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Right-veering diffeomorphisms
of compact surfaces with boundary II

KO HONDA

WILLIAM H KAZEZ

GORDANA MATIĆ

We continue our study of the monoid of right-veering diffeomorphisms on a compact
oriented surface with nonempty boundary, introduced in [12]. We conduct a detailed
study of the case when the surface is a punctured torus; in particular, we exhibit the
difference between the monoid of right-veering diffeomorphisms and the monoid
of products of positive Dehn twists, with the help of the Rademacher function. We
then generalize to the braid group Bn on n strands by relating the signature and the
Maslov index. Finally, we discuss the symplectic fillability in the pseudo-Anosov
case by comparing with the work of Roberts [15; 16].

57M50; 53C15

1 Introduction

In [12], the authors introduced the study of right-veering diffeomorphisms on a compact
oriented surface with nonempty boundary (sometimes called a “bordered surface”).
This paper continues the investigations initiated in [12].

Let Aut.S; @S/ be the isotopy classes of diffeomorphisms of a bordered surface S

which restrict to the identity on the boundary, Veer.S; @S/ be the monoid of right-
veering diffeomorphisms of S , and DehnC.S; @S/ be the monoid of products of
positive Dehn twists. (In particular, id is in both.) Recall that, by the work of
Giroux [7], there is a 1–1 correspondence between isomorphism classes of open book
decompositions modulo stabilization and isomorphism classes of contact structures
on closed 3–manifolds. (Open books were introduced into contact geometry much
earlier by Thurston and Winkelnkemper [17].) If h 2 Aut.S; @S/, let us write .S; h/
to denote, by slight abuse of notation, either the open book decomposition or the
corresponding adapted contact structure. The main result of [12] is that a contact
3–manifold .M; �/ is tight if and only if all its adapted open book decompositions
have right-veering monodromy. Here M is closed and oriented, and � is cooriented.
On the other hand, Giroux [7] showed that .M; �/ is Stein fillable if and only if there
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is an adapted open book decomposition with monodromy h 2DehnC.S; @S/. In order
to understand the difference between tight and Stein fillable contact structures, as well
as the symplectically fillable contact structures, which sit in between the two, we need
to understand the difference between Veer.S; @S/ and DehnC.S; @S/.

One of the goals of this paper is to give an analysis of the difference between the monoids
Veer.S; @S/ and DehnC.S; @S/ for the once-punctured torus S . The Rademacher
function ˆ and the rotation number rot, defined in Sections 2.2 and 2.3, taken to-
gether, are effective at distinguishing large swathes of Veer.S; @S/ that are not in
DehnC.S; @S/. Our first theorem is the following:

Theorem 1.1 Let S be a once-punctured torus and h 2 Aut.S; @S/. If rot.h/� 1=2

and �ˆ.h/� 10 rot.h/, then h is in Veer.S; @S/ but not in DehnC.S; @S/.

Proof This follows from Lemma 2.4 and Theorem 2.3. (The lemma and the theorem
are stated in terms of � in B3 , the braid group B3 on 3 strands. See below for the
discussion of B3 Š Aut.S; @S/.)

Theorem 2.3 is, to a large extent, a consequence of the fact that the linking number is
positive on nontrivial elements of DehnC.S; @S/. However, we also give evidence that
the linking number is only a “first-order” invariant, in the sense that there are elements
in Veer.S; @S/�DehnC.S; @S/ which cannot be measured by this technique, and
require finer analysis. Examples of this are given in Section 2.5.

We will also generalize Theorem 2.3 to the case of the braid group Bn on n strands. If
S is a double branched cover of the disk, branched at n points, then the hyperelliptic
mapping class group HypAut.S; @S/ is the subgroup of Aut.S; @S/, consisting of
diffeomorphisms that commute with the hyperelliptic involution. Equivalently, it is the
image of Bn in Aut.S; @S/. When nD 3, S is a punctured torus and half-twists about
arcs connecting branch points lift to Dehn twists that generate Aut.S; @S/. Hence B3

can be identified with HypAut.S; @S/D Aut.S; @S/. On the other hand, for n > 3,
HypAut.S; @S/ is a proper subgroup of Aut.S; @S/.

Now, an element � 2 Bn which is a product of conjugates of the standard positive
half-twist generators is said to be quasipositive. The monoid of quasipositive braids
corresponds to the monoid of products of positive Dehn twists, each of which is in
HypAut.S; @S/. Observe that the monoid of quasipositive braids strictly contains
the monoid of positive braids, ie, those which are positive products of the standard
generators �1; : : : ; �n�1 of Bn . In Section 3 we prove Theorem 3.5, following the
works of Gambaudo–Ghys [5; 4]. After lifting the action of HypAut.S; @S/ on
homology to fSp .2n;R/, this theorem describes a relationship between the signature
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of the braid closure and the Maslov index of a corresponding “lift” to fSp .2n;R/.
Corollary 3.6 is then an incarnation of the fact that the linking number is positive on
nontrivial quasipositive braids.

We then focus our attention to the question of which right-veering monodromy maps h

correspond to tight contact structures. In the pseudo-Anosov case we have the following
result, which is proved in Section 4:

Theorem 1.2 Let S be a bordered surface with connected boundary and h be pseudo-
Anosov with fractional Dehn twist coefficient c . If c � 1, then .S; h/ is isotopic to a
perturbation of a taut foliation. Hence .S; h/ is (weakly) symplectically fillable and
universally tight if c � 1.

Hatcher [8] and Roberts [15; 16] constructed non-finite-depth taut foliations on certain
Dehn fillings of punctured surface bundles. (Hatcher’s work was for punctured torus
bundles, which in turn was generalized by Roberts to all punctured surface bundles with
one boundary puncture.) Theorem 1.2 follows from showing that the contact structure
.S; h/ adapted to the open book is isotopic to perturbations of the Hatcher–Roberts
taut foliations, using techniques developed in [11].

We are now left to analyze .S; h/ when h is pseudo-Anosov and the fractional Dehn
twist coefficient satisfies 0< c < 1. (Recall that if c � 0 then .S; h/ is overtwisted by
Proposition 3.1 of [12].) For example, when S is a punctured torus, we are concerned
with cD 1=2. In the paper [10], we prove, using Heegaard Floer homology, that .S; h/
is tight if c D 1=2. This shows that if S is a punctured torus and h is pseudo-Anosov,
then .S; h/ is tight if and only if h 2 Veer.S; @S/.

2 Veer.S; @S / vs. DehnC.S; @S / on the punctured torus

In this section we explain how to exhibit h 2 Veer.S; @S/ that are not products of
positive Dehn twists, primarily via a combination of the Rademacher function and the
rotation number.

2.1 Preliminaries

We discuss some preliminary notions, partly to fix terminology.

Let S be the once-punctured torus and T be the torus. There is a short exact sequence

(2.1.1) 0! Z! Aut.S; @S/! Aut.T /! 1;
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where the generator of Z is mapped to a positive Dehn twist R@S about @S . (In general,
we use the notation R
 to denote a positive Dehn twist about a closed curve 
 .) The
group Aut.T / is isomorphic to SL.2;Z/, and is generated by

AD

�
0 1

�1 0

�
; B D

�
1 �1

1 0

�
:

Now, Aut.S; @S/ can be identified with the (Artin) braid group B3 on 3 strands.
Denote the generators of B3 by �1 and �2 , corresponding to positive half-twists about
strands 1, 2 and strands 2, 3. We then have the relation �1�2�1 D �2�1�2 . If we view
the punctured torus as a 2–fold branched cover of the disk with 3 branch points, then
the positive half-twists on B3 lift to positive Dehn twists on the punctured torus. More
precisely, we choose the images x�i of �i in SL.2;Z/ to be

x�1 D

�
1 0

�1 1

�
; x�2 D

�
1 1

0 1

�
:

Since x�1x�2x�1 D x�2x�1x�2 in SL.2;Z/, the map �i 7! x�i induces a homomorphism
B3!SL.2;Z/. We have AD x�1x�2x�1 and BD x��1

1
x��1

2
. In the short exact sequence

(2.1.1), R@S 7! .�1�2�1/
4 7!A4 , which is the identity matrix in SL.2;Z/.

Elements of SL.2;Z/ are grouped into three categories: reducible, periodic and
Anosov. We will interpret the results from [12] to determine which elements h of
Aut.S; @S/ are right-veering. By a slight abuse of terminology, we will often say “h

is Anosov” to mean “xh is an Anosov diffeomorphism”.

If h is Anosov, then xh has a pair of irrational eigenvalues �1; �2 that are both positive
or both negative. In either case, there are two prongs of the stable lamination. If the �i

are positive, then the fractional Dehn twist coefficient c is an integer n and the prongs
are fixed; if the �i are negative, then c is a half-integer nC 1=2 and the prongs are
switched. According to [12], an Anosov diffeomorphism h is right-veering if and only
if c � 1=2.

If h is periodic, then h is right-veering if and only if the fractional Dehn twist coefficient
is c � 0. (Observe that c D 0 corresponds to the identity diffeomorphism.) There is a
short list of periodic elements in SL.2;Z/, up to conjugation:

A1 D

�
0 1

�1 0

�
; A2 D

�
1 1

�1 0

�
; A3 D

�
0 1

�1 �1

�
;

together with �A1;�A2;�A3 . The least right-veering lifts (they are right-veering,
but leftmost amongst right-veering lifts) of Ai are given by a1 D �1�2�1 , a2 D

�1�2 , and a3 D .�1�2/
2 , respectively. These correspond to “rotations” by amounts

�=2; �=3; 2�=3 in the clockwise direction. (Hence c must be in multiples of 1=4 or
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1=6.) The least right-veering lifts of �Ai are given by multiplying the above lifts
ai by the central element .�1�2�1/

2 , and the other right-veering lifts of ˙Ai are
ai.�1�2�1/

2k , k � 0. Notice that all the right-veering lifts are products of positive
Dehn twists. Since any right-veering periodic h is conjugate to one of the above
lifts, h must also be a product of positive Dehn twists. Hence, if h is periodic, then
h2Veer.S; @S/ if and only if h2DehnC.S; @S/. In other words, there is no difference
between Veer.S; @S/ and DehnC.S; @S/ for periodic elements.

Finally, if h is reducible, then h can be written as .�1�2�1/
2nRm


 , where m and n

are integers, and R
 is a positive Dehn twist about some nonseparating curve 
 . By
Corollary 3.4 of [12] and the fact that Veer.S; @S/� DehnC.S; @S/ are monoids, we
see that h is right-veering if and only if either n> 0, or nD 0 and m� 0. Later we
will show that if n> 0 and m� 0, then h is right-veering but not a product of positive
Dehn twists.

