
infinity. They lift to leaves with the same property in F̃n(γ). Alternatively, the
uniformity or lack thereof can be seen in the action of π1(Mn(γ)) on R.
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We return to the example M that we constructed in the previous section. In
M , it is clear that we can choose a curve γ supported by C whose complement
is hyperbolic. For, we can certainly do this in each side of M , and then by
crossing back and forth across the separating torus, we can arrange for the
complement of γ to be atoroidal. In particular, by choosing ρ(βl) and σ(βr)
to be sufficiently close to translations, the regulating cone fields Cl and Cr can
be as “squat” as we like, and we have a great deal of freedom in our choice of
the restriction of γ to the complement of a collar neighborhood of S .

For example, if ρ, σ are chosen so that every element acts on the leaf space as
a translation through a rational distance, F would be a surface bundle over a
circle; in a product bundle, a curve whose projection to S1 is a homeomorphism
and whose projection to the base surface fills up the surface (ie complementary
regions for the geodesic representative are disks) has atoroidal complement.
Similar curves are easily found in any surface bundle, and one can arrange
for them to wind several times in the circle direction when they pass through
some reducing torus. The point is that any sufficiently complicated curve will
suffice. Then for nearby choices of ρ, σ , such a curve will still be regulating
and contained in the regulating Lorentz cone field, as we show in the following
lemma:

Lemma 2.4 Suppose F ′l is a transversely measured foliation of Ml − αl as
above coming from some representation ρ(βl) = translation, and let C ′ be a
transverse Lorentz cone field for F ′l appropriately degenerate near αl . Then
for slitherings Fl coming from sufficiently close choices of ρ(βl), the cone field
C ′ is regulating for Fl .

Proof We need to check for sufficiently mild perturbations Fl of F ′l that any
curve supported by C ′ passes through at least one period of the slithering of
Fl , since then it must pass through arbitrarily many such periods and therefore
be regulating.

Observe first that any transverse Lorentz cone field is regulating for a trans-
versely measured foliation, since one can uniformly compare distance along a
curve supported by the cone field and distance with respect to the transverse
measure.

For Fl sufficiently close to F ′l , C ′ is a transverse Lorentz cone field for Fl .
The codimension 2 foliation Xl described in lemma 1.3 is regulating for every
choice of ρ(βl), and we assume that this foliation lifts to the vertical foliation of
R3 by point× R. We choose co-ordinates on R3 so that the regulating curves
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are of the form x = const., y = const. and the leaves of F̃ ′l are of the form
z = const.

The slithering on Ml−αl comes from the slithering on Ml associated with the
circle bundle as above. We assume that the circles of the Seifert fibration away
from N(H) lift to vertical arcs of length 1.

With this choice of co-ordinates, for any foliations Fl constructed from a rep-
resentation as above and for every x, y, z , the points (x, y, z) and (x, y, z + 1)
in the universal cover are on leaves which are one period of the slithering apart.

For a point p in M̃l given in co-ordinates by (x, y, z), let λp be the leaf of F̃l
through p, and µp the leaf of F̃l through (x, y, z + 1). Then the leaves λp
and µp differ by a translation parallel to the z -axis of length 1. Note that this
translation need in no way correspond to the action of an element of π1(Ml)
on M̃l . The light cone of C ′ through p intersects the horizontal plane passing
through (x, y, z+1) in a compact region. For sufficiently small perturbations of
ρ(βl), the leaf µp will be a small perturbation of the horizontal plane through
p, and the intersection of the light cone of C ′ through p with µp will also be a
compact region.

Now, Ml−αl is not compact, but we can consider its double N , foliated by the
double of F ′l , and equipped with a transverse Lorentz cone field obtained by
doubling C ′ which is degenerate along the boundary components of Ml − αl .
The compactness of N implies that for a sufficiently small perturbation F ′l of
Fl , the intersections as above will be compact for all p. This implies that a
curve supported by C ′ will need to go only a bounded distance before traveling
a full period of the slithering. In particular, any bi-infinite curve supported by
C ′ will travel through infinitely many periods of the slithering in either direction
and will therefore be regulating, which is what we wanted to show.

