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Snowflake groups, Perron–Frobenius eigenvalues
and isoperimetric spectra
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The k –dimensional Dehn (or isoperimetric) function of a group bounds the volume
of efficient ball-fillings of k –spheres mapped into k –connected spaces on which the
group acts properly and cocompactly; the bound is given as a function of the volume
of the sphere. We advance significantly the observed range of behavior for such
functions. First, to each nonnegative integer matrix P and positive rational number
r , we associate a finite, aspherical 2–complex Xr;P and determine the Dehn function
of its fundamental group Gr;P in terms of r and the Perron–Frobenius eigenvalue
of P . The range of functions obtained includes ı.x/D xs , where s 2Q\ Œ2;1/
is arbitrary. Next, special features of the groups Gr;P allow us to construct iterated
multiple HNN extensions which exhibit similar isoperimetric behavior in higher
dimensions. In particular, for each positive integer k and rational s > .k C 1/=k ,
there exists a group with k –dimensional Dehn function xs . Similar isoperimetric
inequalities are obtained for fillings modeled on arbitrary manifold pairs .M; @M /

in addition to .BkC1;Sk/ .

20F65; 20F69, 20E06, 57M07, 57M20, 53C99

Introduction

Given a k –connected complex or manifold one wants to identify functions that bound
the volume of efficient ball-fillings for spheres mapped into that space. The purpose of
this article is to advance the understanding of which functions can arise when one seeks
optimal bounds in the universal cover of a compact space. Despite the geometric nature
of both the problem and its solutions, our initial impetus for studying isoperimetric
problems comes from algebra, more specifically the word problem for groups.

The quest to understand the complexity of word problems has been at the heart of
combinatorial group theory since its inception. When one attacks the word problem
for a finitely presented group G directly, the most natural measure of complexity is
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the Dehn function ı.x/ which bounds the number of defining relations that one must
apply to a word w DG 1 to reduce it to the empty word; the bound is a function of
word-length jwj. The function ı.x/ recursive if and only if G has a solvable word
problem.

Progress in the last ten years has led to a fairly complete understanding of which
functions arise as Dehn functions of finitely presented groups. The most comprehensive
information comes from [18] where, modulo issues associated to the P DNP question,
Birget, Rips and Sapir essentially provide a characterisation of the Dehn functions
greater than x4 . In particular they show that the following isoperimetric spectrum is
dense in the range Œ4;1/.

IPD f˛ 2 Œ1;1/ j f .x/D x˛ is equivalent to a Dehn functiong:

Gromov proved that IP \ .1; 2/ is empty and that word hyperbolic groups can be
characterised as those which have linear Dehn functions. In [3] Brady and Bridson
completed the understanding of the coarse structure of IP by providing a dense set of
exponents in IP\ Œ2;1/. What remains unknown is the fine structure of IP\ .2; 4/.
In particular, it has remained unknown whether Q\ .2; 4/� IP. There has, however,
been recent progress on understanding Dehn functions below x4 that are not of the
form x˛ . For instance, Ol 0 shanskii and Sapir [16] have constructed groups with Dehn
function x2 log.x/, and Ol 0 shanskii [15] has constructed examples with more exotic,
almost-quadratic behavior.

What Brady and Bridson actually do in [3] is associate to each pair of positive integers
p > q a finite aspherical 2–complex whose fundamental group Gp;q has Dehn function
x2 log2 2p=q . These complexes are obtained by attaching a pair of annuli to a torus, the
attaching maps being chosen so as to ensure the existence of a family of discs in the
universal cover that display a certain snowflake geometry (cf Figure 4 below). In the
present article we present a more sophisticated version of the snowflake construction
that yields a much larger class of isoperimetric exponents.

Theorem A Let P be an irreducible nonnegative integer matrix with Perron–Frobe-
nius eigenvalue � > 1, and let r be a rational number greater than every row sum of P .
Then there is a finitely presented group Gr;P with Dehn function ı.x/' x2 log�.r/ .

Here, ' denotes coarse Lipschitz equivalence of functions. By taking P to be the
1� 1 matrix .22q/ and r D 2p (for integers p > 2q ) we obtain the Dehn function
ı.x/' xp=q and deduce the following corollary.

Corollary B Q\ .2;1/� IP.
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The influential work of M Gromov [11; 12] embedded the word problem in the broader
context of filling problems for Riemannian manifolds and combinatorial complexes.
For example, Gromov’s Filling Theorem [5] states that given a compact Riemannian
manifold M , the smallest function bounding the area of least-area discs in M as a
function of their boundary length is coarsely Lipschitz equivalent to the Dehn function
of �1M . In the geometric context, it is natural to extend questions about the size of
optimal fillings to higher-dimensional spheres, exploring higher-dimensional isoperi-
metric functions that bound the volume of optimal ball-fillings of spheres mapped
into the manifold (or complex). Correspondingly, one defines higher-dimensional
Dehn functions ı.k/.x/ for finitely presented groups G that have a classifying space
with a compact .kC1/–skeleton (see Section 2). The equivalence class of ı.k/ is a
quasi-isometry invariant of G , by Alonso–Wang–Pride [2].

In contrast to the situation of ordinary Dehn functions, Papasoglu [17] has shown
that ı.2/.x/ is always bounded by a recursive function. This is not the case in higher
dimensions, however. For each k > 2, Young [23] constructs a group for which ı.k/.x/
is not subrecursive.

For each positive integer k one has the k –dimensional isoperimetric spectrum

IP.k/ D f˛ 2 Œ1;1/ j f .x/D x˛ is equivalent to a k –dimensional Dehn functiong:

We do not yet have as detailed a knowledge of the structure of these sets as we do
of IP D IP.1/ . Indeed knowledge until now has been remarkably sparse even for
IP.2/ : the results of Alonso et al [1], Wang and Pride [22] and Wang [21] provide
infinite sets of exponents in the range Œ3=2; 2/ and provide evidence for the existence
of exponents in the range Œ2;1/; the snowflake construction of Brady and Bridson [3]
provides a dense set of exponents in the interval Œ3=2; 2/; and in Bridson [6] it is was
proved that 2; 3 2 IP.2/ (see also Burillo [8]). Gromov and others have investigated
the isoperimetric behavior of lattices [12].

Our second theorem relieves the dearth of knowledge about the coarse structure of
IP.k/ , k > 2.

Theorem C Let P be an irreducible nonnegative integer matrix with Perron–Fro-
benius eigenvalue � > 1, and let r be an integer greater than every row sum of P .
Then for every k > 2 there is a group †k�1Gr;P of type FkC1 with k –dimensional
Dehn function ı.k/.x/' x2 log�.r/ . There are also groups †k�1Z2 of type FkC1 with
k –dimensional Dehn function ı.k/.x/' x2 .

By taking P to be the 1�1 matrix .22q/ and r D 2p we see that Q\Œ2;1/� IP.k/ ; in
particular IP.k/ is dense in the range Œ2;1/. But that falls short of one’s expectations:
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as in the case k D 1, one anticipates that IP.k/ should be dense in the range that begins
with the exponent .kC 1/=k corresponding to the isoperimetric inequality for spheres
in Euclidean space. In order to fulfil this expectation, we investigate the higher Dehn
functions of products G �Z and prove the following theorem.

Theorem D Suppose P , � and r are as in Theorem C. Then for all q; ` 2 N , the
.q C `/–dimensional Dehn function of †q�1Gr;P � Z` is equivalent to xs , where
s D ..`C 1/˛� `/=.`˛� .`� 1// and ˛ D 2 log�.r/. The .qC `/–dimensional Dehn
function of †q�1Z2 �Z` is equivalent to xs , where s D .`C 2/=.`C 1/.

By holding q and ` fixed and varying r and P , one obtains a dense set of exponents
s in the interval Œ.`C 2/=.`C 1/; .`C 1/=`� including all rationals in this range. By
varying q and ` with k D q C ` and taking account of Theorem C we deduce the
following result, shown pictorially in Figure 1.

Corollary E Q\ Œ.kC 1/=k;1/� IP.k/ .
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Figure 1: Isoperimetric exponents of †q�1Gr;P �Z` . Colors correspond to
fixed values of q .

The main aim of Brady and Bridson’s initial construction of snowflake groups [3]
was to prove that the closure of IP.1/ is f1g [ Œ2;1/. Corollary E implies that the
closure of IP.k/ contains f1g [ Œ.k C 1/=k;1/. Building on this result, Brady and
Forester [4] have recently shown that the closure of IP.k/ is in fact equal to Œ1;1/
for k > 2. Other examples, known earlier, include solvable and nilpotent groups
whose two-dimensional Dehn functions appear to be x log x and x4=3 respectively, by
Wang [21] and Coulhon–Saloff-Coste [9] (the latter was pointed out to us by Robert
Young). It should be noted, however, that in both cases the upper bound is derived using
the Sobolev inequality from Varopoulos–Saloff-Coste–Coulhon [20]. The resulting
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isoperimetric inequality concerns embedded fillings only, which do not a priori suffice
for our definitions (which allow singular maps and fillings).

This article is organised as follows. In Section 1 we outline the construction of the
snowflake groups Gr;P and their HNN extensions †Gr;P , deferring a detailed account
to Sections 4 and 6. In Section 2 we define the class of maps with which we shall
be working and record some pertinent properties; we also recall those elements of
Perron–Frobenius theory that we require. The groups Gr;P are fundamental groups of
graphs of groups; in Section 3 we analyze the geometry of the vertex groups in these
decompositions. The snowflake geometry of Gr;P is described in Section 4 and this
is analyzed in further detail in Section 5 to prove Theorem A. In Section 6 we turn
our attention to higher Dehn functions and establish the lower bounds required for
Theorem C by analyzing the geometry of an explicit sequence of embedded .kC1/–
balls in the universal cover of a .kC1/–dimensional classifying space for †k�1Gr;P .
In Section 7 we establish the complementary upper bounds. The proof proceeds by
induction, slicing balls into slabs based of lower-dimensional fillings. A lack of
control on the topology of these slabs obliges one to prove a stronger result: instead
of establishing bounds only on the behavior of ball-fillings for spheres, one must
establish isoperimetric inequalities for all pairs of compact manifolds .M .kC1/; @M /

mapping to the space in question. In Section 8 we analyze the isoperimetric behaviour
of products G �Z and complete the proof of Theorem D.
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1 An outline of the basic construction

The groups Gr;P we consider are fundamental groups of graphs of groups whose
underlying graphs are determined by a nonnegative integer matrix P . The edge groups
are infinite cyclic, with attaching maps determined by a rational number r . The vertex
groups Vm have many properties in common with free abelian groups of rank m.
Indeed, for the purposes of this summary, the reader may take Vm D Zm (cf Remark
1.1). There is a distinguished element c 2 Vm , corresponding to the diagonal element
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(the product of the standard generators) in Zm . The precise definition of Vm is given
in Section 3.

The key geometric idea behind Theorem A is that efficient van Kampen diagrams for
the groups Gr;P exhibit the snowflake geometry illustrated in Figure 4. The essential
features of such diagrams are these: the diagram is composed of polygonal subdiagrams
joined across strips so that the dual to the decomposition is a tree T ; and each of
the polygonal subdiagrams is a van Kampen diagram in one of the vertex groups Vm

(typically it is an .mC 1/–gon with a base labeled by a power of the distinguished
c 2 Vm and m other sides labeled by powers of the m standard generators of Vm ).

The most important class of diagrams are those that are as symmetric as possible,
having the property that as one moves from the circumcenter of the dual tree to the
boundary of the diagram, the joining strips are all oriented in such a way that the
length of the side strip decreases by a factor of r as one journeys towards the boundary.
The labels on the outer sides of the strips are powers of the diagonal elements in
various vertex groups Vm , and a crucial feature of our construction is that the cyclic
subgroups hci �Gr;P are distorted in a precisely understood manner, with distortion
function ' x˛ where ˛ D log�.r/ and � is the Perron–Frobenius eigenvalue of P .
This distortion is determined through the analysis of certain paths, called snowflake
paths, which play the role of quasi-geodesics in Gr;P . These snowflake paths are the
result of a curve shortening process; the dynamics of this process are at the heart of
our calculations and this is where the Perron–Frobenius theory enters – see Section 4.

If the tree T has radius d , then arguing by induction on d in a suitable class of
diagrams, one calculates the length of the boundary to be � dk=˛ if the central polygon
has base � dk . One has a precise understanding of the quadratic Dehn functions of the
vertex groups Vm , and this leads to an area estimate of � d2k on these diagrams of
diameter � dk . Thus we obtain a family of diagrams with area � d2k and perimeter
� dk=˛ , and an elementary manipulation of logs provides the required lower bound
of x2 log�.r/ for the Dehn function of Gr;P . The complementary upper bound is
established in Section 5.

A key feature in our construction of Gr;P is that when r is an integer, the snowflake
diagrams admit a precise scaling by a factor of r , induced by a monomorphism. The
ascending HNN extension G�

r;P
of Gr;P corresponding to this monomorphism is a

group in which one can stack scaled snowflake diagrams (see Figure 8). By putting
together two such stacks (using two stable letters) one obtains a snowflake ball, having
the same proportions as its equatorial snowflake disk. That is, the interior volume and
surface area of the ball are comparable to the area and boundary length, respectively,
of the equatorial disk. In this way, one discovers the higher dimensional isoperimetric
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behavior of the multiple HNN extension †Gr;P which is obtained by amalgamating
two copies of G�

r;P
along Gr;P .

