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Small values of the Lusternik–Schnirelmann
category for manifolds

ALEXANDER N DRANISHNIKOV

MIKHAIL G KATZ

YULI B RUDYAK

We prove that manifolds of Lusternik–Schnirelmann category 2 necessarily have
free fundamental group. We thus settle a 1992 conjecture of Gomez-Larrañaga and
Gonzalez-Acuña by generalizing their result in dimension 3 to all higher dimensions.
We also obtain some general results on the relations between the fundamental group
of a closed manifold M , the dimension of M and the Lusternik–Schnirelmann
category of M , and we relate the latter to the systolic category of M .

55M30; 53C23, 57N65

1 Introduction

We follow the normalization of the Lusternik–Schnirelmann category (LS category)
used in the recent monograph of Cornea, Lupton, Oprea and Tanré [7] (see Section 3
for a definition). We will denote the invariant catLS . Spaces satisfying catLS D 0 are
contractible, while a closed manifold satisfying catLS D 1 is homotopy equivalent (and
hence homeomorphic) to a sphere.

The characterization of closed manifolds of LS category 2 was initiated in 1992 by
J Gomez-Larrañaga and F Gonzalez-Acuña [14] (see also Oprea and Rudyak [28]), who
proved the following result on closed manifolds M of dimension 3: the fundamental
group of M is free and nontrivial if and only if its LS category is 2. Furthermore,
they conjectured that the fundamental group of every closed n–manifold, n� 3, of LS
category 2 is necessarily free [14, Remark, p 797]. Our interest in this natural problem
was also stimulated in part by our recent work on the comparison of the LS category
and the systolic category [24; 23; 22], which was inspired, in turn, by M Gromov’s
systolic inequalities [15; 16; 17; 18].

In the present text we prove this 1992 conjecture. Recall that all closed surfaces
different from S2 are of LS category 2.
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1.1 Theorem A closed connected manifold of LS category 2 either is a surface or
has free fundamental group.

1.2 Corollary Every manifold M n; n � 3, with nonfree fundamental group satis-
fies catLS .M /� 3.

We found that there is no restriction on the fundamental group for closed manifolds of
LS category 3. In particular we proved the following.

1.3 Theorem Given a finitely presented group � and nonnegative integers k; l ,
there exists a closed manifold M such that �1.M / D � , while catLS M D 3C k

and dim M D 5C 2k C l . Furthermore, if � is not free, then M can be chosen 4–
dimensional with catLS M D 3.

Thus, there is no restriction on the fundamental group of manifolds of LS category 3
and higher.

The above results lead to the following questions:

1.4 Question If a 4–dimensional CW–complex X has free fundamental group, then
we have the bound catLS X � 3. Is the stronger bound catLS X � 2 necessarily
satisfied?

We prove the inequality catLS M � n� 2 for connected n–manifolds with free fun-
damental group and n > 4; see Proposition 4.4. In [34], J Strom proved a stronger
inequality catLS X � 2

3
dim X for an arbitrary CW–space X . Later, it was proved by

the first author [8] that if the fundamental group is free, then the bound

(1–1) catLS X �
1

2
dim X C 1

is satisfied by every CW–complex X .

The above Question 1.4 has an affirmative answer when M is a closed orientable mani-
fold, in view of a theorem due to J A Hillman [21] and T Matumoto and K Katanaga [27]
which states that a closed 4–dimensional manifold with free fundamental group has a
CW–decomposition in which the three-skeleton has the homotopy type of a wedge of
spheres.

1.5 Question Is it true that catLS .M n fptg/ D 1 for any closed manifold M

with catLS M D 2? This is proved in [14] for the case dim M D 3. A direct proof
would imply the main theorem trivially.
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1.6 Question Given integers m and n, describe the fundamental groups of closed
manifolds M with dim M D n and catLS M Dm.

Note that in the case m D n, the fundamental group of M is of cohomological
dimension � n; see eg Theorem 5.4 of Berstein and Švarc. Thus, we can ask when the
converse holds.

1.7 Question Given a finitely presented group � and an integer n � 4 such that
H n.�/ 6D 0, when can one find a closed manifold M satisfying �1.M / D � and
dim M D catLS M D n? Note that Proposition 5.12 shows that such a manifold M

does not always exist.

A related numerical invariant called the systolic category can be thought of as a
Riemannian analogue of the LS category [22]. In [9] we apply Corollary 1.2 to prove
that the systolic category of a 4–manifold is a lower bound for its LS category.

