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Snowflake groups, Perron—Frobenius eigenvalues
and isoperimetric spectra
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The k—dimensional Dehn (or isoperimetric) function of a group bounds the volume
of efficient ball-fillings of k —spheres mapped into k —connected spaces on which the
group acts properly and cocompactly; the bound is given as a function of the volume
of the sphere. We advance significantly the observed range of behavior for such
functions. First, to each nonnegative integer matrix P and positive rational number
r, we associate a finite, aspherical 2—complex X, p and determine the Dehn function
of its fundamental group G, p in terms of r and the Perron—-Frobenius eigenvalue
of P. The range of functions obtained includes §(x) = x*, where s € Q N[2, 00)
is arbitrary. Next, special features of the groups G, p allow us to construct iterated
multiple HNN extensions which exhibit similar isoperimetric behavior in higher
dimensions. In particular, for each positive integer k& and rational s = (k + 1)/k,
there exists a group with k—dimensional Dehn function x*. Similar isoperimetric
inequalities are obtained for fillings modeled on arbitrary manifold pairs (M, 0M)
in addition to (BK*+!, §k).

20F65; 20F69, 20E06, 57M07, 57M20, 53C99

Introduction

Given a k—connected complex or manifold one wants to identify functions that bound
the volume of efficient ball-fillings for spheres mapped into that space. The purpose of
this article is to advance the understanding of which functions can arise when one seeks
optimal bounds in the universal cover of a compact space. Despite the geometric nature
of both the problem and its solutions, our initial impetus for studying isoperimetric
problems comes from algebra, more specifically the word problem for groups.

The quest to understand the complexity of word problems has been at the heart of
combinatorial group theory since its inception. When one attacks the word problem
for a finitely presented group G directly, the most natural measure of complexity is
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the Dehn function §(x) which bounds the number of defining relations that one must
apply to a word w =g 1 to reduce it to the empty word; the bound is a function of
word-length |w|. The function §(x) recursive if and only if G has a solvable word
problem.

Progress in the last ten years has led to a fairly complete understanding of which
functions arise as Dehn functions of finitely presented groups. The most comprehensive
information comes from [18] where, modulo issues associated to the P = N P question,
Birget, Rips and Sapir essentially provide a characterisation of the Dehn functions
greater than x*. In particular they show that the following isoperimetric spectrum is
dense in the range [4, 00).

IP={a €[l,00) | f(x)=x% is equivalent to a Dehn function}.

Gromov proved that IP N (1,2) is empty and that word hyperbolic groups can be
characterised as those which have linear Dehn functions. In [3] Brady and Bridson
completed the understanding of the coarse structure of IP by providing a dense set of
exponents in IP N [2, c0). What remains unknown is the fine structure of IP N (2, 4).
In particular, it has remained unknown whether Q N (2, 4) C IP. There has, however,
been recent progress on understanding Dehn functions below x* that are not of the
form x®. For instance, Ol’shanskii and Sapir [16] have constructed groups with Dehn
function x2 log(x), and Ol’shanskii [15] has constructed examples with more exotic,
almost-quadratic behavior.

What Brady and Bridson actually do in [3] is associate to each pair of positive integers
p = q afinite aspherical 2—complex whose fundamental group G 4 has Dehn function
x210222P/4  These complexes are obtained by attaching a pair of annuli to a torus, the
attaching maps being chosen so as to ensure the existence of a family of discs in the
universal cover that display a certain snowflake geometry (cf Figure 4 below). In the
present article we present a more sophisticated version of the snowflake construction
that yields a much larger class of isoperimetric exponents.

Theorem A Let P be an irreducible nonnegative integer matrix with Perron—Frobe-
nius eigenvalue A > 1, and let r be a rational number greater than every row sum of P.
Then there is a finitely presented group G, p with Dehn function §(x) ~ x21°¢ )

Here, ~ denotes coarse Lipschitz equivalence of functions. By taking P to be the
1 x 1 matrix (229) and r = 27 (for integers p > 2q) we obtain the Dehn function

8(x) ~ xP/4 and deduce the following corollary.

Corollary B Q N (2, 00) C IP.
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The influential work of M Gromov [11; 12] embedded the word problem in the broader
context of filling problems for Riemannian manifolds and combinatorial complexes.
For example, Gromov’s Filling Theorem [5] states that given a compact Riemannian
manifold M, the smallest function bounding the area of least-area discs in M as a
function of their boundary length is coarsely Lipschitz equivalent to the Dehn function
of w1 M . In the geometric context, it is natural to extend questions about the size of
optimal fillings to higher-dimensional spheres, exploring higher-dimensional isoperi-
metric functions that bound the volume of optimal ball-fillings of spheres mapped
into the manifold (or complex). Correspondingly, one defines higher-dimensional
Dehn functions & (k)(x) for finitely presented groups G that have a classifying space
with a compact (k+1)—skeleton (see Section 2). The equivalence class of §) is a
quasi-isometry invariant of G, by Alonso—Wang—Pride [2].

In contrast to the situation of ordinary Dehn functions, Papasoglu [17] has shown
that 6 (x) is always bounded by a recursive function. This is not the case in higher
dimensions, however. For each k > 2, Young [23] constructs a group for which §® (x)
is not subrecursive.

For each positive integer k one has the k —dimensional isoperimetric spectrum
1P = {a €[1,00) | f(x) =x% is equivalent to a k —dimensional Dehn function}.

We do not yet have as detailed a knowledge of the structure of these sets as we do
of IP = IP(. Indeed knowledge until now has been remarkably sparse even for
1P the results of Alonso et al [1], Wang and Pride [22] and Wang [21] provide
infinite sets of exponents in the range [3/2,2) and provide evidence for the existence
of exponents in the range [2, 00); the snowflake construction of Brady and Bridson [3]
provides a dense set of exponents in the interval [3/2, 2); and in Bridson [6] it is was
proved that 2,3 € P (see also Burillo [8]). Gromov and others have investigated
the isoperimetric behavior of lattices [12].

Our second theorem relieves the dearth of knowledge about the coarse structure of
PO =2,

Theorem C Let P be an irreducible nonnegative integer matrix with Perron—Fro-
benius eigenvalue A > 1, and let r be an integer greater than every row sum of P.
Then for every k = 2 there is a group $k~! G, p of type Fj 41 with k—dimensional
Dehn function §%) (x) ~ x21°¢.(") | There are also groups X~172 of type Fr41 with
k —dimensional Dehn function § % (x) ~ x2.

By taking P to be the 1x 1 matrix (224) and r = 2?7 we see that Q N[2, 00) C IP®): in
particular IP%) is dense in the range [2, c0). But that falls short of one’s expectations:
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as in the case k = 1, one anticipates that IP®) should be dense in the range that begins
with the exponent (k + 1)/k corresponding to the isoperimetric inequality for spheres
in Euclidean space. In order to fulfil this expectation, we investigate the higher Dehn
functions of products G' x Z and prove the following theorem.

Theorem D Suppose P, A and r are as in Theorem C. Then for all ¢, € N, the
(¢ + ¢)—dimensional Dehn function of 971G, p x Z* is equivalent to x*, where
s=((+Da—4L)/(la—(£—1)) and o = 2log, (r). The (¢ + {)—dimensional Dehn
function of 9172 x Z* is equivalent to x°, where s = ({ +2)/({ + 1).

By holding ¢ and ¢ fixed and varying r and P, one obtains a dense set of exponents
s in the interval [(£ +2)/(£ + 1), (£ 4+ 1)/£] including all rationals in this range. By
varying ¢ and £ with k = ¢ + £ and taking account of Theorem C we deduce the

following result, shown pictorially in Figure 1.

Corollary E Q N[(k + 1)/ k, 00) c IP%)
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Figure 1: Isoperimetric exponents of 297G, p x Z.*. Colors correspond to
fixed values of ¢q.

The main aim of Brady and Bridson’s initial construction of snowflake groups [3]
was to prove that the closure of IP(Y) is {1} U[2, 00). Corollary E implies that the
closure of IP®) contains {1} U[(k + 1)/k, cc0). Building on this result, Brady and
Forester [4] have recently shown that the closure of 1P®) s in fact equal to [1, 00)
for k = 2. Other examples, known earlier, include solvable and nilpotent groups
whose two-dimensional Dehn functions appear to be x log x and x?/3 respectively, by
Wang [21] and Coulhon—Saloff-Coste [9] (the latter was pointed out to us by Robert
Young). It should be noted, however, that in both cases the upper bound is derived using
the Sobolev inequality from Varopoulos—Saloff-Coste—Coulhon [20]. The resulting
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isoperimetric inequality concerns embedded fillings only, which do not a priori suffice
for our definitions (which allow singular maps and fillings).

This article is organised as follows. In Section 1 we outline the construction of the
snowflake groups G, p and their HNN extensions X G, p, deferring a detailed account
to Sections 4 and 6. In Section 2 we define the class of maps with which we shall
be working and record some pertinent properties; we also recall those elements of
Perron—Frobenius theory that we require. The groups G, p are fundamental groups of
graphs of groups; in Section 3 we analyze the geometry of the vertex groups in these
decompositions. The snowflake geometry of G, p is described in Section 4 and this
is analyzed in further detail in Section 5 to prove Theorem A. In Section 6 we turn
our attention to higher Dehn functions and establish the lower bounds required for
Theorem C by analyzing the geometry of an explicit sequence of embedded (k+1)-
balls in the universal cover of a (k+1)—dimensional classifying space for k-1 Grp.
In Section 7 we establish the complementary upper bounds. The proof proceeds by
induction, slicing balls into slabs based of lower-dimensional fillings. A lack of
control on the topology of these slabs obliges one to prove a stronger result: instead
of establishing bounds only on the behavior of ball-fillings for spheres, one must
establish isoperimetric inequalities for all pairs of compact manifolds (M *+1 gar)
mapping to the space in question. In Section 8 we analyze the isoperimetric behaviour
of products G x Z and complete the proof of Theorem D.
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1 An outline of the basic construction

The groups G, p we consider are fundamental groups of graphs of groups whose
underlying graphs are determined by a nonnegative integer matrix P. The edge groups
are infinite cyclic, with attaching maps determined by a rational number r. The vertex
groups V;,;, have many properties in common with free abelian groups of rank m.
Indeed, for the purposes of this summary, the reader may take V,,, = Z™ (cf Remark
1.1). There is a distinguished element ¢ € V};,, corresponding to the diagonal element
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(the product of the standard generators) in Z™. The precise definition of V}, is given
in Section 3.

The key geometric idea behind Theorem A is that efficient van Kampen diagrams for
the groups G, p exhibit the snowflake geometry illustrated in Figure 4. The essential
features of such diagrams are these: the diagram is composed of polygonal subdiagrams
joined across strips so that the dual to the decomposition is a tree 7'; and each of
the polygonal subdiagrams is a van Kampen diagram in one of the vertex groups Vi,
(typically it is an (m + 1)—gon with a base labeled by a power of the distinguished
¢ € V;, and m other sides labeled by powers of the m standard generators of V).

The most important class of diagrams are those that are as symmetric as possible,
having the property that as one moves from the circumcenter of the dual tree to the
boundary of the diagram, the joining strips are all oriented in such a way that the
length of the side strip decreases by a factor of r as one journeys towards the boundary.
The labels on the outer sides of the strips are powers of the diagonal elements in
various vertex groups Vj,;, and a crucial feature of our construction is that the cyclic
subgroups (c¢) C G, p are distorted in a precisely understood manner, with distortion
function ~ x% where o = log, () and A is the Perron—Frobenius eigenvalue of P.
This distortion is determined through the analysis of certain paths, called snowflake
paths, which play the role of quasi-geodesics in G, p. These snowflake paths are the
result of a curve shortening process; the dynamics of this process are at the heart of
our calculations and this is where the Perron—Frobenius theory enters — see Section 4.

If the tree T has radius d, then arguing by induction on d in a suitable class of
diagrams, one calculates the length of the boundary to be ~ d k/e if the central polygon
has base ~ d¥ . One has a precise understanding of the quadratic Dehn functions of the
vertex groups Vj,, and this leads to an area estimate of ~ d 2k on these diagrams of
diameter ~ d¥ . Thus we obtain a family of diagrams with area ~ d 2k and perimeter
~ d¥/® and an elementary manipulation of logs provides the required lower bound
of x21°6.(") for the Dehn function of G, p. The complementary upper bound is
established in Section 5.