The snowflake balls just described determine a lower bound for the 2–dimensional
Dehn function mentioned in Theorem C; upper bounds in this case can be deduced by
using Wang–Pride [22]. To proceed in higher dimensions we iterate the suspension
procedure described above. Lower bounds can be determined as before. However, in
dimensions greater than 2, upper bounds require new techniques. In particular, we
need to consider isoperimetric inequalities for compact manifolds .M; @M / other than
.Bk ;Sk�1/. Using this perspective, we establish general upper bounds for ascending
HNN extensions. This is achieved in Theorem 7.2 and is further refined in Theorem 8.1.

Remark 1.1 The actual vertex groups Vm of Gr;P are themselves fundamental groups
of graphs of groups with vertex groups Z2 and edge groups Z. It turns out that this
structure is compatible with the larger Gr;P graph of groups structure. That is, Gr;P

itself may be viewed as the fundamental group of an aspherical 2–complex assembled
from a finite collection of tori and annuli. With respect to a fixed framing on the tori,
the attaching maps of the annuli are all powers of the slopes f1=0; 0=1; 1=1g. From
this perspective, it is perhaps surprising that one can encode the range of isoperimetric
exponents stated in Theorem A.

An explicit example

We conclude this outline with an explicit example illustrating Theorem A. The example
that we present here has Dehn function xp=q , where p > 2q are positive integers
(common factors are allowed).

Let P be the 1� 1 matrix with entry 22q D 4q and let r D 2p . Then Gr;P is the
fundamental group of a graph of groups G with one vertex group and 4q infinite cyclic
edge groups. The single vertex group V4q is the fundamental group of a tree of groups
that we shall describe in a moment. V4q has generators a1; : : : ; a4q ; the product of
these generators c D a1 � � � a4q plays a special role.

The i –th edge group of G has two monomorphisms to the vertex group V4q . One maps
the generator to c and the other maps the generator to a2p

i . Thus we have a relative
presentation

Gp=q D Gr;P D hV4q ; s1; : : : ; s4q j s�1
i a2p

i si D c .i D 1; : : : ; 4q/ i:

It remains to elucidate the structure of the group V4q . This is the fundamental group
of a tree of groups in which each of the vertex groups is isomorphic to Z2 and each of
the edge groups is infinite cyclic. The underlying tree is a segment with 4q � 2 edges
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and 4q � 1 vertices. A basis fai ; big is fixed for each vertex group, and the generator
of each edge group maps to the generator ai of the left-hand vertex group, and to the
diagonal element aiC1biC1 of the right-hand vertex group.

The generators a1; : : : ; a4q mentioned above are the generators ai of these vertex
groups together with a4q D b4q�1 . The distinguished element c is the diagonal a1b1

of the leftmost vertex group Z2 (see Figure 2(a)).

Theorem A tells us that the Dehn function of Gp=q is x˛ where ˛D 2 log4q 2p Dp=q .
Consider, for example, the group G5=2 with Dehn function x5=2 . In this case, the tree
described above is a segment of length 14 and the above description of V4q yields the
presentation

ha1; b1; a2; b2; : : : ; a15; b15 j Œai ; bi � .i D 1; : : : ; 15/; bi D aiC1biC1 .i D 1; : : : ; 14/ i:

Eliminating the superfluous generators b1; : : : ; b14 and relabelling b15 as a16 , as in
the description of V4q above, we get

V16 D h a1; : : : ; a16 j � 2 C16 i

where C16 is the following set of commutators:

Œa1; a2 � � � a16�; Œa2; a3 � � � a16�; � � � ; Œa14; a15a16�; Œa15; a16�:

Thus we obtain the explicit presentation

G5=2 D h a1; : : : ; a16; s1; : : : ; s16 j C16I s�1
i a32

i si D a1 � � � a16 .i D 1; : : : ; 16/ i:

We have just described a 32–generator, 31–relator presentation of G5=2 . The corre-
sponding presentation for Gp=q has 22qC1 generators and 22qC1� 1 relations.

2 Preliminaries

In the first part of this section we recall the basic definitions associated to Dehn functions.
We then gather those elements of Perron–Frobenius theory that will be needed in the
sequel.

Dehn functions

Given a finitely presented group G D hA jRi and a word w in the generators A˙1

that represents 1 2G , one defines

Area.w/ D minfN 2N j 9 equality w D
NY

jD1

uj rj u�1
j freely, where rj 2R˙1

g :
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The Dehn function ı.x/ of the finite presentation hA jRi is defined by

ı.x/ D maxfArea.w/ j w 2 ker.F.A/!G/; jwj6 x g

where jwj denotes the length of the word w . It is straightforward to show that the
Dehn functions of any two finite presentations of the same group are equivalent in the
following sense (and modulo this equivalence relation it therefore makes sense to talk
of “the” Dehn function of a finitely presented group).

Given two functions f;gW Œ0;1/! Œ0;1/ we define f 4 g if there exists a positive
constant C such that

f .x/6 C g.Cx/CCx

for all x > 0. If f 4 g and g 4 f then f and g are said to be equivalent, denoted
f ' g .

Remark 2.1 In order to establish the relation f 4 g between nondecreasing functions,
it suffices to consider relatively sparse sequences of integers. For if .ni/ is an unbounded
sequence of integers for which there is a constant C > 0 such that n0 D 0 and
niC1 6 C ni for all i , and if f .ni/ 6 g.ni/ for all i , then f 4 g . Indeed, given
x 2 Œ0;1/ there is an index i such that ni 6 x 6 niC1 , whence f .x/ 6 f .niC1/ 6
g.niC1/6 g.C ni/6 g.Cx/.

We refer to Bridson [5] for general facts about Dehn functions, in particular the
interpretation of Area.w/ in terms of van Kampen diagrams over hA j Ri. Recall
that a van Kampen diagram for w is a labeled, contractible, planar 2–complex with a
basepoint and boundary label w . Associated to such a diagram D one has a cellular
map zD from D to the universal cover zK of the standard 2–complex of hA j Ri,
respecting labels and basepoint. The diagram is said to be embedded if this map in
injective.

Remark 2.2 If the presentation hA jRi is aspherical and the diagram D is embedded,
then D has the smallest area among all diagrams with the same boundary label. To
see this, note that if z� is a diagram with the same boundary circuit as zD , then zD� z�
defines a 2–cycle in zK , which must be zero since H2. zKIZ/ D 0 and there are no
3–cells. Thus each 2–cell in the image of zD must also occur in the image of z�. And
since zD is an embedding, the number of 2–cells in the image (hence domain) of z� is
at least Area.D/.
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Higher-dimensional Dehn functions

Our treatment of higher-dimensional Dehn (isoperimetric) functions is similar to that
of Bridson [6], which is an interpretation of the more algebraic treatment of Alonso et
al [2]. See Section 5 of [6] for an explanation of the differences with the approaches of
other authors, in particular Gromov [12], Epstein et al [10] and Hatcher–Vogtmann [13].

The k –dimensional Dehn function is a function ı.k/W N!N defined for any group
G that is of type FkC1 (that is, has a K.G; 1/ with finite .kC1/–skeleton). Up to
equivalence, ı.k/.x/ is a quasi-isometry invariant. Roughly speaking, ı.k/.x/ measures
the number of .kC1/–cells that one needs in order to fill any singular k –sphere in
K.G; 1/ comprised of at most x k –cells. The reader who is happy with this description
can skip the technicalities in the remainder of this subsection. However, to be precise
one has to be careful about the classes of maps that one considers and the way in which
one counts cells. To this end, we make the following definitions.

If W is a compact k –dimensional manifold and X a CW complex, an admissible
map is a continuous map f W W ! X .k/ � X such that f �1.X .k/ �X .k�1// is a
disjoint union of open k –dimensional balls, each mapped by f homeomorphically
onto a k –cell of X .

If f W W !X is admissible we define the volume of f , denoted Volk.f /, to be the
number of open k –balls in W mapping to k –cells of X . This notion is useful because
of the abundance of admissible maps:

Lemma 2.3 Let W be a compact manifold (smooth or piecewise-linear) of dimension
k and let X be a CW complex. Then every continuous map f W W !X is homotopic
to an admissible map. If f .@W /�X .k�1/ then the homotopy may be taken rel @W .

Proof We prove the lemma in the smooth case; analogous methods apply in the
piecewise-linear category (cf the transversality theorem of Buoncristiano–Rourke–
Sanderson [7]).

First arrange that f .W /�X .k/ using cellular approximation. Next consider X .k/�

X .k�1/ as a smooth manifold and perturb f to be smooth on the preimage of this
open set. Let C �X .k/ be a set consisting of one point in the interior of each k –cell
of X . By Sard’s theorem we can choose each point of C to be a regular value of f .
The preimage f �1.C / is now a codimension k submanifold of W (ie a finite set
of points) and f is a local diffeomorphism at each of these points, by the inverse
function theorem. Thus there is a neighborhood V of C consisting of a small open
ball around each point, whose preimage in W is a disjoint union of open balls, each
mapping diffeomorphically to a component of V . Now modify f by composing it
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with a map of X (homotopic to the identity) that stretches each component of V across
the k –cell containing it and pushes its complement into X .k�1/ . The resulting map is
admissible.

Given a group G of type FkC1 , fix an aspherical CW complex X with fundamental
group G and finite .kC1/–skeleton. Let zX be the universal cover of X . If f W Sk! zX

is an admissible map, define the filling volume of f to be the minimal volume of an
extension of f to BkC1 :

FVol.f / D minfVolkC1.g/ j gW BkC1
! zX ; gj@BkC1 D f g:

Note that the maps g must be admissible for volume to be defined. Such extensions
exist by Lemma 2.3, since �k. zX / is trivial. Next we define the k –dimensional Dehn
function of X to be

ı.k/.x/ D supfFVol.f / j f W Sk
! zX ; Volk.f /6 x g:

Again, the maps f are assumed to be admissible. We will also write ı.k/.x/ as ı.k/
G
.x/

(recall that G is the fundamental group of X ).

Remarks 2.4 (1) In these definitions one could equally well use X in place of zX ,
since maps Sk ! X (or BkC1 ! X ) and their lifts to zX have the same volume.
There are reasons to prefer zX , however, as we shall see in the next definition below.

(2) It is not difficult to show that the Dehn function ı.k/
G
.x/ agrees with the notion

defined by Alonso et al in [2]. A discussion along these lines is given in Bridson
[6, Section 5]. Moreover it is proved in [2] that, up to equivalence, ı.k/

G
.x/ depends

only on G (and in fact is a quasi-isometry invariant); hence we refer to it as “the”
k –dimensional Dehn function of G . It is also proved in [2] that the supremum in the
definition of ı.k/

G
.x/ is attained.

More general Dehn functions

The definition of ı.k/.x/ generalizes in a natural way to give Dehn functions modeled
on manifolds other than BkC1 . For example, Gromov has defined genus g filling
invariants based on surfaces other than the disk [12]. Here we need to consider arbitrary
compact manifolds.

Let .M; @M / be a compact manifold pair (smooth or piecewise-linear) with dim M D

kC 1. If f W @M ! zX is an admissible map define

FVolM .f / D minfVolkC1.g/ j gW M ! zX ; gj@M D f g.2:5/

ıM .x/ D supfFVolM .f / j f W @M ! zX ; Volk.f /6 x g:and
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The dimension of ıM .x/ is k , the dimension of @M (when @M 6D∅). In general we
do not assume that M is connected or that @M 6D∅. Note that if M is closed then
ıM .x/ is identically zero, since M may be mapped to a point, of zero volume. We
will also use the notation ıM

G
.x/ for ıM .x/.

Remarks 2.6 (1) In the definition of ıM .x/ it is important that we use maps into zX ,
which is contractible, since maps f W @M !X need not have extensions to M . Note
that if .M; @M /D .BkC1;Sk/ then the definitions of ıM .x/ and ı.k/.x/ agree.

(2) The omission of X from the notation and the adoption of the alternative notation
ıM

G
.x/ suggest an implicit claim that, as in the case M DBkC1 , the equivalence class

of ıM .x/ depends only on G . We shall address this issue elsewhere, as it would take
us too far afield in the context of the current paper. The structure of the arguments in
Sections 7 and 8 requires us to work with specific choices of X anyway.

(3) Also to be addressed elsewhere is whether the supremum in the definition of
ıM .x/ is attained. The main difficulty arises when M is 3–dimensional, as we shall
explain in a moment. In the current paper this issue plays no role because none of the
bounds that we establish require a priori finiteness.

(4) If dim M D k C 1 > 4 then ıM .x/ 6 ı.k/.x/ provided @M is connected or
ı.k/.x/ is superadditive. In particular, ıM .x/ is finite. The key point to observe here
is that if N D @M is connected and f W N ! zX has volume V , then there is an
admissible homotopy with .kC1/–dimensional volume at most ı.k/.V / from f to an
admissible map f 0W N ! zX whose image lies zX .k�1/ ; one can then fill f 0 by a map
M !X with zero .kC1/–dimensional volume.

To see that this homotopy exists, one considers a .k�1/–sphere S in N that encloses
a ball D containing all of the open discs that contribute to the volume of f . The
restriction of f to S is trivial in Hk�1. zX

.k�1// and hence in �k�1. zX
.k�1// (recall

that zX .k�1/ is .k�2/–connected, and k > 2). The null-homotopy H W Bk ! zX .k�1/

of f jS furnished by this observation can be adjoined to f jD to give an admissible
map Sk! zX of volume V . This can then be filled by an admissible map BkC1! zX

of volume at most ı.k/.V /. The desired map f 0 is defined to be the adjunction of
f jN�D and H .

