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Knot concordance and Heegaard Floer homology invariants
in branched covers

J ELISENDA GRIGSBY
DANIEL RUBERMAN
SASO STRLE

By studying the Heegaard Floer homology of the preimage of a knot K C S3 inside
its double branched cover, we develop simple obstructions to K having finite order
in the classical smooth concordance group. As an application, we prove that all
2-bridge knots of crossing number at most 12 for which the smooth concordance
order was previously unknown have infinite smooth concordance order.

57R58, 57M25; 57TM12, 5TM27

1 Introduction

The introduction of a number of invariants has revitalized the study of classical knot
concordance in recent years. In this paper, we combine two of the most powerful of these
new invariants, the correction term d defined by Ozsvath-Szab6 in [27] and the smooth
concordance invariant T defined by Ozsvith—Szabd in [23] and Rasmussen in [28], with
older techniques due to Casson and Gordon [1], to give new obstructions to a knot being
smoothly slice. Our main results imply that many knots in the knot table (cf Knotinfo
[3] or Cha-Livingston [2]) in fact have infinite order in the smooth concordance
group. These are knots whose order is not detected by classical methods, nor by
recently introduced concordance invariants such as the Ozsvath—Szabd r—invariant [23],
Rasmussen s—invariant [29; 30], or Manolescu—Owens d—invariant [18]. Our results
support a conjecture of Gordon [11, Problem 1.32] that there are no torsion elements
in the smooth concordance group with order greater than 2.

The methods in this paper apply exclusively in the smooth category. It is conceivable
that the knots we consider might be shown to be of infinite order in the topological
knot concordance group, by clever applications of the Casson—Gordon invariants, or by
the sophisticated methods deriving from the work of Cochran—Orr—Teichner [4].

Our approach relies on the study of the d and t—invariants associated to the preimage
of a knot K C S? in a cyclic branched cover (cf Grigsby [8; 7]). Let K C S 3, and
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Y — S3 be the n—fold cyclic branched cover of K with n = ¢” where ¢ is a prime.
It is well-known that Y is a rational homology sphere (QHS?), and that if K is slice,
then the corresponding branched cover W of the 4-ball branched along the slice disk
A is a rational homology ball (QHB*). As observed by Ozsvith and Szabé [22] and
elaborated in Owens—Strle [21], Manolescu—Owens [18] and Jabuka—Naik [9], this
implies that many of the Ozsvath-Szab6 d —invariants must vanish.

However, there is more information in the branched cover, as the branch set X is the
boundary of the lift A of A to W. Now the knot K C Y has a collection {zs(Y, K )}
of t—invariants, one for each s € Spin®(Y’). In this situation, we prove the following
vanishing theorem for those 7, associated to spin® structures extending over W .

Theorem 1.1 Let K be aknotin S3, and Y the g —fold cover of S3 branched along
K. Denote by K the preimage of K in Y . If K is slice, then there exists a subgroup
G < HX(Y;Z) with |G|*> = |H*(Y;Z)| such that d;(Y) = 0 and 7,(K) = 0 for all
s € 5o + G, where s is the spin structure on Y described in Lemma 2.1.

As in many variations on the Casson—Gordon theme, it takes some work to extract
computable obstructions from this theorem. One important issue is that one does not
know a priori which spin® structures on Y extend over W . This problem gets worse
when one studies the order of K in the knot concordance group, because the number of
spin® structures that need to be examined can be very large. (Compare the discussion
in Jabuka—Naik [9, Section 5].) In addition, although there have been considerable
advances in the computability of Heegaard Floer homology invariants in recent months
(cf Manolescu—Ozsvath—Sarkar [19] and Sarkar—Wang [31]), much remains out of
reach.

Even within the limited scope allowed by the current technology, however, one can
deduce a considerable amount of information about knot concordance. In particular,
concentrating on the case ¢ = 2, we define in Section 4, for each prime p, two
invariants, 7,(K) € Z and D,(K) € Q that vanish on knots K with finite smooth
concordance order. These obstructions are particularly simple whenever H?(Y,Z) is
cyclic for Y the double-branched cover of K (as occurs, for example, for all 2—bridge
knots).

Theorem 1.2 Let K C S® be aknotand p € 7 prime or 1. If there exists a positive
n € 7 such that #, K is smoothly slice, then T,(K) = D,(K) = 0.

Computation of these new invariants using the algorithm described in Grigsby [7] to
compute t—invariants and the inductive formula in Ozsvath-Szabé [22] for d —invariants
allows us to determine the smooth concordance order of all 2—bridge knots of 12 or
fewer crossings for which the smooth concordance order was previously unknown.
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Theorem 1.3 All 2—bridge knots' of 12 or fewer crossings have smooth concordance
order 1,2 or co.

It is also worthwhile to note that D, (K) can be computed in a straightforward manner
for knots with alternating diagrams and has been quite successful in obstructing finite
concordance order in many cases where other tests fail. In particular, Adam Levine
[13] has recently used D, (K) to show that forty-six of the sixty-seven knots whose
concordance orders were previously unknown have infinite concordance order.

After this paper was submitted, Paolo Lisca [14; 15] determined the smooth concordance
order of all 2-bridge knots, using Donaldson’s theorem [6] on the intersection form of
closed smooth 4—manifolds. His result implies, among other things, that the conclusion
of Theorem 1.3 holds for all 2—bridge knots, without restriction on the number of
crossings.

We are confident that as computational techniques improve, we will be able to gather
similar results for a wider class of knots. We remark that there are many methods
(for example Jiang [10], Livingston—Naik [16; 17] and Cochran—Orr—Teichner [5]) for
showing that a knot with finite order in the algebraic concordance group has infinite
smooth or topological concordance order. There is some overlap between results
deduced by these methods and results from our paper.