1.8 Theorem Every closed orientable 4–manifold M satisfies the inequality

catsys.M /� catLS .M /:

In particular, this inequality implies that if a 4–manifold M has a free fundamental
group then catsys.M /D catLS .M /. In a related development in systolic topology, an
intriguing model for BS3 built out of BS1 was used in Bangert, Katz, Shnider and
Weinberger [2] and Katz and Shnider [26] to prove that the symmetric metric of the
quaternionic projective space, contrary to expectation, is not its systolically optimal
metric.

The proof of the main theorem proceeds roughly as follows. If the group � WD �1.M /

is not free, then by a result of J Stallings and R Swan, the group � is of cohomological
dimension at least 2. We then show that � carries a suitable nontrivial 2–dimensional
cohomology class u with twisted coefficients, and of category weight 2. Viewing M

as a subspace of K.�; 1/ that contains the 2–skeleton K.�; 1/.2/ , and keeping in
mind the fact that the 2–skeleton carries the fundamental group, we conclude that the
restriction (pullback) of u to M is nonzero and also has category weight 2. By Poincaré
duality with twisted coefficients, one can find a complementary .n� 2/–dimensional
cohomology class. By a category weight version of the cuplength argument, we
therefore obtain a lower bound of 3 for catLS M .

In Section 2, we review the material on local coefficient systems, a twisted version
of Poincaré duality and 2–dimensional cohomology of nonfree groups. In Section 3,
we review the notion of category weight. In Section 4, we prove our main result,
Theorem 1.1. In Section 5 we prove Theorem 1.3.
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2 Cohomology with local coefficients

A local coefficient system A on a path connected CW–space X is a functor from the
fundamental groupoid �.X / of X , to the category of abelian groups. See Hatcher [20]
or Whitehead [37] for the definition and properties of local coefficient systems.

In other words, an abelian group Ax is assigned to each point x 2 X , and for each
path ˛ joining x to y , an isomorphism ˛�W Ay !Ax is given. Furthermore, paths
that are homotopic are required to yield the same isomorphism.

Given a map f W Y ! X and a local coefficient system A on X , we define a
local coefficient system on Y , denoted f �A, as follows. The map f yields a
functor �.f /W �.Y / ! �.X /, and we define f �A to be the functor A ı �.f /.
Given a pair of coefficient systems A and B , the tensor product A˝B is defined by
setting .A˝B/x DAx˝Bx .

2.1 Example A useful example of a local coefficient system is given by the following
construction. Given a fiber bundle pW E! X over X , set Fx D p�1.x/. Then the
family fHk.Fx/g can be regarded a local coefficient system; see Whitehead [37, Exam-
ple 3, Chapter VI, Section 1]. An important special case is that of an n–manifold M

and spherical tangent bundle pW E!M with fiber Sn�1 , yielding a local coefficient
system O with Ox DHn�1.S

n�1
x /Š Z. This local system is called the orientation

sheaf of M .

2.2 Remark Let � D �1.X /, and let ZŒ�� be the group ring of � . Note that all
the groups Ax are isomorphic to a fixed group A. We will refer to A as a stalk
of A. There is a bijection between local coefficients on X and ZŒ��–modules [31,
Chapter 1, Exercises F]. If A is a local coefficient system with stalk A, then the
natural action of the fundamental group on A turns A into a ZŒ��–module. Conversely,
given a ZŒ��–module A, one can construct a local coefficient system L.A/ such that
induced ZŒ��–module structure on A coincides with the given one, cf [20].
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We recall the definition of the (co)homology groups with local coefficients via mod-
ules [20]:

H k.X IA/ŠH k.HomZŒ��.C�. zX /;A/; ı/(2–1)

Hk.X IA/ŠHk.A˝ZŒ�� C�. zX /; 1˝ @/:(2–2)

Here .C�. zX /; @/ is the chain complex of the universal cover zX of X , A is the stalk
of the local coefficient system A, and ı is the coboundary operator. Note that in the
tensor product we used the right ZŒ�� module structure on A defined via the standard
rule ag D g�1a, for a 2A;g 2 � .