Remark 2.1 What is really essential to notice in the above set up is that the
leaves passing through (x, y, z) and (x, y, z+ 1) in the universal cover were one
period of the slithering away from each other for all Fl . In some sense, all the
slitherings are determined by the structure of the Seifert fibration where they
originated. For a generic perturbation of a uniform foliation, one has no control
over how the slithering map may vary, or even whether the perturbed foliations
are uniform at all.

Since for a transversely measured foliation, any transverse Lorentz cone field is
regulating, we can choose our curve γ to be any curve transverse to a measured
foliation F ′l with hyperbolic complement which is sufficiently steep near the
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separating torus, and then choose the representation ρ(βl) to be sufficiently
close to a translation that γ stays in a regulating cone field.

Since M − γ is hyperbolic, for sufficiently large n an n–fold branched cover of
M over γ is hyperbolic. One cannot be sure that an n–fold branched cover will
always exist, but at least one has a hyperbolic orbifold structure on M with
cone angle 2π/n along γ , and by Selberg’s lemma (see [6]) one knows this is
finitely (orbifold) covered by a genuine hyperbolic manifold which is a branched
cover of M along γ .

By the discussion above, the induced foliation is R–covered but not uniform.
Moreover, by choosing ρ(βl) and σ(βr) sufficiently close to translations, the
foliation F is as close to a transversely measured foliation as we like. Passing
to a branched cover preserves this fact. Since transversely measured foliations
of 3–manifolds are arbitrarily close (as 2–plane fields) to surface bundles over
S1 , we have proved:

Theorem 2.5 There exist foliations of hyperbolic 3–manifolds which are R–
covered but not uniform. They can be chosen arbitrarily close to surface bundles
over circles.

Remark 2.2 It is clear that the construction outlined above can be made in
some generality. One can construct R–covered but not uniform foliations by
plumbing together uniform foliations along boundary tori in numerous ways.
In a great number of cases, these will admit regulating transverse cone fields,
and by branching as above one can produce many atoroidal examples. One
can easily arrange for these examples to be closed; for instance, by doubling M
before removing a curve with atoroidal complement in the examples constructed
above.

Another construction, explained in detail in [7], involves choosing a train track
with integer weights supported by a regulating cone field, then plumbing the
leaves along the train track with a surface of genus given by the track weight.
These plumbed surfaces can be “twisted” by a surface automorphism under
the monodromy around loops of the train track. Thurston expects that these
examples are sufficiently flexible to allow one to prescribe the homology of M .

R-covered foliations of hyperbolic 3-manifolds

Geometry and Topology, Volume 3 (1999)

149



3 General R–covered foliations

3.1 Regulating vector fields

For a general R–covered foliation, we do not know whether or not there exists
a transverse Lorentz cone field.

In what follows, F will be an R–covered taut foliation of a 3–manifold M with
hyperbolic leaves.

We show in [1] that the circles at infinity of each leaf in the universal cover of
M can be included in a topological cylinder at infinity C∞ on which π1(M)
acts by homeomorphisms.

The following theorem is proved in [1]:

Theorem 3.1 With notation as above, there is a global trivialization of C∞
as S1 × R so that the action of π1(M) preserves the horizontal and vertical
foliations of C∞ by S1 × point and point× R1 .

In [8] it is suggested that all taut foliations should have a pair of essential lam-
inations Λ+,Λ− transverse to each other and to the foliation which intersect
each leaf in a (1–dimensional) geodesic lamination. In the case of R–covered
foliations, these laminations should come from a pair of 1–dimensional lami-
nations Λ̂+, Λ̂− of the universal S1 described in the theorem above which are
invariant under the action of π1(M).

Let the universal S1 bound a hyperbolic plane D , and let Λ̂+, Λ̂− be the associ-
ated geodesic laminations in D . Then since each circle at infinity is canonically
associated with this S1 , each point in Λ̂+ ∩ Λ̂− determines a unique point in
each leaf of F̃ . Similarly, each segment of Λ̂± between points of intersection
determines a unique geodesic segment in each leaf, and each complementary
region determines a unique geodesic polygon in each leaf. If one fixes some
canonical geometric parameterization of the family of convex geodesic polygons
of a fixed combinatorial type, this parameterization gives rise to a canonical
identification of each leaf with each other leaf, preserving the stratification out-
lined above. The fibers of this identification give a one-dimensional foliation
transverse to F̃ , and the tangent vectors to this foliation are a regulating vector
field.