2.2 The Rademacher function

Consider the action of PSL.2;Z/ on the upper half-plane H2 and hence on the Farey
tessellation of the unit disk D2 . Given�

a b

c d

�
2 PSL.2;Z/;

it acts on H2 by mapping

z 7!
cC dz

aC bz
:

In particular, if z D p=q is a rational point on the x–axis, then

p

q
7!

cqC dp

aqC bp
:

Under the correspondence
p

q
$

�
q

p

�
;

the action of �
a b

c d

�
on p=q is given by left multiplication on�

q

p

�
:
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Figure 1 shows the Poincaré disk model for H2 with the points on S1
1 labeled with

the corresponding points on the x–axis of the upper half-plane model.

We now define the Rademacher function ˆW PSL.2;Z/!Z. Much of what follows is
taken from Barge–Ghys [1] and Gambaudo–Ghys [5; 4]. First observe that PSL.2;Z/
is isomorphic to the free product Z=2Z�Z=3Z, whose generators are ˙A and ˙B .
Hence any element g 2 PSL.2;Z/ is uniquely written as Br1ABr2 : : :Brk , where
r1; rk D 0; 1; or �1 and ri D�1 or 1, otherwise. We then define ˆ.g/D

Pk
iD1ri .

For a more geometric interpretation of ˆ, we will describe how ˆ can be viewed as
a function on the set of edges of the Farey tessellation. (See Figure 1.) We use the
bijection between directed edges of the Farey tessellation and PSL.2;Z/, in which a
directed edge a! b is identified with the element g 2 PSL.2;Z/ which maps the
slope 0 to a and the slope 1 to b . (In other words, g is an orientation-preserving
linear map which sends .1; 0/ to a shortest integral vector with slope a and .0; 1/ to
a shortest integral vector with slope b .) Notice that if g corresponds to a! b , then
gA corresponds to b! a. Since right multiplication by A does not change the value
of ˆ, it follows that ˆ induces a function on the set of (undirected) edges of the Farey
tessellation. Undirected edges will be written as ab .

Again with g corresponding to a! b , choose c so that a, b , and c form the vertices
of a triangle in clockwise order. Then gB corresponds to c! a and gB�1 corresponds
to b! c . Since the value of ˆ on the identity map (or, equivalently, the edge 0!1)
is 0, the value on the edge corresponding to any g can be computed as follows. Let p

be a point on the edge 0!1. Then ˆ.g/ equals the number of right turns minus the
number of left turns for a geodesic from p to g.p/. Here, a right turn refers to an arc
from the edge ab to ac and a left turn refers to an arc from ab to bc .

Remark In our definition of ˆ, we count the number of right turns minus the number
of left turns. In [1; 5], the authors count the number of left turns minus the number
of right turns. The definitions of ˆW PSL.2;Z/! Z agree (at least on the set of
hyperbolic elements), and the discrepancy is due to the difference in defining the action
on H . (If we defined z D z1=z2 instead of z D z2=z1 , then we would be counting left
turns minus right turns.)

One easily observes that ˆW PSL.2;Z/!Z is a quasi-morphism. A quasi-morphism
is a map �W G!A, where G is a group and AD Z or R, together with a constant
C , such that j�.g1g2/��.g1/��.g2/j �C for all g1;g2 2G . ˆ is also not quite a
homomorphism, as can be seen by taking g1 which ends with B and g2 which begins
with B .
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Figure 1: The Farey tessellation and values of the Rademacher function on the tessellation

2.3 The linking number and rotation number

Let Bn be the braid group on n strands. Then the linking number is a homomorphism
lkW Bn!Z, defined as follows: if we write � 2Bn as �j1

i1
: : : �

jk

ik
, where �1; : : : ; �n�1

are the standard positive half-twists that generate Bn , then lk.�/ D j1 C � � � C jk .
The linking number lk is a homomorphism because Bn has relations only of the
type �i�iC1�i D �iC1�i�iC1 and �i�j D �j�i , ie, those that leave the sums of the
exponents constant. In fact, it is the unique homomorphism Bn! Z (up to a constant
multiple).

There is another invariant of Aut.S; @S/'B3 , which we will call the rotation number
rot.h/, which roughly measures the number of times h rotates around @S . The
normalization is such that rot.R@S /D 1. Just as there is no homomorphism Aut.T /!
Aut.S; @S/ which splits Equation (2.1.1), there are non-canonical choices involved in
our definition of rot.h/.
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Let h 2 Aut.S; @S/. We write � for the corresponding element in B3 , and x� or
a! b for its image in PSL.2;Z/. We consider four cases. (If a! b is 0!1

(resp. 1! 0), then it is defined in Cases 1 and 4 (resp. Cases 2 and 3), and the two
definitions agree.)

Case 1 If 0 � a < b � C1, then we claim that � can be uniquely written as
.�1�2�1/

2nw , where w is a word generated by ��1
1

and �2 and no inverses of these
are allowed. First observe that BAD x�2 and B�1AD x��1

1
.x�1x�2x�1/

2 D x��1
1

. Since
0 � a < b � C1, a ! b can be written as B˙1AB˙1A : : :B˙1A. (Recall the
interpretation of gA, gB , and gB�1 from Section 2.2, where g 2 PSL.2;Z/ is
viewed as a directed edge. The Farey tessellation and the dual graph indicate how to
move the edge 0!1 to a! b .) This implies that x� can be written as a word xw in
x��1

1
and x�2 . The element � can therefore be written as .�1�2�1/

2nw , by observing
that the kernel of the projection B3! PSL.2;Z/ is generated by the central element
.�1�2�1/

2 . The uniqueness is a consequence of fact that the dual graph to the Farey
tessellation is a tree (and hence there is a unique geodesic between any two vertices of
the graph).

Case 2 If �1�a<b�0, then � can uniquely be written as .�1�2�1/
2nC1w , where

w is a word in ��1
1

and �2 . Here, a!b can be written as A.B˙1AB˙1A : : :B˙1A/.

Case 3 If 0 � b < a � C1, then � can uniquely be written as .�1�2�1/
2nC1w ,

where w is a word in �1 and ��1
2

. This is because a ! b can be written as
B˙1.AB˙1AB˙1 : : :AB˙1/ and AB D x�1 , AB�1 D x��1

2
. Moreover, we have

B D .x�1x�2x�1/
�1x�1 and B�1 D .x�1x�2x�1/x�

�1
2
D .x�2x�1x�2/x�

�1
2
D x�2x�1 .

Case 4 If �1� b < a� 0, then � can uniquely be written as .�1�2�1/
2nw , where

w is a word in �1 and ��1
2

. Indeed, a! b can be written as AB˙1AB˙1 : : :AB˙1 .

We now define the rotation number rot.�/ to be k=4, where � D .�1�2�1/
kw as

above.

Theorem 2.1 lk.�/D 12 rot.�/C lk.w/D 12 rot.�/Cˆ.x�/:

Proof Since lk is a homomorphism and � D .�1�2�1/
4 rot.�/w by the definition of

the rotation number, the first equality follows. To see that lk.w/Dˆ.x�/, first note that
x��1

1
DB�1A and x�2 DBA. If w is a word in ��1

1
and �2 , as is the case in Case 1,

then the corresponding word in A and B˙1 involves no cancellation of powers of
B . It follows that lk.w/, the exponent sum of the �1 ’s and �2 ’s, is the same as the
exponent sum of the B ’s in the word corresponding to w ; this, by definition, is ˆ. xw/.
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Finally, since x�1x�2x�1 D .AB/.BA/.AB/DA, powers of x�1x�2x�1 contribute nothing
to the Rademacher function and therefore ˆ. xw/Dˆ.x�/.

2.4 Veer.S; @S / vs. DehnC.S; @S /

In this subsection we prove Theorem 2.3 and Lemma 2.4, which together comprise
Theorem 1.1, and explore some consequences.

Observe that the linking number is useful in detecting braids which are not quasipositive:

Lemma 2.2 If one of the following holds, then � 2 Bn is not quasipositive:

(1) lk.�/ < 0.

(2) lk.�/D 0 but � 6D 1.

(3) lk.�/D 1 and � is not conjugate to a half-twist.

Proof This follows immediately from the fact that lk is a homomorphism and conse-
quently is constant on conjugacy classes.

Theorem 2.1 and (1) of Lemma 2.2 together imply that if �ˆ.x�/ > 12 rot.�/, then �
is not quasipositive. We can actually do better:

Theorem 2.3 If �ˆ.x�/� 10 rot.�/, then � is not quasipositive.

Proof We claim that if � D � 00� 0 , where � 00 is a positive Dehn twist, then the triple
.lk.�/ � lk.� 0/; rot.�/ � rot.� 0/; ˆ.x�/ �ˆ.x� 0// is one of .1; 0; 1/, .1; 1=4;�2/, or
.1; 1=2;�5/; moreover, if � 0 D id, then only .1; 0; 1/ and .1; 1=4;�2/ are possible.
We then observe that �ˆ.x�/ � 10 rot.�/ if � is a product of positive Dehn twists.
Since the first positive Dehn twist only contributes .1; 0; 1/ or .1; 1=4;�2/, we find
that the strict inequality �ˆ.x�/D 10 rot.�/ is never attained.

The proof of the claim is a case-by-case analysis. Suppose x� is written as a! b

and x� 0 as a0! b0 . The slope of the Dehn twisting curve of � 00 is denoted by c . To
visualize the action of this Dehn twist, consider the infinite collection of arcs of the
Farey tessellation which end at c . The Dehn twist fixes the point c and maps each
arc clockwise to the next arc. Observe that the three cases below are sufficient, by
reversing arrows or by taking negatives if necessary.

Remark The claim is intuitively reasonable if we consider the “amount of rotation
about @S ” effected by each positive Dehn twist. The difficulty is that this quantity has
a precise yet non-canonical meaning. We instead choose to keep track of ˆ, and the
method of proof will be useful later in Section 2.5.
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Case 1 Suppose a0! b0 is 0!1.

If cD1, then x� is �1!1, and if cD 0, then x� is 0! 1. In both cases ˆ changes
by C1, and hence rot by 0, in view of Theorem 2.1.

If 0< c <C1, then let c; d; e be the vertices of a triangle of the Farey tessellation
in clockwise order, so that a0b0 and de are in the same connected component of D2

cut open along cd and ce . It could happen that a0b0 D de . If we apply a positive
Dehn twist about c , then cde will be mapped to the adjacent triangle cef . Let P be
a word in L and R which records the left and right turns taken on the geodesic from
01 to de . (For example, LRLL means you first take a left turn and then a right turn,
followed by two left turns.) If P�1 is obtained from P by reversing the word order
and changing an R to an L and an L to an R (for example, if P D LRLL, then
P�1 DRRLR), then the path from 01 to ab is given by PLLP�1 . See Figure 2.
ˆ changes by �2 and hence rot by 1=4. Similarly, if �1< c < 0, then ˆ changes
by �2 and rot by 1=4.

b0 D1 a0 D 0

c
d

e

f

b

a

P

L

LP�1

Figure 2: The path PLLP�1 from 01 to ab in Case 1

Case 2 Suppose 0� a0 < b0 <C1.