If dim M D 2 then the same statement holds; this is proved below in Lemma 7.4. The
case dim M D 3 is different: Young [23] has constructed a group G such that if M is
a 3–manifold with boundary S1 �S1 , then ıM .x/ is strictly larger than ı.2/.x/.

Remark 2.7 An obvious adaptation of the argument in Remark 2.2 shows that if X

is an aspherical .kC1/–dimensional CW complex, gW M kC1!X is an embedding,
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and f D gj@M (with f and g admissible) then FVolM .f /DVolkC1.g/. That is, the
embedding g has minimal volume among all extensions of f to the manifold M . We
shall use this fact in particular in the case of high-dimensional balls to estimate ı.k/.x/
from below.

Perron–Frobenius Theory

A square nonnegative matrix P is said to be irreducible if for every i and j there exists
k > 1 such that the ij –entry of Pk is positive. The basic properties of irreducible
matrices are summarized in the Perron–Frobenius theorem below. See Seneta [19] and
Katok–Hasselblatt [14] for a more thorough treatment of this theory and its applications.

Proposition 2.8 (Perron–Frobenius theorem) Let P be an irreducible nonnegative
R�R matrix. Then P has one (up to a scalar) eigenvector with positive coordinates
and no other eigenvectors with nonnegative coordinates. Moreover, the corresponding
eigenvalue � is simple, positive and is greater than or equal to the absolute value of
all other eigenvalues. If m and M are the smallest and largest row sums of P , then
m 6 �6 M , with equality on either side implying equality throughout.

Lemma 2.9 Let P be an irreducible nonnegative R�R matrix with Perron–Frobenius
eigenvalue �. Let fv1; : : : ; vRg be a generalized eigenbasis for P , with v1 a positive
eigenvector for � and with corresponding inner product h � ; � i. Then hu; v1i> 0 for
every nonnegative vector u 2RR �f0g.

Proof Decompose RR as W1˚� � �˚Wk where each Wi is a generalized eigenspace
for P , with W1 D hv1i. Each Wi is P –invariant, as is the nonnegative orthant N ,
since P is nonnegative. The intersection .W2˚ � � �˚Wk/\N must then be trivial,
for otherwise it contains an eigenvector for P other than v1 (or a scalar multiple), by
the Brouwer fixed point theorem. Hence hu; v1i 6D 0 for every u 2 N � f0g. Since
N �f0g is connected and contains v1 , hu; v1i is positive.

Proposition 2.10 (Growth rate) Let P be an irreducible nonnegative R�R matrix
with Perron–Frobenius eigenvalue �. Let k � k be a norm on RR . Then there are
positive constants A0;A1 such that for every nonnegative vector u in RR and every
integer k > 0, A0�

kkuk 6 kPkuk 6 A1�
kkuk.

Proof First, it is clear that by varying the constants, it suffices to consider any single
norm k � k. Consider a generalized eigenbasis fv1; : : : ; vRg as in Lemma 2.9 (with v1

a positive eigenvector for �). Let h � ; � i and k � k be the corresponding inner product
and norm on RR . Let � W RR! hv1i be orthogonal projection (�.u/D hu; v1iv1 ).
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Define A0 D inffk�.u/k=kuk j u 2N � f0gg. Note that A0 > 0 by Lemma 2.9 and
compactness of N � f0g modulo homothety. For every u 2 N � f0g we now have
�kA0kuk6 �kk�.u/k D kPk�.u/k6 kPkuk. We also have kPkuk6 �kkuk since
� is the spectral radius of P ; hence A1 D 1 will work.

3 The vertex groups Vm

In this section we define groups Vm for each integer m > 2. We begin with a very
brief overview of the construction of the groups Gr;P so that the reader knows where
the groups Vm fit into the overall picture.

An irreducible matrix P determines a directed graph (whose transition matrix is P ).
This graph is the underlying graph in a graph of groups description of the Gr;P in
Theorem A. The vertex groups in this graph of groups are precisely the groups Vm

which we define and study in this section.

The groups Vm satisfy a number of the properties that the free abelian groups Zm do,
but they have geometric dimension 2. In particular, Vm has generators a1; : : : ; am

and has the following scaling property (cf Equation (3.2)): for any integer N > 0, the
equality aN

1
� � � aN

m D .a1 � � � am/
N holds. Moreover, this equality requires on the order

of N 2 relations of Vm . This follows as a special case of Lemma 3.5, which gives
careful estimates on the areas of certain words in Vm .

The groups Vm

Begin with m� 1 copies of Z�Z, the i –th copy having generators fai ; big. The
group Vm is formed by successively amalgamating these groups along infinite cyclic
subgroups by adding the relations

b1 D a2b2; b2 D a3b3; : : : ; bm�2 D am�1bm�1:

Thus Vm is the fundamental group of a graph of groups whose underlying graph
is a segment having m� 2 edges and m� 1 vertices. We define two new elements:
cDa1b1 and amDbm�1 . Then a1; : : : ; am generate Vm and the relation a1 � � � amD c

holds; see Figure 2(a). The element c is called the diagonal element of Vm . The
additional relations bm�2 D am�1am; : : : ; bm�k D am�kC1 � � � am are also evident
from Figure 2(a).

If mD 1 then we define Vm to be the infinite cyclic group ha1i and we set c D a1 .
Lemmas 3.1 and 3.5 below clearly hold in this case.
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c

a1

a2 a3

a4

b1

b2

(a) (b)

Figure 2: Some relations in V4 : c D a1a2a3a4 and c3 D .a1/
3.a2/

3.a3/
3.a4/

3

Lemma 3.1 (Shuffling lemma) Let w D w.a1; : : : ; am; c/ be a word representing
cN in Vm for some integer N . Let ni be the exponent sum of ai in w and nc the
exponent sum of c in w . Then the words a

n1

1
� � � a

nm
m cnc and cnc a

nm
m � � � a

n1

1
also

represent cN in Vm and ni DN � nc for all i .

Proof First we prove the second statement. The abelianization Vm=ŒVm;Vm�Š Zm

has fa1; : : : ; amg as a basis and the image of w is a
n1Cnc

1
� � � a

nmCnc
m . Since cN

abelianizes to aN
1
� � � aN

m , we must have ni DN � nc for all i .

To prove the first statement it now suffices to establish the following set of equalities
for any integer N :

.3:2/ .a1 � � � am/
N
D aN

1 � � � a
N
m D aN

m � � � a
N
1 D .am � � � a1/

N :

In fact we shall prove the following equalities, by induction on k :

.am�kC1 � � � am/
N
D am�kC1

N
� � � aN

m D aN
m � � � am�kC1

N
D .am � � � am�kC1/

N :

The case k D 1 is evidently true. Suppose the equations hold for a given k > 1.
By the induction hypothesis aN

m�k
aN

m�kC1
� � � aN

m D aN
m�k

.am�kC1 � � � am/
N . Then

since bm�k D am�kC1 � � � am and this element commutes with am�k , we conclude
that aN

m�k
.am�kC1 � � � am/

N D .am�k � � � am/
N . The same commutation relation also

yields

aN
m�k.am�kC1 � � � am/

N
D .am�kC1 � � � am/

N aN
m�k

D .am � � � am�kC1/
N aN

m�k

D aN
m � � � a

N
m�kC1aN

m :

Finally we have .am � � � am�kC1/
N aN

m�k
D .am � � � am�kC1am�k/

N , again because
am�k and bm�k (D am � � � am�kC1 ) commute.
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Remark 3.3 (Scaling in Vm ) Equation (3.2) plays a key role in this article. It shows
that the basic relation shown in Figure 2(a) holds at larger scales as well. Figure 2(b)
illustrates how these larger relations follow from the triangular relations bi�1 D aibi

and bi�1 D biai .

The spaces Xm

To compute area in Vm we shall use a specific aspherical 2–complex Xm with funda-
mental group Vm . This complex is a union of m� 1 tori, each triangulated with two
2–cells realizing the relations aibi D bi�1 and biai D bi�1 (where b0 D c in the case
i D 1). Thus the i –th torus has standard generators given by the 1–cells ai and bi ,
and its diagonal is joined to the 1–cell bi�1 of the previous torus. In all there is one
vertex, 1–cells a1; : : : ; am�1; b0; : : : ; bm�1 and 2.m� 1/ triangular 2–cells.

The universal cover zXm is a union of planes, each covering one of the tori below. Each
plane contains three families of parallel lines covering the 1–cells ai , bi and bi�1 .
The plane intersects neighboring planes along the bj –lines for j 6D 0;m� 1. These
planes are the vertex spaces of zXm corresponding to the graph of groups decomposition
of Vm described earlier. The incidence graph of the vertex spaces is the Bass–Serre
tree for this decomposition, with edges corresponding to bj –lines (j 6D 0;m� 1).

Remark 3.4 Figure 2(b) shows an embedded disk in zXm with boundary word of the
form cN D aN

1
� � � aN

m .N D 3/. The triangles shown are 2–cells of zXm . Each large
triangular region lies in a vertex space of zXm . There are similar embedded disks with
boundary word cN D aN

m � � � a
N
1

as well. All of these disks have area .m� 1/N 2 .

Throughout this article we usually work with the standard generators fa1; : : : ; amg for
Vm . However in the area computation below we allow words involving the elements
bi as well.

Lemma 3.5 (Area in Vm ) Let w.a1; : : : ; am�1; b0; : : : ; bm�1/ be a word repre-
senting the element xN for some N , where x is a generator ai or bi . Let w be
expressed as w1 � � �wk where each wi is a power of a generator. Then N 6 jwj and
Area.wx�N /6 3

P
i<j jwi jjwj j.

Note that if the sum included diagonal terms of the form .3=2/jwi j
2 then the area

bound would simply be .3=2/jwj2 . The leeway afforded by the absence of these terms
will be exploited in the proof of Theorem A. (In particular, it would not suffice to know
only that Vm has quadratic Dehn function.) Also the statement N 6 jwj implies that
every vertex space is a totally geodesic subspace of zXm .
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Proof First we prove that N 6 jwj and then we establish the area bound. Both proofs
are by induction on the complexity of the word w , defined as follows. Let p be a
path in the 1–skeleton of zXm whose edge labels read w . Since w represents xN , the
endpoints of p lie in a single vertex space. Hence the induced path yp in the Bass–Serre
tree is a closed path. The complexity of w is the length of yp . Note that vertices of yp
correspond to edges of p (or letters of w ) and edges correspond to transitions between
certain pairs of generators. Thus the complexity is also the number of such transitions
occurring in w .

If w has complexity zero then p lies in a plane. The statement N 6 jwj amounts to
saying that xN is a geodesic, which is clear. If yp has positive length then there is a
nontrivial proper subpath p0 � p with endpoints on a single bj –line. (These endpoints
correspond to edges in yp that map to the same edge of the Bass–Serre tree, crossing and
returning.) The subword w0�w corresponding to p0 represents an element of the form
bj

M . Let u be the word obtained from w by substituting bj
M for w0 . Then u and

w0 both have complexity strictly smaller than that of w . By the induction hypothesis,
M 6 jw0j and N 6 juj D .jwj � jw0j/CM . Therefore N 6 jwj.

Next we establish the area bound when w has complexity zero. Since p then lies
entirely within a vertex space of zXm , we may assume without loss of generality that
VmD V1 and x D b0 , so that w.a1; b0; b1/D b0

N in V1D ha1; b1; b0 j a1b1D b0D

b1a1i. Since this group is abelian we can successively transpose adjacent subwords
wi and cancel pairs of the form xx�1 , to obtain v D an

1
bn

1
bN�n

0
for some n. Each

transposition of letters contributes 2 to Area.wv�1/, so we have Area.wv�1/ 6
2
P

i<j jwi jjwj j. Next let Ia and Ib be the sets of indices for which wi is a power of
a1 and b1 respectively. Then

P
i2Ia
jwi j > jnj and

P
i2Ib
jwi j > jnj, and thereforeP

i<j jwi jjwj j > n2 D Area.vb�N
0

/. Then we have Area.wb�N
0

/ 6 Area.wv�1/C

Area.vb�N
0

/6 3
P

i<j jwi jjwj j as desired.

Now suppose w has positive complexity. Define w0 � w and u as before, so that w0

represents bj
M , u is obtained from w by substituting bj

M for w0 , and both u and
w0 have smaller complexity than w . Note that w0 D wi0

� � �wi1
� w1 � � �wk for some

i0 and i1 , and so uD w1 � � �wi0�1bj
Mwi1C1 � � �wk . Let I D fi0; : : : ; i1g. Applying

the induction hypothesis to u and w0 we obtain

Area.ux�N / 6 3
X
i<j

i;j 62I

jwi jjwj j C 3
X
i 62I

jwi jM;.3:6/

Area.w0bj
�M / 6 3

X
i<j

i;j2I

jwi jjwj j:.3:7/
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Since M 6 jw0j D
P

j2I jwj j, inequality (3.6) becomes

.3:8/ Area.ux�N / 6 3
X
i<j

i;j 62I

jwi jjwj j C 3
�X

i 62I

jwi j

��X
j2I

jwj j

�
:

Adding together (3.7) and (3.8) yields

Area.w0bj
�M /CArea.ux�N / 6 3

X
i<j

jwi jjwj j

which proves the lemma because Area.wx�N / 6 Area.wu�1/CArea.ux�N / and
Area.wu�1/D Area.w0bj

�M /.