A key feature in our construction of G, p is that when r is an integer, the snowflake
diagrams admit a precise scaling by a factor of r, induced by a monomorphism. The
ascending HNN extension G;"’ p of G, p corresponding to this monomorphism is a
group in which one can stack scaled snowflake diagrams (see Figure 8). By putting
together two such stacks (using two stable letters) one obtains a snowflake ball, having
the same proportions as its equatorial snowflake disk. That is, the interior volume and
surface area of the ball are comparable to the area and boundary length, respectively,
of the equatorial disk. In this way, one discovers the higher dimensional isoperimetric
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behavior of the multiple HNN extension X G, p which is obtained by amalgamating
two copies of G , along G, p.

The snowflake balls just described determine a lower bound for the 2—dimensional
Dehn function mentioned in Theorem C; upper bounds in this case can be deduced by
using Wang—Pride [22]. To proceed in higher dimensions we iterate the suspension
procedure described above. Lower bounds can be determined as before. However, in
dimensions greater than 2, upper bounds require new techniques. In particular, we
need to consider isoperimetric inequalities for compact manifolds (M, 0M') other than
(Bk, sk—1y. Using this perspective, we establish general upper bounds for ascending
HNN extensions. This is achieved in Theorem 7.2 and is further refined in Theorem 8.1.

Remark 1.1 The actual vertex groups Vj, of G, p are themselves fundamental groups
of graphs of groups with vertex groups Z? and edge groups Z. It turns out that this
structure is compatible with the larger G, p graph of groups structure. That is, G, p
itself may be viewed as the fundamental group of an aspherical 2—complex assembled
from a finite collection of tori and annuli. With respect to a fixed framing on the tori,
the attaching maps of the annuli are all powers of the slopes {1/0, 0/1, 1/1}. From
this perspective, it is perhaps surprising that one can encode the range of isoperimetric
exponents stated in Theorem A.

An explicit example

We conclude this outline with an explicit example illustrating Theorem A. The example
that we present here has Dehn function xP/4 where p > 2q are positive integers
(common factors are allowed).

Let P be the 1 x 1 matrix with entry 229 = 49 and let r = 2. Then G, p is the
fundamental group of a graph of groups G with one vertex group and 47 infinite cyclic
edge groups. The single vertex group Vg« is the fundamental group of a tree of groups
that we shall describe in a moment. V44 has generators ay, ..., d4q; the product of
these generators ¢ = aj -+ a4q plays a special role.

The i —th edge group of G has two monomorphisms to the vertex group V44 . One maps
the generator to ¢ and the other maps the generator to al.zl7 . Thus we have a relative
presentation

Gp/q = Gr,P = (V4q,sl,...,S4q|si_1a?ps,~:c (i:l,...,4q)>.

It remains to elucidate the structure of the group Vy«. This is the fundamental group

of a tree of groups in which each of the vertex groups is isomorphic to Z? and each of
the edge groups is infinite cyclic. The underlying tree is a segment with 49 — 2 edges
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and 49 — 1 vertices. A basis {a;, b;} is fixed for each vertex group, and the generator
of each edge group maps to the generator a; of the left-hand vertex group, and to the
diagonal element a;41b;41 of the right-hand vertex group.

The generators ay,...,a4s mentioned above are the generators «@; of these vertex
groups together with a4a = bga_; . The distinguished element c is the diagonal ab,
of the leftmost vertex group Z? (see Figure 2(a)).

Theorem A tells us that the Dehn function of G/, is x* where a =2logyq 2 = p/q.
Consider, for example, the group G5/, with Dehn function x%/2 In this case, the tree
described above is a segment of length 14 and the above description of V4 yields the
presentation

(ar,bi,az,ba,...,a15,b15[[ai, bi] ( =1,...,15), bi=aj1hi41 (i =1,...,14)).

Eliminating the superfluous generators by, ..., b4 and relabelling b5 as a;¢, as in
the description of V44 above, we get

Vie = (ai,...,a16 |0 €Ci¢)
where C;¢ is the following set of commutators:
lar,az---ayel. laz,as---aiel, -+~ lara, arsaiel. lars. aiel.
Thus we obtain the explicit presentation
Gs/p =(ay,....ai6.51,....516 | Ci6: sl-_lafzsi =ay--a16 i =1,...,16)).

We have just described a 32—generator, 31-relator presentation of Gs/,. The corre-
sponding presentation for G/, has 224+1 generators and 22911 — | relations.

2 Preliminaries

In the first part of this section we recall the basic definitions associated to Dehn functions.
We then gather those elements of Perron—Frobenius theory that will be needed in the
sequel.

Dehn functions

Given a finitely presented group G = (A | R) and a word w in the generators A*!
that represents 1 € G, one defines

N
Area(w) = min{N € N | 3 equality w = l_[ ujrju; ! freely, where rj € Ril}.
j=1

Geometry & Topology, Volume 13 (2009)



Isoperimetric spectra 149

The Dehn function 6(x) of the finite presentation (A | R) is defined by
8(x) = max{Area(w) | w € ker(F(A) — G), |w| <x}

where |w| denotes the length of the word w. It is straightforward to show that the
Dehn functions of any two finite presentations of the same group are equivalent in the
following sense (and modulo this equivalence relation it therefore makes sense to talk
of “the” Dehn function of a finitely presented group).

Given two functions f, g: [0, 00) — [0, 00) we define f < g if there exists a positive
constant C such that

f(x) <Cg(Cx)+Cx

forall x > 0.If f <gand g < f then f and g are said to be equivalent, denoted
/=g

Remark 2.1 In order to establish the relation f < g between nondecreasing functions,
it suffices to consider relatively sparse sequences of integers. For if (#;) is an unbounded
sequence of integers for which there is a constant C > 0 such that ny = 0 and
njy1 < Cn; for all i, and if f(n;) < g(n;) for all i, then f < g. Indeed, given
x €[0,00) there is an index i such that n; < x <n;41, whence f(x) < f(nj41) <

gnit1) <g(Cn;) < g(Cx).

We refer to Bridson [5] for general facts about Dehn functions, in particular the
interpretation of Area(w) in terms of van Kampen diagrams over (A | R). Recall
that a van Kampen diagram for w is a labeled, contractible, planar 2—complex with a
basepomt and boundary label w. Associated to such a diagram D one has a cellular
map D from D to the universal cover K of the standard 2— —complex of (A | R),
respecting labels and basepoint. The diagram is said to be embedded if this map in
injective.

Remark 2.2 If the presentation (A |R) is aspherical and the diagram D is embedded,
then D has the smallest area among all diagrams with the same boundary label. To
see this, note that if A is a diagram with the same boundary circuit as D, then D—A
defines a 2—cycle in K, which must be zero since H, (K 7Z) = 0 and there are no
3—cells. Thus each 2—cell in the image of D must also occur in the i image of A. And
since D is an embedding, the number of 2—cells in the image (hence domain) of A is
at least Area(D).
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Higher-dimensional Dehn functions

Our treatment of higher-dimensional Dehn (isoperimetric) functions is similar to that
of Bridson [6], which is an interpretation of the more algebraic treatment of Alonso et
al [2]. See Section 5 of [6] for an explanation of the differences with the approaches of
other authors, in particular Gromov [12], Epstein et al [10] and Hatcher—Vogtmann [13].

The k—dimensional Dehn function is a function §®): N — N defined for any group
G that is of type Fi 4 (thatis, has a K(G, 1) with finite (k+41)—skeleton). Up to
equivalence, §®) (x) is a quasi-isometry invariant. Roughly speaking, §)(x) measures
the number of (k-+1)—cells that one needs in order to fill any singular k—sphere in
K(G, 1) comprised of at most x k—cells. The reader who is happy with this description
can skip the technicalities in the remainder of this subsection. However, to be precise
one has to be careful about the classes of maps that one considers and the way in which
one counts cells. To this end, we make the following definitions.

If W is a compact k—dimensional manifold and X a CW complex, an admissible
map is a continuous map f: W — X® c X such that f~1(X® — x*=1) j5 4
disjoint union of open k—dimensional balls, each mapped by f homeomorphically
onto a k—cell of X.

If f: W — X is admissible we define the volume of f, denoted Volk (f), to be the
number of open k-balls in W mapping to k—cells of X". This notion is useful because
of the abundance of admissible maps:

Lemma 2.3 Let W be a compact manifold (smooth or piecewise-linear) of dimension
k and let X be a CW complex. Then every continuous map f: W — X is homotopic
to an admissible map. If f(dW) C X ®=1) then the homotopy may be taken rel dW .

Proof We prove the lemma in the smooth case; analogous methods apply in the
piecewise-linear category (cf the transversality theorem of Buoncristiano—Rourke—
Sanderson [7]).

First arrange that f(W) C X (k) using cellular approximation. Next consider X (k) _
X *=1) a5 a smooth manifold and perturb f to be smooth on the preimage of this
open set. Let C C X &) be a set consisting of one point in the interior of each k —cell
of X. By Sard’s theorem we can choose each point of C to be a regular value of f.
The preimage f~!(C) is now a codimension k submanifold of W (ie a finite set
of points) and f is a local diffeomorphism at each of these points, by the inverse
function theorem. Thus there is a neighborhood V' of C consisting of a small open
ball around each point, whose preimage in W is a disjoint union of open balls, each
mapping diffeomorphically to a component of V. Now modify f by composing it
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with a map of X (homotopic to the identity) that stretches each component of V' across
the k —cell containing it and pushes its complement into X (k=1) The resulting map is
admissible. |

Given a group G of type Fi 1, fix an aspherical CW complex X with fundamental
group G and finite (k+1)—skeleton. Let X be the universal cover of X . If 8k X
is an admissible map, define the filling volume of f to be the minimal volume of an
extension of f to BKt1!:

FVol(f) = min{ Vol**(g) | g: B¥*' > X glype+1 = f ).

Note that the maps g must be admissible for volume to be defined. Such extensions
exist by Lemma 2.3, since 7 (X)) is trivial. Next we define the k—dimensional Dehn
function of X to be

8§ (x) = sup{FVol(f) | f: S*¥ = X, Vol*(f) < x}.

Again, the maps f* are assumed to be admissible. We will also write § %) (x) as S(Gk ) (x)
(recall that G is the fundamental group of X').

Remarks 2.4 (1) In these definitions one could equally well use X in place of X,
since maps S k> x (or Bkl L x ) and their lifts to X have the same volume.
There are reasons to prefer X, however, as we shall see in the next definition below.

(2) It is not difficult to show that the Dehn function S(Gk ) (x) agrees with the notion
defined by Alonso et al in [2]. A discussion along these lines is given in Bridson
[6, Section 5]. Moreover it is proved in [2] that, up to equivalence, (Sg )(x) depends
only on G (and in fact is a quasi-isometry invariant); hence we refer to it as “the”
k —dimensional Dehn function of G'. It is also proved in [2] that the supremum in the
definition of 5((;]c ) (x) is attained.

More general Dehn functions

The definition of §)(x) generalizes in a natural way to give Dehn functions modeled
on manifolds other than BX*!. For example, Gromov has defined genus g filling
invariants based on surfaces other than the disk [12]. Here we need to consider arbitrary
compact manifolds.

Let (M, dM ) be a compact manifold pair (smooth or piecewise-linear) with dim M =
k+1.1f f: M — X is an admissible map define

2.5)  FVolM(f) = min{Vol*(g) | g: M — X, glops = '}
and M (x) = sup{FVolM (/)| f: OM — X, Vol*(f) <x}.
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The dimension of 8™ (x) is k, the dimension of M (when dM # ). In general we
do not assume that M is connected or that M # &. Note that if M is closed then
§M (x) is identically zero, since M may be mapped to a point, of zero volume. We
will also use the notation 834 (x) for M (x).

Remarks 2.6 (1) In the definition of §™ (x) it is important that we use maps into X,
which is contractible, since maps f: dM — X need not have extensions to M . Note
that if (M, dM) = (B¥T!, SK) then the definitions of §M (x) and §%)(x) agree.

(2) The omission of X from the notation and the adoption of the alternative notation
ng (x) suggest an implicit claim that, as in the case M = Bkt the equivalence class
of §M (x) depends only on G. We shall address this issue elsewhere, as it would take
us too far afield in the context of the current paper. The structure of the arguments in
Sections 7 and 8 requires us to work with specific choices of X anyway.