If c D a0 , then ˆ changes by C1. If c D b0 , then ˆ changes by C1 if 0 � a < a0 ,
and by �2 if b0 < a�C1. If a0 < c < b0 , then ˆ changes by �2 as in Case 1.

If 0 � c < a0 , then let cde be as above, ie, such that a0b0 and de are in the same
connected component of D2 cut open along cd and ce , and let cef be the image
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of cde under the positive Dehn twist about c . Suppose first that d � b0 . If we
draw a diagram like the one in Figure 2, we can see that the path from 01 to a0b0

can be labeled by P 0LQ, where P 0 is the path from 01 to cd , L is the left turn
at d , ie, from cd to de , and Q is the path from de to a0b0 . Then the path from
01 to ab is given by P 0RLQ. Here R is a right turn around c taking dc to ce

and L is a right turn around e taking ce to ef . We easily see that in this case ˆ
changes by C1. Next suppose that 0 � d < c . If P1 is the path from 01 to a0b0 ,
and P2 is the path from a0b0 to de , then we can write the paths as P1 D P 0

1
LQ and

P2 DQ�1LP 0
2

. Then the path from 01 to ab is given by 1P1P2LLP�1
2

, where b
indicates a contraction. More precisely, since P1DP 0

1
LQ and P2DQ�1LP 0

2
, where

the two L’s are around two vertices of the same triangle, we get 1P1P2 D P 0
1
RP 0

2
,

where R corresponds to the right turn at the third vertex. In the end the path from 01

to ab is P 0
1
RP 0

2
LLP�1

2
D P 0

1
RP 0

2
LL.P 0

2
/�1RQ. Recalling that P1 D P 0

1
LQ, we

see that ˆ changes by C1 as well.

Suppose �1< c < 0. If the path from 01 to a0b0 is P1 , then the path from 01 to
ab is of the form P2LLP�1

2
P1 . Therefore, ˆ changes by �2.

Next suppose b0< c <C1. If a0� e>f � 0, then the path from 01 to a0b0 is given
by P1LRP2 , where L and R are turns through cef and cde . Then the path from
01 to ab is given by P1RP2 , and ˆ changes by C1. If a0 � e � 0 and f > c , then
a; b satisfies one of the following: (i) e� a> b� 0, (ii) �1� a; b� 0, (iii) a; b� f ,
or (iv) e� a� 0 and b>f . In any case, we can write P1RRP2 for the path from 01

to a0b0 , where P1 is the path from 01 to ef , the R’s rotate about e and P2 is the
path from de to a0b0 . In case (i), the word P1RRP2 for the path from 01 to a0b0 is
transformed to 1P1P2 . More precisely, we can write P1 D P 0

1
LQ and P2 DQ�1LP 0

2
,

and we get P 0
1
RP 0

2
. So ˆ changes by C1. In (ii), the word P1RRP2 is transformed

to P 0
2

, where P2 D P�1
1

P 0
2

. ˆ changes by �2. In (iii), P1RRP2 is transformed to
1P1P2 , where P1 D P 0

1
RQ and P2 DQ�1RP 0

2
and 1P1P2 D P 0

1
LP 0

2
. This time ˆ

changes by �5. In (iv), P1P2RRP�1
2

is transformed to P1 , and ˆ changes by �2.
If e > f > c , P1 is the path from 01 to a0b0 and P2 is the path from a0b0 to de ,
then the path from 01 to ab is 1P1P2LLP�1

2
, and ˆ changes by �5.

Finally take c D1. If cde D110, then RP maps to LP and ˆ changes by �2.
Otherwise, P1LRP2 maps to P1RP2 and ˆ changes by C1.

Case 3 Suppose a0! b0 is a0!1, where a0 is a nonnegative integer.

If c D1 or c D a0 , then ˆ changes by C1. If a0 < c < C1, then ˆ changes by
�2 as in Case 1. If 0 � c < a0 , then ˆ changes by C1 as in Case 2. Finally, if
�1< c < 0, then ˆ changes by �2 as in Case 2. Notice that in this case ˆ cannot
change by �5.
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Theorem 2.3 is effective when used in conjunction with the following lemma:

Lemma 2.4 If rot.�/� 1=2, then � is right-veering.

Before proceeding with the proof, we briefly discuss the action of h 2 Aut.S; @S/ on
the universal cover zS of S , as described in [12]. In this paragraph we assume that the
Euler characteristic �.S/ is negative, ie, S is not a disk or an annulus. Endow S with
a hyperbolic metric for which @S is geodesic. The universal cover � W zS! S can then
be viewed as a subset of the Poincaré disk D2DH2[S1

1 . Now let L be a component
of ��1.@S/. If h 2 Aut.S; @S/, choose a lift zh of h that is the identity on L. The
closure zS in D2 is geodesically convex. One portion of @ zS is L and the complement
of the closure of L in @ zS will be denoted L1 . Note that L1 is homeomorphic to R.
Orient L1 using the boundary orientation of zS and then linearly order L1 so that
moving in an orientation-preserving sense increases the order. The lift zh induces a
homeomorphism h1W L1!L1 . By Theorem 2.2 of [12], h is right-veering if and
only if z � h1.z/ for all z 2L1 .

Proof of Lemma 2.4 This can be proved on a case-by-case basis, as in the definition
of the rotation number in Section 2.3. We will treat Case 1, ie, 0� a< b �C1, and
leave the other cases to the reader. Since rot.�/ � 1=2, we have � D .�1�2�1/

2nw ,
where n� 1. It suffices to verify the lemma for nD 1. In the rest of the proof we write
� if we mean an element in B3 , and write h to denote the corresponding element in
Aut.S; @S/.

Using the notation from the paragraph preceding the proof, pick a basepoint x 2 @S and
a lift zx 2L. We can endow L1 with a nondecreasing continuous function � WL1!R
so that any properly embedded, oriented arc ˛W Œ0; 1�! S with ˛.0/D x and slope s

satisfies �.z̨.1//� �s.mod 2�/, where z̨ is a lift of ˛ to zS whose initial point is zx
and �s is the standard angle that a line of slope s makes with a line of slope 0. (Here
� would be an angular coordinate on K1 , obtained from L1 by quotienting each
connected component of ��1.@S/ besides L to a point.)

Let ˛ and ˇ be properly embedded, oriented arcs based at x with slopes a and b ,
such that 0� �.z̨.1// < �. ž.1//� �=2. The element h1 maps the interval Œ0; �=2�
to Œ�.z̨.1//��; �. ž.1//��� and maps Œ��=2; 0� to Œ�. ž.1//�2�; �.z̨.1//���. By
applying the same argument to other intervals, we see that � is right-veering. The
other cases are similar.

Remark Observe that, in order to show that � is right-veering, it is not sufficient to
verify that two properly embedded arcs of S corresponding to an integer basis of Z2

get mapped to the right.
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In the rest of the subsection we give some consequences of the above discussion.

Corollary 2.5 For the punctured torus S , there are infinitely many pseudo-Anosov dif-
feomorphisms h 2 Veer.S; @S/ with arbitrarily large fractional Dehn twist coefficients
c , which are not in DehnC.S; @S/.

Proof As before, we switch freely between � 2 B3 and its corresponding h 2

Aut.S; @S/. Choose � D .�1�2�1/
2nw with n � 1 as in Case 1, but with 0 < a <

b < C1. Then, the action of x� 2 PSL.2;Z/ on the circle at infinity S1
1 of the

Farey tessellation has two fixed points. Therefore x� is Anosov and h 2 Aut.S; @S/
is pseudo-Anosov. (Alternatively, one can compute the trace of x� , and show that it
is > 2 or < �2, since the entries are all positive or all negative.) Since n � 1, all
such h are right-veering by Lemma 2.4. On the other hand, if w is chosen so that
#.��1

1
terms/� #.�2 terms/ is sufficiently large, then h … DehnC.S; @S/.

To rephrase Corollary 2.5 in terms of the braid group Bn , we recall Thurston’s left
orderings of Bn . Let S be the double branched cover of the unit disk, branched along
n points. Thurston defined left orderings of Aut.S; @S/ (and hence the left orderings
on Bn ) via the double branched cover S : Fix z 2 L1 . Given h;g 2 Aut.S; @S/,
define h �z g if h.z/ � g.z/. Such an ordering is called a left ordering because it
preserved by left multiplication. (Of course, �z may not be a total order, but that is
not an important issue here.) The following is a rephrasing of Corollary 2.5.

Corollary 2.6 There exist infinitely many pseudo-Anosov braids � 2 B3 for which
id � � using any of the left orderings of B3 defined by Thurston, but which are not
quasipositive.

Example 2.7 Let � D .�1�2�1/
2��m

1
. Then

x� D

�
�1 0

�m �1

�
:

This is the right-veering lift of x� 2 SL.2;Z/ with the least amount of rotation to the
right. By Theorem 2.3, if m� 5, then � is not quasipositive. On the other hand, we
claim that, for m� 4, � can be written as a product of positive Dehn twists. It suffices
to prove the claim for .�1�2�1/

2��4
1

. Indeed using the fact that

.�1�2�1/�1 D �2.�1�2�1/; .�1�2�1/�2 D �1.�1�2�1/;

we write:

.�1�2�1/
2��4

1 D .�1�2�1/.�1�2�
�1
1 /��2

1

D .�2�1�
�1
2 /.�1�2�1/�

�2
1 D .�2�1�

�1
2 /.�1�2�

�1
1 /:
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More generally, we can show that .�1�2�1/
2n��m

1
is quasipositive if m� 4n but not

quasipositive if m � 5n. In general, we do not know what happens for m strictly
between 4n and 5n.1

Corollary 2.8 There does not exist a finite set of generators for Veer.S; @S/ over
Aut.S; @S/, that is, there is no finite collection C of elements of Veer.S; @S/ such
that every element of Veer.S; @S/ can be expressed as a product of positive powers of
elements of C [DehnC.S; @S/.

Proof Consider �.m/ D .�1�2�1/
2��m

1
with m � 5. By Example 2.7, �.m/ 2

Veer.S; @S/�DehnC.S; @S/. The homeomorphism h1.m/W L1!L1 correspond-
ing to �.m/ sends Œ0; �=2� to Œtan�1.m/� �; �=2� ��. Notice that every angle is
decreased by at most � , and the only angles that are decreased by � are �=2C k� .

We claim that if h1; h2 2Veer.S; @S/ and �.m/D h1h2 , then one of the hi is �.m0/
with m0 � m and the other is �m0�m

1
; the corollary then follows immediately from

the claim. Effectively we are showing that the �.m/ are the least right-veering among
right-veering diffeomorphisms which are not in DehnC.S; @S/.