Recall that for CW–complexes X , there is a natural bijection between equivalence
classes of local coefficient systems and locally constant sheaves on X . One can therefore
define (co)homology with local coefficients as the corresponding sheaf cohomology as
in Bredon [5]. In particular, we refer to [5] for the definition of the cup product

[W H i.X IA/˝H j .X IB/!H iCj .X IA˝B/

and the cap product

\W Hi.X IA/˝H j .X IB/!Hi�j .X IA˝B/:

A nice exposition of the cup and the cap products in a slightly different setting can be
found in Brown [6]. In particular, we have the cap product

Hk.X IA/˝H k.X IB/!H0.X IA˝B/ŠA˝ZŒ��B:

2.3 Proposition Given an integer k � 0, there exists a local coefficient system B
and a class v 2H k.X IB/ such that, for every local coefficient system A and nonzero
class a 2Hk.X IA/, we have a\ v ¤ 0.

Proof Throughout the proof ˝ denotes ˝ZŒ�� . We convert the stalk of A into a
right ZŒ��–module A as above. Below we use the isomorphisms (2–1) and (2–2).
Consider the chain ZŒ��–complex:

: : : ����! CkC1. zX /
@kC1

����! Ck. zX /
@k
����! Ck�1. zX / ����! : : :

For the given k , we set B WD Ck. zX /= Im @kC1 . Let B be the corresponding local
system on X . Thus, we obtain the exact sequence of ZŒ��–modules

CkC1. zX /
@kC1

����! Ck. zX /
f

����! B! 0:

Geometry & Topology, Volume 12 (2008)
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Note that the epimorphism f can be regarded as a k –cocycle with values in B ,
since ıf .x/ D f @kC1.x/ D 0. Let v WD Œf � 2 H k.X IB/ be the cohomology class
of f . Now we prove that

a\ Œf � 6D 0:

Since the tensor product is right exact, we obtain the diagram

A˝CkC1. zX /
1˝@kC1

�����! A˝Ck. zX /
1˝f
����! A˝B ����! 0

g
??y

A˝Ck�1. zX /

where the row is exact. The composition

A˝Ck. zX /
1˝f
����! A˝B

g
����! A˝Ck�1. zX /

coincides with 1˝ @k . We represent the class a by a cycle

z 2A˝Ck. zX /:

Since z … Im.1˝ @kC1/, we conclude that

.1˝f /.z/¤ 0 2A˝B DH0.X IA˝B/:

Thus, for the cohomology class v of f we have a\ v ¤ 0.

Every closed connected n–manifold M satisfies Hn.M IO/Š Z. A generator (one
of two) of this group is called the fundamental class of M and is denoted by ŒM �.

One has the following generalization of the Poincaré duality isomorphism.

2.4 Theorem [5, Corollary 10.2] The homomorphism

�W H i.M IA/!Hn�i.M IO˝A/

defined by setting �.a/D ŒM �\ a, is an isomorphism.

In fact, in [5] there is the sheaf O�1 at the right, but for manifolds we have ODO�1 .

Given a group � and a ZŒ��–module A, we denote by H�.� IA/ the cohomology
of the group � with coefficients in A; see eg Brown [6]. Recall that H i.� IA/ D

H i.K.�; 1/IL.A//; see Remark 2.2.

Let cd.�/ denote the cohomological dimension of � over Z, ie the largest m such
that there exists an ZŒ��–module A with H m.� IA/¤ 0.
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2.5 Theorem [32; 35] If cd� � 1 then � is a free group.

We will need the following known fact from the cohomology theory of groups.

2.6 Lemma If � be a group with cd� D q � 2. Then H 2.� IA/¤ 0 for some ZŒ��–
module A.

Proof We use the fact that cohomology of the group � with coefficients in an
injective ZŒ��–module are trivial and the fact that every ZŒ��–module A0 can be
imbedded into an injective ZŒ��–module J [6]. Let 0! A0! J ! A00! 0 be an
exact sequence of ZŒ��–modules with J injective. Then by the coefficients long exact
sequence H k.� IA0/DH k�1.� IA00/ for k > 1. Since H q.� IB/¤ 0 for some B ,
the proof can be completed by an obvious induction.

3 Category weight and lower bounds for catLS

In this section, we review the notion of category weight and its relation to the Lusternik–
Schnirelmann category.

3.1 Definition [4; 12; 13] Let f W X ! Y be a map of (locally contractible) CW-
spaces. The Lusternik–Schnirelmann category of f , denoted catLS .f /, is defined
to be the minimal integer k such that there exists an open covering fU0; : : : ;Ukg

of X with the property that each of the restrictions f jAi W Ai! Y , i D 0; 1; : : : ; k is
null-homotopic.