4 The groups Gr;P and snowflake words

The groups Gr;P

Start with a nonnegative square integer matrix P D .pij / with R rows. Let mi be the
sum of the entries in the i –th row and let nD

P
i mi , the sum of all entries. Form a

directed graph � with vertices fv1; : : : ; vRg and having pij directed edges from vi

to vj . Label the edges as fe1; : : : ; eng and define two functions �; � W f1; : : : ; ng !
f1; : : : ;Rg indicating the initial and terminal vertices of the edges, so that ei is a
directed edge from v�.i/ to v�.i/ for each i . These functions also indicate the row and
column of the matrix entry accounting for ei . Partition the set f1; : : : ; ng as

S
i Ii by

setting Ii D �
�1.i/. Note that jIi j Dmi .

Let M D maxfmig and choose a rational number r D p=q with p > M q > 0. We
define a graph of groups Gr;P with underlying graph � as follows. The vertex group
Gvi

at vi will be Vmi
and all edge groups will be infinite cyclic. Relabel the standard

generators of these vertex groups as fa1; : : : ; ang in such a way that the standard
generating set for Gvi

is faj j j 2 Iig. Let ci be the diagonal element of the vertex
group Gvi

. Then the inclusion maps are defined by mapping the generator of the
infinite cyclic group Gei

to the elements ai
p 2Gv�.i/ and c�.i/

q 2Gv�.i/ .

Let si be the stable letter associated to the edge ei . The fundamental group Gr;P of
Gr;P is obtained from the presentation

hGv1
; : : : ;GvR

; s1; : : : ; sn j s
�1
i ai

psi D c�.i/
q for all i i

by adding relations si D 1 for each edge ei in a maximal tree in � . However, we shall
continue to use the generating set fa1; : : : ; an; s1; : : : ; sng for Gr;P even though some
of these generators are trivial.
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The spaces Xr;P

We define aspherical 2–complexes Xr;P by forming graphs of spaces modeling Gr;P .
Namely, take the disjoint union of the spaces Xvi

�Xmi
(one for each vertex vi ) and

attach annuli Ai , one for each edge ei of the graph. The two boundary curves of Ai

are attached to the paths labeled ai
p in Xv�.i/ and c�.i/

q in Xv�.i/ . The resulting
2–complex Xr;P has fundamental group Gr;P and it is aspherical because it is the
total space of a graph of aspherical spaces.

The universal cover zXr;P is a union of copies of the universal covers zXvi
and infinite

strips R� Œ�1; 1� covering the annuli Ai . Each strip is tiled by 2–cells whose boundary
labels read s�1

i ai
psic�.i/

�q ; the two sides R� f˙1g consist of edges labeled ai and
c�.i/ respectively. Note that if a path crosses a strip along an edge labeled si and
returns over s�1

i then the power of ai represented by the path is divisible by p .

Snowflake words

For each group element of the form cN
i we will define two types of words in the

generators fa1; : : : ; an; s1; : : : ; sng representing that element, called positive and nega-
tive snowflake words. The structure of these words is governed by the dynamics of
the matrix P . Some snowflake words are close to geodesics, and these are useful in
determining the large scale geometry of Gr;P .

We define snowflake words recursively on jN j 2N as follows. Let

N0 D
p.M.qC 2Cp//

p�M q
Cp:

Note for future reference that N0 > p . Let c be the diagonal element of a vertex group
with standard ordered generating set fai1

; : : : ; aim
g. A word w representing cN is a

positive snowflake word if either

(i) jN j6 N0 and w D aN
i1
� � � aN

im
, or

(ii) jN j>N0 and w D .si1
u1s�1

i1
/.aN1

i1
/ � � � .sim

ums�1
im
/.aNm

im
/ where each uj is a

positive snowflake word representing a power of c�.ij / and jNj j< p for all j .

In the second case note that each subword .sij uj s�1
ij
/.aNj

ij
/ represents a power of

aij , and by Lemma 3.1 this power is N . Then since jNj j< p , the word .sij uj s�1
ij
/

represents either aij
bN=pcp or aij

dN=pep . Consequently, the word uj represents either
c�.ij /

bN=pcq or c�.ij /
dN=peq . Recall that bxc and dxe denote the integers closest to x

such that bxc6 x 6 dxe, and so bN=pcp and dN=pep are the multiples of p nearest
to N .
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A negative snowflake word is defined similarly, with the ordering of the terms repre-
senting powers of aij reversed. More specifically, w satisfies either

(i 0 ) jN j6 N0 and w D aN
im
� � � aN

i1
, or

(ii 0 ) jN j>N0 and w D .aNm
im
/.sim

ums�1
im
/ � � � .aN1

i1
/.si1

u1s�1
i1
/ where uj is a nega-

tive snowflake word representing a power of c�.ij / and jNj j< p for all j .

As with positive snowflake words, each word uj will represent either c�.ij /
bN=pcq or

c�.ij /
dN=peq .

To see that the recursion is well-founded note that the definition describes an iterated
curve shortening process in which subwords of the form cN are replaced by the words
described in case (ii) or (ii 0 ), with appropriate powers of c�.ij / in place of uj ; see
Figure 3. Writing jN j DApCB with 0 6 B < p , the new word representing cN has
length at most

M �maxfAqC 2CB; .AC 1/qC 2C .p�B/g 6 M..AC 1/qC 2Cp/:

c�.1/
bN=pcq

c�.2/
bN=pcq

c�.3/
dN=peq

aN
1

aN
2

aN
3

aN1
1

a
N2

2

a
N3

3
cN

Figure 3: One way of shortening cN . Here fa1; a2; a3g is the generating set
for a vertex group V3 with diagonal element c . The exponents N1 and N2

are both N �bN=pcp and N3 is N �dN=pep . The short black edges are
labeled s1 , s2 , s3 .

The latter quantity is strictly less than jN j D Ap C B provided A.p �M q/ >

M.q C 2 C p/. Since B < p , this occurs whenever jN j > N0 . Thus, the new
curve is strictly shorter than cN if jN j > N0 . Eventually the subwords cN all have
length at most N0 and the shortening procedure terminates. See also Figure 4 for the
end result of this process. In this figure the top and bottom halves of the boundary are
positive and negative snowflake words representing cN .
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Note that every snowflake word has a nested structure in which various subwords are
themselves snowflake words. These are the subwords uj arising at each stage. The
minimal such subwords are those given by (i) and (i 0 ) and these will be called terminal
subwords. The depth of a snowflake subword is the number of snowflake subwords
of type (ii) or (ii 0 ) properly containing it, including the original snowflake word itself.
Equivalently, it is the number of matching sj , s�1

j pairs enclosing it. Note that a
snowflake word w contains a depth zero terminal subword if and only if w has the
form (i) or (i 0 ).

It is worth emphasizing that the curve shortening process is not canonically determined,
but allows many choices. In each “remainder” term aNi

i the exponent Ni may be
positive or negative; the two possible values for Ni are N�bN=pcp and N�dN=pep .
Figure 3 shows both possibilities occurring in a single step, for example. For this reason,
a single snowflake word may have terminal subwords of different depths. However,
Lemma 4.2 below shows that these depths will not differ substantially.

Remark 4.1 A special type of snowflake word plays a key role in the proof of
Theorem C. If r is an integer (that is, r D p=1) and N D rk for some k , then the
positive (resp. negative) snowflake word representing cN

i is unique. What happens is
that the exponents Nj in the expressions (ii) or (ii 0 ) at each stage are always zero; there
are no “remainder” terms aNj

ij
. Each subword uj represents c�.ij /

N=r , and N=r is
again a power of r . Furthermore, all terminal subwords will have the form ai1

� � � aim

or aim
� � � ai1

.

Lemma 4.2 (Terminal subword depth) Given r and P there are positive constants
B0;B1 with the following property. If a nontrivial snowflake word w representing cN

contains a terminal subword of depth d then B0rd 6 jN j6 B1rd .

Proof If d D 0 then w has the form (i) or (i 0 ) and 1 6 jN j6 N0 . Thus we need to
arrange that B0 6 1 and B1 > N0 for the lemma to hold in this case.

If d > 0 then we will show by induction on d that

.4:3/ N0rd�1
�p.rd�2

C � � �C r C 1/ 6 jN j 6 N0rd
Cp.rd�1

C � � �C r C 1/:

The lower bound then gives

jN j > N0rd�1
�p

�
rd�1� 1

r � 1

�
> 1

r

�
N0�

p

r � 1

�
rd :

Recall that N0>p and r > 2, which imply N0>p=.r�1/. Now we may find B0> 0

so that B0 6 r�1.N0�p=.r � 1// and B0 6 1, giving the desired bound.
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The upper bound in (4.3) gives

jN j 6 N0rd
Cp

�
rd � 1

r � 1

�
6 .N0Cp/rd

where the last inequality uses the fact that r � 1 > 1. Now choose B1 > N0Cp to
obtain the desired bound.

Next we prove (4.3) by induction on d . If d D 1 then jN j>N0 and w is of the form
(ii) or (ii 0 ) where some uj has the form (i) or (i 0 ). Then uj represents c�.ij /

N 0 with
N 0 6 N0 , and so .sij uj s�1

ij
/ represents aij

rN 0 . This implies jN j D jrN 0CNj j 6
rN0Cp .

For d > 1 write w in the form (ii) or (ii 0 ). Then the terminal subword has depth d �1

in uj for some j . By the induction hypothesis uj represents c�.ij /
N 0 where

.4:4/ N0rd�2
�p.rd�3

C � � �C 1/ 6 jN 0j 6 N0rd�1
Cp.rd�2

C � � �C 1/:

Then .sij uj s�1
ij
/ represents aij

rN 0 and rN 0�p 6 jN j6 rN 0Cp . These bounds and
(4.4) together imply (4.3).

Proposition 4.5 (Snowflake word length) Given r and P there are positive constants
C0;C1 with the following property. If c is the diagonal element of one of the vertex
groups and w is a snowflake word representing cN then C0jwj

˛ 6 jN j 6 C1jwj
˛ ,

where ˛ D log�.r/ and � is the Perron–Frobenius eigenvalue of P .

Proof If w is nontrivial and has the form (i) or (i 0 ) then 1 6 jN j 6 N0 and jN j 6
jwj6 r jN j. Then jwj˛ 6 .rN0/

˛ , which implies

.rN0/
�˛
jwj˛ 6 jN j 6 jwj˛:

Thus we need to arrange that C0 6 .rN0/
�˛ and C1 > 1 to cover this case.

Next assume that w is of type (ii) or (ii 0 ), which implies that the depth of every terminal
subword is at least one. Equivalently, w contains the letters sj , s�1

j for some j . Let
s.w/ be the number of letters sj or s�1

j in w (for all indices j ). Note that a subword
of w containing no such letters has length at most rN0 . Since s.w/ 6D 0, this implies

.4:6/ s.w/ 6 jwj 6 2.rN0C 1/s.w/:

Hence s.w/ gives an approximate measure of the length of w . It can be computed
explicitly, by following the evolution of the curve shortening process, which in turn is
governed by the matrix P . Note that matched s , s�1 pairs enclose snowflake subwords
representing powers of cj for various j . These subwords will be called cj –subwords.
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We claim that if w represents a power of ck , and every terminal subword has depth
i or greater, then the number of cj –subwords of depth i is given by the kj –entry of
P i , denoted p

.i/

kj
.

If i D 1 then the claim is evident from expressions (ii) and (ii 0 ), since the entry pkj

of P gives the number of directed edges from vertex vk to vertex vj (and hence the
number of occurrences of j among the indices �.i1/; : : : ; �.im/). Similarly, for i > 1,
each c`–subword of depth i �1 contains p j̀ cj –subwords of depth i , by (ii) and (ii 0 ).
The claim now follows by induction on i : summing over all snowflake subwords of
depth i �1 and applying the induction hypothesis, the total number of cj –subwords of
depth i is

P
` p.i�1/

k`
p j̀ D p

.i/

kj
.

Let x1; : : : ;xR be the standard basis vectors of RR . Also let k � k1 denote the `1

norm on RR : kvk1 is the sum of the absolute values of the entries of the vector v . Let
PT be the transpose of P .

The kj –entry of P i is equal to the j –entry of the column vector .PT /i.xk/. Suppose
for the moment that every terminal subword of w has depth d . Then for i 6 d , the
total number of s; s�1 pairs enclosing snowflake subwords of depth i is given by
k.PT /i.xk/k1 . Hence we have

s.w/ D 2
�
kPT .xk/k1Ck.P

T /2.xk/k1C � � �C k.P
T /d .xk/k1

�
:

If we let d0 and d1 denote the smallest and largest depths of terminal subwords of w
then we obtain

2

d0X
iD1

k.PT /i.xk/k1 6 s.w/ 6 2

d1X
iD1

k.PT /i.xk/k1:

Applying Proposition 2.10 with the norm k � k1 we have

2A0

d0X
iD1

�i 6 s.w/ 6 2A1

d1X
iD1

�i
D

2A1�

�� 1
.�d1 � 1/

which implies

2A0�
d0 6 s.w/ 6 2A1�

�� 1
�d1 :

Hence by (4.6) we have

.4:7/ .2A0/�
d0 6 jwj 6

�
4.rN0C 1/A1�

�� 1

�
�d1 :
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We complete the proof by applying Lemma 4.2 separately for the upper and lower
bounds. Using d D d1 we obtain

jN j > B0rd1 D B0.�
d1/log�.r/ > B0

�
4.rN0C 1/A1�

�� 1

�� log�.r/

jwjlog�.r/:

Now choose C0 > 0 satisfying

C0 6 B0

�
4.rN0C 1/A1�

�� 1

��˛
and C0 6 .rN0/

�˛ to obtain the desired lower bound.