Arguing by contradiction, let �.m/ D h1h2 be such a factorization. Since �.m/ …
DehnC.S; @S/, it is not possible that both h1; h2 2 DehnC.S; @S/. First we claim
that hi cannot be freely homotopic to a pseudo-Anosov homeomorphism. Indeed, for
a pseudo-Anosov hi to be right-veering, it must have fractional Dehn twist coefficient
c � 1=2 by Proposition 3.1 of [12]. Then there is a properly embedded arc ˛ on S so
that �.z̨.1//��.Ah.m/.1// > � . (Take ˛ so that its slope is close to, but slightly larger
than, the stable slope.) Since homeomorphisms which are freely homotopic to periodic
homeomorphisms in Veer.S; @S/ are necessarily in DehnC.S; @S/, it follows that
one of the factors hi must be reducible and not in DehnC.S; @S/. This means that hi

can be expressed as .�1�2�1/
2n1R

n2

 . Since hi is right-veering, n1 � 0, but n1 D 0

would imply n2 > 0 and then hi 2 DehnC.S; @S/. Also n1 cannot be greater than or
equal to 2, since the angle of rotation would be too large, and hi could not be a factor
of �.m/. This leaves the possibility hi D .�1�2�1/

2R
n2

 . In this case the only angles

that are decreased by � when acted on by .�1�2�1/
2R

n2

 are the angles corresponding

to ˙
 . It follows that 
 has slope 1; thus hi D �.�n2/. Letting m0 D �n2 and
using the fact that hi decreases angles by no more than �.m/ implies m0 �m.

1The referee has informed us that the following holds: For any m , the least ‰.m/ for which
.�1�2�1/

‰.m/��m
1

is quasipositive is ‰.m/D 2kC1 for mD 5k; 5kC1; 5kC2 , and ‰.m/D 2kC2

for m D 5k C 3; 5k C 4 . In each case, .�1�2�1/
‰.m/�1��m

1
is not quasipositive by Theorem 2.3, so

Theorem 2.3 gives a tight bound for parabolic elements.
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2.5 An example

In this subsection, we will give a computation of an element h 2 Veer.S; @S/ �
DehnC.S; @S/ which does not satisfy the condition of Theorem 2.3. It is likely that
the types of computations done in the example are amenable to computer calculation,
ie, the algorithm can probably be done in finite time for the torus.

Example 2.9 � D .�1�2�1/
2��4

1
�2�
�1
1
�2�
�1
1

is in Veer.S; @S/�DehnC.S; @S/.
However, ˆD�4, rotD 1=2 and lkD 2, and the conditions of Theorem 2.3 are not
satisfied. Our strategy is to exploit the fact that lkD 2, so that � must be expressed as
a product of two positive Dehn twists if � 2 DehnC.S; @S/. There are two possibili-
ties: (1) the first Dehn twist contributes .1; 0/ to .ˆ; rot/ and the second contributes
.�5; 1=2/, or (2) the first contributes .�2; 1=4/ and the second .�2; 1=4/.

(1) Referring to the proof of Theorem 2.3, Case 1, the first Dehn twist sends 0!1

to 0! 1 or �1!1. By looking at the � we are considering, we see that the image
is in the upper half disk of the Farey tessellation; let us denote the corresponding word
by W . By inspecting again the proof of Theorem 2.3 we see that if the second Dehn
twist contributes .�5; 1=2/, then it leaves 0! 1 or �1!1 in the same half disk
(upper or lower) of the Farey tessellation, so �1!1 is not possible. In the only
possible combination of twists we easily see that if x� is written as a0! b0 , then the
path W from 01 to a0b0 can be written as LPLLP�1L, where P is some word in
L and R. This is a contradiction.

(2) The first Dehn twist maps 0!1 to a! b , where (a) 0< b < a<C1 or (b)
�1< a< b < 0. Suppose the second Dehn twist maps a! b to a0! b0 . In case (a),
there are three relevant subcases: (i) the slope s2 of the second Dehn twist satisfies
b < s2 < a; (ii) s2 > a and a0 � b , b0 � a; (iii) s2D a and b0 > a. This again follows
from the analysis of the proof of Theorem 2.3. In subcase (i), W can be written as
P1LLP�1

1
P2LLP�1

2
. In subcase (ii), after analyzing all the possible diagrams, we see

that the only relative position of the two adjacent triangles in the Farey tessellation with
vertex s2 that results in a contribution of .�2; 1=4/ is the one presented in Figure 3.
Moreover, the edge a0 ! b0 can be any edge which intersects the geodesic from
01 to the lower triangle with vertex s2 given in Figure 3. One particular possibility
for a0! b0 is given in Figure 3; this gives W D P2LLP�1

2
P�1

1
LLP1 . The other

possibilities for a0! b0 are edges of the two triangles with vertex s1 and edges between
01 and the lower triangle with vertex s1 ; they give equations W D PLLP�1LL,
W DLPLLP�1L, W DLLPLLP�1 , and WP1 D P1LLP2LLP�1

2
. In subcase

(iii), W can be written as LPLLP�1L. In case (b), there are also two subcases: s2>0

or b < s2 � 0. In the former subcase, W can be written as P2LLP�1
2

P1LLP�1
1

. In
the latter, we can write P1W D P2LLP�1

2
LLP1 .
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1 0

a
b a0

b0

P1

P2

P�1
2

P

s2

s1

Figure 3: Case (ii)(a) with s2 > a . Here P D P2LLP�1
2 P�1

1 , and W D PLLP1 .

In summary, if W is the path from 01 to a0b0 , we need to show that each of the
following equations has no solution:

LPLLP�1LDW

P1LLP�1
1 P2LLP�1

2 DW

P2LLP�1
2 LLP1 D P1W

P1LLP2LLP�1
2 DWP1

So far we have only used the facts that ˆ D �4, rot D 1=2 and lk D 2. We now
show that our specific choice W D LLLLRLRL D L4RLRL has no solution to
any of the above equations. The first two equations are immediate. To see that the
third equation has no solution note that we can write it in the form XP D PW where
P D P1 . Since P must have the same last letter as W , we can write P DQY and
W DZY (for example, we can take Y DRLRL). Then XQDQYZ . Notice that
this is an equation of the same form as XP DPW , but with Q repeated instead of P ,
and that Q is shorter than P and YZ is a cyclic permutation of W . Notice also that
Q is not the empty word since no cyclic permutation of W is equal to X , regardless
of the choice of P2 . This means the argument can be repeated, ie, Q must have the
same last letter as Z and can be written as QDQ1Y1 with YZ DZ1Y1 , etc. This
procedure inductively shortens Qi . Since we can never reduce to the empty word, this
gives us a contradiction. The fourth equation can be treated in the same way as the
third.

In general, this line of argument can be done for many words. Long sequences with
RLRLRL::: are effective, since the equations above all contain LL.
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2.6 Questions

We close this section with some questions.

Suppose S is the punctured torus. We were able to identify large swathes of the
complement Veer.S; @S/�DehnC.S; @S/. However, we are far from determining all
of Veer.S; @S/�DehnC.S; @S/.

Question 2.10 Determine a complete set of invariants that will distinguish elements
of Veer.S; @S/ that are not in DehnC.S; @S/.

Our initial motivation for undertaking the study of the difference between Veer.S; @S/
and DehnC.S; @S/ was to understand the difference between tight contact structures
and Stein fillable contact structures. The following question is still open.

Question 2.11 If h 2 Veer.S; @S/�DehnC.S; @S/ for S , then is .S; h/ not Stein
fillable? Is it true for a general bordered surface S ? Is it true if S is a punctured torus?

There is some evidence that the answer is yes, which the authors learned from Giroux.
Recall that .S; h/ is Stein fillable if and only if there is some .S 0; h0/ 2DehnC.S; @S/
so that the open books .S; h/ and .S 0; h0/ become the same after performing a sequence
of stabilizations to each (no destabilizations allowed). The work of Orevkov [13] shows
that, in the braid group (or, equivalently, in the hyperelliptic mapping class group),
� 2 Bn is quasipositive if and only if its stabilization in BnC1 is quasipositive. It is
not clear to the authors how to adapt Orevkov’s argument to the more general situation.

By Orevkov, all the h 2 Veer.S; @S/ � DehnC.S; @S/ constructed above for the
punctured torus S are still not quasipositive when stabilized and viewed in the braid
group/hyperelliptic mapping class group. Moreover, after a certain number of stabiliza-
tions, the linking number of the braid is no longer negative!

3 Generalizations to the braid group

We now discuss generalizations of the results from the previous section to the braid
group Bn .

One method is to start with � 2 B3 which is right-veering but not in DehnC.S; @S/
because lk< 0, and then embed �W B3 ,!Bn (somewhat) canonically by adding extra
strands. Since Veer.S; @S/ is a monoid, one can take products of such �.�/, their
conjugates in Bn , and quasipositive elements � 0 2Bn . Provided the linking number is
still negative, the product is right-veering but not quasipositive.
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Another method (presumably slightly more general) is to rephrase the lk< 0 condition
in terms of the signature of the braid closure and the Maslov index. This uses, in an
essential way, the work of Gambaudo–Ghys [5; 4]. After some preparatory remarks in
Sections 3.1 and 3.3, we prove Theorem 3.5 in Section 3.4.

3.1 Bounded cohomology

In this subsection we interpret Theorem 2.3 in terms of bounded cohomology.

Since much of the material is probably unfamiliar to specialists in contact and symplectic
geometry, we include a brief summary of bounded cohomology and the (bounded)
Euler class. An excellent source is Ghys [6].

Let G be a group and ADZ or R. Then the (ordinary) cohomology group H k.GIA/

is the cohomology of the chain complex .C k.GIA/; ı/, where C k.GIA/ is the
set of maps cW GkC1 ! A which are homogeneous, ie, c.gg0;gg1; : : : ;ggk/ D

c.g0; : : : ;gk/, and ıW C k�1.GIA/! C k.GIA/ is the cochain map:

ıc.g0;g1; : : : ;gk/D

kX
iD0

.�1/ic.g0; : : : ; ygi ; : : : ;gk/:

The bounded cohomology group H k
b
.GIA/ is the cohomology of the chain complex

C k
b
.GIA/� C k.GIA/ of maps cW GkC1!A for whichˇ̌̌

sup
.g0;:::;gk/2GkC1

c.g0; : : : ;gk/
ˇ̌̌
<1:

There is a natural map H k
b
.GIA/!H k.GIA/ which is not necessarily injective or

surjective.

The homogeneous cochain cW GkC1!A corresponding to the inhomogeneous cochain
xcW Gk !A is given by c.g0; : : : ;gk/D xc.g

�1
0

g1;g
�1
1

g2; : : : ;g
�1
k�1

gk/. In the other
direction, we can find the inhomogeneous cochain xc whose homogenization is c by
setting xc.h1; : : : ; hk/D c.e; h1; h1h2; h1h2h3; : : : ; h1h2 : : : hk/. With this dehomog-
enization, the coboundary of C 1.GIA/ is defined on inhomogeneous maps by

ıxc.h1; h2/D xc.h1/Cxc.h2/� xc.h1h2/:

What we are interested in is H 2.GIA/, which classifies isomorphism classes of central
extensions of G by A:

(3.1.1) 0!A! zG!G! 1:
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The class in H 2.GIA/ corresponding to the central extension given by Equation (3.1.1)
is called the Euler class of the central extension.