The paper is organized as follows. In Section 2, we discuss spin® structures on branched
covers of B*. In Section 3, we give a proof of Theorem 1.1, along with some relevant
Heegaard Floer homology background. In Section 4 we define 7, and D, prove that
they provide obstructions to finite smooth concordance order, and discuss some related,
more general obstructions. In Section 5, we apply our results to all 2—bridge knots of
12 or fewer crossings. We also show that the twist knots, with the exception of the
figure—8 and stevedore’s knot, have infinite order in the knot concordance group. We
conclude, in Section 6, with details about the t computations.

We thank Chuck Livingston for his help in the use of Knotinfo [3] and Jiajun Wang for
some useful suggestions regarding the Floer homology computation algorithm. The first
author would also like to thank Peter Ozsvéith for some enlightening discussions during
the course of this work. The first author was partially supported by an NSF Postdoctoral
Fellowship. The second author was partially supported by NSF Grant 0505605. The
third author was supported in part by the Slovenian Research Agency program No.
P1-0292-0101-04 and project No. J1-6128-0101-04. Visits of the second and third
authors were supported by a Slovenian—-USA Research Project BI-US/06-07/003 and
by the NSF.

Tk p.q denotes the 2-bridge knot whose double-branched cover is the lens space —L(p, q).
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2 Lifting a spin structure

Theorem 1.1 asserts the vanishing of the t—invariants on those spin® structures on the
q" —fold covers of S3 branched along a knot K that extend over the corresponding
branched cover of the 4-ball. The cohomology group H?(Y;Z) acts freely and
transitively on the set of spin® structures on a manifold Y, and so a choice of one
spin® structure gives a bijection between that set and H?(Y;Z). We will show that
there is a canonical spin® structure, in fact a spin structure, on Y that extends over the
branched cover of the 4-ball. This is the spin structure s¢ referred to in Theorem 1.1.

Lemma 2.1 Let p: (W, F ) — (B*, F) be an n—fold cyclic branched cover with
branch set a connected surface F. Then there is a unique spin structure sy on W
characterized as follows: if n is odd, the restriction of sy to W — V(F ) is the pullback
5 of the spin structure on B* —v(F) that extends over B*, whereas if n is even, the
restriction of sg to W — V(F) is & twisted by the element of H' (W — v(F); Z>)
supported on the linking circle of F.

Proof Let s be the spin structure on B* —v(F) that extends over B* and let 5 be
its pullback to W — v(F ). Then s extends over W iff its restriction to the circle
bundle S (F ) extends over the disk bundle v(F ). This happens precisely when the
restriction to the fibre S extends over the disk B2. Recall that a spin structure on an
oriented manifold M corresponds to a cohomology class in H'(F(M); Z,) where
F(M) is the oriented frame bundle. Clearly F(S') = S!, and one can check that the
spin structure on S that extends over B2 corresponds to the nontrivial element of
H'(S';7Z,). Since the covering map is of order 7, 5 “inherits” this property from s
if n is odd. If n is even, 5 does not extend over the disks. However, since the class
of the fibre is of infinite order in Hy{(W — v(F ); Z)) we may twist the spin structure
s by the dual of this circle in Hom(H; (W — U(F ); 7)), Z») to obtain a spin structure
that extends over W'. O

In the special case of a 2—fold cover where the branch set is a disk, the cohomology
H'Y (W Z,) vanishes, so there is a unique spin structure on W . The restriction of this
spin structure to Y is readily characterized as the unique invariant spin‘ structure on
Y, because the conjugation of spin® structures acts on the odd-order group H?(Y; Z)
by multiplication by —1. This observation is very convenient, because the methods of
Section 6 make it easy to identify this invariant spin® structure.
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3 t—invariants of knots in rational homology spheres

In this section we adapt the discussion from Ozsvath—Szab6 [23] to nullhomologous
knots in QHS?. Our main aim is the proof of Theorem 1.1. We begin by collecting
some standard Heegaard Floer homology facts. See Ozsvith—Szabé [25; 24; 26] for
more details.

Let Y bea QHS? and K C Y an oriented null-homologous knot in ¥ . We associate to
the pair (Y, K) a 2n—pointed Heegaard diagram ie a tuple (X, &, 5 , W, Z) associated to
a handlebody decomposition of ¥ coming from a generic self-indexing Morse function
f1Y =R with | f71(0)| = | f~1(3)| = n. Label the index 0 critical points a, . ..ay,
and the index 3 critical points by, ... b, . Here,

o X = f71(3) is the Heegaard surface,

e a=(xy,x2,...,0g4,—1) are the coattaching circles of the 1-handles,

-

e B=(B1,B2,...,Bg+n—1) are the attaching circles of the 2-handles and

e w=(wq,...,wy) and Z = (zy,...,zy) are two n—tuples of points (all distinct)
on ¥ —a— B , where w; specifies a unique flowline y; from b; to a; (the one
that intersects X at w;) and z; specifies a unique flowline 7; from b ;) to a;
(o some permutation of {1,...,n}).

Then K is uniquely determined by this data as the isotopy class of
n
U i —viYm

In the case of a 2—pointed Heegaard diagram, one produces the Z & Z—filtered chain
complex CFK*°(Y, K), a chain complex

o over’ Z,[U, U7,

» whose generators are elements of the form U”"x, where x € Ty N Tg is an
intersection point between the o and B tori in Sym#(X), and n € Z,

¢ whose boundary map is given by

X =Y > #H(M(p)U™ Py

yeToNTg {pema(x,y)lu(d)=1}
where #(./\//T (¢)) is counted modulo 2.3

2We define all Heegaard Floer chain complexes with Z, coefficients in order to avoid orienting moduli
spaces.
30ur notation matches that of [24].
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Each intersection point x is assigned

e an element $(x) € Spin®(Yy(K)) (where Yo(K) denotes O—surgery on K),
e s5(x) € Spin‘(Y),

e an Alexander grading A(x) € Z and

e a Maslov grading M(x) € Q.

Furthermore, the first three assignments are related by the natural splitting
Spin‘(Yo) = Spin‘(Y) & Z PD[u].

where u is a choice of oriented meridian for K. Thinking of a spin® structure as a
homology class of non-vanishing vector field (see Turaev [33], also [25, Section 2.6]
and [24, Section 2.3]), the map

§—5

to the first summand is the unique extension to Y of the restriction of s to the knot
complement, while the map
s —> A

to the second is one-half of the evaluation of ¢;(s) on the surface obtained by capping-
off a Seifert surface for K with the core of the 0—surgery.