The Lusternik–Schnirelmann category catLS X of a space X is defined as the cate-
gory catLS .1X / of the identity map.

3.2 Definition The category weight wgt.u/ of a nonzero cohomology class u 2

H�.X IA/ is defined as follows:

wgt.u/� k”f'�.u/D 0 for every 'W F !X with catLS .'/ < kg:

3.3 Remark E Fadell and S Husseini [11] originally proposed the notion of category
weight. In fact, they considered an invariant similar to the wgt of 3.2 (denoted in [11]
by cwgt), but where the defining maps 'W F!X were required to be inclusions rather
than general maps. As a consequence, cwgt is not a homotopy invariant, and thus
a delicate quantity in homotopy calculations. Yu Rudyak [29; 30] and J Strom [33]
proposed a homotopy invariant version of category weight as defined in Definition 3.2.

Geometry & Topology, Volume 12 (2008)



1718 Alexander N Dranishnikov, Mikhail G Katz and Yuli B Rudyak

3.4 Proposition [29; 33] Category weight has the following properties.
(1) 1� wgt.u/� catLS .X /, for all u 2 zH�.X IA/;u¤ 0.

(2) For every f W Y !X and u 2H�.X IA/ with f �.u/ 6D 0 we have catLS .f /�

wgt.u/ and wgt.f �.u//� wgt.u/.

(3) For u 2H�.X IA/ and v 2H�.X IB/ we have

wgt.u[ v/� wgt.u/Cwgt.v/:

(4) For every u 2H s.K.�; 1/IA/, u¤ 0, we have wgt.u/� s .

Proof See Cornea et al [7, Section 2.7 and Proposition 8.22]. The proofs in loc. cit.
can be easily adapted to local coefficient systems.

4 Manifolds of LS category 2

In this section we prove that the fundamental group of a closed connected manifold of
LS category 2 is free.

4.1 Theorem Let M be a closed connected manifold of dimension at least 3. If the
group � WD �1.M / is not free, then catLS M � 3.

Proof By Theorem 2.5 and Lemma 2.6, there a local coefficient system A on K.�; 1/

such that H 2.K.�; 1/IA/ ¤ 0. Choose a nonzero element u 2 H 2.K.�; 1/IA/.
Let f W M !K.�; 1/ be the map that induces an isomorphism of fundamental groups,
and let i WK!M be the inclusion of the 2–skeleton. (If M is not triangulable, we
take i to be any map of a 2–polyhedron that induces an isomorphism of fundamental
groups.) Then

.f i/�W H 2.K.�; 1/IA/!H 2.KI .f i/�A/
is a monomorphism. In particular, we have f �u 6D0 in H 2.M I .f /�A/. Now consider
the class

aD ŒM �\f �u 2Hn�2.M IO�1
˝f �A/;

where n D dim M . Then a ¤ 0 by Theorem 2.4. Hence, by Proposition 2.3, there
exists a class v 2 H n�2.M IB/ such that a\ v ¤ 0. We claim that f �u[ v ¤ 0.
Indeed, one has

ŒM �\ .f �u[ v/D .ŒM �\f �u/\ v D a\ v ¤ 0:

Now, wgtf �u � 2 by Proposition 3.4, items (2) and (4). Furthermore, wgt.v/ � 1

by Proposition 3.4, item (1). We therefore obtain the lower bound wgt.f �u[ v/� 3

by Proposition 3.4, item (3). Since f �u[ v ¤ 0, we conclude that catLS M � 3 by
Proposition 3.4, item (1).
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4.2 Corollary If M n; n� 3 is a closed manifold with catLS M � 2, then �1.M / is
a free group.

4.3 Remark An alternative approach to Theorem 4.1 would be using the Berstein–
Švarc class b2H 1.� I I.�// where I.�/ is the augmentation ideal of � . If cd.�/� 2

then b2 ¤ 0 by [10] (see also Theorem 5.4). In particular, H 2.� I I.�/˝ I.�//¤ 0,
and we obtain an alternative proof of Lemma 2.6.

The following Proposition is a special case of [8, Corollary 4.2]. Here we give a
relatively simple geometric proof.

4.4 Proposition Let M be a closed connected n–dimensional PL manifold, n > 4,
with free fundamental group. Then catLS M � n� 2.