It is easy to see that non-quadrilateral complementary regions in D give rise to
solid cylinders in M̃ which cover solid tori in M , since their cores are isolated.
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The cores of these solid tori are necessarily regulating, and therefore define
elements of π1(M) which act on the leaf space by translation.

In fact, Thurston has communicated to this author a sketch of a proof that an
R–covered foliation admits some transverse lamination which intersects every
leaf in geodesics (though not necessarily a pair of such). In [1] we can show
by methods slightly different to those above that this assumption is enough to
imply that there exists a regulating vector field transverse to F which can be
chosen to have closed orbits. In short, we have the following theorem:

Theorem 3.2 Let F be an R–covered foliation. Then there exists a regu-
lating vector field transverse to F which can be taken to have closed orbits.
These orbits determine elements α ∈ π1(M) which act on the leaf space of F̃
without fixed points. Branched covers of M over these closed orbits give new
R–covered foliations.

One hopes these results are all pieces of a unified picture tying the intrin-
sic geometry of R–covered foliations to the extrinsic geometry of the foliated
manifolds containing them. Not all the details of this picture are yet visible.
Nevertheless, it seems worthwhile to make this picture as explicit as possible.

3.2 Instability of R–covered foliations

Despite the positive results of the previous sections, it seems that the property
of being R–covered is quite delicate. The following example is suggestive.

Let M be a hyperbolic surface bundle over a circle with fiber F and pseudo-
Anosov monodromy ψ : F → F . Let F be the induced foliation by surfaces.
Let γ be a simple closed curve on F so that γ ∩ ψ(γ) = ∅. Note that it is
easy to show that there exist such examples, by first choosing any γ, ψ, F and
then using the fact that surface groups are LERF to lift to a finite regular cover
where γ and its image are disjoint.

Let M̂ be the Z–cover of M defined by the circle direction. Topologically, M̂
is F × R foliated by closed surfaces F × point. Let the group Z generated by
the deck translation, which we denote Ψ, act by Ψ(x, t) = (ψ(x), t + 1).

Let A be the annulus γ× [−ε, 1+ε]. Then by construction, A and its translates
are disjoint. Let µ : [−ε, 1 + ε]→ [−ε, 1 + ε] be a homeomorphism close to the
identity which moves every point except the endpoints up some small amount.
Then we can cut open M̂ along A and its translates, and shear the foliation on
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one side by the translation id× µ to get a new foliation G . This can certainly
be done in such a way that G is arbitrarily close to F .

Now whenever an integral curve of G passes through A or a translate in the
“positive” direction, it will be sheared upward (relative to F ) by µ.

Let us suppose that by choosing a suitable path in G , we can arrange that a
curve starting at some (x0, 0) can get to (x1, 1) in length t, as measured in G ,
by winding sufficiently many times through A. Now, the curve can continue to
wind around Ψ(A), and after moving a distance 2t, it can reach (x2, 2), and so
on. Remember that there is a transverse regulating vector field X to F given
by tangents to the curves point× R.

Since ψ is pseudo-Anosov, when we compare arclength at (x, t) and (x, 0) by
projection along X , we see that a vector of norm λt at (x, t) might project to
a vector of norm 1 at (x, 0), where λ is the multiplier of ψ on the invariant
transverse measure of the unstable lamination of F . Hence, as measured in G , a
curve γ beginning at (x, 0) could have length nt but its projection to F, 0 could
have length as little as

∑n
i=1 t/λ

i . In particular, a curve in G could “escape
to infinity” while its projection to (F, 0) could move only a finite distance. By
picking two points (x, 0) and (x, n) sufficiently far apart, and moving them by
curves in G joined by integral curves of X , it seems plausible that one could find
a path in G where holonomy was not defined after some finite time, suggesting
that G was not R–covered.

Of course, there are problems with making this concrete: distances in G are only
magnified in the direction of the stable lamination as we go upwards; perhaps to
make the curves cross through A and its translates sufficiently often, we need to
go in both stable and unstable directions. Moreover, even if one could show that
holonomy failed to be defined for all time along integral curves of X , it does not
rule out the possibility that G is still R–covered and X is merely not regulating,
although the author understands that very recently Sérgio Fenley has shown
that a pseudo-Anosov flow transverse to an R–covered foliation should always
be regulating ([4]). A similar result is also proved in [1].
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