Applying Lemma 4.2 with d D d0 gives

jN j 6 B1rd0 D B1.�
d0/log�.r/ 6 B1.2A0/

� log�.r/jwjlog�.r/

so choose C1 with C1 > B1.2A0/
�˛ and C1 > 1.

5 Proof of Theorem A

Throughout this section Gr;P is fixed, with r D p=q greater than all the row sums
of P , and ˛ D log�.r/, where � is the Perron–Frobenius eigenvalue of P . Unless
otherwise stated, all words use the generating set fa1; : : : ; an; s1; : : : ; sng for Gr:P .

The lower bound

To establish the lower bound ı.x/ < x2˛ we will show that ı.ni/ > .C0
24�˛/ ni

2˛

for certain integers ni tending to infinity. This is sufficient by Remark 2.1, provided
the sequence .ni/ grows at most exponentially.

Note also that to establish a single inequality ı.n/ > A, it is enough to exhibit an
embedded disk in zXr;P with boundary length n and area A or greater, by Remark 2.2.
Here we are using the facts that Xr;P is aspherical and 2–dimensional.

Choose a vertex group Vm in Gr;P with m > 2 and let c be its diagonal element. There
must be at least one vertex group of this type, for otherwise P would be a permutation
matrix with Perron–Frobenius eigenvalue 1. For each i choose positive and negative
snowflake words wCi and w�i representing ci . Then define wi D w

C
i .w

�
i /
�1 and

ni D jwi j. Note that C0 2�˛jwi j
˛ 6 i 6 C1 2�˛jwi j

˛ by Proposition 4.5. It follows
that the sequence .ni/ tends to infinity, and that it is exponentially bounded: for i > 1,

niC1

ni
6
�
.i C 1/C1

iC0

�1=˛

6
�

2C1

C0

�1=˛

:

Geometry & Topology, Volume 13 (2009)



Isoperimetric spectra 165

Next we find embedded disks �i in zXr;P with boundary words wi and estimate their
areas. Each �i is made of two disks �Ci and ��i with boundary words wCi c�i and
ci.w�i /

�1 respectively, joined along the boundary arcs labeled c�i ; ci . After joining,
the arc labeled ci will be called the diameter of �i .

The disk �˙i is a union of embedded disks in vertex spaces zXmi
and pieces of strips

joining them. Consider the curve shortening process that transforms ci into w˙i . To
build �˙i simply fill the central region shown in Figure 3 with the embedded disk
from Figure 2(b). Then fill each strip with either bi=pc or di=pe copies of the 2–cell
with the appropriate boundary word sj c�.j/

qs�1
j a

�p
j , and repeat the procedure. The

resulting disk is a union of embedded disks in zXr;P joined along boundary arcs, with
no folding along these arcs. Since each strip separates zXr;P , one can see inductively
(on the number of strips crossed by �˙i ) that �˙i is embedded. For the same reason,
it suffices to note that no folding occurs when �Ci and ��i are joined together to
conclude that �i is embedded. Figure 4 shows an example of a disk �i with boundary
word wi .

To estimate the area of �i consider the central region in �Ci adjacent to ��i . By
Remark 3.4 this subdisk of �i has area .m� 1/i2 > i2 . Then since i > C0 2�˛ni

˛

(as observed above) we conclude that

.5:1/ Area.�i/> .C0
24�˛/ni

2˛

and therefore ı.ni/> .C0
24�˛/ni

2˛ .

The upper bound

Suppose a word w represents an element of a vertex group Vm . The graph of groups
structure of Gr;P yields a decomposition of w as w1 � � �wk where each wi is either
an element of Vm , or begins with s˙j and ends with s

�

j for some j . These latter cases
occur when the path described by w leaves the vertex space zXm and then returns again
over a strip in zXr;P .

Recall that a strip in zXr;P has sides labeled ai and c�.i/ . The next lemma shows that
a geodesic (in the generators fa1; : : : ; an; s1; : : : ; sng) can only enter a strip from (and
return to) the ai –side.

Lemma 5.2 Let w be a geodesic in Gr;P representing an element of a vertex group
Vm . Then w is a product of subwords w1 � � �wk where each wi is a power of a
generator aj , or begins with sj and ends with s�1

j (for some j ) and represents a power
of aj .
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cN

Figure 4: A snowflake disk based on the matrix P D
�

1
2

1
1

�
. The upper and

lower halves of the boundary curve are positive and negative snowflake paths
representing cN .

Proof Let w0 � w be an innermost word that begins with s�1
`

and ends with s` (for
some `) and whose corresponding path in zXr;P has endpoints in the same vertex space
zXv�.`/ . Thus w0 D s�1

`
us` crosses a strip from the c�.`/–side, and the subword u only

crosses strips from (and returns to) ai –sides. That is, u can be written as u1 � � �uk

where each ui is a power of a generator aj , or begins with sj and ends with s�1
j and

represents a power of aj .

Note that u has both endpoints on an a`–line in the vertex space zXv�.`/ across a strip
from zXv�.`/ . Hence u represents aN

`
for some N . Let u0 be the word in the standard

generators of Gv�.`/ Š Vm obtained by replacing each ui by the appropriate power of
aj that it represents. Consider the word u0a�N

`
which represents the trivial element

c0 in Vm . Since u0 does not involve c , Lemma 3.1 implies that every aj –exponent of
u0a�N

`
is zero. Hence u0 has a`–exponent N and aj –exponent zero for every j 6D `.

If any of the subwords ui of u represent a power of aj with j 6D `, then by Lemma
3.1 one could rearrange the subwords (preserving the property that u represents aN

`
)
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so that those representing powers of aj are adjacent. Then these adjacent subwords
cancel in Vm and can be deleted, shortening w . Therefore every ui represents a power
of a` .

If none of the subwords ui begins with s` and ends with s�1
`

then uD aN
`

, but then
w0 could be replaced by a word aN=r

i1
� � � aN=r

im
representing c�.`/

N=r . The new word
is shorter than w because of the hypothesis that m< r , and therefore some ui must
have the form s`vs�1

`
after all. Now rearrange the subwords so that s`vs�1

`
occurs

last. Again w can be shortened by replacing u with this rearranged word and then
cancelling s�1

`
s` at the end.

Proposition 5.3 Let c be the diagonal element of one of the vertex groups in Gr;P .
Then for every N there is a snowflake word wsf and a geodesic wgeo , both representing
cN , with jwsfj6 rN0jwgeoj.

Proof The proof is by induction on jN j. Let w be a geodesic representing cN .
We shall apply Lemma 3.1 inductively to rearrange and modify w into two words, a
geodesic wgeo and a positive snowflake word wsf . The two constructions are identical
except at the base of the induction, which involves only certain segments of length at
most rN0 .

Let ai1
; : : : ; aim

be the standard generators (in order) of the vertex group Vm containing
c . If jN j6 N0 then define wgeo D w and wsf D aN

i1
� � � aN

im
. The desired conclusion

holds in this case since r >m.

Suppose next that jN j>N0 . By Lemma 5.2 we can write w as w1 � � �wk where each
subword has the form aNj

j or sj uj s�1
j . In the latter case sj uj s�1

j represents a power
of aj .

By Lemma 3.1 we can permute the subwords w` of w to arrange that those representing
powers of ai1

come first, those representing powers of ai2
occur next, and so on. The

resulting word is still a geodesic representing cN . Note that two subwords cannot both
be of the form sij uj s�1

ij
since they could be made adjacent, and then a cancellation of

s�1
ij

sij would be possible. Hence we can arrange for w to have the form

.5:4/ w D .si1
u1s�1

i1
/.aN1

i1
/.si2

u2s�1
i2
/.a

N2

i2
/ � � � .sim

ums�1
im
/.aNm

im
/

where each sij uj s�1
ij

represents a power of aij . Next observe that jNj j< p for all j ,
since otherwise a subword of the form s�1

ij
a
˙p
ij

could be replaced by a word of the
form a

˙q

`1
� � � a

˙q

`m0
s�1
ij

(that is, c�.ij /
˙qs�1

ij
expressed in the standard generators). Here

m0 is a row sum of P and so r >m0 , making the new word shorter than w .
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Recall that uj represents a power of c�.j/ . By Lemma 3.1 the power of aij represented
by sij uj s�1

ij
is N �Nj , and so uj represents c�.j/

.N�Nj /=r . Recall that N0 > p ,
hence jN j> p > jNj j. Then since r > 2 it follows that j.N �Nj /=r j< jN j.

By induction c�.j/
.N�Nj /=r is represented by a geodesic .uj /geo and a positive

snowflake word .uj /sf satisfying the conclusion of the lemma. Define wgeo and
wsf by replacing each subword uj in (5.4) by .uj /geo or .uj /sf accordingly. Then the
desired conclusion also holds for wgeo and wsf , since they agree except in the subwords
.uj /geo and .uj /sf .

Corollary 1 (Edge group distortion) Given r and P there is a positive constant D

with the following property. If c is a diagonal element and w is a word representing
cN then jN j6 Djwj˛ .

Proof It suffices to consider the case when w is a geodesic. Apply Proposition 5.3
to obtain the geodesic wgeo and snowflake word wsf representing cN with jwsfj 6
rN0jwgeoj. Then Proposition 4.5 implies jN j6 C1jwsfj

˛ 6 C1 .rN0/
˛
jwgeoj

˛ .

The statement and proof of the next proposition are similar to those of Brady–Bridson
[3, Proposition 3.2]. The case N D 0 establishes the upper bound of Theorem A.

Proposition 5.5 (Area bound) Given r and P there is a positive constant E with
the following property. If w is a word in Gr;P representing xN for some N , where
x is either a generator ai or the diagonal element of one of the vertex groups, then
Area.wx�N /6 Ejwj2˛ .

Proof We argue by induction on jwj. We shall prove the statement with E D

.3=2/r2D2 (D given by Corollary 1). Let c denote the diagonal element of the vertex
group Vm containing x .

Write w as w1 � � �wk where each wi has the form aNi
ji

or is a word beginning in s˙1
ji

and ending in s
�1
ji

. In the latter cases wi represents an element of the form cNi or
aNi

ji
. Let Ic and Ia be the sets of indices for which these two cases occur, and let

w0 be the word obtained from w by replacing each subword wi of this type with the
appropriate word cNi or aNi

ji
. Then w0 is a word in the standard generators of Vm

(and the diagonal element) representing xN , of length
P

i Ni .

By Lemma 3.5 we have Area.w0x�N /6 3
P

i<j NiNj . To estimate each Ni we use
Corollary 1 as follows. If i 2 Ic then wi represents cNi and Corollary 1 gives Ni 6
Djwi j

˛ . If i 2 Ia then wi D sji
uis
�1
ji

for some ui representing c�.ji /
Ni=r (because

wi represents aNi
ji

). Then by Corollary 1 we have Ni=r 6 D.jwi j � 2/˛ 6 Djwi j
˛ ,

Geometry & Topology, Volume 13 (2009)



Isoperimetric spectra 169

so Ni 6 rDjwi j
˛ . Finally if i 62 .Ic [ Ia/ then Ni D jwi j 6 jwi j

˛ . Putting these
observations together we have

.5:6/ Area.w0x�N / 6 3r2D2
X
i<j

jwi j
˛
jwj j

˛:

Next we use the induction hypothesis and Corollary 1 to bound Area.ww0�1/. First
note that

Area.ww0�1/ 6
X
i2Ic

Area.wic
�Ni /C

X
i2Ia

Area.wia
�Ni

ji
/:

If i 2 Ic then wi D s�1
ji

uisji
where ui represents aji

rNi . Applying the induction
hypothesis to ui we have Area.uiaji

�rNi / 6 .3=2/r2D2.jwi j � 2/2˛ . The strip
s�1
ji

aji

rNi sji
c�Ni has area Ni=q 6 .D=q/jwi j

˛ 6 Djwi j
˛ , by Corollary 1. Thus

Area.wic
�Ni / 6 .3=2/r2D2.jwi j � 2/2˛CDjwi j

˛

6 .3=2/r2D2..jwi j � 2/2˛Cjwi j
˛/

6 .3=2/r2D2
jwi j

2˛:

.5:7/

The last inequality above uses the fact that for numbers x > 0 one has .xC 2/2˛ >
x˛.xC 2/˛C 2˛.xC 2/˛ > x2˛C .xC 2/˛ .