Now define a quasi-morphism to be a map �W G ! A, together with a constant C ,
such that j�.g1g2/��.g1/��.g2/j � C for all g1;g2 2G . Denote by QM.GIA/

the A–module of quasi-morphisms from G to A. A trivial quasi-morphism is a
quasi-morphism � which is a bounded distance from a genuine homomorphism  , ie,
� � is bounded on G . (Hence, two quasi-morphisms are deemed equivalent if their
difference is within bounded distance of a genuine homomorphism.) The following
fact can be verified directly from the definitions.

Fact The kernel of H 2
b
.GIA/! H 2.GIA/ is the quotient of QM.GIA/ by the

trivial quasi-morphisms.

3.2 Interpretation of Theorem 2.1 from the viewpoint of bounded coho-
mology.

Let HomeoC.S1/ be the group of orientation-preserving homeomorphisms of S1 and
BHomeoC.S1/ be the universal cover of HomeoC.S1/. If we identify S1DR=Z, then
an element z
 of BHomeoC.S1/ is a periodic orientation-preserving homeomorphism
of R with period 1. Define the translation number ‰W BHomeoC.S1/! R, where
‰.z
 /D2z
 .0/ if z
 .0/2Z and 2bz
 .0/cC1 if z
 .0/ 62Z. Here b�c is the greatest integer
function. The translation number, roughly speaking, keeps track of twice the number
of times a point is sent around S1 . The translation number ‰ is a quasi-morphism of
BHomeoC.S1/, whose coboundary

ı‰.g1;g2/D‰.g1/C‰.g2/�‰.g1g2/

descends to HomeoC.S1/ and represents an element in the second bounded cohomol-
ogy group H 2

b
.HomeoC.S1/IZ/.

Via the standard action of PSL.2;R/ on RP1 ' S1 , we may view PSL.2;R/ as
a subgroup of HomeoC.S1/ and APSL.2;R/ as a subgroup of BHomeoC.S1/. Here
APSL.2;R/ is viewed as the group of equivalence classes of paths in PSL.2;R/
starting at the identity. Also let APSL.2;Z/�APSL.2;R/ be the equivalence classes
of paths in PSL.2;R/ starting at id and ending at an element in PSL.2;Z/. We
now restrict ‰ to APSL.2;Z/, which is isomorphic to Aut.S; @S/, where S is the
once-punctured torus. Recall that any � 2 B3 Š Aut.S; @S/ can uniquely be written
as .�1�2�1/

kw , where w is a product of �1; �
�1
2

or ��1
1
; �2 . Since ‰ and �4 rot

agree on all powers of .�1�2�1/
4 , they differ by a bounded amount on APSL.2;Z/.
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Hence their coboundaries ı‰ and ı.�4 rot/ represent the same element in the bounded
cohomology group H 2

b
.PSL.2;Z/IZ/.

Next, given the Rademacher function ˆW PSL.2;Z/! Z, consider its coboundary
ıˆ. Although ıˆ is zero in the ordinary group cohomology H 2.PSL.2;Z/IZ/D
Z=6Z, it is nevertheless a nontrivial element in the bounded cohomology group
H 2

b
.PSL.2;Z/IZ/: First observe that ˆ is not a bounded 1–cochain. Moreover, since

PSL.2;Z/Š Z=2Z�Z=3Z, there is no nonzero homomorphism PSL.2;Z/! Z.
(Observe that there is no nonzero homomorphism from Z=mZ to Z, when m is a
positive integer.) Hence ˆ is not a bounded distance from any homeomorphism and
therefore represents a nontrivial element in H 2

b
.PSL.2;Z/IZ/.

Consider the following diagram—keep in mind that we need to distinguish among
similar-looking groups PSL.2;Z/, PSL.2;R/, etc.:

0 ����! Z ����! Aut.S; @S/DAPSL.2;Z/ ����! PSL.2;Z/ ����! 0??y ??y ??y
0 ����! Z ����! APSL.2;R/ ����! PSL.2;R/ ����! 0

Theorem 2.1 implies the following:

Corollary 3.1 ıˆD�12ı.rot/ as 2–cochains on PSL.2;Z/.

In other words, two seemingly different quasi-morphisms—the translation number for
BHomeoC.S1/ and the Rademacher function—have essentially the same coboundary.
Hence, we can keep track of the value of one quasi-morphism through the value of the
other quasi-morphism, although the functions are far from identical.

3.3 The Maslov index

In this subsection, we define the Maslov index. There are various definitions of the
Maslov index in the literature, and our �.
;ƒ0/ is identical to that of Robbin and
Salamon in [14].

Consider the symplectic vector space .R2n D Rn �Rn; !/, with coordinates x D
.x1; : : : ;xn/ for the first Rn and yD .y1; : : : ;yn/ for the second Rn , and symplectic
form ! D

Pn
iD1 dxi ^ dyi . Consider the Lagrangian subspace ƒ0 D fy D 0g. Let

L be the Lagrangian Grassmannian of .R2n; !/, ie, the set of Lagrangian subspaces
of R2n . Also let Lƒ0

be the Maslov cycle of ƒ0 , namely the set of ƒ 2 L with
ƒ0\ƒ 6D f0g.
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If ƒ 2 L is transverse to ƒ0 , then there exists an element of the symplectic group
Sp.2n;R/ which sends ƒ0 to itself and ƒ to ƒ0

0
D fxD 0g. (Proof: If v1; : : : ; vn is

a basis for ƒ0 and w1; : : : ; wn is a basis for ƒ, then, with respect to v1; : : : ; vn and
w1; : : : ; wn , the symplectic form can be written as�

0 A

�AT 0

�
;

for some nonsingular n� n matrix A. Since we are allowed to change bases of ƒ0

and ƒ (separately), we are looking to solve:�
BT 0

0 C T

��
0 A

�AT 0

��
B 0

0 C

�
D

�
0 BT AC

�C T AT B 0

�
D

�
0 I

�I 0

�
:

Such B;C can easily be found.)

Now consider the neighborhood U DfyDAx jA symmetric n� n matrixg of ƒ0 2L.
(Proof: Any n–plane which is sufficiently close to yD 0 is graphical of form yDAx.
We can check that the Lagrangian condition implies that ADAT .) We observe that
U depends on the choice of complementary Lagrangian subspaces ƒ0 and ƒ0

0
, and

will often be written as U.ƒ0; ƒ
0
0
/. It is easy to see that U is contractible.

A useful operation which allows us to cover all of L with open sets of type U.ƒ0; ƒ
0
0
/,

is the symplectic shear �
I A

0 I

�
2 Sp.2n;R/;

where A is a symmetric n� n matrix. The shear sends ƒ0 to itself and fxD 0g to
fx D Ayg. If A is invertible, then the Lagrangian subspace f.Ay; y/ j y 2 Rng D

f.x;A�1x/ j x 2 Rng is in U.ƒ0; fxD 0g/. By ranging ƒ0
0

over all the Lagrangian
subspaces transverse to ƒ0 , the collection of such U.ƒ0; ƒ

0
0
/ covers L.

We can now define the Maslov index of a path 
 W Œ0; 1�! L, with respect to a fixed
Lagrangian ƒ0 . Subdivide Œ0; 1� into 0D t0< t1< � � �< tk D 1, so that each 
 jŒti ;tiC1�

lies in some U.ƒ0; ƒ
0
0
/. Suppose 
 .ti/ is given by fy D A.ti/xg and 
 .tiC1/ by

fyDA.tiC1/xg. Then let

(3.3.1) �.
 jŒti ;tiC1�; ƒ0/D
1

2
sign.A.tiC1//�

1

2
sign.A.ti//:

Here sign denotes the signature of the symmetric matrix. (The signature of a symmetric
bilinear form is the dimension of the maximal positive definite subspace minus the
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dimension of the maximal negative definite subspace.) We then define

�.
;ƒ0/
def
D

k�1X
iD0

�.
 jŒti ;tiC1�; ƒ0/:

By Theorem 2.3 of [14], this � is well-defined, invariant under homotopies fixing
endpoints, and is natural, ie, �.‰.
 /;‰.ƒ// D �.
;ƒ/, where ‰ 2 Sp.2n;R/.
Moreover, if 
 does not intersect the Maslov cycle Lƒ0

, then �.
;ƒ0/D 0. In the
special case that 
 is a closed loop, �.
;ƒ0/ is independent of the choice of ƒ0 .

Next, given L1;L2;L3 2 L, we define the ternary index I.L1;L2;L3/. Consider
the symmetric bilinear form Q on .L1CL2/\L3 defined by Q.v; w/D !.v2; w/,
where v 2 .L1 CL2/ \L3 is written as v1 C v2 , with v1 2 L1 , v2 2 L2 . Then
I.L1;L2;L3/ is the signature of Q.

It is not difficult to see that I.L1;L2;L3/ has the following equivalent definition:
Consider the subspace V �L1˚L2˚L3 , consisting of triples .v1; v2; v3/, vi 2Li ,
with v1C v2C v3 D 0. Define the quadratic form Q0 W V �V !R by:

Q0..v1; v2; v3/; .w1; w2; w3//D !.v1; w3/D !.v2; w1/D !.v3; w2/

D�!.v3; w1/D�!.v1; w2/D�!.v2; w3/:

Then I.L1;L2;L3/ is also the signature of Q0 .

Now, given L1;L2;L3 2 L, let 
12 be a path in L from L1 to L2 , 
23 be a path in
L from L2 to L3 , and let 
13 be the concatenation 
12
23 . Also let 
ij D 


�1
ji . We

then have the following:

Lemma 3.2 I.L1;L2;L3/D 2.�.
12;L1/C�.
23;L2/C�.
31;L3//:

Proof Suppose L1 , L2 , L3 are mutually transverse. Without loss of generality, we
may take L1 D fyD 0g, L2 D fxD 0g, and L3 D fyDAxg, where A is symmetric
and nonsingular.

Since the right-hand side of the equation in the lemma does not depend on the choice
of paths, provided the endpoints remain the same, there is no loss of generality in
proving the lemma for a convenient choice of paths. (As remarked earlier, if 
 is a
loop, then �.
;L/ does not depend on the choice of L 2 L.) Define 
13W Œ0; 1�! L
by t 7! fy D tAxg, 
23W Œ0; 1�! L by t 7! fx D tA�1yg, and 
12 D 
13
32 . One
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easily computes from Equation (3.3.1) that

�.
12;L1/D
1

2
sign.A/;

�.
23;L2/D�
1

2
sign.A�1/D�

1

2
sign.A/;

�.
31;L3/D�
1

2
sign.A/:

Therefore, the right-hand side of the equation in the lemma equals � sign.A/.