The Maslov grading is the absolute @@ homological grading defined in Ozsvath—Szabd
[27].

The Z @ Zfiltration on the CFK* chain complex arises from an assignment of a
filtration bigrading 4., X A, to the chain complex generators (not to be confused with
the A x M bigrading discussed in Section 6). This filtration bigrading is uniquely
specified by the rules:

e A:(x)=A(x) V xeTyNTg,

o Ay(U'K) = Ay (x) —n,

e and A,(U"x) = A,(x)—n.
In addition, we remark that M(U"x) = M(x) —2n. The E? term of the associated
spectral sequence is HFK*°(Y, K), and the E®° term is HF*°(Y).

The ETT(Y, K) chain complex is now the quotient complex corresponding to the
Ay = 0 slice of the CFK*°(Y, K) chain complex. CF (Y, K) has a Z-filtration
coming from the Alexander grading A, = A. The associated graded chain complex of
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this filtered complex is CFK (Y, K). Note that the £? term of the spectral sequence
induced by the filtration on CF (Y, K) is HFK (Y, K), and the E*° termis HF (Y).

Let F(Y, K, s, ) denote the subcomplex of ﬁ(Y, K) generated by elements x €
CF(Y; K) with s(x) = s and A(x) < £. The inclusion F(Y, K,s,{) - CF(Y,s),
induces a morphism on homology denoted by : f} o

Recall that all of the aforementioned chain complexes (and, hence, all terms in the
associated spectral sequences) split according to spin® structures on Y :

CFK(Y,K)= @ CFK(,K,s).
{s€Spin“(Y)}

Furthermore, HF (Y, s) is isomorphic to Z, if Y is an L-space; for a general QHS?
Y, it contains a distinguished Z, summand, which is in the image of HF*°(Y, s). We
denote this copy of Z, by HF y(Y,s).

Definition 3.1 The correction term for a torsion spin® structure s, denoted ds(Y), is
the absolute Q homological grading, M, of HF (Y, s).

Definition 3.2 (Y, K) = 1,(K) is the minimal value of ¢ for which the image of
1 2 . has nontrivial projection to HF y(Y,s).

There is an interpretation of 7 in terms of surgeries on K. Denote by Q(K,s,{)
the quotient complex CF (Y,s)/F(Y, K,s,{) and by pf( ., the map induced by the
projection on homology. For any integer n let

Fusq: HF(Y,s) = HF (Y_n(K),5¢)

denote the map associated to the two-handle cobordism, where the cobordism is
endowed with the spin® structure t;, whose restriction to Y is s and which satisfies

(c1(t), [S]) —n = 2¢;

here S denotes the surface obtained by capping-off a Seifert surface for K with
the core of the two-handle. These conditions uniquely specify t; and hence also the
induced spin® structure sy on the surgery.

Proposition 3.3 If { < 1,(K), then F, . (HF y(Y,s)) is nontrivial for all suffi-
ciently large n.

Proof Fix a 2—pointed Heegaard diagram for the pair (Y, K) as well as a spin®
structure s € Spin®(Y). Let Cs denote the CFK*°(Y, K, 5) chain complex. Then
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e C,{Ay = 0} represents 6}\7(Y, 5) and
o Ci{Ay =0,A; </} represents F(Y, K,s,?0).

To relate this to the surgery recall [24, Theorem 4.1] (and the discussion following
it), which says that for all sufficiently large n, ﬁ(Y_n(K),sg) is identified with
C;{min(A4y, A; —£) = 0}. Furthermore, under this identification the map F n.s.l 18
induced by the projection f: C;{Ay = 0} — Cs{min(A4y, A; —£) = 0}. This yields
the following commutative diagram:

0 > cs{j'z”;o} i CofAy = 0} S O(K.5.0) — 0
| al = |
Ay >0 .
0 — CS{A ny } — Cs{min(4y, A, —0) =0} - QO(K,s,f) — 0

Since for £ < 7;(K) the projection of the image of zf} . into HF v (Y, s) is trivial,
pf( . and therefore F n,s,0 are nontrivial on HF v(Y,s). O

The following properties of t are important for our applications.

Proposition 3.4
(1) Let (Y;, K;) be oriented knots and s; € Spin®(Y;), i = 1,2. Then
To 45, (YV1#Y2, K1#K3) = 75, (Y1, K1) + 76, (Y2, K2).
(2) If (Y, K) is an oriented knot and s € Spin®(Y'), then t,(—Y, K) = —15(Y, K).

Proof

(1) This follows from the Kiinneth Theorem for the knot filtration [24, Theorem
7.1] and from the fact that the tensor product of two vector space morphisms is
nontrivial if and only if both of the morphisms are nontrivial.

2 If (Z,a, E w, z) is a doubly pointed Heegaard diagram for (Y, K), then
(-2, a, ,[;, w, z) is a diagram for (=Y, K). If x,y € T, NTg and ¢ € m>(x,y),
then consider the homotopy class ¢’ of disks from y to x, obtained from ¢
by precomposing with the complex conjugation. If Js is any one-parameter
family of complex structures, then Jg—holomorphic representatives for ¢ are in
one-to-one correspondence with —Js—holomorphic representatives for ¢'. This

correspondence induces a duality map D: ﬁ*(Y, 5) —> 61\7*(—Y, 5) which
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takes elements in A4, filtration level £ to A, filtration level —£; here 6}\7*
denotes the chain complex and 677* the cochain complex obtained by applying
the Hom(-, Z,) functor. Applying the duality isomorphism to the short exact
sequence corresponding to the inclusion Fx (Y, K, s, {) — 61\7*(Y, 5) yields the
following exact sequence

0— Q*(~Y.K.5,—L—1) > CF (=Y.5) > F*(=Y. K.5.—L— 1) — 0.