Proof If X is a 2–dimensional (connected) CW–complex with free fundamental group
then catLS X � 1; see eg Katz, Rudyak and Sabourau [25, Theorem 12.1]. Hence,
if Y is a k –dimensional complex with free fundamental group then catLS Y � k � 1

for k > 2. Now, let K be a triangulation of M , and let L be its dual triangulation.
Then M nL.l/ is homotopy equivalent to K.k/ whenever kC l C 1D n. Hence,

catLS M � catLS K.k/
C catLS L.l/C 1:

Since �1.K/ and �1.L/ are free, we conclude that catLS K.k/�k�1 and catLS Ll �

l � 1 for k; l > 1. Thus catLS M � k � 1C l � 1C 1D n� 2.

5 Manifolds of higher LS category

Gromov [17, 4.40] called a polyhedron X n–essential if there is no map f W X !
K.�; 1/.n�1/ to the .n� 1/–dimensional skeleton of an Eilenberg–MacLane complex
that induces an isomorphism of the fundamental groups. We extend his definition as
follows.

5.1 Definition A CW–space X is called strictly k –essential, k > 1 if for every CW–
complex structure on X there is no map between the skeleta f W X .k/!K.�; 1/.k�1/

that induces an isomorphism of the fundamental groups.

Clearly, a strictly n–essential space is Gromov n–essential, while the converse is false.
Furthermore, an n–dimensional polyhedron is strictly n–essential if it is Gromov n–
essential.
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5.2 Theorem Let M be a closed strictly k –essential manifold. If its dimension
satisfies dim M � kC 1, then its LS category also satisfies catLS M � kC 1.

Proof We first consider the case kD2. If catLS M �2, then, by Theorem 4.1, �1.M /

is free. Hence there is a map f W M ! _S1 that induces an isomorphism of the
fundamental groups, and M is not strictly 2–essential.

Now assume k � 3. Let K DK.�1.M /; 1/. Consider a map

f W M .k�1/
!K.k�1/

such that the restriction f jM .2/ is the identity homeomorphism of the 2–skeleta M .2/

and K.2/ . We consider the problem of extension of f to M .

We claim that the first obstruction o.f / 2 H k.M IE/ (taken with coefficients in a
local system E with the stalk �k�1.K

.k�1//) to the extension is not equal to zero.

Indeed, if o.f / D 0, then there exists a map xf W M .k/ ! K.k�1/ which coincides
with f on the .k � 2/–skeleton. The map

xf�W �1.M
.k//! �1.K

.k�1//

can be viewed as an endomorphism of �1.M / that is identical on generators, and
therefore xf� is an isomorphism. Hence M is not strictly k –essential.

Consider the commutative diagram

M .k�1/
f

����! K.k�1/ id
����! K.k�1/

i

??y j

??y
M

zf
����! K

where i and j are the inclusions of the skeleta. Let ˛ be the first obstruction to
the extension of id to a map K!K.k�1/ . By commutativity of the above diagram,
we have o.f /D zf �.˛/. Now, asserting as in the proof of Theorem 4.1, we get that
zf �.˛/[v¤0 for some v with dimvDdimM�k , and wgtf �˛Dk. Since dimM>k ,

we conclude that dim v � 1 and thus catLS M � kC 1.

5.3 Remark If a closed manifold M n is n–essential then catLS M D n; see eg the
paper by the second and third authors [24] and the book by the second author [22,
Theorem 12.5.2].

The following theorem for n� 3 was proven by Berstein [3, Theorem A] and Švarc [36,
Theorem 20]; see also Cornea et al [7, Proposition 2.51]. The case nD 2 was proved
in Dranishnikov and Rudyak [10].
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5.4 Theorem If dim X D catLS X D n, then un
X
¤ 0 where uX is the image j �.b/2

H 1.X I I.�//, j W X !K.�; 1/ induces an isomorphism of the fundamental groups,
and b 2 H 1.�; I.�// is the Berstein–Švarc class. (For the case n D1 this means
that uk ¤ 0 for all k .)

5.5 Proposition For every nonfree finitely presented group � , there exists a closed 4–
dimensional manifold M with fundamental group � and catLS M D 3.