If i 2 Ia then wi D sji
uis
�1
ji

where ui represents c�.ji /
Ni=r . Applying the induc-

tion hypothesis to ui we have Area.uicji

�Ni=r / 6 .3=2/r2D2.jwi j � 2/2˛ . The
strip sji

cji

Ni=r s�1
ji

a�Ni
ji

has area .Ni=r/=q 6 .D=q/.jwi j � 2/˛ 6 D.jwi j � 2/˛ , by
Corollary 1. Therefore

Area.wia
�Ni

ji
/ 6 .3=2/r2D2.jwi j � 2/2˛CD.jwi j � 2/˛

6 .3=2/r2D2..jwi j � 2/2˛C .jwi j � 2/˛/

6 .3=2/r2D2
jwi j

2˛:

.5:8/

Combining (5.7) and (5.8) we then have

.5:9/ Area.ww0�1/ 6
X

i2Ic[Ia

.3=2/r2D2
jwi j

2˛ 6
X

i

.3=2/r2D2
jwi j

2˛:
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Finally, adding (5.6) and (5.9) together gives the desired result:

Area.wx�N / 6 .3=2/r2D2
�X

i

jwi j
˛
�2

6 .3=2/r2D2
�X

i

jwi j

�2˛
D .3=2/r2D2

jwj2˛:

6 Suspension and snowflake balls

Throughout this section P denotes a nonnegative R�R integer matrix with Perron–
Frobenius eigenvalue �, and r is an integer which is strictly greater than the largest row
sum of P . In this section, we give an explicit description of the suspended snowflake
groups †Gr;P and the 3–dimensional K.†Gr;P ; 1/ spaces X 3

r;P
. Then we describe

snowflake balls B3
i which embed in the universal cover of X 3

r;P
and estimate their

boundary areas. We show how to iterate this suspension procedure to obtain groups
†kGr;P and .kC2/–dimensional spaces X kC2

r;P
. Lastly we define higher-dimensional

snowflake balls and estimate their boundary volumes.

Remark 6.1 In order to realize the exponents .kC1/=k (the endpoints of the intervals
in Figure 1, which are omitted otherwise) we add the free abelian group Z2 to the class
of snowflake groups Gr;P . We endow Z2 with snowflake structure as follows

Z2
D h a1; a2; c j a1a2 D c; c D a2a1 i

and use the corresponding presentation 2–complex X in place of Xr;P . There is no
matrix P associated to the group Z2 , and so the only condition that we impose on the
integer r is that r > 2. Since there are no stable letters si , we define the snowflake
words to be the commutators wi D Œar i

1
; ar i

2
� and define the snowflake disks B2

i D �r i

to be the unique embedded disks in X with boundary wi .

In the discussions that follow, whenever we talk about snowflake groups Gr;P , we
shall always include Z2 , and whenever we use the complexes Xr;P we shall always
include the presentation 2–complex X for Z2 described above.

The groups †Gr;P

Let �W Gr;P !Gr;P be the monomorphism which takes each ai to ar
i and each si to

itself. The group †Gr;P is defined to be the associated multiple HNN extension with
stable letters u1 and v1 :

†Gr;P D hGr;P ;u1; v1 j u1gu�1
1 D �.g/; v1gv�1

1 D �.g/ .g 2Gr;P / i:
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The spaces X3
r;P

These spaces will have fundamental group †Gr;P . Recall that Xr;P is a 2–dimensional
K.Gr;P ; 1/ space. There is a cellular map ˆW Xr;P ! Xr;P which induces the map
� on the fundamental group. It maps the 1–cells labeled si homeomorphically to
themselves, maps the 1–cells labeled ai to themselves by degree r maps and maps each
2–cell in the obvious manner; the image of each triangular 2–cell has combinatorial area
r2 , and the image of the remaining 2–cells (which have an si edge in their boundaries)
have combinatorial area r . The 3–complex X 3

r;P
with fundamental group †Gr;P is

obtained by taking two copies of the mapping torus of the map ˆ and identifying them
along a copy of Xr;P . From this perspective it is easy to see that X 3

r;P
is aspherical;

each mapping torus is aspherical since Xr;P is an aspherical 2–complex, and since
ˆ induces the monomorphism � in �1 . We give more details of the cell structure of
X 3

r;P
below.

Start with the 2–complex Xr;P and form two copies of Xr;P�Œ0; 1�. Each copy is given
the product cell structure, in which each k –cell of Xr;P gives rise to a .kC1/–cell in
Xr;P � .0; 1/. The “bottom” side Xr;P � f0g keeps its original cell structure and the
“top” Xr;P �f1g is subdivided by pulling back under ˆ the cell structure of ˆ.Xr;P /.
That is, each triangular 2–cell in a vertex space of Xr;P is subdivided into r2 triangles,
and each edge space 2–cell (bearing the boundary label sj c�.j/s

�1
j ar

j ) is subdivided
into r copies of the same cell.

The vertical 1–cells of the two copies of Xr;P�Œ0; 1� are labeled u1 and v1 respectively,
oriented from Xr;P �f1g to Xr;P �f0g. Finally to form X 3

r;P
one attaches the bottom

of each piece to Xr;P by the identity and the top by the map ˆ. Figure 5 and Figure 6
illustrate the two types of 3–cell occurring in X 3

r;P
.

a a

a

a

b b

b

b

c c

cv1 v1

v1

Figure 5: A triangular 3–cell (with r D 2)
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aj aj aj aj

aj aj

sj sj sj

sj

c�.j/ c�.j/

v1 v1 v1

v1

Figure 6: A rectangular 3–cell

Snowflake balls

We define embedded 3–dimensional balls B3
j in zX 3

r;P
in a similar fashion to the

snowflake disks constructed in Section 5. An essential difference, however, is that now
r is an integer, and the observations of Remark 4.1 apply. That is, snowflake disks
with diameter labeled cr i

are unique, and the corresponding snowflake words have no
“remainder” terms.

As in the proof of Theorem A we let c be the diagonal element of a vertex group Vm

in Gr;P �†Gr;P where m > 2. We let wCi and w�i denote respectively the (unique)
positive and negative snowflake words representing cr i

. (Note that the indexing here
differs from that in Section 5, where these words would be called w˙

r i .) Let B2
i be the

snowflake disk bounded by wi D w
C
i .w

�
i /
�1 , with diameter labeled cr i

. Note that
B2

i is the same as the snowflake disk �r i of Section 5.

For each positive integer j , we shall use a stack of thickened van Kampen disks to
define an embedded 3–ball B3

j in the universal cover of X 3
r;P

. Note that the universal
cover of X 3

r;P
contains infinitely many embedded copies of the universal cover of

Xr;P ; one for each coset of Gr;P in †Gr;P . We call two such copies adjacent if the
cosets have representatives which differ by right multiplication by u˙1

1
or v˙1

1
.

The map ˆW Xr;P!Xr;P lifts to a map of universal covers which we also denote by ˆ.
Consider the image ˆ.B2

i / of the embedded snowflake disk B2
i . This image is again

embedded, but its boundary word is �.wi/. If we apply the curve shortening procedure
once to the subword �.wCi / we obtain wC

iC1
, which is the positive snowflake word for

cr iC1

. Similarly, if we apply curve shortening once to the subword �.w�i / we obtain
the negative snowflake word for cr iC1

. Thus ˆ.B2
i / is a subdiagram of B2

iC1
. The

top half of the ball B3
j is defined to be the union of the mapping cylinders of ˆ with

domain B2
i and codomain B2

iC1
where i ranges from 1 to j ; the copies of B2

i are
identified. This embeds in the universal cover of X 3

r;P
as follows. The disk B2

1
embeds

in some copy of the universal cover of Xr;P , B2
2

embeds in the adjacent copy obtained
by right multiplying by u�1

1
, and the mapping cylinder of ˆW B2

1
!B2

2
embeds in the
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universal cover of X 3
r;P

to interpolate between the images of B2
1

and B2
2

. Note that
this embedding is possible since the universal covering of X 3

r;P
can be described as

an infinite union of mapping cylinders of ˆW zXr;P !
zXr;P which is encoded by the

Bass–Serre tree T corresponding to the multiple HNN description of †Gr;P .

We continue to add mapping cylinders of ˆW B2
i !B2

iC1
for i D 2; : : : ; j , as indicated

in the top half of the schematic diagram in Figure 7. The image of the union of the

u1

u1

v1

v1

B2
1

B2
1

B2
jC1

B2
j

B2
j

B2
j�1

B2
j�1

Figure 7: A schematic diagram of the embedded ball B3
j

first few embedded layers is shown in Figure 8. In a similar fashion, we can embed
a second copy of the union of mapping cylinders of ˆW B2

i ! B2
iC1

. However, this
time we start from the copy of B2

j in the image of the previous union, and add the
mapping cylinders in descending order (so i D j ; : : : ; 1) and require that new copies
of the universal cover of Xr;P differ by right multiplication by vC1

1
. The image of

this family is indicated in the lower half of the schematic diagram of Figure 7, and
the total union is the embedded ball B3

j . It is easy to see that the union embeds, since
each mapping cylinder embeds, and distinct mapping cylinders correspond to distinct
layers in the 3–complex zX 3

r;P
. These layers are distinct, since they map to distinct

edges of the Bass–Serre tree T . Finally, there is a 2–dimensional “fringe” at the
equator B2

jC1
level. We remove this fringe by simply replacing the two embeddings

of ˆW B2
j ! B2

jC1
by embeddings of ˆW B2

j !ˆ.B2
j /.

Lemma 6.2 Given r and P there is a positive constant F0 such that j@B2
j j 6

Area.@B3
j / 6 F0j@B

2
j j for every j .
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Figure 8: A few layers of B3
j

Proof The ball B3
j is a union of 2j mapping cylinders. See Figure 7 for a schematic

representation. Its boundary area is twice the area of the upper hemisphere. This latter
area is estimated as follows.

For each 1 6 i 6 j , there are j@B2
i j vertical (conjugation by u1 ) 2–cells, which inter-

polate between @B2
i and ˆ.@B2

i /. This proves the first inequality, j@B2
j j6 Area.@B3

j /.

For each 1 6 i 6 j there are horizontal 2–cells which interpolate between ˆ.
smashpartialB2

i�1
/ and @B2

i . In the case i D 1 there is no loop ˆ.@B2
0
/, and the

horizontal 2–cells just fill the van Kampen diagram B2
1

. For any i , the horizontal
2–cell contribution to the area is bounded above by j@B2

i j. To see this, note that the
horizontal interpolation is a union of pieces of the form sj ai1

� � � aim
s�1
j a�r

j where
fa1; : : : ; amg generates a vertex group Vm , and the stable letter sj conjugates the
diagonal element of this vertex group to some generator aj of Gr;P . The area of this
piece is m, and its contribution to j@B2

i j is mC 2.

Counting vertical and horizontal 2–cells for both hemispheres we obtain

Area.@B3
j / 6 4

jX
iD1

j@B2
i j :

Proposition 4.5 implies that jwCi j 6 C
�1=˛
0

r i=˛ and so

4

jX
iD1

j@B2
i j D 8

jX
iD1

jwCi j 6 8C
�1=˛
0

jX
iD1

.r1=˛/i :
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The last term is a geometric series, and so is bounded above by F 0
0
.r1=˛/j for a positive

constant F 0
0

(independent of j ). Proposition 4.5 also gives C
�1=˛
1

rj=˛ 6 jwCj j and so

Area.@B3
j / 6 F 00rj=˛ 6

F 0
0

2
C

1=˛
1
j@B2

j j :

Now the desired (second) inequality holds by taking F0 D .F
0
0
=2/C

1=˛
1

.

The inductive suspension procedure

Having discussed †Gr;P we define further suspensions †kGr;P having .kC2/–dim-
ensional Eilenberg–MacLane spaces X kC2

r;P
and .kC2/–dimensional snowflake balls

BkC2
j � zX kC2

r;P
. We assume that the group †k�1Gr;P , the space X kC1

r;P
and snowflake

balls BkC1
j � zX kC1

r;P
have already been constructed.

First we define the groups †kGr;P . Let �k W †
k�1Gr;P!†k�1Gr;P be the monomor-

phism which sends ai to ar
i and which leaves fixed the stable letters si , ui and vi .

We define †kGr;P to be the multiple ascending HNN extension with two stable letters
uk and vk , each acting by �k :

†kGr;P

D h†k�1Gr;P ;uk ; vk j ukgu�1
k D �k.g/; vkgv�1

k D �k.g/ .g 2†
k�1Gr;P / i:

Next we define the spaces X kC2
r;P

. The homomorphism �k is induced by a cellular
map ˆkC1W X

kC1
r;P
!X kC1

r;P
. We define X kC2

r;P
to be the double mapping torus with

monodromy ˆkC1 . That is, take two copies of X kC1
r;P
� Œ0; 1�, identify the “bottom”

sides
X kC1

r;P
� f0g to X kC1

r;P

by the identity, and attach the “top” sides

X kC1
r;P
� f1g to X kC1

r;P

by the map ˆkC1 . The vertical 1–cells of the copies of X kC1
r;P
� Œ0; 1� are labeled uk

and vk respectively, and are oriented from X kC1
r;P
� f1g to X kC1

r;P
� f0g. The resulting

space X kC2
r;P

is given a cell structure analogous to that of X 3
r;P

. As before, X kC2
r;P

is
aspherical, has dimension kC 2 and has fundamental group †kGr;P .