The image of the left map in homology has trivial projection into HF ;}(— Y,s)
forall £ < 75(Y, K), so Fx (=Y, K, s, —{—1) maps nontrivially to HF y «(=Y)
for all £ satisfying —¢ —1 > —z,(Y, K). It follows that 7;(—Y, K) = —1;(Y, K).

Thus the proposition is proved. |

Proposition 3.5 Let W be a QHB* with boundary Y . Then there exist s¢ € Spin®(Y)
and a subgroup G < H*(Y; Z) with |G|?> = |H*(Y;Z)| such that for any s € 5o + G
the following hold:

(1) ds(Y)=0 and

(2) s extends to t € Spin®(W) and the map F o, HF(S%) — HFy(Y,s) is
W—B4,t
an isomorphism.

Moreover, if W is spin, then so can be chosen to be a spin structure.

Proof The first statement follows from Owens—Strle [21, Proposition 4.1]. For the
second note, that
F® , :HF®(S%) — HF®(Y,s)
W —B4,t
is an isomorphism, according to Ozsvath—Szab6 [27, Theorem 9.6]. Since W is
a QHB*, this map preserves absolute grading, hence the map in degree zero is an
isomorphism. O

Theorem 3.6 Let W be a QHB* with boundary Y and S C W a surface whose
boundary is a knot K C Y. If s € Spin®(Y) extends over W and ds(Y) = 0, then

g(8) = |z (K)|.

Proof If g(S) =0 we may replace K with the connected sum of K and the trefoil
of appropriate handedness so as to increase both sides of the claimed inequality by
1. Thus we may assume g(S) > 0. We may further assume that z,(Y, K) > 0 by
changing the orientation of Y if necessary (see Proposition 3.4).
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Choose £ < t5(K) and let X be obtained from W by adding a two-handle along K
with framing —n, where n is large enough so that Proposition 3.3 applies. Endow
X with a spin structure t, whose restriction to Y is s and whose restriction to the
two-handle cobordism agrees with t, (defined before Proposition 3.3). Then

{c1(0,[S))—n=2¢,

where S denotes the surface obtained by capping-off S with the core of the two-
handle. The map F o, HF(S?) — HF (Y_,(K),s,) is nontrivial, since it is the
X

s

composition of the map induced by W with image HF v (Y, s) and the map induced
by the two-handle cobordism that is nontrivial on HF y(Y,s) by Proposition 3.3.

Now we split the cobordism X differently. Let N be a tubular neighborhood of

S. Then by [23, Lemma 3.5] the map induced by the cobordism N — B* and spin®
structure t is trivial unless

(e1(1), [S]) —n <2g(5) -2,
from which we conclude |7;(K)| < g(S). a

We note that Theorem 1.1 is an immediate consequence of Proposition 3.5 and Theorem
3.6.

4 Obstructions to finite concordance order

Using Theorem 1.1 to test whether a given knot is slice might in principle require a
good deal of calculation. This is because one does not know in advance the subgroup G
with |G|?> = |H?(Y; Z)| (referenced in the theorem) on which all ¢ and d—invariants
must vanish; hence, to rule out the existence of such a subgroup, one must find all
subgroups G of the appropriate order and verify that, indeed, either ts(E ),ds(Y)#£0
for some s € (s¢g + G) in each case.

This can be computationally formidable; as an example consider the 2—bridge knot
K4s,17. The d—invariant calculations in Jabuka—Naik [9] left open the possibility that
K =#4K4s,17 might be slice, because there are a few order 452 subgroups of (Z/ 45)%
on which the d—invariant vanishes. Similarly, the v obstruction for K necessitated the
computation of 7, for 5 € 59 + G on all order 452 subgroups G of (Z/45)*, which
we did using the program pari-gp [32]. The computation took quite a while (there are
9,745, 346 such subgroups), and indeed there exist nonzero t—invariants in each one
so that K is not slice. The complexity of such calculations clearly gets out of hand
rapidly.
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Inspired by Jabuka—Naik’s idea (see [9, Obstruction 5.1]) of looking at smaller-order,
more computationally-accessible, subgroups of H2(Y;Z), we developed two simple
obstructions to a knot having finite smooth concordance order. Although at first
glance these obstructions seem much weaker than the original obstructions provided
by Theorem 1.1, they have had remarkable success on the class of knots upon which
we were able to perform calculations. In fact, our obstructions were able to show that
all of the 2—bridge knots considered in [9] have infinite concordance order. We also
determined the (previously unknown) smooth concordance order of all 2—bridge knots
with crossing number at most 12. The obstructions and examples follow in the next two
sections. The final section is devoted to a brief explanation of how the t calculations
were performed.

We will find the following notation useful in what follows. If f: 4 — Q is a function
on a finite abelian group and H < A is any subgroup we let Sg(f) =D ,cg f(h).

Definition 4.1 Let K C S? be a knot, Y the double-branched cover of K, K the
preimage of K in Y, and p € Z either a prime or 1. Fix an affine identification of
Spin“(Y) with A = H?(Y;Z) such that the distinguished spin structure 5, mentioned
in Lemma 2.1 corresponds to 0.

Let G, denote the set of all order—p subgroups of A. Define

Tp(K):=min{| Y ngSg(t(Y.K))| : ng €Zzo. Y ng >0
HEgp Hegp

if p divides det(K) and 7,(K) := 0 otherwise;

Dp(K):=min{ | > npSgd(Y))| : ng € Lzo. Yy _ ng >0
Hegp Hegp

if p divides det(K) and D,(K) := 0 otherwise.

It is worthwhile to remark at this point that the definitions of 7, and D), are considerably
simpler when 4 = H?(Y;Z) is cyclic (as is the case for all 2-bridge knots). In this
case, there is a unique subgroup of A of order p for each p dividing det(K), and
hence 7, (resp. D) is just the absolute value of

> 7(K) (resp. ds(Y)).
{s5€Spin©(Y")|s has order p}

More generally we note that 7, or D), is nonzero if the sums Sg of the corresponding
invariants are nonzero and of the same sign on all the subgroups H of order p.
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Note that the invariant D; is %8, where § is Manolescu—Owens’ concordance invariant
[18].