(3) Also to be addressed elsewhere is whether the supremum in the definition of
§M (x) is attained. The main difficulty arises when M is 3—dimensional, as we shall
explain in a moment. In the current paper this issue plays no role because none of the
bounds that we establish require a priori finiteness.

(4) If dimM =k 4+ 1 = 4 then 6™ (x) < §%)(x) provided dM is connected or
8% (x) is superadditive. In particular, §™ (x) is finite. The key point to observe here
is that if N = dM is connected and f: N — X has volume V, then there is an
admissible homotopy with (k+1) —dimensional volume at most §®) (V) from f to an
admissible map f": N — X whose i image lies X ¥ =1 one can then fill /' by amap
M — X with zero (k+1)-dimensional volume.

To see that this homotopy exists, one considers a (k—1)—sphere S in N that encloses
a ball D containing all of the open discs that contribute to the volume of f. The
restriction of f to S is trivial in Hk_l(f (k=1)) and hence in Jrk_l()? (k=1)) (recall
that X ®—1 is (k—2)—connected, and k > 2). The null- -homotopy H: B¥ — X k=1
of f|s furnished by this observation can be adjoined to f|p to give an admissible
map S k > X of volume V. This can then be filled by an admissible map Bkt1 5 ¥
of volume at most §®) (V). The desired map f” is defined to be the adjunction of
f | ~N—p and H.

If dim M = 2 then the same statement holds; this is proved below in Lemma 7.4. The
case dim M = 3 is different: Young [23] has constructed a group G such that if M is
a 3—manifold with boundary S! x S!, then 8™ (x) is strictly larger than §® (x).

Remark 2.7 An obvious adaptation of the argument in Remark 2.2 shows that if X
is an aspherical (k+1)—dimensional CW complex, g: M k+1 5 X isan embedding,
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and f = g|aps (with f and g admissible) then FVol™ (f) = Volk+1(g). That is, the
embedding g has minimal volume among all extensions of f to the manifold M . We
shall use this fact in particular in the case of high-dimensional balls to estimate § % (x)
from below.

Perron—-Frobenius Theory

A square nonnegative matrix P is said to be irreducible if for every i and j there exists
k =1 such that the i j—entry of P¥ is positive. The basic properties of irreducible
matrices are summarized in the Perron—Frobenius theorem below. See Seneta [19] and
Katok—Hasselblatt [14] for a more thorough treatment of this theory and its applications.

Proposition 2.8 (Perron—Frobenius theorem) Let P be an irreducible nonnegative
R x R matrix. Then P has one (up to a scalar) eigenvector with positive coordinates
and no other eigenvectors with nonnegative coordinates. Moreover, the corresponding
eigenvalue A is simple, positive and is greater than or equal to the absolute value of
all other eigenvalues. If m and M are the smallest and largest row sums of P, then
m < A < M, with equality on either side implying equality throughout.

Lemma 2.9 Let P be an irreducible nonnegative Rx R matrix with Perron—Frobenius
eigenvalue A. Let {vy,...,vR} be a generalized eigenbasis for P, with v, a positive
eigenvector for A and with corresponding inner product (-, -). Then (u,v;) > 0 for
every nonnegative vector u € RX —{0}.

Proof Decompose RR as W; @---@ Wy, where each W; is a generalized eigenspace
for P, with Wi = (v;). Each W; is P—invariant, as is the nonnegative orthant \/,
since P is nonnegative. The intersection (W, @ --- @ Wy) NN must then be trivial,
for otherwise it contains an eigenvector for P other than vy (or a scalar multiple), by
the Brouwer fixed point theorem. Hence (u,v;) # 0 for every u € N'—{0}. Since
N —{0} is connected and contains vy, (u,v) is positive. ad

Proposition 2.10 (Growth rate) Let P be an irreducible nonnegative R x R matrix
with Perron-Frobenius eigenvalue A. Let ||-| be a norm on RX. Then there are
positive constants Ao, A; such that for every nonnegative vector u in R® and every
integer k >0, AoA*||lu|l < | Pku| < A1) |u|.

Proof First, it is clear that by varying the constants, it suffices to consider any single
norm || - ||. Consider a generalized eigenbasis {vy,...,vg} as in Lemma 2.9 (with v
a positive eigenvector for A). Let (-, -) and | - || be the corresponding inner product
and norm on R®. Let 7: RE — (v;) be orthogonal projection (7 (1) = (u, vy )vy).
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Define Ao = inf{||7w(u)||/||ull | u € N —{0}}. Note that 49 > 0 by Lemma 2.9 and
compactness of N — {0} modulo homothety. For every u € N'— {0} we now have
A Aollu|| < M|l m )| = || PXr(u)|| < || P¥ul|. We also have || P*ul|| < A¥||u| since
A is the spectral radius of P; hence A; = 1 will work. O

3 The vertex groups V,,

In this section we define groups V}, for each integer m = 2. We begin with a very
brief overview of the construction of the groups G, p so that the reader knows where
the groups V},, fit into the overall picture.

An irreducible matrix P determines a directed graph (whose transition matrix is P).
This graph is the underlying graph in a graph of groups description of the G, p in
Theorem A. The vertex groups in this graph of groups are precisely the groups V;,
which we define and study in this section.

The groups Vj, satisfy a number of the properties that the free abelian groups Z™ do,
but they have geometric dimension 2. In particular, V;;, has generators ay, ..., an
and has the following scaling property (cf Equation (3.2)): for any integer N > 0, the
equality ajlv e a,l,\{ = (ay ---am)N holds. Moreover, this equality requires on the order
of N2 relations of Vj,. This follows as a special case of Lemma 3.5, which gives
careful estimates on the areas of certain words in V.

The groups V,,

Begin with m — 1 copies of Z x Z, the i—th copy having generators {a;, b;}. The
group Vj, is formed by successively amalgamating these groups along infinite cyclic
subgroups by adding the relations

by =azby, by=azbs, ..., bpy_r=am_1bp_1.

Thus V;,; is the fundamental group of a graph of groups whose underlying graph
is a segment having m — 2 edges and m — 1 vertices. We define two new elements:

¢c=aiby and ay, =byy—1. Then ay, ..., ay, generate Vy, and the relation aq - -+ ay, =c
holds; see Figure 2(a). The element c is called the diagonal element of V,. The
additional relations b,,—» = am—1am, ..., by—g = Am—k+1 -+ am are also evident

from Figure 2(a).

If m =1 then we define V}, to be the infinite cyclic group (a;) and we set ¢ = a; .
Lemmas 3.1 and 3.5 below clearly hold in this case.
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a) as
aq ay
by
c [~
(a) (b)

a

Figure 2: Some relations in V4: ¢ = ayazazas and ¢ = (ay)3(a2)3(a3)3 (as)?

Lemma 3.1 (Shuffling lemma) Let w = w(ay,...,am,c) be a word representing
¢V in V,, for some integer N . Let n; be the exponent sum of a; in w and n. the
exponent sum of ¢ in w. Then the words a’' ---ap" " and c"eap" ---a'}' also

represent N in Vim and nj = N —n, forall i.

Proof First we prove the second statement. The abelianization Vi, /[Viy, Vin| = Z™

has {ai,...,am} as a basis and the image of w is a’anr”C --~a"m”1+"“. Since ¢V
abelianizes to ajlv . --a,],vl, we must have n; = N —n, forall 7.

To prove the first statement it now suffices to establish the following set of equalities
for any integer N :

(3.2) (ay--am)N = aJIV...arfx = arfx...aflv = (am--a)".

In fact we shall prove the following equalities, by induction on k& :

N N N N N N
(am—k+1"'am) = dm—k+1 Uy = Ay ldy—f4+1 = (@m - Am—k41)" -
The case k = 1 is evidently true. Suppose the equations hold for a given k > 1.
By the induction hypothesis a%_kaz_k_i_l ---a,]x = a}lx_k(am_kﬂ --~am)N . Then
since by = ap—k+1 -+ am and this element commutes with a,,_;, we conclude
that arlx_k (am—tcs1 - am)N = (@m_j -+~ am)" . The same commutation relation also
yields

N N N _N

Qi @mter1-am)” = (@m—tet1am)" ay,_y

N _N
= (@m AGm—kt1)" Ay
_ N N N
=yl ke 19m
Finally we have (a,,---a YWaVN = (am---a v inb
y m m—k+1 m—k — Um m—k+14m—k) " , again because
Am—i and by, (= am -+ dpym—k+1) commute. |
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Remark 3.3 (Scaling in V;;) Equation (3.2) plays a key role in this article. It shows
that the basic relation shown in Figure 2(a) holds at larger scales as well. Figure 2(b)
illustrates how these larger relations follow from the triangular relations b;_; = a;b;
and bi—l = bia,-.

The spaces X,

To compute area in 1}, we shall use a specific aspherical 2—complex X, with funda-
mental group V,,. This complex is a union of m — 1 tori, each triangulated with two
2—cells realizing the relations a;b; = b;—1 and b;a; = b;_; (where by = ¢ in the case
i = 1). Thus the i —th torus has standard generators given by the 1—cells a; and b;,
and its diagonal is joined to the 1—cell b;_; of the previous torus. In all there is one
vertex, l—cells ay,...,am—1,bg,...,byu—1 and 2(m — 1) triangular 2—cells.

The universal cover X, is a union of planes, each covering one of the tori below. Each
plane contains three families of parallel lines covering the 1—cells a;, b; and b;_1 .
The plane intersects neighboring planes along the b;—lines for j # 0,m — 1. These
planes are the vertex spaces of Xom corresponding to the graph of groups decomposition
of V,;, described earlier. The incidence graph of the vertex spaces is the Bass—Serre
tree for this decomposition, with edges corresponding to bj—lines (j # 0,m —1).

Remark 3.4 Figure 2(b) shows an embedded disk in X, with boundary word of the
form ¢V = a]lV . --a% (N = 3). The triangles shown are 2—cells of Xj,. Each large

triangular region lies in a vertex space of X, There are similar embedded disks with
boundary word ¢V = a,]nv e a{v as well. All of these disks have area (m — 1) N 2.

Throughout this article we usually work with the standard generators {ay, ..., an} for
Vin. However in the area computation below we allow words involving the elements
b; as well.

Lemma 3.5 (Area in Vy,) Let w(ay,...,dm—1,bo,...,bm—1) be a word repre-
senting the element xN for some N, where x is a generator a; or b;. Let w be
expressed as wq --- wy where each w; is a power of a generator. Then N < |w| and
Area(wx~NV) <3 > i< lwillwjl.

Note that if the sum included diagonal terms of the form (3/2)|w;|? then the area
bound would simply be (3/2)|w|?. The leeway afforded by the absence of these terms
will be exploited in the proof of Theorem A. (In particular, it would not suffice to know
only that V}, has quadratic Dehn function.) Also the statement N < |w| implies that
every vertex space is a totally geodesic subspace of X,.
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Proof First we prove that N < |w| and then we establish the area bound. Both proofs
are by induction on the complexity of the word w, defined as follows. Let p be a
path in the 1-skeleton of X, whose edge labels read w. Since w represents x* , the
endpoints of p lie in a single vertex space. Hence the induced path p in the Bass—Serre
tree is a closed path. The complexity of w is the length of p. Note that vertices of p
correspond to edges of p (or letters of w) and edges correspond to transitions between
certain pairs of generators. Thus the complexity is also the number of such transitions
occurring in w.

If w has complexity zero then p lies in a plane. The statement N < |w| amounts to
saying that xV is a geodesic, which is clear. If p has positive length then there is a
nontrivial proper subpath p’ C p with endpoints on a single b;—line. (These endpoints
correspond to edges in p that map to the same edge of the Bass—Serre tree, crossing and
returning.) The subword w’ C w corresponding to p’ represents an element of the form
bjM . Let u be the word obtained from w by substituting bjM for w’. Then u and
w’ both have complexity strictly smaller than that of w. By the induction hypothesis,
M <|w'| and N < |u| = (Jlw|—|w'|) + M . Therefore N < |w]|.