Now we define the higher-dimensional snowflake balls. The map ˆkC1 lifts to a
map zX kC1

r;P
! zX kC1

r;P
which we also call ˆkC1 . We define .kC2/–dimensional balls

BkC2
j of diameter rj for each j as unions of mapping cylinders (called layers) of

the map ˆkC1 restricted to the .kC1/–dimensional balls BkC1
i . These mapping

cylinders are assembled as shown in Figure 7, with BkC1
i in place of B2

i . More
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specifically, we assume inductively that ˆkC1 maps BkC1
i into a subcomplex of BkC1

iC1

for each i . Then the upper hemisphere of BkC2
j is the union of the mapping cylinders

of ˆkC1W B
kC1
i ! BkC1

iC1
where i ranges from 1 to j � 1 and the mapping cylinder

of ˆkC1W B
kC1
j !ˆkC1.B

kC1
j /. The lower hemisphere is defined similarly, and the

two are identified along ˆkC1.B
kC1
j /. Note that the subspaces BkC1

i �ˆkC1.B
kC1
i�1

/

of the domains of these mapping cylinders lie in the boundary of BkC2
j .

Recall that ˆkC1 maps BkC1
i to a subcomplex of BkC1

iC1
. There is an induced map

ˆkC2 from the mapping cylinder of

ˆkC1W B
kC1
i ! BkC1

iC1

to the mapping cylinder of

ˆkC1W B
kC1
iC1
! BkC1

iC2
I

use ˆkC1� id on BkC1
i �I and ˆkC1 on BkC1

iC1
. Then ˆkC2 maps layer i of BkC2

j

to layer i C 1 of BkC2
jC1

for any i 6 j (in either hemisphere). These maps defined on
the layers of BkC2

j join together to define the map ˆkC2W B
kC2
j ! BkC2

jC1
.

The balls BkC2
j embed into zX kC2

r;P
exactly as the balls B3

j embed into zX 3
r;P

. That is, we
may consider zX kC2

r;P
as a union of copies of the mapping cylinder of ˆkC1W

zX kC1
r;P
!

zX kC1
r;P

with the mapping parameter corresponding to right multiplication by u�1
k

or
v�1

k
. Then, as shown in Figure 7, the embedding BkC2

j ! zX kC2
r;P

is assembled from
the embeddings BkC1

i ! zX kC1
r;P

(for i 6 j ) with the upper hemisphere extending in
the uk direction and the lower hemisphere in the vk direction. Under this embedding,
the map ˆkC2W B

kC2
j ! BkC2

jC1
described in the previous paragraph is simply the

restriction of ˆkC2W
zX kC2

r;P
! zX kC2

r;P
to BkC2

j .

For any k , we define the shell of a snowflake ball Bk
j to be the subspace Bk

j �

ˆk.B
k
j�1

/, or simply Bk
j in the case j D 1.

Lemma 6.3 Volk.shell.Bk
j //6 Volk�1.@Bk

j /.

Proof It suffices to show that every k –cell of the shell has a .k�1/–dimensional face
contained in @Bk

j . Recall that Bk
j is a union of layers, so consider the intersection

of the shell with layer i (in either hemisphere). This layer is a mapping cylinder
M.ˆk�1W B

k�1
i ! Bk�1

iC1
/ and its preimage in Bk

j�1
under ˆk is layer i � 1 of this

smaller ball (or is empty in the case i D 1). Hence the intersection of the shell with
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layer i is

M.ˆk�1W B
k�1
i ! Bk�1

iC1 / � ˆk.M.ˆk�1W B
k�1
i�1 ! Bk�1

i //

DM.ˆk�1W B
k�1
i ! Bk�1

iC1 / � M.ˆk W ˆk�1.B
k�1
i�1 /!ˆk�1.B

k�1
i ///

DM.ˆk�1W .B
k�1
i �ˆk�1.B

k�1
i�1 //! .Bk�1

iC1 �ˆk�1.B
k�1
i ///

if i > 1, and is M.ˆk�1W B
k�1
i ! Bk�1

iC1
/ in the case i D 1. Either way, this part of

shell.Bk
j / is the mapping cylinder of the restriction of ˆk�1 to shell.Bk�1

i /. So each
k –cell has a .k�1/–dimensional face in shell.Bk�1

i /, which is contained in @Bk
j .

The next result is a higher-dimensional analogue of Lemma 6.2.

Lemma 6.4 Given r , P and k > 3, there is a positive constant Fk such that
Volk�2.@Bk�1

j /6 Volk�1.@Bk
j /6 Fk Volk�2.@Bk�1

j / for every j .

Proof We prove, for k > 3, the following two statements: there exist positive constants
Ek ;Fk such that

(1) .2C
�1=˛
1

/.r1=˛/j 6 Volk�2.@Bk�1
j / 6 Ek.r

1=˛/j , and

(2) Volk�2.@Bk�1
j / 6 Volk�1.@Bk

j / 6 Fk Volk�2.@Bk�1
j /

for all j (with C1 given by Proposition 4.5). Statement (1) is a higher-dimensional
analogue of Proposition 4.5 and (2) is the main statement of the lemma. The two
statements are proved together by induction on k .

If k D 3 then (1) follows from Proposition 4.5, with E3 D 2C
�1=˛
0

. Statement (2) is
given by Lemma 6.2 (with F3 D F0 ).

For k > 3 we prove (1) as follows. The induction hypothesis implies that

Volk�2.@Bk�1
j / 6 Fk�1 Volk�3.@Bk�2

j /

by (2) and
Volk�3.@Bk�2

j /6 Ek�1.r
1=˛/j

by (1). Hence
Volk�2.@Bk�1

j /6 Ek.r
1=˛/j

with Ek D Fk�1Ek�1 . We also have (by induction)

Volk�2.@Bk�1
j /> Volk�3.@Bk�2

j /> .2C
�1=˛
1

/.r1=˛/j

by (2) and (1). This establishes (1).
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To prove (2) we count vertical and horizontal .k�1/–cells of @Bk
j as in the proof of

Lemma 6.2. In each hemisphere of Bk
j , layer i is a copy of the mapping cylinder of

ˆk�1W B
k�1
i !Bk�1

iC1
. This layer meets @Bk

j in horizontal cells which are the .k�1/–
cells of shell.Bk�1

i / and vertical cells, each of which is the product of a .k�2/–cell
in @Bk�1

i with I . This latter observation implies the first inequality of (2) (taking
i D j ) and also that the number of vertical cells in layer i is at most Volk�2.@Bk�1

i /.
The number of horizontal cells is at most Volk�2.@Bk�1

i / by Lemma 6.3. Adding the
contributions from all layers in both hemispheres, we obtain

Volk�1.@Bk
j / 6 4

jX
iD1

Volk�2.@Bk�1
i /:

Statement (1) implies

4

jX
iD1

Volk�2.@Bk�1
i /6 4Ek

jX
iD1

.r1=˛/i

and the latter sum is a geometric series. Hence

Volk�1.@Bk
j /6 F 0k.r

1=˛/j

for some constant F 0
k

. Now (1) implies that

Volk�1.@Bk
j /6 .F 0k=2/.C

1=˛
1

/Volk�2.@Bk�1
j /;

establishing (2) with Fk D .F
0
k
=2/C

1=˛
1

.

7 Proof of Theorem C

We will establish upper and lower bounds for the k –dimensional Dehn functions
ı.k/.x/ of the groups †k�1Gr;P and these will be equivalent. As usual � denotes
the Perron–Frobenius eigenvalue of P and ˛ D log�.r/. In the case of †k�1Z2 we
define ˛ D 1.

The lower bound

As in the proof of Theorem A, we show that the embedded snowflake balls BkC1
i �

zX kC1
r;P

have the correct proportions and are numerous enough to determine ı.k/.x/
from below.

First we show that for every k > 1 there is a constant Gk such that

.7:1/ VolkC1.BkC1
i /> Gk Volk.@BkC1

i /2˛

Geometry & Topology, Volume 13 (2009)



Isoperimetric spectra 179

for all i . The case k D 1 was proved in (5.1) with G1 D .C0/
24�˛ . For k > 1

we proceed by induction. Note that VolkC1.BkC1
i / > Volk.Bk

i / since the latter is
the volume of the mapping cylinder of ˆk W B

k
i ! ˆk.B

k
i / inside BkC1

i . We also
have Volk.Bk

i / > Gk�1 Volk�1 .@Bk
i /

2˛ by the induction hypothesis. Lemma 6.4
implies that Gk�1 Volk�1 .@Bk

i /
2˛ > Gk�1F�2˛

kC1
Volk .@BkC1

i /2˛ . Equation (7.1)
now follows by taking Gk DGk�1F�2˛

kC1
.

Next we show that for each k > 2 the sequence .Volk.@BkC1
i //i is exponentially

bounded and tends to infinity. Consider first the case k D 2. Then we have

Vol2.@B3
iC1

/

Vol2.@B3
i /

6 F0j@�r iC1 j

j@�r i j
6 F0

�
r iC1C1

r iC0

�1=˛

D F0

�
rC1

C0

�1=˛

where the first inequality holds by Lemma 6.2 and the second by Proposition 4.5. Thus,
the sequence is exponentially bounded. For k > 2 we have

Volk.@BkC1
iC1

/

Volk.@BkC1
i /

6
FkC1 Volk�1.@Bk

iC1
/

Volk�1.@Bk
i /

by Lemma 6.4 and so .Volk.@BkC1
i //i is exponentially bounded, by induction on k .

It tends to infinity because

Volk.@BkC1
i /> Vol2.@B3

i /> j@�r i j> 2C
�1=˛
1

.r1=˛/i

by Lemma 6.4, Lemma 6.2 and Proposition 4.5. Now, using Remarks 2.1 and 2.7, we
conclude from (7.1) that ı.k/.x/< x2˛ .

The upper bound

To establish the upper bound we must work with Dehn functions ıM
G
.x/ modeled on

arbitrary manifolds M with boundary, as defined in Section 2. Recall that the dimension
of ıM

G
.x/ is the dimension of @M , and ıM

G
.x/ agrees with the usual k –dimensional

Dehn function when M is the .kC1/–dimensional ball.

A function F W N!N is superadditive if F.aCb/> F.a/CF.b/ for all a; b . Recall
that the geometric dimension of a group G is the smallest dimension of a K.G; 1/

complex.

Theorem 7.2 Let G be a group of type Fn and geometric dimension at most n, and
fix a finite aspherical n–complex X with fundamental group G . Suppose that the Dehn
function ıM

G
.x/ (defined with respect to X ) satisfies

ıM
G .x/6 F.x/
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for every n–manifold M , where F W N!N is nondecreasing. Let H be a multiple
ascending HNN extension of G . Then H is of type FnC1 , has geometric dimension at
most nC 1, and

ıM
H .x/6 F.x/

for every .nC 1/–manifold M .

In the hypotheses we are including Dehn functions ıM
G
.x/ where M has more than one

connected component (otherwise we should add that F is superadditive). Stipulation:
The n–dimensional Dehn functions in the conclusion are defined with respect to a fixed
complex Y constructed in the proof of the theorem.

Proof First we define the finite .nC 1/–dimensional complex Y with fundamental
group H in the usual way. Suppose the multiple ascending extension has k stable
letters. Form k copies of X � Œ�1; 1�, give each the product cell structure, and attach
each copy of X � f�1g to X by the identity map. Then attach each copy of X � f1g

to X by the appropriate monodromy map, and call the resulting space Y . Let Z � Y

be the union of the spaces X � f0g. There are natural projections along the fibers
p0W Z!X and p1W Z!X which factor through Z�f�1g and Z�f1g respectively.
Let zY be the universal cover of Y and let zX and zZ be the preimages of X and Z

in zY . The projections pi lift to projections pi W
zZ! zX along fibers. Note that each

component of zX and zZ is a copy of the universal cover of X , and in fact p0W
zZ! zX

is a homeomorphism.

Each open k –cell �k in zZ� .�1; 1/� zY has the form �k�1� .�1; 1/ where �k�1 is
a .k�1/–cell in zX , and the restriction of p0 to �k \ zZ is simply projection onto the
first factor. Since zZ is not a subcomplex of zY , we measure volume in zZ by passing
to zX via p0 . The description of p0 just given leads to the following observation: if
f W M k ! zY is an admissible map transverse to zZ and zX , and N D f �1. zZ/ and
M0 D f

�1. zX /, then p0 ıf jN and f jM0
are admissible and

.7:3/ Volk.f /D Volk�1.p0 ıf jN /CVolk.f jM0
/

where the left hand side is volume in zY and the right hand side is volume in zX .

Now suppose that M is a compact .nC1/–manifold with boundary and let gW M ! zY

be a least-volume map with boundary f D gj@M . We can arrange by a homotopy that
N D g�1. zZ/ is a properly embedded codimension one submanifold with a product
neighborhood N � Œ�1; 1� �M such that g�1. zZ � .�1; 1//D N � .�1; 1/. (To do
this, consider the composition � W zY ! Y ! S1 _S1! S1 , where S1 _S1 is the
underlying graph for the multiple HNN-description of �1.Y / and S1 _S1! S1 is a
fold. By a homotopy of g , � ıg can be made smooth in a neighborhood of g�1. zZ/.
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By a further homotopy, we can arrange that �. zZ/ is a regular value of � ıg ; now use
transversality.) The product structure on N � Œ�1; 1� may be chosen so that gjN�.�1;1/

is the map gjN � id. Note that N may have several connected components.

We claim that Voln.p0ıgjN / is smallest among all N –fillings of p0ıf j@N W @N ! zX .
Assuming this for the moment, the theorem is proved as follows. We have VolnC1.g/D

Voln.p0 ı gjN / by (7.3) because zX has dimension n. Then Voln.p0 ı gjN / D

FVolN .p0 ı f j@N / by (2.5) and the claim, and the latter is at most ıN
G
.Voln�1.p0 ı

f j@N // by the definition of ıN
G

. Equation (7.3) implies that ıN
G
.Voln�1.p0ıf j@N //6

ıN
G
.Voln.f //. Then we have the desired bound

FVolM .f / D VolnC1.g/ 6 ıN
G .Voln.f // 6 F.Voln.f //

by the main hypothesis and we conclude that ıM
H
.Voln.f // 6 F.Voln.f //. Since

Voln.f / was arbitrary and F is nondecreasing, we have ıM
H
.x/6 F.x/ for all x .