On the other hand, .L1CL2/\L3 DL3 in our case, and

Q..x;Ax/; .x0;Ax0//D !..0;Ax/; .x0; 0//D�xT AT x0:

Thus, I.L1;L2;L3/D� sign.A/ as well.

The general case is more involved, and we only sketch the idea. First, we normalize
L1;L2;L3 (this requires some work), and then use the additivity formula from [14].
Let V 0 be a Lagrangian of standard symplectic R2n0 and V 00 be a Lagrangian of R2n00 .
Also let 
 0 be a path in L.R2n0/ and 
 00 be a path in L.R2n00/. Then the additivity
formula says the following:

�.
 0˚ 
 00;V 0˚V 00/D �.
 0;V 0/C�.
 00;V 00/:

We then reduce to the above calculation where L1;L2;L3 are mutually transverse.

3.4 The signature

To generalize the results we obtained for the punctured torus to the braid group Bn on
n strands, we use the signature. The signature has the useful property of remaining
invariant under stabilization, whereas the linking number increases under stabilization.

Define the signature function on Bn as follows: Given a braid ˛ , let y̨ denote the braid
closure inside S3 , and sign.y̨/ be the signature of the (symmetrized) Seifert pairing.
It is not difficult to see that the signature is a quasi-morphism on Bn .

We can view B2nC1 as the hyperelliptic mapping class group of a once-punctured
surface †n , where n is the genus, and B2n as the hyperelliptic mapping class group
of a twice-punctured surface †n�1 , where n� 1 is the genus. (Here by the genus
we mean the genus of the closed surface obtained by adding disks.) For B2nC1 , let
B�1 be the map B2nC1! Sp.2n;R/, which is the action on the symplectic vector
space H1.†n; @†nIR/ (with symplectic form the intersection pairing). For B2n , the
intersection pairing is degenerate, so we take the standard embedding of B2n into
B2nC1 by adding a trivial strand; from now on we assume that our braid groups have
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an odd number of stands. The strange notation B�1 comes from the fact that the
homology representation is the Burau representation specialized at �1. Note that for
nD 1 it is the same as the map B3! SL.2;Z/ which appeared in Section 2.

Next we define the Meyer cocycle Meyer.g1;g2/, where g1;g2 2 Sp.2n;R/. (Here
we are thinking of H1.†n; @†nIR/ as a symplectic vector space of dimension 2n.)
Consider the symplectic vector space .R2n �R2n; ! ˚�!/. Let zg1 be a path in
Sp.2n;R/ from id to g1 and zg2 be a path from id to g2 . Also let Ag1g2 .t/ D

zg1.t/zg2.t/, t 2 Œ0; 1�; this is homotopic to the path zg1.t/, followed by the path
g1 � .zg2.t//. Now let Graph.h/ be the graph of h 2 Sp.2n;R/, ie, it is the Lagrangian
of R2n˚R2n consisting of vectors .v; h.v//; if zh is a path in Sp.2n;R/, Graph.zh/
is a path of Lagrangians Graph.zh.t//, t 2 Œ0; 1�. Then we set:

Meyer.g1;g2/
def
D I.Graph.id/;Graph.g1/;Graph.g1g2//

D 2.�.Graph.zg1/;Graph.id//C�.Graph.zg2/;Graph.id//

��.Graph.Ag1g2/;Graph.id///:

(It is not hard to verify that if 
 W Œ0; 1�!L is a path of Lagrangians, then �.
; 
 .0//D
��.
�1; 
�1.0//, where 
�1.t/D 
 .1� t/. We also used the fact that �.
;ƒ/D
�.‰.
 /;‰.ƒ//.)

In [5] it is proven that:

(3.4.1) sign. č̨ /D sign.y̨/C sign. y̌/�Meyer.B�1.˛/;B�1.ˇ//:

There are two quasi-morphisms whose coboundary is the Meyer cocycle: on B2nC1

there is the signature, and on fSp .2n;R/ there is the Maslov index. Here fSp .2n;R/
is the universal cover of Sp.2n;R/. In order to relate the two, we first observe the
following:

Lemma 3.3 The homomorphism B�1W B2nC1! Sp.2n;R/ can be lifted to a homo-
morphism zB�1W B2nC1!

fSp .2n;R/.

Proof Let C1; : : : ;C2n be oriented nonseparating closed curves on †n so that
(i) �i corresponds to a positive Dehn twist about Ci and (ii) the intersection pairing
!.Ci ;Cj / is ıiC1;j � ıi�1;j . (Here ıi;j is 0 if i 6D j and 1 if i D j .)

Let A1 be the 2� 2 matrix �
1 1

0 1

�
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and let A2 be the 3� 3 matrix 0@ 1 0 0

�1 1 1

0 0 1

1A :
Then B�1.�1/ D diag.A1; 1; : : : ; 1/ (ie, the matrix with the given entries along the
diagonal and zeros everywhere else). We also have B�1.�2/D diag.A2; 1; : : : ; 1/, : : : ,
B�1.�2n�1/D diag.1; : : : ; 1;A2/, and B�1.�2n/D diag.1; : : : ; 1;A1/.

To lift to fSp .2n;R/, we replace A1 by

A1.t/D

�
1 t

0 1

�
and A2 by

A2.t/D

0@ 1 0 0

�t 1 t

0 0 1

1A ;
where t 2 Œ0; 1�. (We do this for all the B�1.�i/.) To verify that this indeed gives a lift
zB�1W Bn!

fSp .2n;R/, we need to check the braid relations.

If ji�j j�2, then �i�j D�j�i , and to verify that zB�1.�i/ zB�1.�j /D zB�1.�j / zB�1.�i/

it suffices to check that diag.A2.t/; 1; 1/ and diag.1; 1;A2.t// commute. This is an
easy calculation. (The cases iD1; j D3 and iD2n�2; j Dn, when diag.A1.t/; 1; 1/

and diag.1; 1;A1.t// are involved, are easier.)

We also verify that

zB�1.�i/ zB�1.�iC1/ zB�1.�i/D zB�1.�iC1/ zB�1.�i/ zB�1.�iC1/:

Computing both sides, we require:

(3.4.2)

0BB@
1 0 0 0

�2t C t3 1� t2 2t � t3 t2

t2 �t 1� t2 t

0 0 0 1

1CCA and

0BB@
1 0 0 0

�t 1� t2 t t2

t2 �2t C t3 1� t2 2t � t3

0 0 0 1

1CCA
to be homotopic as paths. Since �t and �2t C t3 are both negative for t 2 .0; 1�, we
can take a.s; t/ D .1� s/.�2t C t3/C s.�t/ and b.s; t/ D .�t/.�2t C t3/=a.s; t/.
Now 0BB@

1 0 0 0

a.s; t/ 1� t2 �a.s; t/ t2

t2 b.s; t/ 1� t2 �b.s; t/

0 0 0 1

1CCA
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is a homotopy of paths in Sp.2n;R/ which takes the left-hand matrix in Equation
(3.4.2) to the right-hand one in Equation (3.4.2).

The following is a relatively simple computation, once the definitions are sorted out:

Lemma 3.4 �.Graph.zh/;Graph.id//D 1=2 if h2Sp.2n;R/ is a positive Dehn twist
about a nonseparating curve.

Proof We first reduce to the case where n D 1, the symplectic form on R2 ˚R2

(with coordinates .x;y/D ..x1;x2/; .y1;y2//) is ! D dx1 ^ dx2� dy1 ^ dy2 , and

hD

�
1 1

0 1

�
:

Indeed, Graph.id/ is the set f.x;x/ j x2R2ngDf.gx;gx/ j x2R2ng and Graph.h/ is
the set f.x; hx/ j x 2R2ngD f.gx; hgx/ j x 2R2ng, if g is a nonsingular 2n� 2n ma-
trix. Now, apply .g�1;g�1/ to both Graph.id/ and Graph.h/, where g 2 Sp.2n;R/.
This gives us Graph.id/ and Graph.g�1hg/. Hence, by conjugating, we may assume
that h is as above, since � is invariant under the action of the symplectic group.

The graph of id, which we write as L0 , is Rfv1 D .1; 0; 1; 0/; v2 D .0; 1; 0; 1/g. A
complementary Lagrangian subspace to L0 is L0

0
D Rfw1 D .0; 0; 0;�1/; w2 D

.�1; 0; 0; 0/g. (Here !.vi ; wj /D ıi;j .) The graph of h is spanned by v1 D .1; 0; 1; 0/

and v1C v2Cw2 D .0; 1; 1; 1/, or, equivalently, by v1 and v2Cw2 . Hence

�.Graph.zh/;Graph.id//D
1

2
sign

�
0 0

0 1

�
D

1

2
:

This proves the lemma.

We now state the main theorem of this section:

Theorem 3.5 Let 
 be an element of B2nC1 , or equivalently, an element of a hyper-
elliptic mapping class group HypAut.†n; @†n/. Then

sign.y
 /D� lk.
 /C 2�.Graph. zB�1.
 //;Graph.id//:

Since lk.
 /� 0 if 
 is quasipositive, we have the following:

Corollary 3.6 If sign.y
 / > 2�.Graph. zB�1.
 //;Graph.id//; then 
 cannot be quasi-
positive in B2nC1 . Equivalently, 
 is not a product of positive Dehn twists in
HypAut.†n; @†n/.
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Proof Let 
 be an element of B2nC1 . Then 
 can be written as 
 D 
1 : : : 
k ,
where 
i are all conjugates of a standard half-twist or its inverse. Let gi D B�1.
i/ 2

Sp.2n;R/, and let zgi D
zB�1.
i/ 2 fSp .2n;R/ be a path from id to gi in Sp.2n;R/.

By repeatedly using Equation (3.4.1) and observing that sign.y
i/D 0 (since the Seifert
surface is a disk), we have:

sign.3
1 : : : 
k/D sign.y
1/C sign.3
2 : : : 
k/�Meyer.B�1.
1/;B�1.
2 : : : 
k//

D sign.3
2 : : : 
k/�Meyer.B�1.
1/;B�1.
2 : : : 
k//

D�

k�1X
iD1

Meyer.gi ;giC1 : : :gk/:

Next, applying Lemma 3.4, we have:

sign.3
1 : : : 
k/D�2

k�1X
iD1

n
�.Graph.zgi/;Graph.id//

C�.Graph.DgiC1 : : :gk/;Graph.id//

��.Graph.Cgi : : :gk/;Graph.id//
o

D�2

k�1X
iD1

n
˙

1

2
C�.Graph.DgiC1 : : :gk/;Graph.id//

��.Graph.Cgi : : :gk/;Graph.id//
o

D� lk.
 /C 2�.Graph.Cg1 : : :gk/;Graph.id//:

Here we have ˙1=2 depending on whether we have a positive or negative Dehn twist.

If 
 is quasipositive, lk.
 /� 0. So sign.
 /� 2�.Graph.Cg1 : : :gk /;Graph.id//.