Proof Let K be a 2–skeleton of K.�; 1/. Take an embedding of K in R5 and
let M D@N be the boundary of the regular neighborhood N of this skeleton. Then there
is a retraction N !K , and, clearly, the map f W M �N !K induces an isomorphism
of fundamental groups. Now, let uM 2 H 1.M I I.�// be the class described in the
Theorem 5.4. Then uM D f

�uK , and hence u4
M
D 0. Therefore catLS M < 4 by

Theorem 5.4, and thus catLS M D 3.

Let Mf be the mapping cylinder of f W X ! Y . We use the notation ��.f / D

��.Mf ;X /. Then �i.f / D 0 for i � n amounts to saying that it induces isomor-
phisms f�W �i.X1/ ! �i.Y1/ for i � n and an epimorphism in dimension nC 1.
Similar notation H�.f /DH�.Mf ;X / we use for homology.

5.6 Lemma Let fj W Xj!Yj be a family of maps of CW–spaces such that Hi.fj /D0

for i � nj . Then Hi.f1 ^ � � � ^fs/D 0 for i �minfnj g.

Proof Note that

M.f1 ^ � � � ^fs/Š Y1 ^ � � � ^Ys ŠM.f1/^ � � � ^M.fs/:

Now, by using the Künneth formula and considering the homology exact sequence of
the pair .M.f1/^ � � � ^M.fs/;X1 ^ � � � ^Xs/, we obtain the result.

5.7 Proposition Let fj W Xj ! Yj , 3 � j � s be a family of maps of CW–spaces
such that �i.fj /D 0 for i � nj , nj � 1. Then the joins satisfy

�k.f1 �f2 � � � � �fs/D 0

for k �minfnj gC s� 1.

Proof By the version of the Relative Hurewicz Theorem for non–simply connected Xj

[20, Theorem 4.37], we obtain Hi.fj / D 0 for i � nj . By Lemma 5.6 we obtain
that Hk.f1^ � � �^fs/D 0 for k �minfnj g. Since the join A1 � � � � �As is homotopy
equivalent to the iterated suspension †s�1.A1 ^ � � � ^As/ over the smash product, we
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conclude that Hk.f1 � � � � � fs/D 0 for k �minfnj gC s� 1. Since X1 � � � � �Xs is
simply connected for s � 3, by the standard Relative Hurewicz Theorem we obtain
that �k.f1 � � � � �fs/D 0 for k �minfnj gC s� 1.

Given two maps f W Y1!X and gW Y2!X , we set

Z D f.y1;y2; t/ 2 Y1 �Y2 j f .y1/D g.y2/g

and define the fiberwise join, or join over X of f and g as the map:

f �X gW Z!X; .f �X g/.y1;y2; t/D f .y1/

Let pX
0
W PX ! X be the Serre path fibration. This means that PX is the space of

paths on X that start at the base point of the pointed space X , and p0.˛/D ˛.1/. We
denote by pX

n W Gn.X /!X the n–fold fiberwise join of p0 .

The proof of the following theorem can be found in [7].

5.8 Theorem (Ganea, Švarc) For a CW–space X , catLS .X /� n if and only if there
exists a section of pnW Gn.X /!X .

5.9 Proposition The connected sum Sk � S l# � � � #Sk � S l is a space of LS cate-
gory 2.

Proof This can be deduced from a general result of K Hardy [19] because the connected
sum of two manifolds can be regarded as the double mapping cylinder. Alternatively,
one can note that, after removing a point, the manifold on hand is homotopy equivalent
to the wedge of spheres.

5.10 Theorem For every finitely presented group � and n� 5, there is a closed n–
manifold M of LS category 3 with �1.M /D � .

Proof If the group � is the free group of rank s , we let M 0 be the k –fold connected
sum S1 �S2# � � � #S1 �S2 . Then M 0 is a closed 3–manifold of LS category 2 with
�1.M

0/D Fs . Then the product manifold M DM 0 �Sn�3 has cuplength 3 and is
therefore the desired manifold.

Now assume that the group � is not free. We fix a presentation of � with s generators
and r relators. Let M 0 be the k –fold connected sum S1 � Sn�1# � � � #S1 � Sn�1 .
Then M 0 is a closed n–manifold of the category 2 with �1.M

0/ D Fs . For every
relator w we fix a nicely imbedded circle S1

w � M 0 such that S�1
w \ S�1

v D ∅
for w ¤ v . Then we perform the surgery on these circles to obtain a manifold M .
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Clearly, �1.M /D � . We show that catLS .M /� 3, and so catLS M D 3 by Theorem
4.1.