Next we establish the area bound when w has complexity zero. Since p then lies
entirely within a vertex space of X, we may assume without loss of generality that
Vi = V1 and x = by, so that w(ay, by, b1) = boN in Vi ={ay,by,bo |ar1by = by =
byay). Since this group is abelian we can successively transpose adjacent subwords
w; and cancel pairs of the form xx~!, to obtain v = a’l’b’l’bév ~" for some n. Each
transposition of letters contributes 2 to Area(wv~!), so we have Area(wv™!) <
2% i<j lwillwj]. Nextlet I, and Ij be the sets of indices for which w; is a power of
ay and by respectively. Then } ey |wil = |n| and };¢;, |wi| = |n|, and therefore
ij lw;||wj| = n? = Area(vbo_N). Then we have Area(wbo_N) < Area(wv!) +
Area(vng) <3% i< lwillwj| as desired.

Now suppose w has positive complexity. Define w’ C w and u as before, so that w’

represents b jM , u is obtained from w by substituting b jM for w’, and both u and
w’ have smaller complexity than w. Note that w’ = Wiy + - Wi, Cwy -+ wg for some

iop and iy, and so u = w; "'wio_lbleUi1+1 ---wg. Let I ={ig,...,i1}. Applying
the induction hypothesis to u# and w’ we obtain
(3.6) Area(ux™N) < 3 Z |wi||lwj| + 32|w,~|M,
i<j iél
L,j¢l
(3.7) Area(w'b; ™M) < 3 )" Juw;|wj.
i<j
i,jel

Geometry & Topology, Volume 13 (2009)



158 N Brady, M R Bridson, M Forester and K Shankar

Since M < |w'| =} ;¢ lwj|, inequality (3.6) becomes

3.8 Area(ux™N) < 3 Z |wi||lwj| + 3(Z|w,|)(2|wj|)

i<j idl jel
i’j¢1

Adding together (3.7) and (3.8) yields
Area(w'b; M) 4+ Area(uxV) < 3 Z |wi||wj|

i<j

which proves the lemma because Area(wx™V) < Area(wu~!) + Area(uxN) and
Area(wu~') = Area(w'b; My O

4 The groups G, p and snowflake words

The groups G, p

Start with a nonnegative square integer matrix P = (p;;) with R rows. Let m; be the
sum of the entries in the i —th row and let n = ), m;, the sum of all entries. Form a
directed graph I" with vertices {v;,...,vg} and having p;; directed edges from v;
to v;. Label the edges as {ej,...,e,} and define two functions p,o: {l,...,n} —
{l,..., R} indicating the initial and terminal vertices of the edges, so that ¢; is a
directed edge from v,(;) to v, (;) for each i. These functions also indicate the row and
column of the matrix entry accounting for e;. Partition the set {1,...,n} as | J; I; by
setting I; = p~!(i). Note that |I;| = m;.

Let M = max{m;} and choose a rational number r = p/q with p > Mg > 0. We
define a graph of groups G, p with underlying graph I' as follows. The vertex group
Gy; at v; will be V,, and all edge groups will be infinite cyclic. Relabel the standard
generators of these vertex groups as {ai,...,d,} in such a way that the standard
generating set for G, is {a;j | j € I;}. Let ¢; be the diagonal element of the vertex
group Gy;. Then the inclusion maps are defined by mapping the generator of the
infinite cyclic group G, to the elements a;? € Gy, ;, and ¢5;)? € Gy, ;) -

Let s; be the stable letter associated to the edge ¢;. The fundamental group G, p of
G, p is obtained from the presentation

-1 .
(Goysovo s GogS1s. o 80 | 87 ai?si = o) forall i)

by adding relations s; = 1 for each edge e; in a maximal tree in I". However, we shall
continue to use the generating set {ay,...,dn,S1,...,5,) for G, p even though some
of these generators are trivial.
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The spaces X, p

We define aspherical 2—complexes X, p by forming graphs of spaces modeling G, p.
Namely, take the disjoint union of the spaces X, ~ X, (one for each vertex v;) and
attach annuli A;, one for each edge e; of the graph. The two boundary curves of A;
are attached to the paths labeled a;? in Xy, and cg(i)q in Xy, ,. The resulting
2—complex X, p has fundamental group G, p and it is aspherical because it is the
total space of a graph of aspherical spaces.

The universal cover X, », P 1s a union of copies of the universal covers X, v; and infinite
strips R x[—1, 1] covering the annuli 4;. Each strip is tiled by 2—cells whose boundary
labels read s; Yaip Sicg@)” 1 the two sides R x {£1} consist of edges labeled a; and
Co (i) Tespectively. Note that if a path crosses a strip along an edge labeled s; and
returns over ;- ! then the power of a; represented by the path is divisible by p.

Snowflake words

For each group element of the form cl.N we will define two types of words in the

generators {ay,...,dn,S1,...,S5,} representing that element, called positive and nega-
tive snowflake words. The structure of these words is governed by the dynamics of
the matrix P. Some snowflake words are close to geodesics, and these are useful in
determining the large scale geometry of G, p.

We define snowflake words recursively on |N| € N as follows. Let

M(g+2+
N, = LMl p))+p
p—Mgq

Note for future reference that Ny > p. Let ¢ be the diagonal element of a vertex group
with standard ordered generating set {a;,,....a;, }. A word w representing eV
positive snowflake word if either

isa

1) |N|< Ny andwzal].:’---aN or

il’l‘l >
(i) |N|> Ng and w = (silulsi_ll)(agl)---(s,-mumsi;l)(af:im) where each u; is a
positive snowflake word representing a power of ¢4 (;;) and |N;| < p forall j.

In the second case note that each subword (s;;u js; 1)(a£;_]f ) represents a power of
a;; , and by Lemma 3.1 this power is N . Then since |N;| < p, the word (s;; ujsgl)
represents either a;; LN/PlP o aj; [N/P1P _Consequently, the word u j represents either
ca(ij)LN /pla o ca(,-j)rN/ P14 Recall that | x| and [x] denote the integers closest to x
such that [x| <x <[x],andso |N/p|p and [N/ p]p are the multiples of p nearest
to N.
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A negative snowflake word is defined similarly, with the ordering of the terms repre-
senting powers of a;; reversed. More specifically, w satisfies either
(i’) |N|< Ny and w :al].:’n ---aﬁ’,or
(ii’) |N|> Ng and w = (afzq’")(simumsi;l)m(af\lll)(s,-lulsi_ll) where u; is a nega-
tive snowflake word representing a power of ¢, (;;) and |Nj| < p forall j.

As with positive snowflake words, each word u; will represent either ¢ ;) LN/pla or
ca(ij)fN/qu.

To see that the recursion is well-founded note that the definition describes an iterated
curve shortening process in which subwords of the form ¢V are replaced by the words
described in case (ii) or (ii"), with appropriate powers of Co(ij) 1n place of u;; see
Figure 3. Writing [N| = Ap + B with 0 < B < p, the new word representing ¢V has
length at most

M -max{Aq+2+ B, (A+1)g+2+ (p—B)} < M((A+1)g+2+ p).

o) LN/plq a;\’z
a’ | |
1 \
N
a,
) N,
Ca(l)l' /pla ai\, 60(3)fN/p1q
N aNa
3

Figure 3: One way of shortening ¢ Here {a,,a,,a3} is the generating set
for a vertex group V3 with diagonal element ¢. The exponents N; and N,
areboth N — |[N/p]|p and N3 is N — [N/ p]p. The short black edges are
labeled s1, 52, 53.

The latter quantity is strictly less than |[N| = Ap + B provided A(p — Mq) >
M(g + 2+ p). Since B < p, this occurs whenever |N| = Ny. Thus, the new
curve is strictly shorter than ¢V if |[N| = Ny. Eventually the subwords ¢V all have
length at most Ny and the shortening procedure terminates. See also Figure 4 for the
end result of this process. In this figure the top and bottom halves of the boundary are

positive and negative snowflake words representing ¢ .
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Note that every snowflake word has a nested structure in which various subwords are
themselves snowflake words. These are the subwords u; arising at each stage. The
minimal such subwords are those given by (i) and (i’) and these will be called terminal
subwords. The depth of a snowflake subword is the number of snowflake subwords
of type (ii) or (ii’) properly containing it, including the original snowflake word itself.
Equivalently, it is the number of matching s;, sj_1 pairs enclosing it. Note that a
snowflake word w contains a depth zero terminal subword if and only if w has the
form (i) or (i’).

It is worth emphasizing that the curve shortening process is not canonically determined,
but allows many choices. In each “remainder” term ale the exponent N; may be
positive or negative; the two possible values for N; are N—|N/p|p and N—[N/p]p.
Figure 3 shows both possibilities occurring in a single step, for example. For this reason,
a single snowflake word may have terminal subwords of different depths. However,
Lemma 4.2 below shows that these depths will not differ substantially.

Remark 4.1 A special type of snowflake word plays a key role in the proof of
Theorem C. If r is an integer (that is, r = p/1) and N = r¥ for some k, then the
positive (resp. negative) snowflake word representing cl.N is unique. What happens is
that the exponents N; in the expressions (ii) or (ii") at each stage are always zero; there
are no ‘“‘remainder” terms a . Each subword u; represents ¢ ;) N/ “and N /ris
again a power of r. Furthermore all terminal subwords will have the form aj, -+ aj
Or dj,, - dj .

m

Lemma 4.2 (Terminal subword depth) Given r and P there are positive constants
By, By with the following property. If a nontrivial snowflake word w representing c™v
contains a terminal subword of depth d then Bor? < |N| < B;r?.

Proof If d =0 then w has the form (i) or (i’) and 1 < |N| < Ny. Thus we need to
arrange that By <1 and B; = N, for the lemma to hold in this case.

If d > 0 then we will show by induction on ¢ that

4.3) Nord_l—p(rd_z—l—---—l—r—i—l) < |N| < Nor? +prT k).

The lower bound then gives

d—l_l 1
IN| = Nord_l—p(r—) > —(No— L )rd.

r—1 r r—1

Recall that Ny > p and r = 2, which imply Ny > p/(r —1). Now we may find By >0
so that By <r~1(Ng— p/(r —1)) and By < 1, giving the desired bound.
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The upper bound in (4.3) gives

rd
V1< Nord (2

-1

) < (No+ p)r?

where the last inequality uses the fact that » —1 > 1. Now choose By = Ny + p to
obtain the desired bound.

Next we prove (4.3) by induction on d. If d = 1 then |N| > Ny and w is of the form
(ii) or (ii’) where some u; i has the form (i) or (i’). Then u; represents Co(i; ) N with
N’ < Ny, and so (s;;u;s; ) represents a;; *N"  This implies [N| = [rN'+ N;| <
rN ot p.

For d > 1 write w in the form (ii) or (ii”). Then the terminal subword has depth d — 1
in uj for some j. By the induction hypothesis u; represents ca(ij)N " where

@4)  Nor?2—p(r?3 4 41) < [N'| € Nor® ' 4 pr@=2 4.4 1).

Then (s; ujsgl) represents a,-j’N/ and rN'— p <|N| <rN’+ p. These bounds and
(4.4) together imply (4.3). m|

Proposition 4.5 (Snowflake word length) Given r and P there are positive constants
Co, Cy with the following property. If ¢ is the diagonal element of one of the vertex
groups and w is a snowflake word representing ¢V then Colw|® < |N| < Cy|w|®,
where a = log, (r) and A is the Perron—Frobenius eigenvalue of P.

Proof If w is nontrivial and has the form (i) or (i’) then 1 < |N| < Ny and |N| <
lw| <7r|N|. Then |w|* < (rNp)*, which implies

(rNo) *w|* < [N] < |w|*.
Thus we need to arrange that Cy < (rNg)™ and C; = 1 to cover this case.

Next assume that w is of type (ii) or (ii’), which implies that the depth of every terminal
subword is at least one. Equivalently, w contains the letters s;, sj_1 for some j. Let
s(w) be the number of letters s; or sj_l in w (for all indices ;). Note that a subword

of w containing no such letters has length at most »Ny. Since s(w) # 0, this implies
(4.6) s(w) < |w|] < 2(rNo + Ds(w).