The rest of this section will be devoted to proving Theorem 1.2, the statement of which
we repeat here for convenience.

Theorem (Theorem 1.2) Let K C S* be a knot and p € Z prime or 1. If there
exists a positive n € 7, such that #, K is smoothly slice, then T(K) = D,(K) = 0.

Proof The proof is essentially Theorem 1.1 in the case ¢" = 2 combined with the
elementary observation that a finite abelian group of order m contains a subgroup of
order p (p prime) whenever p|m.

Assume that K has finite smooth concordance order, 7, and fix a prime p.

Let A denote H?(Y;Z), where Y is the double-branched cover of K. By Theorem
1.1 in the case ¢” = 2, there exists a subgroup G < A" with |G| = |A4|"/? on which t
and d vanish identically (here, again, we have fixed an affine identification of Spin¢(Y")
with H?(Y;Z)). As usual, K denotes the preimage of K in Y.

We represent an element g € G by g = (g1,...,gn) where g; € A. Note that

e K) =) 14,(K)

i=1

and

n
dg(#nY) = Z dg;(Y)
i=1

(see Proposition 3.4 and [9, Section 2.3]).

Consider a finite abelian group, A4, and suppose that we have a function f: 4 — Q.
We have in mind 4 = H?(Y:;Z) and f either the T or d—invariant subject to a
fixed affine identification of Spin®(Y) with A. Given such an identification, there is a
straightforward extension that identifies Spin®(#,Y) with A”. For n € N, denote by
fW: 4" > Q the function f ™ (gy,...,g,) = f(g1)+---+ f(gn).

We assume without loss of generality that p divides det(K) and hence |G|. Therefore,
G contains an element of order p,say g =(g1,...gx). Notethat Vi €{l,...n} g; has
order dividing p and at least one of the g; has order p. Let (g) ={0g,g,...,(p—1)g}
denote the cyclic subgroup in G generated by g and G; denote the cyclic subgroup in
A generated by g;. Theorem 1.1 tells us that £ vanishes identically on G, hence
on (g) for f =1,d. In particular,

FDmg)=0form=0,...,p—1.
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Note that £ (0g) = nf(0) = 0 implies that 7; = D; = 0, proving the proposition
for p=1.

We now have:
fMmg) =0Vm=0,....p—1 =
Y S P (mg) = 0 =
-1
> o yim1 f(mgi) =0 =

-1
This completes the proof. a

As in Jiang’s proof [10] that algebraically slice knots form an infinitely generated
subgroup of the concordance group, this test can be applied, one prime at a time, to
show that knots are linearly independent. See Proposition 5.1 for an application of this
principle.

4.1 Further obstructions to finite concordance order

Even when 7, and D), vanish, it is sometimes possible, through more careful analysis,
to find an obstruction to finite concordance order. The following two propositions
describe tests we developed to deal with the knots K771, Kgi,14, Ki25,33, and
K>09,81, for which 7, and D), failed to provide an obstruction.

Proposition 4.2 Let K C S3 be a knot of finite concordance order and let p be a
prime. Denote by Y the double-branched cover of K and by K theliftof K to Y.
Suppose that the p—subgroup A, of A = H?(Y;Z) is isomorphic to Z, and fix some
affine identification of Spin®(Y') with A that sends the spin structure on Y to 0. Then

min{ f(s); s € Ap} = —max{f(s); s € Ap},
where f denotes either T(E Yord(Y).

Moreover, let A(EM)={d€Zp,; d#0, f(a)= f(a+d)==xM forsomea € Ap},
where M denotes the maximum of f on Ap,. Then

(| d*A-M)#2.

deA(M)

where d* denotes the (multiplicative) inverse of d modulo p.
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Proof Suppose #,, K is smoothly slice. If G < 42" has order |A|", then G contains a
subgroup G isomorphic to (Zp)". Note that G, is a subgroup of H = (Z,)?" < A*",
Let {gi; i =1,...,n} be aset of generators for G,. By elementary operations and
rearrangement of summands in H we may assume that the generators are of the form
gi = (ei, hi) where e; € (Z,)" has the only nonzero entry in the i component equal
to 1 and h; = (h,'j) € (Zp)n.

Define M (resp. m) to be the maximum (resp. minimum) of f on A,. Assume
contrary to the statement of the proposition that M + m # 0. Then by replacing f
with — f* if necessary, we may assume that M 4+ m > 0. Let k € Z, be such that
f(k) =M. Then

i khij) >0,

i=1

f(2")( > kgi) =nM + if(
j=1

i=1
which contradicts Theorem 1.1.

Fix k € Z, with f(k) = M > 0, choose some d € A(M) and let £ € {1,...,n}.
Since

f(z”)( i kgi) =nM+)7_; f(aj) =0 and

i=1
n
£ (dge+ Y. kgi) =0
i=1
it follows that f(aj) = —M forall j (where a; =) 7_; khij) and dhgj € A(-M)U
{0} for j =1,...,n. Since f(0) =0 at least one /;; has to be nonzero; setting £

equal to this i we get iy; € d*A(—M). In fact, since the above did not depend on
which d € A(M) we chose, we conclude that

hgje () d*A=M),
deA(M)

as desired. O

In another direction, we can extend the definitions of 7, and D, to include subgroups of
prime-power order. More specifically, assuming notation from Definition 4.1, suppose
that p¥ divides the exponent of A for some k > 1. Then, letting G« be the set of all
cyclic subgroups of A of order pk one may define 7,x and D« as in the case k = 1.
The conclusion of Theorem 1.2 can then be strengthened to the following proposition.

Proposition 4.3 Let K C S be aknot and p a prime. Suppose that the p—subgroup
of H*(Y;Z) is cyclic and let p™ be the largest power of p dividing |H?*(Y;Z)|. If
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some positive multiple of K is smoothly slice, then T,k (K) = D,x(K) = 0 for all
k<|mEL.