Now we return to the claim that Voln.p0 ıgjN /D FVolN .p0 ıf j@N /. We show that
if p0 ıgjN is not a least-volume filling of p0 ı f j@N then g can be modified rel @M
to a map of smaller volume, contradicting the choice of g .

Let M0 D g�1. zX /, and note that the frontier of M0 in M is N � f�1g [N � f1g.
These two subsets of @M0 will be denoted M�

0
and MC

0
respectively.

Suppose Voln.h/ <Voln.p0 ıgjN / for some map hW N ! zX with hj@N D p0 ıf j@N .
Form a new copy of M in which N � .�1; 1/ is replaced by N � .�2; 2/. Define a
new map g0W M ! zY by letting g0 be g on M0 , .p�1

0
ıh/� id on N � .�1; 1/, and

by extending to the remaining regions as follows. Note that .p�1
0
ı h/� id extends

continuously to N � Œ�1; 1� as h on N � f�1g and as p1 ı p�1
0
ı h on N � f1g.

Since each component of zX is contractible the maps p1 ı p�1
0
ı h and gjMC

0
are

homotopic rel @N . We let g0jN�Œ1;2�W N � Œ1; 2�! zX be such a homotopy. Similarly
g0jN�Œ�2;�1� is defined to be a homotopy in zX from gjM�

0
to h, fixing @N pointwise.

This defines the map g0W M ! zY .

Now collapse each fiber of @N � Œ1; 2� and @N � Œ�2;�1� to a point, to obtain a new
copy of M with a map g00W M ! zY which agrees with g on @M . Note that all of
M �.N �.�1; 1// maps by g00 into zX and g00jN�.�1;1/D .p

�1
0
ıh/� id. So by (7.3)

we have VolnC1.g00/D Voln.h/ < Voln.p0 ıgjN /D VolnC1.g/, a contradiction.

Lemma 7.4 If G is finitely presented, ıG.x/6 F.x/ with F.x/ superadditive, and
M is a compact 2–manifold with boundary, then ıM

G
.x/6 F.x/.

In particular if ıG.x/ is superadditive then ıM
G
.x/ 6 ıG.x/ for every compact 2–

manifold M .
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Proof If M is connected with one boundary component then let qW M ! D2 be
a quotient map which collapses the complement of a collar neighborhood of @M
to a point. Then Area.g ı q/ D Area.g/ for any map gW D2 ! zX , and we have
ıM

G
.x/6 ıG.x/6 F.x/.

If N is closed then ıMtN
G

.x/D ıM
G
.x/ since N may be assigned zero area by mapping

it to a point. So without loss of generality assume that M has no closed components.
For each component M 0 of M there is a quotient map to a connected, simply connected
space Z0 which is a union of disks (one for each boundary component of M 0 ) and
arcs joining them. Taking a union of such spaces and maps, we have a quotient map
M ! Z . Every map D2 t � � � tD2 ! zX extends to a map Z ! zX which yields
(by composition) a map M ! zX with the same area. Hence ıM

G
.x/6 ıD2t���tD2

G
.x/.

Now superadditivity of F implies ıD2t���tD2

G
.x/6 F.x/.

Theorem 7.5 Let G be a finitely presented group of geometric dimension 2 with
ıG.x/ equivalent to a superadditive function. Let H be obtained from G by performing
n iterated multiple ascending HNN extensions. Then ı.nC1/

H
.x/4 ıG.x/.

The upper bound of Theorem C follows immediately, by Theorem A.

Proof Let F0.x/ be superadditive where F0.x/ ' ıG.x/. Then ıG.x/ 6 F.x/ D

CF0.Cx/CCx for some C and F.x/ is superadditive. The result now follows directly
from Lemma 7.4 and Theorem 7.2.

The case n D 1 of Theorem 7.5 was proved by Wang and Pride [22], using a more
direct method.

8 Products with Z

In this section we determine higher Dehn functions of G �Z for certain groups G . In
these cases the geometry of G �Z is accurately represented by embedded balls which
are products of optimal balls in G with intervals, with suitably chosen lengths. We
conclude the section by proving Theorem D.

To establish an upper bound for Dehn functions of G � Z we need the following
refinement of Theorem 7.2. The proof is based on Theorem 6.1 of Alonso et al [1].

Theorem 8.1 Let G be a group of type Fn and geometric dimension at most n, and
fix a finite aspherical n–complex X with fundamental group G . Suppose that the Dehn
function ıM

G
.x/ satisfies

ıM
G .x/ 6 Cxs
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for every n–manifold M , and fixed C > 0 and s > 1. Then

ıM
G�Z.x/ 6 C 1=sx2�1=s

for every .nC 1/–manifold M .

Proof First note that we are in the situation of Theorem 7.2, which is valid, but no
longer provides the best possible upper bound. Define Y , Z , p0 and p1 as in the
proof of Theorem 7.2. Note that now the projections along fibers p0 , p1W

zZ! zX are
both homeomorphisms, and Volk.p0 ıf / D Volk.p1 ıf / for any f W N k ! zZ .

Given a compact .nC 1/–manifold M with boundary, consider a map f W @M !

zY . Arrange that L D f �1. zZ/ is a codimension one submanifold with a product
neighborhood L� Œ�1; 1�� @M such that f �1. zZ�.�1; 1//DL�.�1; 1/. As before,
the product structure on L � Œ�1; 1� can be chosen so that f jL�.�1;1/ is the map
f jL � id.

We will prove that ıM
G�Z.x/6 C 1=sx2�1=s by induction on the number of connected

components of L. If L D ∅ then f .@M / � zX . The components of @M may
map into different components of zX . However, by joining these components with a
minimal collection of embedded arcs in the 1–skeleton of zY , one obtains a contractible
subcomplex T � zY of dimension n containing f .@M /. Then f extends to a map
gW M ! T � zY with VolnC1.g/D 0.

Now assume that L 6D ∅. Let zZ0 be a connected component of zZ such that L0 D

f �1. zZ0/ is a nonempty union of components of L, and f .L/ lies entirely in one
component of zY �p1. zZ0/. (Think of L0 as an innermost union of components of L.)
Let N1� @M �.L0�.�1; 1// be the union of components having boundary L0�f1g.
That is, N1 and its complement N�1 in @M � .L0 � .�1; 1// map to opposite sides
of zZ0 � .�1; 1/ in zY , and in fact f .N1/� p1. zZ0/� zX , by the choice of zZ0 .

Our method now is to fill L0 with a least-volume copy of N1 and then fill the two
sides of @M efficiently by M (using the induction hypothesis) and N1 � I . These
fillings fit together to yield a filling of f by M having the required volume.

Let v D Voln.f / and uD Voln�1.p0 ı f jL0
/ (which is equal to Voln.f jL0�.�1;1//

by (7.3)). Let hW N1!
zX be a least-volume N1 –filling of p0 ıf jL0

. Thus, hj@N1
D

p0 ı f jL0
and Voln.h/ 6 C us . Define a new map f 0W @M ! zY by first collapsing

the fibers of L0 � Œ�1; 1� to points, and then sending N�1 by f and N1 by h. Since
h is least-volume and L0 � Œ�1; 1� was collapsed we have Voln.f 0/ 6 v � u. Also
.f 0/�1. zZ/ D L�L0 , so by the induction hypothesis there is a map g�1W M ! zY

with g�1j@M D f
0 such that

VolnC1.g�1/6 C 1=s.v�u/2�1=s:
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Next let g1W N1 � Œ�1; 1�! zY be a homotopy which begins with h on N1 � f�1g

and pushes across zZ0 � .�1; 1/ and then deforms within p1. zZ0/ to f jN1
, with the

boundary fixed pointwise. This latter homotopy exists since p1. zZ0/ is contractible.
Note that VolnC1.g1/D Voln.h/ by (7.3) since p1. zZ0/ has dimension n.

Now join N1 � @M to .N1 � f�1g/ � N1 � Œ�1; 1� to get a new copy of M and a
map gW M ! zY extending g�1 and g1 . Then gj@M D f and

VolnC1.g/ 6 C 1=s.v�u/2�1=s
C vh

where vh D Voln.h/. Now s > 1 and v > u imply

VolnC1.g/ 6 C 1=s.v�u/v1�1=s
C vh

D C 1=sv2�1=s

�
1�

u

v
C
v.1=s/�1vh

C 1=sv

�
:

.8:2/

Recall that vh D Voln.h/6 Voln.f jN1
/6 v because h is least-volume. Hence

1�
u

v
C
v.1=s/�1vh

C 1=sv
6 1�

u

v
C
v
.1=s/�1

h
vh

C 1=sv

D 1�
u

v
C

v
1=s

h

C 1=sv
:

.8:3/

The main hypothesis implies that vh 6 C us , or v1=s

h
6 C 1=su, again because h is

least-volume. Thus

.8:4/ 1�
u

v
C

v
1=s

h

C 1=sv
6 1�

u

v
C

u

v
D 1:

By Equations (8.2), (8.3) and (8.4) we have VolnC1.g/ 6 C 1=sv2�1=s where v D
Voln.gj@M /, which completes the proof.

Definition 8.5 Let G be a group of type FkC1 and geometric dimension at most
k C 1. The k –dimensional Dehn function ı

.k/
G
.x/ has embedded representatives

if there is a finite aspherical .kC1/–complex X , a sequence of embedded .kC1/–
dimensional balls Bi �

zX , and a function F.x/ ' ı
.k/
G
.x/, such that the sequence

given by .ni/ D .Volk.@Bi// tends to infinity and is exponentially bounded, and
VolkC1.Bi/> F.ni/ for each i .

The lower bounds established in this article for various Dehn functions are all obtained
by constructing embedded representatives and applying Remark 2.1 and Remark 2.7.
In particular the k –dimensional Dehn functions of †k�1Gr;P and †k�1Z2 have
embedded representatives.
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The next result generalizes [1, Theorem 6.3] to higher dimensions.

Proposition 8.6 Let G be a group of type FkC1 and geometric dimension at most
kC1. Suppose the k –dimensional Dehn function ı.k/.x/ of G is equivalent to xs and
has embedded representatives. Then G �Z has .kC1/–dimensional Dehn function
ı.kC1/.x/< x2�1=s , with embedded representatives.

Proof We establish the lower bound ı.kC1/.x/< x2�1=s for G�Z as follows. Since
ı
.k/
G
.x/ has embedded representatives, let X , F.x/, Bi and .ni/ be as in Definition

8.5; without loss of generality suppose that F.x/ D Cxs for some C > 0. Define
mi D 3 VolkC1.Bi/. The space Y D X � S1 has fundamental group G � Z and
universal cover zY D zX �R. Consider the .kC2/–dimensional balls

Ci D Bi � Œ0;mi=3ni � � zY :

The boundary of Ci is @Bi � Œ0;mi=3ni �[Bi � @Œ0;mi=3ni � which implies that

VolkC1.@Ci/Dmi :

We also have VolkC2.Ci/ D VolkC1.Bi/mi=3ni D .mi/
2=9ni for each i . Since

mi D 3 VolkC1.Bi/> 3C.ni/
s we have .3C /�1=s.mi/

1=s > ni . Then

VolkC2.Ci/ D
.mi/

2

9ni
>
�

C 1=s

32�1=s

�
.mi/

2�1=s:

Note that zY is aspherical and has dimension kC 2, and so Ci is a least-volume ball
(cf Remark 2.7). Therefore ı.kC1/.mi/> .C 1=s=32�1=s/.mi/

2�1=s for each i . Now it
remains to check that the sequence .mi/ has the required properties. It tends to infinity
since mi > 3C.ni/

s . Also each ball Bi �
zX is least-volume, so there is a constant

D such that mi 6 D.ni/
s for all i .1 Then miC1=mi 6 .D=C /.niC1=ni/

s , which is
bounded. Now Remark 2.1 implies that ı.kC1/.x/< x2�1=s .

We are now in a position to prove Theorem D.

Proof of Theorem D Fix r , P and q , let

s.`/D
2.`C 1/˛� `

2`˛� .`� 1/
;

and let G` be the group †q�1Gr;P �Z` . (Or let

s.`/D
`C 2

`C 1

1Here we are using the upper bound for ı.k/
G
.x/ .
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and G` D †q�1Z2 � Z` .) We verify by induction on ` the following statements
for G` :

(1) ıM .x/6 Cxs.`/ for all .qC `C 1/–manifolds M and some constant C > 0,

(2) ı.qC`/.x/< xs.`/ , and

(3) ı.qC`/.x/ has embedded representatives.

The first two statements together imply ı.qC`/.x/' xs.`/ .

If `D 0 then (1) follows from Theorem 7.2 and Lemma 7.4. Statement (2) holds by
Theorem C, and we have already observed that (3) holds for these groups.

For ` > 0 note first that s.`/D 2� 1=s.`� 1/. Then statement (1) holds by Theorem
8.1 and property (1) of G`�1 . Proposition 8.6 implies (2) and (3) by properties (1)–(3)
of G`�1 .
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