Hence s(w) gives an approximate measure of the length of w. It can be computed
explicitly, by following the evolution of the curve shortening process, which in turn is
governed by the matrix P. Note that matched s, s~! pairs enclose snowflake subwords
representing powers of ¢; for various j. These subwords will be called ¢ —subwords.
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We claim that if w represents a power of ¢y, and every terminal subword has depth
i or greater, then the number of ¢j—subwords of depth i is given by the kj—entry of
P’ denoted pk

If i =1 then the claim is evident from expressions (ii) and (ii"), since the entry py;
of P gives the number of directed edges from vertex vy to vertex v; (and hence the
number of occurrences of j among the indices o (iy),...,0(iy)). Similarly, for i > 1,
each cy—subword of depth i —1 contains pg; cj—subwords of depth i, by (ii) and (ii").
The claim now follows by induction on i : summing over all snowflake subwords of
depth 7/ — 1 and applying the induction hypothesis, the total number of ¢;—subwords of

.. i—1 N (
depth i is ) , p,(cle )pgj = Py -
Let xq,...,xg be the standard basis vectors of RX. Also let ||-||; denote the £;

norm on ]RR [lvll1 is the sum of the absolute values of the entries of the vector v. Let
PT be the transpose of P.

The kj—entry of P! is equal to the j—entry of the column vector (PT)(xz). Suppose
for the moment that every terminal subword of w has depth d. Then for i < d, the
total number of s,s~! pairs enclosing snowflake subwords of depth i is given by
I(PT):(xz)]l1 . Hence we have

s@) = 2(IPT ol + IPTR I + -+ 1P (xallr)

If we let dy and d; denote the smallest and largest depths of terminal subwords of w
then we obtain

d() dl
23 NPT el < sw) < 2 1PT (xp)lh-

i=1 i=1

Applying Proposition 2.10 with the norm || - ||; we have

do 24,A
240 Y A < s(w) < 2A12k’ = 1 xdl— 1)

i=1 i=1

which implies
24,4 k
A —

2A0kd‘) < s(w) <

Hence by (4.6) we have

4.7) (ZA()))\.dO < |lw| < (M) A9

A—1
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We complete the proof by applying Lemma 4.2 separately for the upper and lower
bounds. Using d = d; we obtain

—1
4(rNo + 1)A1A) o8 () )

NI = Bor™ = Bo(h)s) > Bo( 1

Now choose Cy > 0 satisfying

A—1

and Cy < (rNg)™“ to obtain the desired lower bound.

4(r N, DA\
Co$Bo((r 0+)1)

Applying Lemma 4.2 with d = d, gives
IN| < Bir®e = By(1%0)8 ") < By (240)~ 8w 8
so choose Cy with C; = B1(24¢) % and C; = 1. m]

5 Proof of Theorem A

Throughout this section G, p is fixed, with r = p/q greater than all the row sums
of P, and a = log, (r), where A is the Perron-Frobenius eigenvalue of P. Unless
otherwise stated, all words use the generating set {a1,...,dy,S1,...,5,} for G, p.

The lower bound

To establish the lower bound §(x) = x2* we will show that §(n;) = (Co24~%) n;>*
for certain integers n; tending to infinity. This is sufficient by Remark 2.1, provided
the sequence (7;) grows at most exponentially.

Note also that to establish a single inequality 6(n) = A4, it is enough to exhibit an
embedded disk in X, p with boundary length »n and area A or greater, by Remark 2.2.
Here we are using the facts that X, p is aspherical and 2—dimensional.

Choose a vertex group Vj, in G, p with m =2 and let ¢ be its diagonal element. There
must be at least one vertex group of this type, for otherwise P would be a permutation
matrix with Perron—Frobenius eigenvalue 1. For each i choose positive and negative
snowflake words wl.+ and w; representing ¢!, Then define w; = wi'" (w;” )~! and
n; = |w;|. Note that Co 27%|w;|* <i < C; 27%|w;|* by Proposition 4.5. It follows
that the sequence (7;) tends to infinity, and that it is exponentially bounded: for i > 1,

mivr _ (GEDCYE 20\
n; B lC() h C() '
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Next we find embedded disks A; in X »,p With boundary words w; and estimate their
areas. Each A; is made of two disks A;r and A;" with boundary words w;r ¢~ and
ct (w;” )~! respectively, joined along the boundary arcs labeled ¢, ¢?. After joining,
the arc labeled ¢! will be called the diameter of A;.

The disk Aii is a union of embedded disks in vertex spaces X, m; and pieces of strips
joining them. Consider the curve shortening process that transforms ¢’ into wljE To
build A;*L simply fill the central region shown in Figure 3 with the embedded disk
from Figure 2(b). Then fill each strip with either |i/p]| or [i/p] copies of the 2—cell
with the appropriate boundary word s;cq(j)? s]:l aj_p , and repeat the procedure. The
resulting disk is a union of embedded disks in X, p joined along boundary arcs, with
no folding along these arcs. Since each strip separates X r, P> One can see inductively
(on the number of strips crossed by Aii) that Aii is embedded. For the same reason,
it suffices to note that no folding occurs when A;r and A;" are joined together to
conclude that A; is embedded. Figure 4 shows an example of a disk A; with boundary
word wj .

To estimate the area of A; consider the central region in A;" adjacent to A;. By
Remark 3.4 this subdisk of A; has area (m — 1)i% > i%. Then since i = Cy 2 %n;®
(as observed above) we conclude that

(5.1 Area(A;) = (Co?4™%)n; @

and therefore §(n;) = (Co24™%)n; %%,

The upper bound

Suppose a word w represents an element of a vertex group Vj,. The graph of groups
structure of G, p yields a decomposition of w as wj --- wy where each w; is either
an element of V},,, or begins with S;E and ends with S;F for some ;. These latter cases
occur when the Bath described by w leaves the vertex space X, and then returns again

over a strip in X, p.

Recall that a strip in X, r, P has sides labeled a; and ¢4 ;). The next lemma shows that
a geodesic (in the generators {ay,...,dxu,S1,...,S,}) can only enter a strip from (and
return to) the a;—side.

Lemma 5.2 Let w be a geodesic in G, p representing an element of a vertex group
Vim. Then w is a product of subwords wi ---wy where each w; is a power of a
generator aj , or begins with s; and ends with sj_1 (for some j ) and represents a power
ofaj.

J
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Figure 4: A snowflake disk based on the matrix P = (}{). The upper and
lower halves of the boundary curve are positive and negative snowflake paths
representing ¢? .

Proof Let w’ C w be an innermost word that begins with se_l and ends with s, (for
some {) and whose corresponding path in X, r,p has endpoints in the same vertex space
X, Vo(ey - Thus w = s[l usy crosses a strip from the ¢, () —side, and the subword u only
crosses strips from (and returns to) a;—sides. That is, u can be written as uy - - uy
where each u; is a power of a generator a; , or begins with s; and ends with sj_l and
represents a power of a; .

Note that u has both endpoints on an a¢-line in the vertex space Xy () ACTOSS a strip
from X, ,,. Hence u represents aé\’ for some N . Let u’ be the word in the standard
generators of Gy, ,, = Vi, obtained by replacing each u; by the appropriate power of
aj that it represents. Consider the word u’ aZN which represents the trivial element
¢ in Vj,. Since u’ does not involve ¢, Lemma 3.1 implies that every a j—exponent of
N

u' a, " 1s zero. Hence u’ has ag—exponent N and a;j—exponent zero for every j # £.

If any of the subwords u; of u represent a power of a; with j # £, then by Lemma
3.1 one could rearrange the subwords (preserving the property that u represents aév )
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so that those representing powers of a; are adjacent. Then these adjacent subwords
cancel in V}, and can be deleted, shortening w. Therefore every u; represents a power
of a l-

If none of the subwords u; begins with s, and ends with s[l then u = aév but then
w’ could be replaced by a word aN /r.. N / " representing ca(g)N /T The new word
is shorter than w because of the hypothe51s 'that m < r, and therefore some u ; must
have the form sgvs, 1 after all. Now rearrange the subwords so that sy vs(Z occurs
last. Again w can be shortened by replacing u with this rearranged word and then
cancelling s[lse at the end. O

Proposition 5.3 Let ¢ be the diagonal element of one of the vertex groups in G, p.
Then for every N there is a snowflake word wr and a geodesic Wge,, both representing
eV, with |wg] < rNo|wgeo -

Proof The proof is by induction on |N|. Let w be a geodesic representing ™.
We shall apply Lemma 3.1 inductively to rearrange and modify w into two words, a
geodesic wge, and a positive snowflake word wgr. The two constructions are identical
except at the base of the induction, which involves only certain segments of length at
most ¥ Ny.

Leta;,,...,a;, be the standard generators (in order) of the vertex group V;;, containing

c. If [IN| < Ny then define wgeo = w and wsf=af\l[--~

holds in this case since r > m.

alN . The desired conclusion
m

Suppose next that |N| > Ny. By Lemma 5.2 we can write w as w1 -+« wg where each
subword has the form ajvf or sjujs; . In the latter case s;u isi ! represents a power
of aj.

By Lemma 3.1 we can permute the subwords wy of w to arrange that those representing

powers of a;, come first, those representing powers of a@;, occur next, and so on. The

resulting word is still a geodesic representing ¢V

be of the form s;; u; s; I since they could be made adjacent, and then a cancellation of
Ls;. would be possible. Hence we can arrange for w to have the form

5iSij

_ — N,
G4 w o= (siursy, D)@l (sipuasy @) - (sipums; (@i

Im

. Note that two subwords cannot both

where each s;; ujs; s_1 represents a power of a;; Next observe that |N;| < p forall j,

since otherwise a subword of the form s ~14P could be replaced by a word of the
+q +q 1

form Ay o dySi; ~1 (that is, Coi ) s; expressed in the standard generators). Here

m’ is a row sum of P and so r > m’, making the new word shorter than w.
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Recall that u; represents a power of ¢4 (). By Lemma 3.1 the power of a;; represented
by si; ujsl;l is N — Nj, and so uj represents cg(j)(N_Nf)/’. Recall that Ny > p,
hence |N|> p > |Nj|. Then since r > 2 it follows that |(N — N;)/r| < |N|.

By induction ¢4 j)(N —N)/T s represented by a geodesic (uj)geo and a positive

snowflake word (u;)sr satisfying the conclusion of the lemma. Define wge, and
wsr by replacing each subword u; in (5.4) by (#)geo O (1)t accordingly. Then the
desired conclusion also holds for wge, and wyr, since they agree except in the subwords
(uj)geo and (uj)sf- O

Corollary 1 (Edge group distortion) Given r and P there is a positive constant D
with the following property. If ¢ is a diagonal element and w is a word representing
¢V then |N| < D|wl|®.

Proof It suffices to consider the case when w is a geodesic. Apply Proposition 5.3
to obtain the geodesic wge, and snowflake word wgr representing N with |wse| <
rNo|Wgeo|. Then Proposition 4.5 implies |N | < Cy|wg|* < Cy (rNo)® |weeo|®. O

The statement and proof of the next proposition are similar to those of Brady—Bridson
[3, Proposition 3.2]. The case N = 0 establishes the upper bound of Theorem A.

Proposition 5.5 (Area bound) Given r and P there is a positive constant E with
the following property. If w is a word in G, p representing x™ for some N, where
x is either a generator a; or the diagonal element of one of the vertex groups, then
Area(wx™N) < E|w|?*.

Proof We argue by induction on |w|. We shall prove the statement with £ =
(3/2)r2D?* (D given by Corollary 1). Let ¢ denote the diagonal element of the vertex
group Vj,, containing x.

Write w as wy - wk where each w; has the form aN’ or is a word beginning in sj:’El

and endlng in s] . In the latter cases w; represents an element of the form ¢™i or

. Let I. and I, be the sets of indices for which these two cases occur, and let
w’ be the word obtained from w by replacmg each subword w; of this type with the
appropriate word ¢™i or aV it . Then w’ 1s a word in the standard generators of V,
(and the diagonal element) representing x* , of length > i N

By Lemma 3.5 we have Area(w’x~ V) <3 > i<j NiNj. To estimate each N; we use
Corollary 1 as follows. If i € I, then w; represents ¢™¥i and Corollary 1 gives N; <
D|w;|*. If i € I, then w; = Sj; UiS; ! for some u; representing Co(j )N/’ (because
w; represents aN’) Then by Corollary 1 we have N;/r < D(|lw;| —2)* < D|w;|%,
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so N; < rD|w;|*. Finally if i & (I, U I;) then N; = |w;| < |w;|*. Putting these
observations together we have

(5.6) Area(w’x ™) < 3r2D? Z lwi|*|w;|*.

i<j

Next we use the induction hypothesis and Corollary 1 to bound Area(ww’~'). First
note that

Area(ww'™!) < Z Area(w;jc M) + Z Area(wiaj_iNi).

iel. iel,

If i € I, then w; = sj_iluisj-i where u; represents a;,” Ni - Applying the induction
hypothesis to u; we have Area(uiaji_’Ni) < (3/2)r2D*(Jw;| — 2)%%. The strip
s Yaj,"™Nisj c™Ni has area N;/q < (D/q)|w;i|* < D|w;|*, by Corollary 1. Thus

Ji
Area(wic ™M) < (3/2)r?D?(|wi| —2)%* + D|w;|*
(5.7) < 3/2r* D ((Jwil = 2)** + [wi|*)
< (3/2)r* D |w;*.