Proof Suppose A is a finite abelian group with cyclic p—subgroup and |A| = p™s,
(p.s) =1.1f G < A" has order |A|"/2, then p™"/? divides the order of G . It follows
that either G has an element of order pm/ 2 (if m is even) or of order p(’”+1)/ 2 (if m
is odd). Clearly then one of the components of this element has that order.

From here the proof proceeds inductively on k where each step is essentially the same
as the case k = 1; the only difference being that for & > 1 at the end of the proof we
get a sum of sums Sg, where the order of H divides k. a

It is clear how to extend the definitions of 7, and D, to more general p, however
care must be taken in applying such invariants when p contains distinct primes. For
example, if p is the product of two distinct primes ¢; and g, then it may happen that
all subgroups of order p contain only elements whose components are of orders ¢
and ¢, and the above described arguments cannot be used to show that 7, and D,
obstruct finite concordance order.

S Examples

There are many knots in the knot tables whose order in the smooth concordance group
is unknown [3; 2]. Combining Theorem 1.1 with

e calculations of rs(E ) for 5 € Spin°(Y) (Y the double-branched cover of a
2-bridge knot K) (described in Section 6) and

e previously-known calculations of ds(Y) (Y again the double-branched cover of
a 2-bridge knot K) using the inductive formula in [22, Section 4.1],

we have been able to determine all of the previously-unknown smooth concordance
orders for 2—bridge knots of at most 12 crossings. Some sample results are summarized
in Table 1, where we also indicate which invariants provide an obstruction to finite
smooth concordance order.

The most interesting example from our point of view was K = 109 = Kys,17. As
remarked above (Section 4.1) the d —invariants fail to obstruct the possibility that K
has order 4. However, r(f ) shows K has infinite concordance order, since both
T3 # 0 and T5 # 0. Further along in the Knotinfo tables, we found the 12—crossing
2-bridge knots Kgi,14 and Kj,5 33, for which D3 and Ds vanish (respectively).
However, Dy and D, 5 are non-zero, and using Proposition 4.3 we showed that these
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H Knot K ‘ 2-bridge notation ‘ Order of K ‘ Test H

813 29/11 00 T29 # 0 and Dyg # 0
914 37/14 00 T37 # 0 and D37 # 0
919 41/16 00 Ta1 # 0 and D4y # 0
1019 45/17 00 T3 #0and T5 #0
but D3 =0 and D5 =0
1015 53/22 o0 Ts3 =0, but D53 #0
10,6 61/17 ) 7%1 #OandDm 750
10, 53/19 00 Ts3 # 0 and Ds3 # 0
1034 37/13 (e o] 7-37 ;éOand D37750
11gg 129/50 00 T3 #0and D3 # 0
1193 93/41 00 T3 #0and D3 #0
11gg 77/18 00 Proposition 4.2 for p =7, 11
11119 77/34 (0. ¢] ﬂlyéOandD“;éO
Table 1

knots have infinite order. Similarly for the 12—crossing 2—bridge knot K99 g; both 7
and D—invariants associated to 11 and 19 are zero, however the knot has infinite order
by Proposition 4.2 applied to either d or tT—invariants. We remark that some of the
knots that we treated (for instance K77 13 and K39 81 can be shown to have infinite
topological concordance order by using the main result of Livingston—Naik [16].

5.1 Twist Knots

We mention the subclass of twist knots (K, ), since these were the 2—bridge knots
originally addressed by Casson and Gordon. The following result is a generalization
of Jiang’s theorem [10] that the set of algebraically slice twist knots K2 ,, p =5 a
prime, is linearly independent in the concordance group.

Proposition 5.1 All twist knots K, 5, p = 3, have infinite order in the knot concor-
dance group except for p = 9 (the stevedore’s knot, which is slice) and p = 5 (the
figure-8 knot, which has order 2). Moreover, twist knots in any family K, , with
Di # 5.9, such that for each i there exists a prime dividing p; and not dividing p; for
j # 1 are linearly independent in the concordance group.
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Proof Recall from [22, Section 4.1] (see also Owens—Strle [21]) that the d —invariants
of the double-branched cover of K, , are

1 ¢ ptl .
1 eptl
Ay =~ - 4 1 1 Pil—l-kfseven
P -z if 5 + k is odd
for |k| < pT_l, where k = 0 corresponds to the spin structure. Then d(0) # 0 iff
p =3 (mod 4). Assume now that p =1 (mod 4), let ¢ be a prime dividing p and
write p = ¢s. Then we have (up to sign)

@-1/2 el
g—1 s(g+1) 3 it = is odd

Dy =2 E d(ks) = 1— 2 2 _
1 = (ks) 4 ( 6 + 0 if % is even

Now D3 = 0 iff s = 3 which corresponds to the stevedore’s knot, and Ds = 0 iff
s = 1 which corresponds to the figure-8 knot. Note that D3 < 0 if s > 3 and Ds <0
if s > 1. Finally Dy < 0 for ¢ > 7 except for ¢ =7 and s = 1, which corresponds to
p =7 (which is not congruent to 1 modulo 4).

To show linear independence, suppose a knot K = #/_,m; K, > is slice. Let ¢g; be
a prime dividing p; and not dividing any other p;. If ¢; > 7, then Dy, (K, 2) # 0.
Furthermore, since ¢; + p;j for i # j, Hi(Y;Z) (Y the double-branched cover of
K) has a unique subgroup of order ¢;, which allows us to conclude that D, (K) =
Dy, (Kp,,2) # 0, contradicting the assumption that K is slice. Therefore, m; = 0. If
gi=3and p; >9,0r ¢; =5 and p; > 5,0r g; =7 and p; > 7 the same conclusion
holds. If p; =3 (resp., p; = 7) then a direct computation shows that the D5 (resp.,
D7) invariant is nonzero, leading to the same conclusion. a

6 Computing t—invariants for preimages of 2—bridge knots

To compute the t—invariants associated to the preimage, K p.q» of the 2-bridge knot
KpyqCS 3 inside its double-branched cover —L(p, ), we used a computer program
written in Mathematica. This program implemented the combinatorial description of
the knot Floer homology of the preimage of a 2—bridge knot inside its double-branched
cover presented in Grigsby [7]. We summarize the results of that paper and add some
minor improvements to the combinatorial description of the (A, M) bigrading using
results from the more recent work in Manolescu et al [20].