Remark In [5], Gambaudo and Ghys prove that, for the “generic element” 
 2 B3 ,

sign.y
 /C
2

3
lk.
 /D�

1

3
ˆ.B�1.
 //:

For example, if 
 is generic if it is pseudo-Anosov. Combining with Theorem 2.1, we
have:

sign.y
 /D� lk.
 /C 4 rot.
 /;

for such 
 . This is consistent with Theorem 3.5.

Remark Gambaudo and Ghys also have a formula analogous to Equation (3.4.1) for
the !–signatures. Presumably our Theorem 3.5 can be generalized to !–signatures as
well.
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4 Characterization of (weak) symplectic fillability

In this section we prove Theorem 1.2. The starting point is the following special case
of a theorem of Roberts [15; 16], generalizing work of Hatcher [8].

Theorem 4.1 (Roberts) Assume the surface S has one boundary component and h

is a diffeomorphism that restricts to the identity on the boundary. If h is isotopic to a
pseudo-Anosov homeomorphism  and the fractional Dehn twist coefficient of h is c ,
then M D .S; h/ carries a taut foliation transverse to the binding if c � 1.

This theorem (not stated in this form by Roberts) follows from a more general result of
Roberts which is stated below as Theorem 4.2. To explain how Theorem 4.1 follows
from Theorem 4.2, we start by comparing the notation and coordinates used by Roberts
to our own.

Let S be a hyperbolic surface with one boundary component,  be the pseudo-Anosov
representative of h, and c be the fractional Dehn twist coefficient. Denote by N the
mapping torus of  , ie, N WD .S � Œ0; 1�/=.x; 1/� . .x/; 0/ for x 2 S .

Roberts gives an oriented identification @N 'R2=Z2 by choosing closed curves �;�
so that � has slope 0 and � has slope 1. (See Section 3 of [16].) Here we choose
orientations to agree with the usual conventions for a knot complement. We will now
describe the curves � and �. Let �D @.S � f0g/. Define 
 to be one component of
the suspension of the periodic points of  j@S . If there are n prongs, then there are
2n periodic points, n of which are attracting and n of which are expanding. Observe
that the geometric intersection number #.
 \ .S � f0g// divides n and equals n if
the suspension (of only the attracting points) is connected. Now we define � to be
the essential closed curve on @N which has the minimal #.�\ 
 / amongst all closed
curves on @N which form an integral basis of H1.@N IZ/ with �. The choice of � is
not unique if #.
 \�/D 2; there are two choices which minimize #.�\ 
 /. In that
case we choose � so that slope.
 /DC2.

We now state Theorem 4.7 of [16]:

Theorem 4.2 (Roberts) Suppose S has one boundary component,  is a pseudo-
Anosov map and N D .S � Œ0; 1�/=.x; 1/ � . .x/; 0/. Then one of the following
holds:

(1) 
 has slope infinity and N contains taut foliations realizing all boundary slopes
in .�1;1/.

(2) 
 has positive slope and N contains taut foliations realizing all boundary slopes
in .�1; 1/.

Geometry & Topology, Volume 12 (2008)



Right-veering diffeomorphisms of compact surfaces with boundary II 2085

(3) 
 has negative slope and N contains taut foliations realizing all boundary slopes
in .�1;1/.

Here the slope is measured with respect to the identification @N ' R2=Z2 given by
the basis .�; �/ defined above, and “realizing” a boundary slope means the restriction
of the taut foliation to @N is a linear foliation with the given boundary slope.

Proof that Theorem 4.2 implies Theorem 4.1 Suppose h 2 Aut.S; @S/,  is its
pseudo-Anosov representative, and c D p=q is the corresponding fractional Dehn
twist coefficient. Assume p; q are relatively prime positive integers. If the closed
manifold M D .S; h/ is obtained by Dehn filling N along the closed curve � on @N ,
then 
 D p�C q� in H1.@N IZ/. We also have �D �C k�, where k is an integer
chosen to minimize j
 � �j D j.p�C q�/ � .� C k�/j D jp � kqj. When there is a
tie, ie, both p� kq D˙p=2 are possible, the tie is broken by choosing p=2. In the
cases below, the slope will be computed relative to the basis .�; �/. We compute that
slope.�/D .� � �/=.� ��/D�1=k and slope.
 /D q=p� kq .

(1) c D p=q is an integer � 1. It follows that p � kq D 0 and k � 1. Therefore,
slope.
 /D1 and slope.�/D�1=k 2 Œ�1; 0/� .�1;1/.

(2) p=q > 1 is not an integer and k satisfies 0 < p � kq � p=2. It follows that
slope.
 / > 0, k � 1, and therefore slope.�/D�1=k 2 Œ�1; 0/� .�1; 1/.

(3) p=q > 1 is not an integer and k satisfies �p=2 < p � kq < 0. It follows that
slope.
 / < 0, k � 2, and therefore slope.�/D�1=k 2 Œ�1=2; 0/� .�1;1/.

Thus, for all c � 1, a taut foliation of N can be constructed with boundary slope equal
to the slope of the meridian of the solid torus that extends N to M . By extending
the leaves by meridian disks, we can construct a taut foliation of M transverse to the
binding.

If M D .S; h/ and c � 1, let F be a taut foliation furnished by Theorem 4.1. By the
work of Eliashberg–Thurston [2], any taut foliation admits a C 0 –small perturbation
into a universally tight and (weakly) symplectically fillable contact structure. We denote
a perturbation of F by �F . (Note that, a priori, two perturbations of F may not even
be isotopic.) We will denote by .S; h/ the contact structure corresponding to the open
book, which is also denoted .S; h/.

Theorem 4.3 If c � 1, then the contact structure .S; h/ is isotopic to �F for some
taut foliation F .

The proof of Theorem 4.3 will occupy the rest of the section. We first claim the
following:
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Lemma 4.4 Let  be a pseudo-Anosov representative of h 2 Aut.S; @S/ with c � 1

and let N D .S � Œ0; 1�/=.x; 1/ � . .x/; 0/. Then there exists a nonsingular vector
field X on N with the following properties:

(1) X is tangent to @N .

(2) X is positively transverse to S � ftg for all t 2 Œ0; 1�.

(3) There exists a transversely oriented taut foliation F on N which is positively
transverse to X . Moreover, F can be chosen so that F\T .@N / is a nonsingular
foliation on @N which is foliated by circles of slope �1=k , where k is the
positive integer as described in the proof of Theorem 4.2.

Here we are using slope convention used in Theorem 4.2.

Proof This follows from analyzing Roberts’ construction (cf Section 2 of [15]) of the
foliation F in Theorem 4.1 and noting that it can be performed in a manner compatible
with X . Roberts constructs a set ˛1; : : : ; ˛m of properly embedded oriented arcs in
S with the following properties. Consider Di D ˛i � Œ.i � 1/=m; i=m�, where Di is
oriented so that .@=@t ; P̨ / form an oriented basis for TDi . (Here t is the coordinate
for Œ0; 1�.) Also write St WD S � ftg. This gives a spine

†D
� m[

iD1

Si=m

�
[

� m[
iD1

Di

�
;

which can be modified into a branched surface B by isotoping Di and smoothing the
neighborhood of each intersection ˛i � fi=mg between Si=m and Di into a branch
locus, so that, near the branch locus, a vector field which is positively transverse to
Si=m (we may take @=@t here) is also positively transverse to the new Di . The same
can be done for each intersection ˛i � f.i � 1/=mg between S.i�1/=m and Di .

On each S � Œ.i � 1/=m; i=m�, start with @=@t , which satisfies (1) and (2), and tilt
it near Di so that the resulting X becomes positively transverse to B , while still
keeping properties (1) and (2). (The other option is to keep @=@t and smooth the spine
into a branched surface so that each Di no longer has any vertical tangencies.) The
foliation F is constructed by first taking a lamination which is fully carried by B and
by extending it to complementary regions which are I –bundles. The I –fibers can be
taken to be tangent to X and hence the foliations on the I –bundles transverse to X .

Recall that the ambient manifold M can be written as N [ .S1 �D2/, where the
meridian of the solid torus has slope �1=k on @N . Here k is the integer in the proof
of Theorem 4.2. The foliation F on N is now extended to all of M (also called F )
by foliating S1 �D2 by meridian disks.
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Lemma 4.5 There exists an isotopy �W S � Œ0; 1�!N so that the following hold:

(1) �s.S/ is properly embedded for all s 2 Œ0; 1�. Here �s.y/
def
D �.y; s/.

(2) �0.S/D S � f0g.

(3) �s.S/ is positively transverse to X for all s .

(4) @.�1.S// is positively transverse to F .

Here the orientation on @.�s.S// is the one induced from �s.S/, which in turn is
consistent with that of S � ftg.

Proof It suffices to show that there is an isotopy  W S1 � Œ0; 1�! @N so that:

(1)  s is an embedding for all s 2 Œ0; 1�.

(2)  0.S
1/D @.S � f0g/ (and their orientations agree).

(3)  s.S
1/ is transverse to X j@N for all s and . P s;X / form an oriented basis

of @N .

(4)  1.S
1/ is positively transverse to F . Here F intersects @N transversely.

To demonstrate the existence of such an isotopy, we examine the train track T DB\@N ,
where B is the branched surface constructed in Lemma 4.4. We use standard Euclidean
coordinates .x;y/ on @N ' R2=Z2 (given by Roberts as .�; �/). By construction,
fy D 0g � T . Now f�"� y � "g\ T has four branch points, all on fy D 0g. Two of
the branches come in from f0� y � "g and the other two come in from f�"� y � 0g.
(See Figure 4.) Since they are coming from a single disk in N , the branching directions
of the two branches on f0� y � "g are opposite and so are the branching directions of
the two branches on f�"� y � 0g. Here the branching direction at a branch point is
the direction in which two branches come together to become one. We will assume
that X D @=@y on f�"� y � "g.

(a) (b)

Figure 4: The train track T near y D 0 . The bounding box represents
Œ0; 1�� Œ�"; "� � R2=Z2 . Two of the possible combinations are labeled (a)
and (b).
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We then let N.T / be the train track neighborhood of T . By Roberts’ construction,
N.T / fully carries a sublamination of F \ T .@N /. Without loss of generality, this
sublamination C satisfies the following:

(i) C is a finite union of closed curves of slope �1=k , where k is a positive integer.

(ii) The horizontal boundary of N.T / is contained in C .

Recall that � is oriented as @S , and is directed by @=@x . Orient � so that P� has
positive @=@y –component. Orient T (and hence C ) using the transverse vector field
X . More precisely, . PC ;X / are to form an oriented basis for @N .