The last inequality above uses the fact that for numbers x > 0 one has (x + 2)%* >
XE(X +2)% 4+ 2%(x +2)% = x2* + (x +2)°.

Ifi € I, then w; = Sj;Uis; ! where u; represents Co(ji) Nilr. Applying the induc-
tion hypothesis to u; we have Area(ujc;, ~Ni/Ty < (3/2);'2D2 (Jlwi| — 2)%%. The

strip s, ¢j; N’/’s]l —Ni has area (N;/r)/q < (D/q)(lwi| —2)% < D(|w;|—2)%, by

Corollary 1. Therefore

Area(w,-aj_iNi) < (3/2)r2D*(Jw;i| —2)** 4+ D(|w;| —2)*
(5.8 < (3/2r* D*((Jwil —2)** + (lwi| —2)%)
< (3/2)r*D?|w;|**.

Combining (5.7) and (5.8) we then have

(59  Ara(ww' ) < > G/29r2D*wi® < Y (3/2)r2D?|wi|*.
iel.Ul, i
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Finally, adding (5.6) and (5.9) together gives the desired result:

Area(wx V) < (3»/2)r2D2(Z|w,v|°‘)2

< (3/2)r202(2|w,-|)2a = (3/2)r2D?|w|?. O

6 Suspension and snowflake balls

Throughout this section P denotes a nonnegative R x R integer matrix with Perron—
Frobenius eigenvalue A, and r is an integer which is strictly greater than the largest row
sum of P. In this section, we give an explicit description of the suspended snowflake
groups X G, p and the 3—dimensional K(XG, p,1) spaces X r3 p- Then we describe
snowflake balls Bi3 which embed in the universal cover of X r3 p and estimate their
boundary areas. We show how to iterate this suspension procedure to obtain groups
xk G, p and (k+2)—dimensional spaces X ’{5;2‘ Lastly we define higher-dimensional
snowflake balls and estimate their boundary volumes.

Remark 6.1 1In order to realize the exponents (k+ 1)/ k (the endpoints of the intervals
in Figure 1, which are omitted otherwise) we add the free abelian group Z? to the class
of snowflake groups G, p. We endow Z? with snowflake structure as follows

Z* = (ay,ay,claja; =c, c =aza, )

and use the corresponding presentation 2—complex X in place of X, p. There is no
matrix P associated to the group Z?2, and so the only condition that we impose on the
integer r is that r = 2. Since there are no stable letters s;, we define the snowflake
words to be the commutators w; = [a] " agl] and define the snowflake disks Bl.2 = A,
to be the unique embedded disks in X with boundary w; .

In the discussions that follow, whenever we talk about snowflake groups G, p, we
shall always include Z?, and whenever we use the complexes X, . p We shall always
include the presentation 2—complex X for Z? described above.

The groups X G, p

Let ¢: G, p — G, p be the monomorphism which takes each a; to @} and each s; to
itself. The group X G, p is defined to be the associated multiple HNN extension with
stable letters u; and vq:

XGrp = (Gpp.ur, vy |uiguy =¢(g), vigvy' =¢(g) (g€ G, p)).
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The spaces X* ,

These spaces will have fundamental group X G, p. Recall that X, p is a 2—dimensional
K(G,,p, 1) space. There is a cellular map ®: X, p — X, p which induces the map
¢ on the fundamental group. It maps the 1—cells labeled s; homeomorphically to
themselves, maps the 1—cells labeled a; to themselves by degree » maps and maps each
2—cell in the obvious manner; the image of each triangular 2—cell has combinatorial area
r?, and the image of the remaining 2—cells (which have an s; edge in their boundaries)
have combinatorial area r. The 3—complex X r": p With fundamental group X G, p is
obtained by taking two copies of the mapping torus of the map & and identifying them
along a copy of X, p. From this perspective it is easy to see that X’ r3 p is aspherical;
each mapping torus is aspherical since X, p is an aspherical 2—complex, and since
® induces the monomorphism ¢ in 7;. We give more details of the cell structure of
X r3 p below.

Start with the 2—complex X, p and form two copies of X, px[0, 1]. Each copy is given
the product cell structure, in which each k—cell of X, p gives rise to a (k41)—cell in
X, px(0,1). The “bottom” side X, p x {0} keeps its original cell structure and the
“top” X,,p x {1} is subdivided by pulling back under & the cell structure of ®(X, p).
That is, each triangular 2—cell in a vertex space of X, p is subdivided into r? triangles,
and each edge space 2—cell (bearing the boundary label s;cq( j)sj_laj’.) is subdivided
into r copies of the same cell.

The vertical 1—cells of the two copies of X, px[0, 1] are labeled «; and v; respectively,
oriented from X, p x {1} to X, p x{0}. Finally to form X r3 p one attaches the bottom
of each piece to X, p by the identity and the top by the map ®. Figure 5 and Figure 6
illustrate the two types of 3—cell occurring in X r3 P

U1 V1

V1

Figure 5: A triangular 3—cell (with r = 2)
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Co(j) Co ()

S S S
J ) LY ) S
aj aj aj aj V1

U1 U1 U1
a; aj Sy

Figure 6: A rectangular 3—cell

Snowflake balls

We define embedded 3—dimensional balls Bf in X r3 p 1n a similar fashion to the
snowflake disks constructed in Section 5. An essential difference, however, is that now
r is an integer, and the observations of Remark 4.1 apply. That is, snowflake disks
with diameter labeled ¢”" are unique, and the corresponding snowflake words have no
“remainder” terms.

As in the proof of Theorem A we let ¢ be the diagonal element of a vertex group V;,
in G, p C XG, p where m = 2. We let wl.+ and w; denote respectively the (unique)
positive and negative snowflake words representing ¢” " . (Note that the indexing here
differs from that in Section 5, where these words would be called wjE ) Let B; 2 be the
snowflake disk bounded by w; = w+(w )~!, with diameter labeled c’ Note that
Bl2 is the same as the snowflake disk A,; of Sectlon 5.

For each positive integer j, we shall use a stack of thickened van Kampen disks to
define an embedded 3-ball B3 in the universal cover of X 3 . Note that the universal
cover of X3 " P contains 1nﬁn1tely many embedded copies of the universal cover of
X, p;one for each coset of G, p in £G, p. We call two such copies adjacent if the
cosets have representatives which differ by right multiplication by uf or vftl .

The map ®: X, p — X, p lifts to a map of universal covers which we also denote by ®.
Consider the image dD(Bl.Z) of the embedded snowflake disk Bl.z. This image is again
embedded, but its boundary word is ¢ (w;). If we apply the curve shortening procedure
once to the subword ¢>(w+) we obtain w, |, which is the positive snowflake word for

i+1°
¢” . Similarly, if we apply curve shortenlng once to the subword ¢ (w;") we obtain
the negative snowflake word for ¢’ . Thus <1>(Bz) is a subdiagram of Bl 1 The

top half of the ball B3 is defined to be the union of the mapping cylinders of ® with
domain 32 and codomam B 1 Where 7 ranges from 1 to j; the copies of 82 are
identified. Th1s embeds in the umversal cover of X3 - pas follows. The disk 82 embeds
in some copy of the umversal cover of X, p, B embeds in the adjacent copy obtained
by right multiplying by ”1 , and the mapping cyhnder of &: Bl2 — B% embeds in the
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universal cover of X3 - p (O interpolate between the images of 32 and 32 Note that
this embedding is p0551ble since the universal covering of X 3 , p can be descrlbed as
an infinite union of mapping cylinders of &: X, P X, P Wthh is encoded by the
Bass—Serre tree T' corresponding to the multiple HNN description of G, p.

We continue to add mapping cylinders of ®: B; 2 Bl2 o

in the top half of the schematic diagram in Flgure 7. The image of the union of the

fori =2,...,j,asindicated

— B
2
Ui Bj_l ,
uq Bj
------------- B2
1 , Jj+1
5
V1 5
B
— B}

Figure 7: A schematic diagram of the embedded ball B ]-3

first few embedded layers is shown in Figure 8. In a similar fashion, we can embed
a second copy of the union of mapping cylinders of ®: B} — B?, ;. However, this
time we start from the copy of sz in the image of the previous union, and add the
mapping cylinders in descending order (so i = j,..., 1) and require that new copies
of the universal cover of X, p differ by right multiplication by val . The image of
this family is indicated in the lower half of the schematic diagram of Figure 7, and
the total union is the embedded ball B 1.3. It is easy to see that the union embeds, since
each mapping cylinder embeds, and distinct mapping cylinders correspond to distinct
layers in the 3—complex X 3 . These layers are distinct, since they map to distinct
edges of the Bass—Serre tree T . Finally, there is a 2—dimensional “fringe” at the
equator B? 1 level. We remove this fringe by simply replacing the two embeddings
of ®: B} — BJ.ZJrl by embeddings of ®: B} — ®(B7).

Lemma 6.2 Given r and P there is a positive constant Fy such that |8BJ?| <
Area(dB?) < FoldB;| forevery j.
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Figure 8: A few layers of B}

Proof The ball B ]3 is a union of 2j mapping cylinders. See Figure 7 for a schematic
representation. Its boundary area is twice the area of the upper hemisphere. This latter
area is estimated as follows.

For each 1 <i < j, there are |BBZ.2| vertical (conjugation by u;) 2—cells, which inter-
polate between BBZ.Z and @(BBiz). This proves the first inequality, |BB].2| < Area(BB]r”).

For each 1 <i < j there are horizontal 2—cells which interpolate between &(
smashpartialBiz_l) and BBiz. In the case i = 1 there is no loop @(833), and the
horizontal 2—cells just fill the van Kampen diagram Blz. For any i, the horizontal
2—cell contribution to the area is bounded above by |8Bi2 |. To see this, note that the
horizontal interpolation is a union of pieces of the form s;a;, ---a;,, sj_laj_’ where
{ai,...,am} generates a vertex group Vj,, and the stable letter s; conjugates the
diagonal element of this vertex group to some generator a; of G, p. The area of this
piece is m, and its contribution to |8Bl.2| ism+42.

Counting vertical and horizontal 2—cells for both hemispheres we obtain

j
Area(dB}) < 4) |dB}].

i=1
O—l/ari/tx

Proposition 4.5 implies that |wlJr | < C and so

J

J J
43 |0BF =8 w| < 8C, YD (/)

i=1 i=1 i=1
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The last term is a geometric series, and so is bounded above by F (r /ey fora positive
constant F(/) (independent of ;). Proposition 4.5 also gives C, Ve jle < |wjf"| and so

. F. |
Area(dB}) < Fyril® < 7°c1 /*|aB2| .
Now the desired (second) inequality holds by taking Fo = (F,;/2)C 11/ *, m|

The inductive suspension procedure

Having discussed G, p we define further suspensions EkGr, p having (k+2)-dim-
ensional Eilenberg—MacLane spaces X k 2 and (k+2)—dimensional snowflake balls
BJkJr2 er}? We assume that the group Ek IG, P, the space Xrlfjgl and snowflake
balls Bk e X k+1 have already been constructed.

First we define the groups Z¥G, p. Let ¢5: =71 G, p — =¥~ G, p be the monomor-
phism which sends a; to a; and which leaves fixed the stable letters s;, u; and v;.
We define X% G, p to be the multiple ascending HNN extension with two stable letters
uy and vg, each acting by ¢y :

%G, p

= (271G, poug, vi | uggur! = dr(g), vigvy! = dr(g) (g € 571G, p)).

Next we define the spaces X’ k +2 . The homomorphism ¢ is induced by a cellular
map Py X} k +1 —-> X k +1 We define X k +2 to be the double mapping torus with
monodromy <I>k+1 That is, take two coples of X rk}'l % [0, 1], identify the “bottom”
sides

XFEU o) o xF3!
by the identity, and attach the “top” sides

by the map @ ;. The vertical 1—cells of the copies of X k +1 x [0, 1] are labeled uy
and vy respectively, and are oriented from X k 'H x {1} to X i 'H x {0}. The resultlng
space X, k + is given a cell structure analogous to that of X 37 . As before, X k +2
aspherlcal has dimension k + 2 and has fundamental group Ek Grp.