Recall that we can associate to K p.g C —L(p,q) a compatible 4—pointed, genus 1
Heegaard diagram which is a twisted toroidal grid diagram consisting of two parallel
curves of slope 0 and two of slope g, partitioning the torus into 2 pgq cells.
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More specifically, we identify the universal cover of the torus with the plane:
T%:=R?/7°.

The two curves of slope 0 on 72 are the image in 7% of the lines y = 0 and

y = % and the two curves of slope 5 are the image in 72 of the lines y = gx and

y= g(x — %). We now identify the toroidal grid diagram with the fundamental domain
[0,1] x[0,1] € R?, # and position our four basepoints at

1 1 1 1
(671_6)7(5+671_€)’(Ev§_6)7(§ +675_6)

where 0 <€ < min(%, }I). See Figure 1 for the example of K7 3.

o

o

Figure 1: The twisted toroidal grid diagram which is a 4—pointed genus 1
Heegaard diagram for K73 C —L(7,3) (identify top-bottom, left-right, in
the standard way).

We calculate 7, for all s € Spin°(—L(p, q)) by considering the chain complex

¢ whose generators are indexed by bijections between the set of slope 0 curves
and the set of slope g curves,

¢ whose differentials are given by counting parallelograms missing all w basepoints
and

e with a filtration induced by the Alexander grading.

4Note that by “the image in 72" we mean the image of these lines in the quotient R?/Z? and not the
intersection of these lines with the chosen fundamental domain.
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By [20, Lemma 2.1], this chain complex has the filtered chain homotopy type of
ﬁ(—L( 2,q)) ® V where V is the chain complex with two generators, one in
bigrading (A, M) = (0,0) and one in bigrading (—1,—1), and no differentials. In
other words,

e The associated graded complex of this chain complex is
HFK(=L(p.q). Kpg) ® V.
and
e the £ term of the spectral sequence associated to this filtered complex is
HF(=L(p.q)®V.
ie, for all s € Spin°(—L(p,q)), there are two generators, one in bigrading

(75, ds) and the other in bigrading (z; — 1,ds — 1).

6.1 Enumerating Generators and Differentials

We label the intersection points as described in [7]. Namely, intersection points with
and J(B) along the curve « are cyclically labeled

xo,xé,xl,xll,...,xp_l,xl',_l,
and intersection points with f and J(B) along the curve J (o) are labeled

Y00 Y0 V1o Vs v os Vpys Vp—1-
See Figure 2.
The generators of the chain complex are therefore pairs of the form (x;, y;) and (x;, yj’.)

for i, j € Zp. This labeling convention is chosen so that the sum of indices constituting
a generator specifies the spin® structure in which it lives. More precisely,

(Xi, i), (X7, Y1) €5G+j mod p)»

where the subscript on s denotes a particular affine identification of Spin®(—L(p, q))
with H2(—=L(p,q),Z) = Z p subject to the condition that the unique spin structure is
identified with 0 € Z.

There are 2p? generators, 2p in each spin® structure for —L(p, q). See Table 2 to
see how the generators in Figure 2 break up into spin® structures.

After enumerating the generators, we turn our attention to enumerating the differentials.
In other words, we wish to determine how many differentials (parallelograms) missing
all w basepoints connect gy to g, assuming that gy and g, are two generators of our
chain complex
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o v ’
1 1z I}
I} } I}
1 ! PR wll
I} I} !
U ;M ;o /
1)0 1 2
7 [ - V2 N Yo
¢ 1 zZ 1
I} 1 I}
I} I} I}
I} I} I}
I ’ | Jﬂ
I} I} I}
o J y J
Xo Xy X1 X} X2 X5 Xo

Figure 2: Labeling intersection points on the twisted toroidal grid diagram

for K31 € —L(3.1).

50 51 52
(x0. ¥0) | (x0, 1) | (x0.¥2)
(xg: ¥0) | (xg.v]) | (xg. 75)
(x1,2) | (x1,¥0) | (x1,1)
L5 | L ve) | (L v
(x2, 1) | (x2,2) | (X2, »0)
(%, ¥ | (5. ¥5) | (x5 vg)

Table 2: Splitting of generators in Figure 2 according to spin® structures

e living in the same spin® structure and

e having relative homological (Maslov) grading® difference 1, ie,

M(gr) —M(gz2) = 1.

Since there are always exactly 2 parallelograms connecting any two generators in the
same spin‘ structure with relative Maslov grading 1 (see Figure 3 and Figure 4), the
only question is how many of these parallelograms (mod 2) miss all w basepoints.
Therefore, the multiplicity of g, in the boundary of g; is the reduction mod 2 of the
number (0, 1, or 2) of such parallelograms containing no w basepoints.

5The computation of absolute Q homological gradings is addressed in the next subsection.
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g2 D

Figure 3: The two candidate differentials connecting g; and g, are shown.
Since the second parallelogram is non-imbedded and wraps around the torus
several times, we have drawn its outline only. Note that the first parallelogram
misses all w basepoints but the second does not. Therefore, the mod 2
multiplicity of g, in the boundary of g; is 1.

&2

Figure 4: Here, both candidate parallelograms miss all w basepoints. There-
fore, the mod 2 multiplicity of g, in the boundary of g; is 0.

6.2 Computing Gradings

Denoting the set of generators of the chain complex by G, the Alexander (filtration)
grading is an assignment
A:G—> 7,

and the Maslov (homological) grading is an assignment

M: G — Q.
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We begin by calculating the relative Maslov Q—gradings of all generators. We do this
by lifting the pair

(—L(p.q), Kp.g)

to its universal cover,

(S, Kp.q).
calculating the relative Maslov gradings there using the easy formula proved by
Manolescu et al [20], then use Lee and Lipshitz’s result in [12] relating relative Maslov
gradings under covers. To nail down the absolute Q—grading, we use the inductive
formula for the correction terms in [22] to pin down the absolute grading for one
generator, thus pinning down the absolute grading for all generators.