As usual, the surgery process yields an .nC 1/–manifold X with @X DM tM 0 .
Here X is the space obtained from M 0 � I by attaching handles D2 �Dn�1 of index
2 to M 0 � 1 along the above circles. We note that catLS .X /� 3.

On the other hand, by duality, X can be obtained from M � I by attaching handles of
index n�1 to the boundary component of M �I . In particular, the inclusion f W M !
X induces an isomorphism of the homotopy groups of dimension � n� 3 and an
epimorphism in dimension n� 2. Hence the map

�f W �M !�X

induces isomorphisms in dimensions � n� 4 and an epimorphism in dimension n� 3.
Thus, �i.�f /D 0 for i � n� 3.

In order to prove the bound catLS M � 3, it suffices to show that the Ganea–Švarc
fibration p3W G3.M /!M has a section. Consider the commutative diagram

G3M
q

����! Z
f 0

����! G3.X /

p3
M

??y p0
??y ??ypX

3

M M
f

����! X

where the right-hand square is the pullback diagram and f 0q DG3.f /. Note that q is
uniquely determined. Since catLS .X /� 3, by Theorem 5.8 there is a section sW X !

G3.X /. It defines a section s0W M ! Z of p0 . It then suffices to show that the
map s0W M !Z admits a homotopy lifting hW M !G3M with respect to q , ie the
map h with qhŠ s0 . Indeed, we have

p3
M hD p0qhŠ p0s0 D 1M

and so h is a homotopy section of pM
3

. Since the latter is a Serre fibration, the
homotopy lifting property yields an actual section.

Let F1 and F2 be the fibers of fibrations pM
3

and p0 , respectively. Consider the
commutative diagram generated by the homotopy exact sequences of the Serre fibra-
tions pM

3
and p0 :

�i.F1/ ����! �i.G3.M //
.pM

3
/�

����! �i.M / ����! �i�1.F1/ ����! � � �??y�� ??yq�

??yD ??y��
�i.F2/ ����! �i.Z/

.p0/�
����! �i.M / ����! �i�1.F2/ ����! � � �
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Note that we have

� D�.f /��.f /��.f /��.f /:

By Proposition 5.7 and since �i.�f /D 0 for i � n� 3, we conclude that �i.�/D 0

for i � n� 3C 3 D n. Hence � induces an isomorphism of the homotopy groups
of dimensions � n � 1 and an epimorphism in dimension n. By the Five Lemma
we obtain that q� is an isomorphism in dimensions � n� 1 and an epimorphism in
dimension n. Hence the homotopy fiber of q is .n�1/–connected. Since dim M D n,
the map s0 admits a homotopy lifting hW M !G3.M /.

5.11 Corollary Given a finitely presented group � and nonnegative integer num-
bers k; l there exists a closed manifold M such that �1.M /D � , while catLS M D

3C k and dim M D 5C 2kC l .

Proof By Theorem 5.10, there exists a manifold N such that �1.N /D� , catLS N D3

and dim N D 5C l . Moreover, this manifold N possesses a detecting element, ie a
cohomology class whose category weight is equal to catLS N D 3. For � free this
follows since the cuplength of N is equal to 3, for other groups we have the detecting
element f �u[ v constructed in the proof of Theorem 4.1. If a space X possesses
a detecting element then, for every m > 0, we have catLS .X �Sm/ D catLS X C 1

and X �Sm possesses a detecting element [30]. Now, the manifold M WDN � .S2/k

is the desired manifold.

Generally, we have a question about relations between the category, the dimension, and
the fundamental group of a closed manifold. The following proposition shows that the
situation quite intricate.

5.12 Proposition Let p be an odd prime. Then there exists a closed .2nC 1/–
manifold with catLS M D dim M and �1.M / D Zp , but there are no closed 2n–
manifolds with catLS M D dim M and �1.M /D Zp .

Proof An example of .2n C 1/–manifold is the quotient space S2nC1=Zp with
respect to a free Zp –action on S2nC1 . Now, given a 2n–manifold with �1.M /DZp ,
consider a map f W M!K.Zp; 1/ that induces an isomorphism of fundamental groups.
Since H2n.K.Zp; 1//D 0, it follows from the obstruction theory and Poincaré duality
that f can be deformed into the .2n� 1/–skeleton of K.Zp; 1/, cf [1, Section 8].
Hence, M is not 2n–essential, and thus catLS M < 2n [24].
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