Now we define the higher-dimensional snowflake balls. The map &4 lifts to a

map X Yk 'H - X Yk 'H which we also call &4 ;. We define (k+2)—dimensional balls
Bk'"2 of dlameter rJ for each j as unions of mapping cylinders (called layers) of

the map Py restricted to the (k-+1)—dimensional balls Bk'H. These mapping

cylinders are assembled as shown in Figure 7, with Bk 1 in place of 32 More
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specifically, we assume inductively that @y 1 maps B; k+1 into a subcomplex of Blkfll

for each i. Then the upper hemisphere of Bk *2 s the union of the mapping cylinders
of ®pyq: Bk'"1 — B**1 where i ranges from 1 to j — 1 and the mapping cylinder
of ®p4q: Bk+ — Dp 4 (Bk+ ). The lower hemisphere is defined similarly, and the
two are 1dent1ﬁed along ®p 4 (Bk +1) Note that the subspaces Bk T (B

of the domains of these mapping cylinders lie in the boundary of B +2

k+1

i+1 - There is an induced map

Recall that &y maps Bk+1 to a subcomplex of B;
®j 4, from the mapping cylmder of

Bk-‘rl Bk-H

D1 i+1

to the mapping cylinder of

k+1 k+1
Drt1: Bily _>Bz+2’

use P41 xid on Bk'"1 x [ and ®4q on B . Then ® 1, maps layer i of Bk'i'2
to layer i 4+ 1 of Bk +2 forany i < j (in e1ther hemisphere). These maps deﬁned on

the layers of Bk +2 JOlIl together to define the map Py ,: Bk 2, B]kj_rlz

The balls Bjk *2 embed into X kj.fz exactly as the balls B3 embed into X 3 . That is, we
may consider X’ Yk +2 as a union of copies of the mappmg cylinder of ch+1 X 'H

X, Yk +1 with the mappmg parameter corresponding to right multiplication by u X - or
V- g . Then, as shown in Figure 7, the embedding Bk +2 — X, Yk +2 is assembled from
the embeddings Bk T X, Yk +1 (for i < j) with the upper hem1sphere extending in
the uj direction and the lower hemisphere in the vy direction. Under this embedding,
the map Py : Bk"r2 — Bﬁflz described in the previous paragraph is simply the
restriction of <I>k+2 XkJr2 Xk+2 BkJr2

For any k, we define the shell of a snowflake ball Bk to be the subspace Bk
q)k(B 1), or simply Bk in the case j = 1.

Lemma 6.3 Vol* (shell(BF)) < Vol*~! (9BF).

Proof Tt suffices to show that every k —cell of the shell has a (k—1)—dimensional face
contained in BB]’.‘ . Recall that B]’.‘ is a union of layers, so consider the intersection
of the shell with layer i (in either hemisphere). This layer is a mapping cylinder
M(Dp_q: Blk L sz+11) and its preimage in BJ’F_I under @y, is layer i — 1 of this
smaller ball (or is empty in the case i = 1). Hence the intersection of the shell with
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layer 7 is
M@z BT = BEL) — & (M(@4 12 BIS! — BF)
= M(®i—r: BE! > B — M@k @1 (B > @1 (BE)
= M(®@gy: (BF ™! = 0y (BE) — (BEL! = @ (BFY)

if i >1,andis M(Dp_1: B{‘_l — Blk_'__ll) in the case i = 1. Either way, this part of

shf:ll(B]I.c ) is the mapping cylinder of the restriction of ®;_; to shell(Blk ~1). So each
k—cell has a (k—1)—dimensional face in shell(B{‘_l), which is contained in 8BJ’.‘ . O

The next result is a higher-dimensional analogue of Lemma 6.2.

Lemma 6.4 Given r, P and k = 3, there is a positive constant Fj such that
Volk_z(aBJ].‘_l) < Volk_l(aBJ].‘) < Fy, Volk_z(aB]].‘_l) for every j.

Proof We prove, for k = 3, the following two statements: there exist positive constants
Ey., Fj such that

() QCT™) %) < VolF"2(@BEY) < Ex(r'/*)), and
2 Vol*"2(0B¥~!) < Vol* ' (9B) < Fi Vol*2(9BF)
for all j (with C; given by Proposition 4.5). Statement (1) is a higher-dimensional

analogue of Proposition 4.5 and (2) is the main statement of the lemma. The two
statements are proved together by induction on k.

If £ = 3 then (1) follows from Proposition 4.5, with E3 = 2C0_ 1 “ . Statement (2) is
given by Lemma 6.2 (with F3 = Fj).
For k > 3 we prove (1) as follows. The induction hypothesis implies that

Vol "2(9BF™1) < Fy_y Vol 3(9BF2)

by (2) and
VolF 3 (9BF %) < gy (r1/%)/

by (1). Hence
Vol* 2 (0BF 1) < E(r'/*)/

with Ej = Fj_1 E;—1. We also have (by induction)
Vol*2(3B%~1) = Volk =3 (8B572) = 2y V) (r V1)
by (2) and (1). This establishes (1).
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To prove (2) we count vertical and horizontal (k—1)—cells of BBk as in the proof of
Lemma 6.2. In each hemisphere of Bk , layer 7 is a copy of the mapplng cylinder of
®p_y: BT BkJr ! This layer meets BBk in horizontal cells which are the (k—1)—
cells of shell(Bk 1) and vertical cells, each of which is the product of a (k—2)—cell
in aBk I with 7. This latter observation implies the first inequality of (2) (taking
i=j ) and also that the number of vertical cells in layer i is at most Volk~ 2(8Bk .

The number of horizontal cells is at most VolK~ 2(83" 1) by Lemma 6.3. Adding the
contributions from all layers in both hemispheres, we obtain

J
Vol* "1 (0BF) < 4> Vol*2(aBF ).
i=1

Statement (1) implies

J J
43 Vol*2(@BF ) < 4B Y (M)

i=1 i=1
and the latter sum is a geometric series. Hence
Volk =1 (9BF) < Fy (r'/®)/
for some constant F /’c Now (1) implies that
Vol* =1 (3B¥) < (F;/2)(C,/*) Vol*2(aB*1),

establishing (2) with Fy = (F}/2)C,/*. 0

7 Proof of Theorem C

We will establish upper and lower bounds for the k—dimensional Dehn functions
§%) (x) of the groups Ek_lGr, p and these will be equivalent. As usual A denotes
the Perron—Frobenius eigenvalue of P and o = log; (r). In the case of Y172 we
define o = 1.

The lower bound
As in the proof of Theorem A, we show that the embedded snowflake balls Bk e
X, Yk +1 have the correct proportions and are numerous enough to determine S(k) (x)

from below.

First we show that for every k = 1 there is a constant Gy such that

(7.1) Volk+1(BEF1y > Gy Volk (9 BFF1)2e
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for all i. The case k = 1 was proved in (5.1) with G; = (Cy)?4™%. For k > 1
we proceed by induction. Note that Volk+1 (Bk th > VoI¥ (Bk ) since the latter is
the volume of the mapping cylinder of ®y: Bk — O (Bk ) inside Bk 1. We also
have Vol¥ (Bk) Gr_q Volk~1 (8Bk)2°‘ by the induction hypothesm Lemma 6.4
implies that Gj_ | Volk—1 (8Bk)2“ G F 2 Vol¥ (aBk+1)2“. Equation (7.1)

k+1
now follows by taking G = Gy _ lei‘f

Next we show that for each k = 2 the sequence (Vol* (88;c *1)); is exponentially
bounded and tends to infinity. Consider first the case & = 2. Then we have
Vol? (9B, ) _ Folodini] _ 0(ri+1c1)1/a _ FO(E)W
Vo]z(aB?) |8Ari| V’C() C()

where the first inequality holds by Lemma 6.2 and the second by Proposition 4.5. Thus,
the sequence is exponentially bounded. For k > 2 we have

Vol OBE!) _ Fiqn VoI "' (@B, )

VoK (aBK+1) T Volk~1(9BF)

by Lemma 6.4 and so (Vol¥ (8Blk *1)); is exponentially bounded, by induction on k.
It tends to infinity because

Volk (0BX+1) = Vol (0B}) = A 4| = 2C7 /@ (r 12y

by Lemma 6.4, Lemma 6.2 and Proposition 4.5. Now, using Remarks 2.1 and 2.7, we
conclude from (7.1) that §%) (x) = x2.

The upper bound

To establish the upper bound we must work with Dehn functions & é’l (x) modeled on
arbitrary manifolds M with boundary, as defined in Section 2. Recall that the dimension
of Sél (x) is the dimension of dM , and 5%/1 (x) agrees with the usual k—dimensional
Dehn function when M is the (k+1)—dimensional ball.

A function F: N — N is superadditive if F(a+b) = F(a)+ F(b) for all a, b. Recall
that the geometric dimension of a group G is the smallest dimension of a K(G, 1)
complex.

Theorem 7.2 Let G be a group of type J, and geometric dimension at most n, and
fix a finite aspherical n—complex X with fundamental group G . Suppose that the Dehn
function Sé’l (x) (defined with respect to X ) satisfies

8 (x) < F(x)
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for every n—manifold M , where F: N — N is nondecreasing. Let H be a multiple
ascending HNN extension of G . Then H is of type J,, 11, has geometric dimension at
most n + 1, and

H (x) < F(x)
for every (n + 1)—manifold M .

In the hypotheses we are including Dehn functions & él (x) where M has more than one
connected component (otherwise we should add that F' is superadditive). Stipulation:
The n—dimensional Dehn functions in the conclusion are defined with respect to a fixed
complex Y constructed in the proof of the theorem.

Proof First we define the finite (n 4+ 1)—dimensional complex Y with fundamental
group H in the usual way. Suppose the multiple ascending extension has k stable
letters. Form & copies of X x[—1, 1], give each the product cell structure, and attach
each copy of X x {—1} to X by the identity map. Then attach each copy of X x {1}
to X by the appropriate monodromy map, and call the resulting space Y. Let Z C Y
be the union of the spaces X x {0}. There are natural projections along the fibers
po: Z — X and py: Z — X which factor through Z x{—1} and Z x {1} respectively.
Let Y be the universal cover of ¥ and let X and Z be the preimages of X and Z
in Y. The projections p; lift to projections p;: Z—>X along fibers. Note that each
component of X and Z isa copy of the universal cover of X, and in fact py: Z—>X
is a homeomorphism.

Each open k —cell % in Zx(—=1,1)CY has the form 0% 1% (=1,1) where o*~1 is
a (k—1)—cell in X, and the restriction of po to ok N Z is simply projection onto the
first factor. Since Z is not a subcomplex of Y , we measure volume in Z by passing
to X via po- The description of pg just given leads to the following observation: if
[ Mk Y is an admissible map transverse to Z and X, and N = f_l(Z) and
My = f_l(X~), then pgo f|n and [y, are admissible and

(7.3) VoI (1) = VoI~ (po o f ) + VoI* (fas,)
where the left hand side is volume in ¥ and the right hand side is volume in X.

Now suppose that M is a compact (n + 1)—manifold with boundary and let g: M — Y
be a least-volume map with boundary f = g|sps. We can arrange by a homotopy that
N=g! (Z ) is a properly embedded codimension one submanifold with a product
neighborhood N x[—1,1] C M such that g 1(Z x(=1,1)) = N x(-1,1). (To do
this, consider the composition 7: ¥ — Y — S'v §1 — 1 where S' v S! is the
underlying graph for the multiple HNN-description of 7;(Y) and S'v S' — S!isa
fold. By a homotopy of g, 7 o g can be made smooth in a neighborhood of g~! (Z ).
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By a further homotopy, we can arrange that n(Z ) is a regular value of 7 o g; now use
transversality.) The product structure on N x[—1, 1] may be chosen so that g|nx(1,1)
is the map g|n x id. Note that N may have several connected components.