The first step in this process is understanding how to construct a Heegaard diagram for
the pair

~

(3. Kpy)

from the Heegaard diagram for the pair

(—L(p.9), K pg)-

The following lemma describes how to do this for any 2n—pointed, grid number 7,
twisted toroidal grid diagram for a knot in a lens space (not just the grid number 2
knots of interest here).

Lemma 6.1 Let T be a twisted toroidal grid diagram for K in L(p,q). Form the
universal cover, R? of T, identifying T with

[0, 1]x [0, 1] C R?,

the fundamental domain of the covering space action. Let Z be the lattice generated by
the vectors (1,0) and (0, p). Then

T =R?*/Z

is a Heegaard diagram compatible with K C S3, where K is the preimage of K under
the covering space projection w: S3 — L(p.q).

Proof of Lemma 6.1 The original twisted toroidal grid diagram 7" compatible with
K C L(p,q) corresponds to a handlebody decomposition of L(p,g) with one solid
handlebody, Yy ; formed by the union of n 0— and 1-handles and the other solid
handlebody Y, 3 similarly formed by the union of n 2— and 3-handles. d(Yy,1) =
d(~Ys3) =T.
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We will construct a Heegaard diagram for Kcs3 by constructing a handlebody decom-
position of the universal cover, S*, compatible with this handlebody decomposition of
L(p.q) and the covering space action. Namely,for every / in the handlebody decom-
position of L(p,q), n~1(h) = {h al, azh af~ 1h} is a collection of handles in
the handlebody decomposition for S3, where a is a generator of w{(L(p,q)) = Zp,
and

7 8* > L(p.q)

is the covering space map. The attaching maps for the lifts of the handles are uniquely
specified by the condition that they commute with the covering space projection.

Applying this procedure to the handlebody decomposition associated to 7" corresponds
to cutting Yo ; open along some meridian and gluing p copies of the resulting D*x1I
together. From the point of view of the boundary, 7', this corresponds to stacking p
copies of 7" on top of each other (when T is identified with the fundamental domain
[0,1] x [0, 1] in R?). This is precisely a description of T = R2/Z. o

Note that T is just a standard (untwisted) toroidal grid diagram for the link K in
S3 (in the sense of Manolescu—Ozsvath—Sarkar [19]). With this in mind, it will be
convenient for us to choose a slanted fundamental domain for 7 C R, whose top
and bottom edges are the same « curve and whose left and right edges are the same j
curve. See Figure 5.

We now recall the following fact, which is essentially Lee—Lipshitz’s [12, Theorem 4.1].
See Ozsvith—-Szabd [27] for a definition of g7, the absolute Q homological grading.

Theorem 6.2 (Ozsvath—Szab6 [12]) Let g1 and g, be generators in torsion spin®
structures in a Heegaard Floer chain complex, CF (Y, associated to a particular
Heegaard decomposition hd(Y) for Y .

Let7: Y — Y bea degree n covering map and hd (?) the associated Heegaard
decomposition of Y compatible with .

Let'g; and g, be the unique generators in CF(Y) with the property that 7 (g =g
fori =1,2. Then

— — 1 —_

87 (g1) — g7 (82) = - [87(81) — &7 (82)):

This theorem allows us to compute the relative Q gradings between generators in
the twisted toroidal grid diagram for (—L(p,q), K 4) by lifting the generators to

the 7w —compatible toroidal grid diagram for (S3, K, p,q) and computing their relative
gradings there.

Geometry & Topology, Volume 12 (2008)



2272 J Elisenda Grigsby, Daniel Ruberman and Saso Strle

Figure 5: Constructing T from T and adjusting the fundamental domain to
identify 7' with a standard toroidal grid diagram for K C S3

Furthermore, in [20], an easy formula is given for determining the absolute Q grading
for generators on a toroidal grid diagram for a link K in S3. Namely, they define a
function

Z:SxS—Zy,
where S is the set of finite sets of points on R2: If A, B €S, then Z(A, B) is the

number of pairs (a1, a3), (b1, by) for which (ay,a;) € A, (b1,by) € B, a; <a, and
b] < bz.

Upon identification of the toroidal grid diagram with a fundamental domain in R? with
the property that the left edge is one of the § curves and the bottom edge is one of the
a curves, they then define a function:

Mx)=Z(x,x) +Z(0,0)-Z(x,0) - Z(0,x) + 1

where x is a generator of the chain complex, and O is the set of w basepoints. They
then go on to prove that M (independent of the choice of identification of 7 with a

fundamental domain on R?) is precisely g7, the absolute homological grading, on
S3.

[20] also describes how to obtain the Alexander grading for a generator by comparing
its Maslov grading with respect to the w basepoints with the Maslov grading with
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respect to the z basepoints:

n—1

2

where 7 is the grid number of K. Although the formula is stated in [20] only for a
knot in S3, it holds equally well for generators in a chain complex arising from a
general balanced 2n—pointed Heegaard decomposition of a QHS?. In fact, it is a direct
consequence of one of the symmetries (see [24; 26]) enjoyed by such a chain complex.

AG) = 5 (My () - M; () -

Namely, suppose Y is a QHS?, and K C Y is a nullhomogous knot. Fix a balanced,
2n—pointed Heegaard diagram for ¥ compatible with K. Switching the roles of the w
and z basepoints on the same Heegaard diagram corresponds to reversing the orientation
on K. Furthermore, doing so induces a linear map on the chain complex sending a
generator in bigrading (i, d) to one in bigrading (—i —(n —1),d —2i — (n—1)).

Hence, we need only determine the absolute Maslov gradings with respect to the w
basepoints and then again with respect to the z basepoints in order to compute all of
the Alexander gradings.
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