(a3 ) (b3 )

(a2 ) (b2 )

(a1 ) (b1 )

Figure 5: Possible splittings of T

We now split T by pushing in one of the branches in Œ0; 1� � Œ�"; 0� to obtain T1 ,
which also fully carries C and satisfies (i) and (ii) above. The possibilities are given
in Figure 5. We claim that (a1 ), (a2 ), (b1 ), or (b2 ) are not possible for T1 . Indeed,
in (a2 ) and (b2 ) the algebraic intersection number h�;C i D 0, so slope.C / D 0, a
contradiction. In cases (a1 ) and (b1 ), we have h�;C i> 0 and h�;C i< 0, implying
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that slope.C / > 0, which is also a contradiction. Therefore, T1 must be (a3 ) or (b3 ).
Since T1 fully carries C , in either case there must exist a subarc ıW Œ0; 1�!R2=Z2 of
the horizontal boundary of N.T1/ such that ı.0/ and ı.1/ have the same x–coordinate,
ı “winds around” in the (positive) x–direction once, and the y –coordinate of ı.1/ is
smaller than that of ı.0/ (here we are in Œ0; 1�� Œ�"; "�). Let ı1 be the oriented integral
subarc of X D @=@y in Œ0; 1�� Œ�"; "� from ı.1/ to ı.0/. The concatenation ı � ı1
can easily be perturbed into a closed curve which is isotopic to �D @.S � f0g/ and is
positively transverse to F . Moreover, it is easy to take the isotopy to be transverse to
X throughout.

Next, following Eliashberg and Thurston [2], take a C 0 –small perturbation of F ,
which we denote by �F . The characteristic foliation of �F on @N can be taken to have
slope �1=kC ", where " is an arbitrarily small positive number. We can choose the
perturbation so that the characteristic foliation is nonsingular Morse–Smale with two
closed orbits, one attracting and one repelling, and �1=kC " is the slope of the closed
orbits. (Hence @N is a convex surface with two dividing curves of slope �1=kC ".)
We make the perturbation �F sufficiently close to F so that @.�1.S// is positively
transverse to �F .

Since X is positively transverse to �F and also to S 0 WD �1.S/, it follows that
the characteristic foliation of �F on S 0 does not have any negative singular points.
Therefore,

(4.0.3) l.@S 0/D�eCC hCC e�� h� D�eCC hC D��.S 0/D 2g.S 0/� 1:

where l.@S 0/ denotes the self-linking number of the transverse knot @S 0 with respect
to S 0 , e˙ and h˙ are the numbers of positive and negative elliptic and hyperbolic
tangencies of the contact structure on S 0 , and the genus g.†/ of a compact surface
† with boundary is the genus of the closed surface obtained by capping off all the
boundary components with disks. A good reference for invariants of transverse and
Legendrian knots is Etnyre [3].

Remark The fact that X is positively transverse to both S 0 and �F does not imply
that the dividing set �S 0 is empty. Although there are no negative singular points in
the characteristic foliation, closed orbits of Morse–Smale type can function as sinks.
Hence we can have annular regions of S 0� , where S 0 n�S 0 D S 0C[S 0� .

We next explain how to pass from S 0 to a convex surface S 00 with Legendrian boundary.

Lemma 4.6 There exists a convex surface T isotopic to @N inside an I –invariant
neighborhood of @N so that �T D �@N , and a convex surface S 00 with Legendrian
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boundary (isotopic to S 0 ) so that @S 00 � T and

tb.@S 00/� r.@S 00/D l.@S 0/D 2g.S 0/� 1:

Here tb.@S 00/ and r.@S 00/ are the Thurston–Bennequin invariant and rotation number
of the Legendrian knot @S 00 with respect to @S 00 .

Proof We isotop @N inside its invariant neighborhood to obtain the convex surface
T . More explicitly, we tilt @N near the closed orbits of the nonsingular Morse–Smale
characteristic foliation so that T has Legendrian divides in place of closed orbits. Then
isotop S 0 to S 00 which has Legendrian boundary and such that @S 00�T . It is not hard to
see that the positive transverse push-off of @S 00 is transversely isotopic to @S 0 . Finally
recall that if 
C is a positive transverse push-off of 
 , then tb.
 /� r.
 / D l.
C/

(note the sign in front of r.
 / is negative, not positive).

Now recall that
r.@S 00/D �.S 00C/��.S

00
�/;

where S 00C and S 00� are the positive and negative regions of S 00��S 00 . By comparison
with Lemma 4.6, which states that:

r.@S 00/D 1� 2g.S 00/C tb.@S 00/;

we have �.S 00C/D 1� 2g.S 00/ and ��.S 00�/D tb.@S 00/. This implies the following:

Corollary 4.7 �S 00 consists of @–parallel dividing arcs and curves, together with pairs
of parallel essential closed curves.

Note here that by a @–parallel dividing arc we mean a properly embedded arc that
cuts off a disk whose interior intersects no other components of the dividing set. In
particular, the disks cut off by @–parallel dividing arcs are disjoint. A @–parallel closed
dividing curve is a closed curve parallel to the boundary.

Let us now rename @N and S D S � f1g so that the following hold:

(i) @N is convex, #�@N D 2, and slope.�@N / D �1=k C ", where " is a small
positive number.

(ii) S D S � f1g has boundary on @N , and �S consists of @–parallel dividing arcs
and closed curves, together with pairs of parallel essential closed curves.

(iii) The solid torus S1�D2DM �N is the standard neighborhood of a Legendrian
curve.
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We will now normalize �S in a manner similar to Section 7 of [11].

Proposition 4.8 There exists a convex surface isotopic to S whose dividing set only
consists of @–parallel arcs.

Proof Consider the cut-open manifold S � Œ0; 1�. Here �S�f1g D �S and �S�f0g D

 .�S /. Since the monodromy map  is pseudo-Anosov, �S 6D  .�S / unless �S is
a union of @–parallel arcs and @–parallel closed curves.

We will first reduce to the case of such a union. If �S 6D .�S /, then, by Proposition 7.1
of [11], there exists a closed curve 
 , possibly separating, which intersects �S�fig ,
i D 0; 1, efficiently and such that #.
 \ �S�f1g/ 6D #.
 \ �S�f0g/. Now apply
the Legendrian Realization Principle to make 
 � f0; 1g Legendrian, and apply the
Flexibility Theorem to make 
 � Œ0; 1� convex with Legendrian boundary. By the
Imbalance Principle of [9], there must exist a bypass along 
 � f0g, say. Let B˛ be
the bypass and ˛ the arc of attachment for the bypass.

Note that the condition that 
 intersect �S�fig efficiently eliminates the possibility of
a trivial bypass. Hence we have the following possibilities:

(i) If ˛ intersects three distinct dividing curves, then attaching B˛ yields a convex
surface S 0 isotopic to S with fewer dividing curves.

(ii) If ˛ starts on a dividing curve 
1 , passes through a parallel dividing curve 
2 , and
ends on 
1 , then 
1 and 
2 are nonseparating, and we may apply Bypass Rotation [12]
so that one of the endpoints of ˛ ends on a different dividing curve 
3 (here 
3 may
be a @–parallel arc). Then apply case (i).

(iii) Suppose ˛ starts on 
1 , passes through a parallel 
2 , and ends on 
2 after
going around a nontrivial loop. There are two possibilities: either 
1 and 
2 are
both separating curves or they are both nonseparating curves. If 
1 and 
2 are both
nonseparating, then we can apply Bypass Rotation and get to (i) and reduce the number
of dividing curves. If 
1 and 
2 are both separating, but the connected component
of S n 
2 containing the subarc of ˛ from 
2 to itself has other components of �S ,
then we can apply Bypass Rotation, get to (i) and reduce the number of dividing
curves. Finally, if 
1 and 
2 are separating and 
2 splits off a subsurface of S which
does not contain other components of �S , then attaching B˛ yields a pair of parallel
dividing curves which are either nonseparating or are separating but split off a strictly
smaller subsurface. Hence, we can reduce the complexity in one of two ways: either by
reducing number of separating curves or by reducing the genus of the separated part.
By repeating this procedure, we can reduce the genus of the separated part down to 1
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in finitely many steps and force the appearance of a nonseparating pair. Then apply
case (i) or (ii).

We can repeat this procedure until we eliminate all pairs of curves that are not parallel
to the boundary.

To eliminate the closed curves parallel to @S , we cut N open along S to obtain
S � Œ0; 1�. The dividing set on @.S � Œ0; 1�/, after rounding, will consist of 4nC 1

closed curves which are parallel to @S . There are 2n each on S � f0g and S � f1g,
and one which is created from the @–parallel arcs by edge-rounding. Let us number the
dividing curves consecutively (as they appear on @.S � Œ0; 1�/) as 
1; : : : ; 
4nC1 . Now
let ı be a properly embedded, non-boundary-parallel arc from @S to itself. Then cut
S � Œ0; 1� along the disk D D ı� Œ0; 1�, which we take to be convex with Legendrian
boundary. Furthermore, we take @D to be efficient with respect to �@.S�Œ0;1�/ . Now
consider the @–parallel arcs of �D . The only time a @–parallel arc does not have a
corresponding bypass which reduces #�S�f0g or #�S�f1g or puts us in case (iii) above
is if it straddled the middle curve 
2nC1 . In this case, there are only two @–parallel
arcs on D and all the other dividing arcs on D are “parallel” to these @–parallel arcs
that straddle 
2nC1 .

However, we claim that this particular form of �D implies that there is a closed
Legendrian curve ı which is isotopic to a meridian curve on @N and has zero relative
Thurston–Bennequin invariant with respect to the tangent framing of @N . In fact, any
properly embedded Legendrian arc ıi on D which is parallel to and disjoint from arcs
of �D , and has endpoints on 
i and 
4nC2�i , glues to give such a closed Legendrian
curve ı , after possibly sliding an endpoint along 
i . Now, ı bounds an overtwisted
disk in M , obtained from N by Dehn filling along the meridian slope. This contradicts
the fact that the contact structure �F on M is a tight contact structure. (Recall that �F
is a perturbation of a taut foliation F .) This proves that �S , after successive bypass
attachments, can be made to consist only of @–parallel arcs.

Finally, to prove that �F is the same as the contact structure defined by .S; h/, we
cut N open along S with only @–parallel dividing arcs, as furnished by Proposition
4.8, and consider the contact structure on the cut-open manifold induced by �F . The
dividing set for �F on @.S � Œ0; 1�/ consists of one closed curve parallel to @S . We
can now take a system of arcs ˛i , i D 1; : : : ; 2g.S/, on S and cut along the disks
˛i� Œ0; 1� to decompose S� Œ0; 1� into a disk times Œ0; 1�. Note that each decomposition
is along a convex disk Di isotopic to ˛i � Œ0; 1� with Legendrian boundary, so that @Di

intersects �@.S�Œ0;1�/ in exactly two points. Hence the dividing set �Di
is determined,

ie, consists of a single dividing arc. There is a unique (up to isotopy) contact structure
with such a decomposition, called a product disk decomposition. The decomposition of
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M into such an N and a standard neighborhood S1 �D2 of a Legendrian curve is
clearly identical to the contact structure adapted to the open book .S; h/.
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