We claim that Vol” (pgog|n) is smallest among all N —fillings of pgo f|sn: ON — X.
Assuming this for the moment, the theorem is proved as follows. We have Vol"t!(g) =
Vol"(pg o g|n) by (7.3) because X has dimension n. Then Vol” (pooglny) =
FVolY (po o f|an) by (2.5) and the claim, and the latter is at most Sg (VoI 1 (pg o
flan)) by the definition of SZGV. Equation (7.3) implies that (SZGV(VOI”_1 (poo flan)) <
) g (Vol"(f)). Then we have the desired bound

FVolM () = Vol"t!(g) < ¥ (Vol"(f)) < F(Vol"(f))

by the main hypothesis and we conclude that 5?{’[ (Vol*(f)) < F(Vol"(f)). Since
Vol”( /') was arbitrary and F is nondecreasing, we have 5% (x) < F(x) for all x.

Now we return to the claim that Vol (pg o g|n) = FVolV (poo flan)- We show that
if pg o g|n is not a least-volume filling of pg o f|on then g can be modified rel M
to a map of smaller volume, contradicting the choice of g.

Let My = g_l(f), and note that the frontier of My in M is N x{—1} UN x {1}.
These two subsets of dMq will be denoted M~ and M0+ respectively.

Suppose Vol (h) < Vol" (pg o g|n) for some map h: N — X with hlyny = poo flan .
Form a new copy of M in which N x (—1, 1) is replaced by N x (=2, 2). Define a
new map g’: M — Y by letting g’ be g on My, (py'oh)xid on N x (—1,1), and
by extending to the remaining regions as follows. Note that (p, Lo h) x id extends
continuously to N x [—1, ll as h on N x {—1} and as p; opa1 oh on N x{l}.
Since each component of X is contractible the maps pj o pal oh and g| M, are
homotopic rel IN. We let g’|nx[1,21: N x[1,2] — X be such a homotopy. Similarly
g'|Nx[-2,—1] is defined to be a homotopy in X from g|my to h, fixing IN pointwise.
This defines the map g’: M — Y.

Now collapse each fiber of N x[1,2] and dN x [—2,—1] to a point, to obtain a new
copy of M with amap g"”": M — Y which agrees with g on dM . Note that all of
M —(N x(—1,1)) maps by g” into X and g"InNx(=1,1) = (py ' oh) xid. So by (7.3)
we have Vol”T1(g”) = Vol” (h) < Vol"(pg o g|n) = VoI"T1(g), a contradiction. O

Lemma 7.4 If G is finitely presented, 6g(x) < F(x) with F(x) superadditive, and
M is a compact 2—manifold with boundary, then Sé‘;’[ (x) < F(x).

In particular if §g(x) is superadditive then (%4 (x) < 6g(x) for every compact 2—
manifold M .
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Proof If M is connected with one boundary component then let g: M — D? be
a quotient map which collapses the complement of a collar neighborhood of dM
to a point. Then Area(g o ¢) = Area(g) for any map g: D?* — X, and we have
834()6) <dg(x) < F(x).

If N isclosed then § é’l UN(x)= 5?;4 (x) since N may be assigned zero area by mapping
it to a point. So without loss of generality assume that M has no closed components.
For each component M’ of M there is a quotient map to a connected, simply connected
space Z' which is a union of disks (one for each boundary component of M) and
arcs joining them. Taking a union of such spaces and maps, we have a quotient map
M — Z. Every map D?>U---UD? — X extends to a map Z — X which yields
(by composition) a map M — X with the same area. Hence 5M (x) < (SD L-uD? (x).
Now superadditivity of F implies 8D U-UD? (1) < F(x). ]

Theorem 7.5 Let G be a finitely presented group of geometric dimension 2 with
3G (x) equivalent to a superadditive function. Let H be obtained from G by performing
n iterated multiple ascending HNN extensions. Then S(Hn+1)(x) < g (x).

The upper bound of Theorem C follows immediately, by Theorem A.

Proof Let Fy(x) be superadditive where Fy(x) >~ dg(x). Then dg(x) < F(x) =
CFy(Cx)+Cx for some C and F(x) is superadditive. The result now follows directly
from Lemma 7.4 and Theorem 7.2. ]

The case n = 1 of Theorem 7.5 was proved by Wang and Pride [22], using a more
direct method.

8 Products with Z

In this section we determine higher Dehn functions of G x Z for certain groups G . In
these cases the geometry of G x Z is accurately represented by embedded balls which
are products of optimal balls in G with intervals, with suitably chosen lengths. We
conclude the section by proving Theorem D.

To establish an upper bound for Dehn functions of G x Z we need the following
refinement of Theorem 7.2. The proof is based on Theorem 6.1 of Alonso et al [1].

Theorem 8.1 Let G be a group of type F, and geometric dimension at most n, and
fix a finite aspherical n—complex X with fundamental group G . Suppose that the Dehn
function Sé’[ (x) satisfies

§M(x) < Cx*
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for every n—manifold M , and fixed C > 0 and s > 1. Then
Sz (x) < Csxmls
for every (n + 1)—manifold M .

Proof First note that we are in the situation of Theorem 7.2, which is valid, but no
longer provides the best possible upper bound. Define Y, Z, pg and p; as in the
proof of Theorem 7.2. Note that now the projections along fibers pg, pi: Z — X are
both homeomorphisms, and VolI¥ (poo f) = VolI¥ (pro f) forany f: Nk Z.

Given a compact (n + 1)—man1fold M with boundary, consider a map f: dM —
Y. Arrange that L = f~ (Z ) is a codlmensmn one submanifold with a product
neighborhood L x[—1,1]C M such that f~1(Z x(—1,1)) = Lx(—1,1). As before,
the product structure on L x [—1, 1] can be chosen so that f|fx(1,1) is the map
SlL xid.

We will prove that 8 gz (x) <C 1/5x2=1/5 by induction on the number of connected
components of L. If L = @ then f(0M) C X. The components of dM may
map into different components of X . However, by joining these components with a
minimal collection of embedded arcs in the 1-skeleton of )7, one obtains a contractible
subcomplex T C Y of dimension 7 containing f(dM). Then f extends to a map
g M — T CY with Vol"T!(g) = 0.

Now assume that L # &. Let Z, be a connected component of Z such that Ly =
f~Y(Zy) is a nonempty union of components of L, and f(L) lies entirely in one
component of Y — P1 (Z 0). (Think of Lg as an innermost union of components of L.)
Let Ny COM —(Lyx(—1, 1)) be the union of components having boundary Lq x {1}.
That is, Ny and its complement N_; in dM — (Lg x (—1, 1)) map to opposite sides
of Zgx (—1,1)in Y, and in fact f(N;) C p1(Zy) C X, by the choice of Zo.

Our method now is to fill Ly with a least-volume copy of N; and then fill the two

sides of dM efficiently by M (using the induction hypothesis) and Ny x I. These
fillings fit together to yield a filling of f by M having the required volume.

Let v = Vol"(f) and u = Vol (pg o f|,) (Which is equal to Vol"(f|L,x(~1,1))
by (7.3)). Let h: N; — X be a least-volume N; —filling of pgo f|L,. Thus, hlyn, =
poo flr, and Vol"(h) < Cu®. Define a new map f’: OM — Y by first collapsing
the fibers of Ly x[—1, 1] to points, and then sending N_; by f and N; by /. Since
h is least-volume and Lo x [—1, 1] was collapsed we have Vol (/') < v —u. Also
(fH~! (Z) = L — Ly, so by the induction hypothesis there is a map g_;: M — Y
with g_1]oar = /' such that

Voln-‘rl(g_l) < CI/S(U _u)Z—l/S.
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Next let g1: N; x[ 1,1]— Y be a homotopy which begins with # on Ny x {—1}
and pushes across Zo X (—1,1) and then deforms within p; (ZO) to f|n,, with the
boundary fixed pointwise. This latter homotopy exists since p; (ZO) is contractible.
Note that Vol"*!(g;) = Vol (k) by (7.3) since p;(Z,) has dimension 7.

Now join Ny C dM to (N; x {—1}) C Ny x[—1,1] to get a new copy of M and a
map g: M — Y extending g_; and g;. Then gy = f and

V01n+1(g) < CI/S(v_u)Z—l/s+vh
where vy = Vol”(h). Now s > 1 and v = u imply

V01n+1(g) < CI/S(U_M)UI—I/S+vh

8.2) _ ottsyus( u N /=1y,
v Cl/sy
Recall that v, = Vol”(h) < Vol"( f|n,) < v because A is least-volume. Hence
_ (1/s)—1
pow vy e vy
v Cl/sy v Cl/sy
8.3)
u v
= 1= v + Cl/sy’

The main hypothesis implies that v, < Cu®, or v,ll/ * < CYSu, again because h is
least-volume. Thus

Ul/s u u
—_ — h < JR —_ =
(8.4) 1 +C1/S <1 v+v 1.
By Equations (8.2), (8.3) and (8.4) we have Vol"t!(g) < C'/$v2~1/$ where v =
Vol (g|aar), which completes the proof. ad

Definition 8.5 Let G be a group of type ]:kEH and geometric dimension at most
k + 1. The k—dimensional Dehn function § (x) has embedded representatives
if there is a finite aspherlcal (k+1)—complex X a se% ence of embedded (k+1)-
dimensional balls B; C X, and a function F (x) ~dg (k (x), such that the sequence
given by (n;) = (Volk (0B;)) tends to infinity and is exponentially bounded, and
Volk+1(B i) = F(n;) foreach i.

The lower bounds established in this article for various Dehn functions are all obtained
by constructing embedded representatives and applying Remark 2.1 and Remark 2.7.
In particular the k—dimensional Dehn functions of Ek_lG,, p and »k=172 have
embedded representatives.
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The next result generalizes [1, Theorem 6.3] to higher dimensions.

Proposition 8.6 Let G be a group of type Fj 4 and geometric dimension at most
k 4 1. Suppose the k —dimensional Dehn function §®)(x) of G is equivalent to x* and
has embedded representatives. Then G x Z has (k+1)—dimensional Dehn function
§*+D (x) = x2-1/5 | with embedded representatives.

Proof We establish the lower bound §*+1 (x) = x271/5 for G x Z as follows. Since
S(Gk )(x) has embedded representatives, let X', F(x), B; and (n;) be as in Definition
8.5; without loss of generality suppose that F(x) = Cx® for some C > 0. Define

= 3V01k+1(B ). The space ¥ = X x S! has fundamental group G x Z and

unlversal cover Y = X x R. Consider the (k+2)—dimensional balls
C; = B; x[0,m;/3n;] C Y.
The boundary of C; is dB; x [0, m;/3n;]U B; x d[0, m; /3n;] which implies that
Volk 1 (0Cy) = m;.

We also have Volk+2(C,~) = Volk+1(B,-)m,-/3n,- = (m;)?/9n; for each i. Since
m; = 3V01k+1(B,-) > 3C(n;)* we have (3C)~Y/5(m;)'/$ = n;. Then

(m,)z Cl/s 3
V01k+2(Ci) - 9};,' z 32—1/s (mi)z 1/S'

Note that Y is aspherical and has dimension k + 2, and so C; is a least-volume ball
(cf Remark 2.7). Therefore 81 (m;) = (C/$ /3271/5)(m;)2~1/S for each i . Now it
remains to check that the sequence (772;) has the required properties. It tends to infinity
since m; = 3C(n;)%. Also each ball B; C X is least-volume, so there is a constant
D such that m; < D(n;)® forall i.! Then m;y1/m; <(D/C)(njy1/n;)*, which is
bounded. Now Remark 2.1 implies that §&+1 (x) = x2-1/5, o

We are now in a position to prove Theorem D.

Proof of Theorem D Fix r, P and ¢, let

200+ Da—¢
S(g):&’
2a—(L—1)
and let G¢ be the group 971G, p x Z*. (Or let
(42
¢
sO=ra

THere we are using the upper bound for S(Gk ) (x).
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and G, = 971722 x Z%.) We verify by induction on £ the following statements
for Gy:
(1) M (x) < Cx’® for all (¢ + £ + 1)-manifolds M and some constant C > 0,
2) §@tO(x) = x*®  and

(3) 8@*H(x) has embedded representatives.

The first two statements together imply §@+6 (x) ~ x5,

If £ = 0 then (1) follows from Theorem 7.2 and Lemma 7.4. Statement (2) holds by
Theorem C, and we have already observed that (3) holds for these groups.

For £ > 0 note first that s(¢) =2 —1/s(£ — 1). Then statement (1) holds by Theorem
8.1 and property (1) of Gy_;. Proposition 8.6 implies (2) and (3) by properties (1)—(3)
of GZ—] . O
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